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Preface

Important though the general concepts and propositions may be with 
which the modern and industrious passion for axiomatizing and generalizing 
has presented us, in algebra perhaps more than anywhere else, nevertheless I 
am convinced that the special problems in all their complexity constitute the 
stock and core of mathematics, and that to master their difficulties requires 

on the whole the harder labor.

—Herman Weyl

This book began many years ago in the form of supplementary notes for my algebra classes. 
I wanted to discuss some concrete topics such as symmetry, linear groups, and quadratic 
number fields in more detail than the text provided, and to shift the emphasis in group theory 
from permutation groups to matrix groups. Lattices, another recurring theme, appeared 
spontaneously.

My hope was that the concrete material would interest the students and that it would 
make the abstractions more understandable -  in short, that they could get farther by learning 
both at the same time. This worked pretty welL It took me quite a while to decide what to 
include, but I gradually handed out more notes and eventually began teaching from them 
without another text. Though this produced a book that is different from most others, the 
problems I encountered while fitting the parts together caused me many headaches. I can’t 
recommend the method.

There is more emphasis on special topics here than in most algebra books. They tended 
to expand when the sections were rewritten, because I noticed over the years that, in contrast 
to abstract concepts, with concrete mathematics students often prefer more to less. As a 
result, the topics mentioned above have become major parts of the book.

In writing the book, I tried to follow these principles:
1. The basic examples should precede the abstract definitions.
2. Technical points should be presented only if they are used elsewhere in the book.
3. All topics should be important for the average mathematician.

Although these principles may sound like motherhood and the flag, I found it useful to have 
them stated explicitly. They are, of course, violated here and there.

The chapters are organized in the order in which I usually teach a course, with linear 
algebra, group theory, and geometry making up the first semester. Rings are first introduced 
in Chapter 11, though that chapter is logically independent of many earlier ones. I chose

xi



xii Preface

this arrangement to emphasize the connections of algebra with geometry at the start, and 
because, overall, the material in the first chapters is the most important for people in other 
fields. The first half of the book doesn’t emphasize arithmetic, but this is made up for in the 
later chapters.

About This Second Edition

The text has been rewritten extensively, incorporating suggestions by many people as well as 
the experience of teaching from it for 20 years. I have distributed revised sections to my class 
all along, and for the past two years the preliminary versions have been used as texts. As a 
result, I ’ve received many valuable suggestions from the students. The overall organization 
of the book remains unchanged, though I did split two chapters that seemed long.

There are a few new items. None are lengthy, and they are balanced by cuts made 
elsewhere. Some of the new items are an early presentation of Jordan form (Chapter 4), a 
short section on continuity arguments (Chapter 5), a proof that the alternating groups are 
simple (Chapter 7), short discussions of spheres (Chapter 9), product rings (Chapter 11), 
computer methods for factoring polynomials and Cauchy’s Theorem bounding the roots ofa 
polynomial (Chapter 12), and a proof of the Splitting Theorem based on symmetric functions 
(Chapter 16). I ’ve also added a number of nice exercises. But the book is long enough, so 
I’ve tried to resist the temptation to add material.

NOTES FOR THE TEACHER
This book is designed to allow you to choose among the topics. Don’t try to cover the book, 
but do include some of the interesting special topics such as symmetry of plane figures, the 
geometry of SU2, or the arithmetic of imaginary quadratic number fields. If you don’t want 
to discuss such things in your course, then this is not the book for you.

There are relatively few prerequisites. Students should be familiar with calculus, the 
basic properties of the complex numbers, and mathematical induction. An acquaintance with 
proofs is obviously useful. The concepts from topology that are used in Chapter 9, Linear 
Groups, should not be regarded as prerequisites. '

I recommend that you pay attention to concrete examples, especially throughout the 
early chapters. This is very important for the students who come to the course without a 
clear idea of what constitutes a proof.

One could spend an entire semester on the first five chapters, but since the real fun 
starts with symmetry in Chapter 6, that would defeat the purpose of the book. Try to get 
to Chapter 6 as soon as possible, so that it can be done at a leisurely pace. In spite of its 
immediate appeal, symmetry isn’t an easy topic. It is easy to be carried away and leave the 
students behind.

These days most of the students in my classes are familiar with matrix operations and 
modular arithmetic when they arrive. I’ve not been discussing the first chapter on matrices 
in class, though I do assign problems from that chapter. Here are some suggestions for 
Chapter 2, Groups.
1. Treat the abstract material with a light touch. You can have another go at it in Chapters 6 

and 7.
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2. For examples, concentrate on matrix groups. Examples from symmetry are best deferred 
to Chapter 6.

3. Don’t spend much time on arithmetic; its natural place in this book is in Chapters 12 
and 13.

4. De-emphasize the quotient group construction. '

Quotient groups present a pedagogical problem. While their construction is concep
tually difficult, the quotient is readily presented as the image of a homomorphism in most 
elementary examples, and then it does not require an abstract definition. Modular arithmetic 
is about the only convincing example for which this is not the case. And since the integers 
modulo n form a ring, modular arithmetic isn’t the ideal motivating example for quotients 
of groups. The first serious use of quotient groups comes when generators and relations are 
discussed in Chapter 7. I deferred the treatment of quotients to that point in early drafts 
of the book, but, fearing the outrage of the algebra community, I eventually moved it to 
Chapter 2. If you don’t plan to discuss generators and relations for groups in your course, 
then you can defer an in-depth treatment of quotients to Chapter 11, Rings, where they play 
a central role, and where modular arithmetic becomes a prime motivating example.

In Chapter 3, Vector Spaces, I ’ve tried to set up the computations with bases in such a 
way that the students won’t have trouble keeping the indices straight. Since the notation is 
used throughout the book, it may be advisable to adopt it.

The matrix exponential that is defined in Chapter 5 is used in the description of one- 
parameter groups in Chapter 10, so if you plan to include one-parameter groups, you will 
need to discuss the matrix exponential at some point. But you must resist the temptation to 
give differential equations their due. You will be forgiven because you are teaching algebra.

Except for its first two sections, Chapter 7, again on groups, contains optional material. 
A section on the Todd-Coxeter algorithm is included to justify the discussion of generators 
and relations, which is pretty useless without it. It is fun, too.

There is nothing unusual in Chapter 8, on bilinear forms. I haven’t overcome the main 
pedagogical problem with this topic -  that there are too many variations on the same theme, 
but have tried to keep the discussion short by concentrating on the real and complex cases.

In the chapter on linear groups, Chapter 9, plan to spend time on the geometry of SU2. 
My students complained about that chapter every year until I expanded the section on SU2, 
after which they began asking for supplementary reading, wanting to learn more. Many of 
our students aren’t familiar with the concepts from topology when they take the course, but 
I’ve found that the problems caused by the students’ lack of familiarity can be managed. 
Indeed, this is a good place for them to get an idea of a manifold.

I resisted including group representations, Chapter 10, for a number of years, on the 
grounds that it is too hard. But students often requested it, and I kept asking myself: If the 
chemists can teach it, why can’t we? Eventually the internal logic of the book won out and 
group representations went in. As a dividend, hermitian forms got an application.

You may find the discussion of quadratic number fields in Chapter 13 too long for a 
general algebra course. With this possibility in mind, I’ve arranged the material so that the 
end of Section 13.4, on ideal factorization, is a natural stopping point.

It seemed to me that one should mention the most important examples of fields in a 
beginning algebra course, so I put a discussion of function fields into Chapter 15. There is
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always the question of whether or not Galois theory should be presented in an undergraduate 
course, but as a culmination of the discussion of symmetry, it belongs here.

Some of the harder exercises are marked with an asterisk.
Though I’ve taught algebra for years, various aspects of this book remain experimental, 

and I would be very grateful for critical comments and suggestions from the people who use it.
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Matrices

€ t «  wit6 olletl ftneieniflc tine gcncnnl, 
wtlcljeo cinct Setmefitunfl o6tt tinct Sttmln6etunfl flints ftf, 

o6et wo?u "clj noch tlWoa hinjuftfcn o6tt 6oPon wegntijmtn laft.

—Leonhard Euler1

Matrices play a central role in this book. They form an important part of the theory, and 
many concrete examples are based on them. Therefore it is essential to develop facility in 
matrix manipulation. Since matrices pervade mathematics, the techniques you will need are 
sure to be useful elsewhere.

1.1 THE BASIC OPERATIONS

Let m and n be positive integers. An m X n matrix is a collection of mn numbers arranged 
in a rectangular array

n columns

(1.1.1) m rows
a 11

a ml

For example, i s a 2 X 3 matrix (two rows and three columns). We usually introduce
a symbol such as A to denote a matrix.

The numbers in a matrix are the matrix entries. They may be denoted by aij, where i 
and j  are indices (integers) with 1 < i <  m and 1 < j <  n, the index i is the row index, and 
j  is the column index. So aij is the entry that appears in the ith row and jth  column of the 
matrix:

]

1 This is the opening sentence of Euler’s book Algebra, which was published in St. Petersburg in 1770.
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2 Chapter 1 Matrices

In the above example, a n  =  2, a ^  =  0, and a 23 =  5. We sometimes denote the matrix 
whose entries are a ^  by (a^)-

An n X n matrix is called a square matrix. A 1 X 1 matrix [a] contains a single number, 
and we do not distinguish such a matrix from its entry.

A l X n  matrix is an n-dimensional row vector. We drop the index i when m =  1 and 
write a row vector as

[ai ••• an], or as (a i, . . . ,  a„).

Commas in such a row vector are optional. Similarly, an m X 1 matrix is an 

m-dimensional column vector:

In most of th is book, we won’t make a distinction between an n-dimensional column vector 
and the point of n-dimensional space with the same coordinates. In the few places where the 
distinction is useful, we will state this clearly.

Addition of matrices is defined in the same way as vector addition. Let A =  (aij) and 
B =  (b,j) be two m Xn  matrices. Their sum A  +  B is the m Xn matrix S =  (sij) defined by

S i j  =  a i j  +  b t j .

Thus
'2 1 0 ' '1 0 3 ‘ '3 1 3 '
u 3 5 _ + 4 -3 1 _ — D 0 6 _

Addition is defined only when the matrices to be added have the same shape -  when they
are m Xn  matrices with the same m and n.

Scalar multiplication of a matrix by a number is also defined as with vectors. The result 
of multiplying an m Xn  matrix A by a number c is another m Xn  matrix B = (bij), where 
bij — ca ,j for all i, j. Thus

' 2 1 0 ' ' 4 2 0 ‘
1  3 5 _ 2 6 10

Numbers will also be referred to as scalars. Let’s assume for now that the scalars are real 
numbers. In later chapters other scalars will appear. Just keep in mind that, except for 
occasional reference to the geometry of real two- or three-dimensional space, everything in 
this chapter continues to hold when the scalars are complex numbers.

The complicated operation is matrix multiplication. The first case to learn is the product 
AB of a row vector A  and a column vector B, which is defined when both are the same size,



Section 1.1 The Basic Operations 3

say m. If the entries of A and B are denoted by a (- and bi, respectively, the product AB is the 
1 X1 matrix, or scalar,

(1.1.2) a ib i+ a 2 b2 -\---- + a mbm.

Thus

[ 1 3 5 J =  1 -  3 +  20 =  18.

The usefulness of this definition becomes apparent when we regard A and B as vectors that 
represent indexed quantities. For examp le, consider a candy bar containing m ingredients. 
Let a ;- denote the number of grams of (ingredient)i per bar, and let bi denote the cost of 
(ingredient)i per gram. The matrix product AB computes the cost per bar:

(grams/bar). (cost/gram) =  (cost/bar).

In general, the product of two m atrices A =  (aij) and B =  (b;j )  is defined when the 
number of columns of A is equal to the number of rows of B. If A is an f  X m matrix and B is 
an m X n matrix, then the product will be an f  X n matrix. Symbolically,

( fx m )  ■ (m Xn) =  (fX n).

The entries of the product matrix are computed by multiplying all rows of A by all columns 
of B, using the rule (1.1.2). If we denote the product matrix AB by P =  (p ij), then

This is the product of the ith row of A and the jth  column of B.

For example,

(1.1.4)
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This definition of matrix multiplication has turned out to provide a very convenient 
computational tool. Going back to our candy bar example, suppose that there are £ candy
bars. We may form the .e Xm matrix A whose ith row measures the ingredients of (bar)/. If
the cost is to be computed each year for n years, we may form the m X n matrix B whose j th  
column measures the cost of the ingredients in (yearj. Again, the matrix product AB  =  P  
computes cost per. bar: p/j  =  cost of (bar)/ in (year)j.

One reason for matrix notation is to provide a shorthand way of writing linear 
equations. The system of equations

<211*1 + ■ ■ ■ + a inx n = bi
021*1 +  ••• +  a2 nXn = b 2

<^ml*l +  ' ' ’ “H d-mn^n — bm

can be written in matrix notation as

(1.1.5) AX =  B

where A  denotes the matrix of coefficients, X and B are column vectors, and A X  is the 
matrix product:

We may refer to an equation of this form simply as an “equation” or as a “system.” 
The matrix equation

represents the following system of two equations in three unknowns:

2xi + X2 =  1
Xi + 3x2 + 5x3 =  18.

Equation (1.1.4) exhibits one solution, xi =  1, X2 =  -1, X3 =  4. There are others.
The sum (1.1.3) that defines the product matrix can also be written in summation or 

“sigma” notation as

m
(1.1.6) Pij — '^2,aivbvj  =  L I  aivbvj.

v=l v
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Each of these expressions for p ij is a shorthand notation for the sum. The large sigma 
indicates that the terms with the indices IJ =  1, . . .  , m are to be added up. The right-hand 
notation indicates that one should add the terms with all possible indices IJ. It is assumed 
that the reader will understand that, if A is an e x m  matrix and B is an m X n matrix, the 
indices should run from 1 to m. We’ve used the greek letter “nu,” an uncommon symbol 
elsewhere, to distinguish the index of summation clearly.

Our two most important notations for handling sets of numbers are the summation 
notation, as used above, and matrix notation. The summation notation is the more versatile 
of the two, but because matrices are more compact, we use them whenever possible. One 
of our tasks in later chapters will be to translate complicated mathematical structures into 
matrix notation in order to be able to work with them conveniently.

Various identities are satisfied by the matrix operations. The distributive laws

(1.1.7) A (B + B ') = A B + A B ’, and (A +  A')B =  A B +A 'B

and the associative law

(1.1.8) (AB)C =  A(BC)

are among them. These laws hold whenever the matrices involved have suitable sizes, so 
that the operations are defined. For the associative law, the sizes should be A =  ex  m, 
B =  m Xn, and C =  n X p, for some e, m, n, p. Since the two products (1.1.8) are equal, 
parentheses are not necessary, and we will denote the triple product by ABC. It is an e x p  
matrix. For example, the two ways of computing the triple product

are

(AB)C = 1 0 1 
2 0 2

2 0 
1 1 
0 1

2 1 
4 and A(BC) = [2 1] =

2 1 
4 1

Scalar multiplication is compatible with matrix multiplication in the obvious sense:

(1.1.9) c(AB) =  (cA)B =  A(cB).

The proofs of these identities are straight forward and not very interesting.
However, the commutative law does not hold for matrix multiplication, that is,

(1.1.10) A B i= B A , usually.
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Even when both matrices are square, the two products tend to be different. For instance,

‘1 1 ' ‘2 0 ' ‘3 1 ' while ‘2 o ' ‘1 1 ' ' 2  2

0 0 _ 1 1_ 0 0 _ _ i i_ 0 0 _ l  i  _

If it happens that AB = BA, the two matrices are said to commute.
Since matrix multiplication isn’t commutative, we must be careful when working with 

matrix equations. We can multiply both sides of an equation B = C on the left by a 
matrix A, to conclude that AB =  AC, provided that the products are defined. Similarly, 
if the products are defined, we can conclude that BA =  CA. We cannot derive AB = CA 
from B = C.

A matrix all of whose entries are 0 is called a zero matrix, and if there is no danger of 
confusion, it will be denoted simply by O.

The entries a,-,- of a matrix A are its diagonal entries. A  matrix A is a diagonal matrix 
if its only nonzero entries are diagonal entries. (The word nonzero simply means “different 
from zero.” It is ugly, but so convenient that we will use it frequently.)

The diagonal n x  n matrix all of whose diagonal entries are equal to 1 is called the n x n 
identity matrix, and is denoted by /„. It behaves like the number 1 in multiplication: If A is 
an m X n matrix, then

(1.1.11) Ain = A  and ImA = A .

We usually omit the subscript and write I for In.
Here are some shorthand ways of depicting the identity matrix:

We often indicate that a whole region in a matrix consists of zeros by leaving it blank or by 
putting in a single O.

We use * to indicate an arbitrary undetermined entry of a matrix. Thus

may denote a square matrix A whose entries below the diagonal are 0, the other entries 
being undetermined. Such a matrix is called upper triangular. The matrices that appear in
(1.1.14) below are upper triangular.

Let A be a (square) n X n matrix. If there is a matrix B such that

(1.1.12) AB = In and B A  =  In,
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then B is called an inverse of A  and is denoted by A  1:

A matrix A  that has an inverse is called an invertible matrix.

'2  1 ' is invertible. its inverse is A 1 = ' 3 -1 ‘
5 3 -5  2For example, the matrix A =  ;  „ i s invertible. its inverse is A "  =  3 „ , as

can be seen by computing the products AA~1 and A- l A. Two more examples:

(1.1.14)

We will see later that a square matrix A is invertible if there is a matrix B such that either 
one of the two relations AB =  In or BA =  I„ holds, and that B is then the inverse (see 
(1.2.20)). But since multiplication of matrices isn’t commutative, this fact is not obvious. On 
the other hand, an inverse is unique if it exists. The next lemma shows that there can be only 
one inverse of a matrix A:

Lemma 1.1.15 Let A be a square matrix that has a right inverse, a matrix R such that AR  =  I 
and also a left inverse, a matrix L such that LA =  I. Then R = L. So A  is invertible and R is 
its inverse.

Proof R = IR = (LA)R = L(AR) = L I = L. □

Proposition 1.1.16 Let A  and B be invertible n x n matrices. The product AB  and the inverse 
A_1 are invertible, (AB)- 1 = B~1A~^ and (A-1)-1 =  A. If A \ , . . . , A m are invertible n Xn 
matrices, the product Ai • .. Am is invertible, and its inverse is A^1 . . .  A^1.

Proof Assume that A and B are invertible. To show that the product BT^A— = Q is the 
inverse of AB =  P, we simplify the products PQ and QP, obtaining I  in both cases. The 
verification of the other assertions is similar. □

The inverse of 1 1 
1

1 1 
2 is 1 -1 

1 l
2 J

It is worthwhile to memorize the inverse of a 2 X 2 matrix:

(1.1.17) a b - i 1 d -b  ‘
e d_ ad — be -e a _

The denominator ad — be is the determinant of the matrix. if the determinant is zero, the 
matrix is not invertible. We discuss determinants in Section 1.4.
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Though this isn’t clear from the definition of matrix multiplication, we will see that most 
square matrices are invertible, though finding the inverse explicitly is not a simple problem 
when the matrix is large. The set of all invertible n X n matrices is called the n-dimensional 
general linear group. It will be one of our most important examples when we introduce the 
basic concept of a group in the next chapter.

For future reference, we note the following lemma:

Lemma 1.1.18 A square matrix that has either a row of zeros or a column of zeros is not 
invertible.

Proof. If a row of an n Xn matrix A is zero and if B is any other n Xn matrix, then the 
corresponding row of the product AB is zero too. So AB is not the identity. Therefore A has 
no right inverse. A similar argument shows that if a column of A is zero, then A has no left 
inverse. □

Block Multiplication

Various tricks simplify matrix multiplication in favorable cases; block multiplication is one 
of them. Let M and M' be m X n and n X p  matrices, and let r  be an integer less than n. We 
may decompose the two matrices into blocks as follows:

A'
M =  [A|B] and M' =  

where A has r  columns and A' has r  rows. Then the matrix product can be computed as 

(1.1.19) MM' =  AA' +B B '.

Notice that this formula is the same as the rule for multiplying a row vector and a column 
vector.

We may also multiply matrices divided into four blocks. Suppose that we decompose an 
m X n matrix M and an n X p  matrix M' into rectangular submatrices

M' =
[A' B 'l

D  .

where the number of columns of A and C are equal to the number of rows of A' and B'. In 
this case the rule for block multiplication is the same as for multiplication of 2 X 2 matrices:

(1.1.20)
C

B
D

’A'
C'

B'
D'

AA' + BC!
CA' +  DC'

AB' +  BD'
CB' +  DD'

These rules can be verified directly from the definition of matrix multiplication.
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Please use block multiplication to verify the equation

Besides facilitating computations, block multiplication is a useful tool for proving facts 
about matrices by induction.

Matrix Units

The matrix units are the simplest nonzero matrices. The m Xn  matrix unit e ,j has a 1 in the 
i, j  position as its only nonzero entry:

j

(1.1.21)

We usually denote matrices by uppercase (capital) letters, but the use of a lowercase letter 
for a matrix unit is traditional.

• The set of matrix units is called a basis for the space of all m x n matrices, because every 
m X n matrix A =  (a,j) is a linear combination of the matrices e if

(1.1.22) A = a u e ii + a i2 ei2 + L a i jeij .

The indices i, j  under the sigma mean that the sum is to be taken over all i =  1, . . . ,  m and 
all j  =  1, . . . ,  n. For instance,

3 2 
1 4

= 3 1 + 2 1 + 1 1
+  4

1 =  3 e n  +  2 en  +  l e j i  +  4e22-

The product of an m Xn matrix unit e ,j and an n X p  matrix unit eji is given by the formulas

• The column vector e ,  which has a single nonzero entry 1 in the position i, is analogous 
to a matrix unit, and the set {ei, . . . ,  en} of these vectors forms what is called the standard 
basis of the n-dimensional space ]Rn (see Chapter 3, (3.4.15)). If X is a column vector with 
entries (xi, . . .  , x«), then

(1.1.24) X  =  x \e \  H------ \-xnen -
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The formulas for multiplying matrix units and standard basis vectors are

1.2 ROW REDUCTION

Left multiplication by an n X n matrix A on n X p  matrices, say

(1.2.1) A X =  Y,

can be computed by operating on the rows of X. If we let Xi and Yj denote the ith rows of
X and Y, respectively, then in vector notation,

Y i = a n X 1

* 1 — '
—  *2 —

_
—  y 2 —

—  Y n -  .

For instance, the bottom row of the product

0 1 
-2 3

1 2 1 
1 3 0

1 3 0
1 5 -2

can be computed as -2[1 2 1]+3[1 3 0] =  [1 5 -2].
Left multiplication by an invertible matrix is called a row operation. We discuss these 

row operations next. Some square matrices called elementary matrices are used. There are 
three types of elementary 2 X 2 matrices:

(1.2.3) (i)
1 a 
0 l or 1 O 

a  1

where a  can be any scalar and c can be any nonzero scalar.
There are also three types of elementary n X n matrices. They are obtained by splicing 

the elementary 2 X 2 matrices symmetrically into an identity matrix. They are shown below 
with a 5 X 5 matrix to save space, but the size is supposed to be arbitrary.
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(1.2.4) 

Type (i):

'1  " "1 '
i 1 a j I

1 or 1
j 1 i a 1

1 L 1

0 #  j)  •

One nonzero off-diagonal entry is added to the identity matrix.

i jType (ii):
1

0 1 
1

1 0

The ith and jth  diagonal entries of the identity matrix are replaced by zero, and 1’s are 
added in the (i, j )  and (j, i) positions.

Type (iii):

One diagonal entry of the identity matrix is replaced by a nonzero scalar c.

• The elementary matrices E operate on a matrix X this way: To get the matrix EX, you 
must:

(1.2.5) Type(i): with a in the i, j  position, “add a-(row j )  of X to (row i), ”
Type(ii): “ interchange (row i) and (row j)  of X ,”

Type(iii): “multiply (row i) of X  by a nonzero scalar c.”

These are the elementary row operations. Please verify the rules.

Lemma 1.2.6 Elementary matrices are invertible, and their inverses are also elementary 
matrices.

Proof. The inverse of an elementary matrix is the matrix corresponding to the inverse row
operation: “subtract a■ (row j )  from (row i),” “interchange (row i) and (row j)” again, or
“multiply (row i) by c~l ." □

j j
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We now perform elementary row operations (1.2.5) on a matrix M, with the aim of 
ending up with a simpler matrix:

M sequence of ope rations

Since each elementary operation is obtained by multiplying by an elementary matrix, we 
can express the result of a sequence of such operations as multiplication by a sequence 
Eb . . . , Ek of elementary matrices:

(1.2.7) M' =  £*••• EtExM.

This procedure to simplify a matrix is called row reduction.
As an example, we use elementary operations to simplify a matrix by clearing out as 

many entries as possible, working from the left.

'1  1 2 1 5 ' ' 1 1 2  1 5 '
(1.2.8) M = 1 1 ; 6 10 -+-+

yntooo

-+
1 2 2 7 I 1 0 1 3 1 2 1

1 " l  0 -1 0 3 ' "1 0 -1 0 3 ’
0 1 3 1 2 —>• —>• 0 1 3 1 2 -+ 0 1 3 0 1
0 0 0 5 5 0 0 0 1 1 1 O 0 0 1 1

=  M'.

The matrix M' cannot be simplified further by row operations.

Here is the way that row reduction is used to solve systems of linear equations. 
Suppose we are given a system of m equations in n unknowns, say AX =  B, where A 
is an m x  n matrix, B is a given column vector, and X  is an unknown column vector. To 
solve this system, we form the m x (n +  1) block matrix, sometimes called the augmented 
matrix

(1.2.9) M =  [A|B] =
a n  ■ ' &ln bi~

„®ml ' ' &mn bn _

and we perform row operations to simplify M. Note that EM =  [EA|EB]. Let

M' =  [A'|B']

be the result of a sequence of row operations. The key observation is this:

Proposition 1.2.10 The systems A'X =  B' and AX =  B have the same solutions.
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Proof Since M' is obtained by a sequence of elementary row operations, there are elemen
tary matrices E i, . . . ,  Ek such that, with P =  Ek ■••El,

M' =  Ek- -EiM =  PM.

The matrix P is invertible, and M' =  [A'|B'] =  [PA|PB]. If X is a solution of the original 
equation AX =  B, we multiply by P on the left: P A X  =  PB, which is to say, A'X =  B'. 
So X also solves the new equation. Conversely, if A'X =  B', then r* A 'X  =  r l B', that is, 
AX =  B. □

For example, consider the system

Xl +  X2  +  2X3 +  X4 =  5
(1.2.11) Xl +  X2 +  2X3 +  6x4 =  10

Xi +  2x2 +  5X3 +  2x4 =  7.

Its augmented matrix is the matrix whose row reduction is shown above. The system of 
equations is equivalent to the one defined by the end result M' of the reduction:

Xl -  X3 = 3
X2 +  3X3 =  1

X4 =  1.

We can read off the solutions of this system easily: Ifw e choose X3 =  c arbitrarily, we can 
solve for Xi, X2, and X4. The general solution of (1.2.11) can be written in the form

X3 =  c ,  x i  =  3 +  c ,  X2 =  1 — 3c, X4 =  1,

where c is arbitrary.
We now go back to row reduction of an arbitrary matrix. It is not hard to see that, by

a sequence of row operations, any matrix M can be reduced to what is called a row echelon
matrix. The end result of our reduction of (1.2.8) is an example. Here is the definition: A 
row echelon matrix is a matrix that has these properties:

(1 .2 .1 2 )
(a) If (row i) of M is zero, then (row j)  is zero for all j  > i.
(b) If (row i) isn’t zero, its first nonzero entry is 1. This entry is called a pivot.
(c) If (row (i +  1) ) isn’t zero, the pivot in (row (i +  1) ) is to the right of the pivot in (row i).
(d) The entries above a pivot are zero. (The entries below a pivot are zero too, by (c).)

The pivots in the matrix M' of (1.2.8) and in the examples below are shown in boldface.

To make a row reduction, find the first column that contains a nonzero entry, say 
m. (If there is none, then M is zero, and is itself a row echelon matrix.) Interchange rows 
using an elementary operation of Type (ii) to move m to the top row. Normalize m to 1 
using an operation of Type (iii). This entry becomes a pivot. Clear out the entries below
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this pivot by a sequence of operations of Type (i). The resulting matrix will have the 
block form

"0 ■•0 1 * .. *
0 - •0 0 * .• *

0 . 0 0 * • *

, which we write as = M i.

We now perform row ope rations to simplify the smaller matrix Di. Because the blocks to 
the left of Dj are zero, these operations will have no effect on the rest of the matrix M\. By 
induction on the number of rows, we may assume that Di can be reduced to a row echelon 
matrix, say to D 2 , and M 1 is thereby reduced to the matrix

This matrix satisfies the first three requirements for a row echelon matrix. The entries in Bi 
above the pivots of D2 can be cleared out at this time, to finish the reduction to row echelon 
form. □

It can be shown that the row echelon matrix obtained from a matrix M by row reduction 
doesn’t depend on the particular sequence of operations used in the reduction. Since this 
point will not be important for us, we omit the proof.

As we said before, row reduction is useful because one can solve a system of equations 
A'X =  B' easily when A' is in row echelon form. Another example: Suppose that

1 6 0 1 
0 0 1 2 
0 0 0 0

There is no solution to A'X =  B' because the third equation is 0 =  1. On the other hand,

1 6 0 1 r
[A'lB'j = 0 0 1 2 3

_o 0 0 0 0_

has solutions. Choosing X2 =  c and X4 =  C arbitrarily, we can solve the first equation for xi 
and the second for X3. The general rule is this:

Proposition 1.2.13 Let M' =  [A'|B'] be a block row echelon matrix, where B' is a column 
vector. The system of equations A'X =  B  has a solution if and only if there is no pivot in the 
last column B'. In th at case, arbitrary values can be assigned to the unknown x,, provid ed
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that (column i ) does not contain a pivot. When these arbitrary values are assigned, the other 
unknowns are determined uniquely. □

Every homogeneous linear equation AX =  0 has the trivial solution X =  O. But looking 
at the row echelon form again, we conclude that if there are more unknowns than equations 
then the homogeneous equation AX =  0 has a nontrivial solution.

Corollary 1.2.14 Every system AX =  0 of m homogeneous equations in n unknowns, with 
m < n, has a solution X in which some x, is nonzero.

Proof. Row reduction of the block matrix [A|O] yieIds a matrix [A'|O] in which A ' is in row 
echelon form. The equation A'X =  0 has the same solutions as AX =  O. The number. say r, 
of pivots of A' is at most equal to the number m of rows, so it is less than n. The proposition 
tells us that we may assign arbitrary values to n -  r  variables x,-. □

We now use row reduction to characterize invertible matrices.

Lemma 1.2.15 A square row echelon matrix M is either the identity matrix I, or else its 
bottom row is zero.

Proof Say that M is an n X n ro w echelon matrix. Since there are n columns, there are at most 
n pivots, and if there are n of them, there has to be one in each column. In this case, M =  I. 
If there are fewer than n pivots, then some row is zero, and the bottom row is zero too. □

Theorem 1.2.16 Let A be a square matrix. The following conditions are equivalent:

(a) A can be reduced to the identity by a sequence of elementary row operations.
(b) A is a product of elementary matrices.
(c) A is invertible.

Proof We prove the theorem by proving the implications (a) : :  (b) : :  (c) : :  (a). Suppose 
that A can be reduced to the identity by row operations, say Ek'" • EiA =  I. Multiplying 
both sides of this equation on the left by Ej_l • . -E"kl , we obtain A =  E ^ 1 ■.■E"k1. Since 
the inverse of an elementary matrix is elementary, (b) holds, and therefore (a) implies (b). 
Because a product of invertible matrices is invertible, (b) implies (c). Finally, we prove the 
implication (c) : :  (a). If A is invertible, so is the end result A' of its row reduction. Since an 
invertible matrix cannot have a row of zeros, Lemma 1.2.15 shows that A' is the identity. □

Row reduction provides a method to compute the inverse of an invertible matrix A: 
We reduce A to the identity by row operations: Ek • • • EiA =  I  as above. Multiplying both 
sides of this equation on the right by A~l ,

Ek - ■ ■ E \l — Ek - ■ ■ E\ =  A-1.

Corollary 1.2.17 Let A be an invertible matrix. To compute its inverse, one may apply 
elementary row operations E i, . . . ,  Ek to A, reducing it to the identity matrix. The same 
sequence of operations, when applied to the identity matrix /, yields A_1. □
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1 5
2 5 .T o  do this, we form the 2x4  blockExample 1.2.18 We invert the matrix A 

matrix

[All] =

We perform row operations to reduce A  to the identity, carrying the right side along, and 
thereby end up with A-1 on the right.

'1 5 1 O'
.2 6 0 1

(1.2.19)

[All] =

5 1 0'

in1 o
1

.2 6 0
H1

0 -

<N1

' l 5 1 o" 1 0 32 5'4
0 1 l

2
1
4. 0 1 1

2
1
4 _

[IIA-1].
□

Proposition 1.2.20 Let A be a square matrix that has either a left inverse or a right inverse, 
a matrix B such that either BA =  /  or AB =  I. Then A is invertible, and B is its inverse.

Proof Suppose that AB =  I. We perform row reduction on A. Say that A ' =  PA, where 
P = Ek' Ei is the product of the corresponding elementary matrices, and A' is a row 
echelon matrix. Then A'B =  PAB =  P. Because P is invertible, its bottom row isn’t zero. 
Then the bottom row of A' can’t be zero either. Therefore A' is the identity matrix (1.2.15), 
and so P is a left inverse of A. Then A  has both a left inverse and a right inverse, so it is 
invertible and B is its inverse.

If BA =  I, we interchange the roles of A and B in the above reasoning. We find that B 
is invertible and that its inverse is A. Then A is invertible, and its inverse is B. □

We come now to the main theorem about square systems of linear equations:

Theorem 1.2.21 Square Systems. The following conditions on a square matrix A are 
equivalent:
(a) A is invertible.
(b) The system of equations A X  = B has a unique solution for every column vector B.
(c) The system of homogeneous equations AX =  0 has only the trivial solution X =  0.

Proof Given the system AX =  B, we reduce the augmented matrix [A|B] to row echelon 
form [A'|B']. The system A'X =  B' has the same solutions. If A is invertible, then A' is the 
identity matrix, so the unique solution is X =  B'. This shows that (a) =} (b).

Ifa n  n X n matrix A is not invertible, then A' has a row of zeros. One of the equations 
making up the system A'X =  0 is the trivial equation. So there are fewer than n pivots.
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The homogeneous system A'X = 0 has a nontrivial solution (1.2.13), and so does A X  =  0
(1.2.14). This shows that if (a) fails, then (c) also fails, hence that (c) =} (a).

Finally, it is obvious that (b) => (c). □

We want to take particular note of the implication (c) => (b) of the theorem:
If the homogeneous equation A X  = 0 has only the trivial solution, 

then the general equation AX =  B has a unique solution for every column vector B.
This can be useful because the homogeneous system may be easier to handle than the general
system.

Example 1.2.22 There exists a polynomial p(t) of degree n that takes prescribed values, say 
p(a t) = bi, at n +  1 distinct points t =  ao, • • . .a n  on the real line.2 To find this polynomial, 
one must solve a system of linear equations in the undetermined coefficients of p(t). In 
order not to overload the notation, we’ll do the case n =  2, so that

Let ao, a i, a 2 and bo, bi, b2 be given. The equations to be solved are obtained by substituting 
ai for t. Moving the coefficients x  to the right, they are

Xo + aix i +  ayx2  = bi

for i =  0,1, 2. This is a system A X  = B of three linear equations in the three unknowns 
* 0, Xi, X2, with

1 ao a l
1 a\ a \ .
1 a2 a2 ■

The homogeneous equation, in which B =  0, asks for a polynomial with 3 roots ao, a i , a 2. A 
nonzero polynomial of degree 2 can have at most two roots, so the homogeneous equation 
has only the trivial solution. Therefore there is a unique solution for every set of prescribed 
values bo, b \, b2.

By the way, there is a formula, the Lagrange Interpolation Formula, that exhibits the 
polynomial p (t) explicitly. □

1.3 THE MATRIX TRANSPOSE
In the discussion of the previous section, we chose to work with rows in order to apply the 
results to systems of linear equations. One may also perform column operations to simplify 
a matrix, and it is evident that similar results will be obtained.

^Elements of a set are said to be distinct if no two of them are equal.
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Rows and columns are interchanged by the transpose operation on matrices. The 
transpose of an m X n matrix A is the n X m matrix A1 obtained by reflecting about the 
diagonal: A  =  (bij), where b!;- =  aji. For instance,

' 1 2 ' t 1 3
_ 3 4_ _2 4 _ and [ 1 2 3 ]' =

Here are the rules for computing with the transpose:

(1.3.1) (AB)X= B XA X, (A + B){ = A t + B t , (cA)x = cAx, (A1)1 = A.

Using the first of these formulas, we can deduce facts about right multiplication from the 
corresponding facts about left multiplication. The elementary matrices (1.2.4) act by right 
multiplication AE as the following elementary column operations

(1.3.2) “ with a in the i, j  position, add a(colum n i) to (column j ) ” ;
“interchange (column i ) and (column j ) ”;
“multiply (column i) by a nonzero scalar c .”

Note that in the first of these operations, the indices i, j  are the reverse of those in (l.2.5a).

1.4 DETERMINANTS
Every square matrix A has a number associated to it called its determinant, and denoted by 
detA. We define the determinant and derive some of its properties here.

The determinant of a 1 X 1 matrix is equal to its single entry

(1.4.1) det [a] =  a,

and the determinant of a 2 X 2 matrix is given by the formula

(1.4.2) det =  ad -  bc.

The determinant of a 2 X 2 matrix A has a geometric interpretation. Left multiplication 
by A maps the space ]R2 of real two-dimensional column vectors to itself, and the area of 
the parallelogram that forms the image of the unit square via this map is the absolute value 
of the determinant of A. The determinant is positive or negative, according to whether the 
orientation of the square is preserved or reversed by the operation. Moreover, detA =  0 if 
and only if the parallelogram degenerates to a line segment or a point, which happens when 
the columns of the matrix are proportional.

[3 2"
1 4

page. The shaded region is the image of the unit square under the map. Its area is 10.
This geometric interpretation extends to higher dimensions. Left multiplication by a

3 X 3 real matrix A maps the space of three-dimensional column vectors to itself, and the 
absolute value of its determinant is the volume of the image of the unit cube.

, is shown on the following
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The set of all real n X n matrices forms a space of dimension n2 that we denote by, 
JRn xn. We regard the determinant of n Xn matrices as a function from this space to the real 
numbers:

det :JRnXn -+ JR.
The determinant of an n X n matrix is a function of its n 2 entries. There is one such function 
for each positive integer n. Unfortunately, there are many formulas for these determinants, 
and all of them are complicated when n is large. Not only are the formulas complicated, but 
it may not be easy to show directly that two of them define the same function.

We use the following strategy: We choose one of the formulas, and take it as our 
definition of the determinant. In that way we are talking about a particular function: We 
show that our chosen function is the only one having certain special properties: Then, to 
show that another formula defines the same determinant function, one needs only to check;: 
those properties for the other; function. This is often not too difficult.

We use a formula that computes the determinant of an n Xn matrix in terms of certain 
(n — 1) X (n — 1) determinants by a process called expansion by minors. The detominants of 
submatrices of a matrix are called minors. Expansion by minors allows us to give a recursive 
definition of the determinant.

The word recursive means that the definition of the determinant for n X n matrices 
makes use of the determinant for (n — 1) X (n -  1) matrices. Since we have defined the 
determinant for 1 X 1 matrices, we will be able to use our recursive definition ito compute,
2 X2 determinants, then knowing this, to compute 3 X 3 determ inants, and so on.

Let A b e  an n  Xn matrix and let A j  denote the (n -  1) X (n — 1) submatrix obtained 
bycrossing out the ith rowand the j th  column of Ai

j

(1.4.4)
-  Ay.
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For example, if

1 0 3
A = 2 1 2 , then A21 =

0 5 1

0 3 
5 1 '

• Expansion by minors on the first column is the formula

The signs alternate, beginning with +.

It is useful to write this expansion in summation notation:

(1.4.6) detA =  ± a videtA vi.
v

The alternating sign can be written as ( - l ) u+l. It will appear again. We take this formula, 
together with (1.4.1), as a recursive definition o f the determinant.

For 1 X 1 and 2 X 2 matrices, this formula agrees with (1.4.1) and (1.4.2). The determinant 
of the 3 X 3 matrix A  shown above is

Expansions by minors on other columns and on rows, which we define in Section 1.6, are 
among the other formulas for the determinant.

It is important to know the many special properties satisfied by determinants. We 
present some of these properties here, deferring proofs to the end of the section. Because 
we want to apply the discussion to other formulas, the properties will be stated for an 
unspecified function 8.

Theorem 1.4.7 Uniqueness of the Determinant. There is a unique function 8 on the space of 
n Xn matrices with the properties below, namely the determinant (1.4.5).

(i) With I  denoting the identity matrix, 8(/) =  1.
(ii) 8 is linear in the rows of the matrix A.

(iii) If two adjacent rows of a matrix A  are equal, then 8(A) =  O.

The statement that 8 is linear in the rows of a matrix means this: Let A,- denote the ith row
of a matrix A. Let A, B, D be three matrices, all of whose entries are equal, except for those
in the rows indexed by k. Suppose furthermore that D* = cA* +  c'B* for some scalars c and 
c'. Then 8(D) =  c 8(A) +  c '8(B):

(1.4.8) 8 cAi+c'Bi = c8  — A;—  + c ' 8  — Bt —
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This allows us to operate on one row at a time, the other rows being left fixed. For example, 

since [0 2 3] =  2 [0 1 0] +  3 [0 0 1],

Perhaps the most important property of the determinant is its compatibility with matrix 
multiplication.

Theorem 1.4.9 Multiplicative Property of the Determinant. For any n Xn matrices A and B, 
det (AB) =  (detA)(detB).

The next theorem gives additional properties that are implied by those listed in (1.4.7).

Theorem 1.4.10 Let 8 be a function on n Xn matrices that has the properties (1.4.7)(i,ii,iii). 
Then
(a) If A' is obtained from A  by adding a multiple of (row j )  of A  to (row i) and i j ,  then 

8(A') =  8(A).
(b) If A' is obtained by interchanging (row i) and (row j )  of A and i j ,  then 

8(A') =  - 8(A).
(c) If A' is obtained from A by multiplying (row i) by a scalar c, then 8(A') =  c 8(A). 

If a row of a matrix A is equal to zero, then 8 (A) =  0.
(d) If (row i) of A is equal to a multiple of (row j )  and i j ,  then 8(A) =  0.

We now proceed to prove the three theorems stated above, in reverse order. The fact 
that there are quite a few points to be examined makes the proofs lengthy. This can’t be 
helped.

Proof o f Theorem 1.4.10. The first assertion of (c) is a part of linearity in rows (1.4.7)(ii). 
The second assertion of (c) follows, because a row that is zero can be multiplied by 0 without 
changing the matrix, and it multiplies 8(A) by 0.

Next, we verify properties (a),(b),(d) when i and j  are adjacent indices, say j  =  i +  1. To 
simplify our display, we represent the matrices schematically, denoting the rows in question

by R =  (row i) and S =  (row j), and suppressing notation for the other rows. So

1
8 2 3 = 2 8

1

1
1 + 3 8

1

1
1 =  2 • 1 +  3 . 0 =  2.
1

denotes our given matrix A. Then by linearity in the ith row,

(1.4.11)

The first term on the right side is 8(A), and the second is zero (1.4.7). This proves (a) for 
adjacent indices. To verify (b) for adjacent indices, we use (a) repeatedly. Denoting the rows 
by R and S as before:
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(1. 4.12)
R ' =  0

(>5I1

=  0
S ' _ S

R - S  
S +  (R -  S)

R
R =  0 =  - 8

Finally, (d) for adjacent indices follows from (c) and (1.4.7)(iii).

To complete the proof, we verify (a),(b),(d) for an arbitrary pair of distinct indices. 
Suppose that (row i) is a multiple of (row j). We switch adjacent rows a few times to obtain 
a matrix A' in which the two rows in question are adjacent. Then (d) for adjacent rows tells 
us that 5G4') =  0, and (b) for adjacent rows tells us that 8(A') =  ± 8(A). So 8(A) =  0, and
this proves (d). At this point, the proofs of that we have given for (a) and (b) in the case of
adjacent indices carry over to an arbitrary pair of indices. □

The rules (1.4.1O)(a),(b),(c) show how multiplication by an elementary matrix affects 
8, and they lead to the next corollary.

Corollary 1.4.13 Let 8 be a function on n X n matrices with the properties (1.4.7), and let E 
he an elementary matrix. For any matrix A, 8 (EA) =  8(£)0(A). Moreover,

(i) If E is of the first kind (add a multiple o f one row to another), then 8 (E) =  1.
-(i) If E is of the second kind (row interchange), then 8 (E) =  -1.
(ii) If E iso f the third kind (multiply a row by c), then 8(E) =  c.

Proof The rules (1.4.1O)(a),(b),(c) describe the effect of an elementary row operation on 
8(A), so they tell us how to compute 8 (EA) from 8(A). They tell us that 8 (EA) =  e 8(A), 
where E =  1,-1, or c according to the type of elementary matrix. By setting A = I, we find 
that 8(E) =  8 (EI) =  e 8(/) =  e  □

P roofo f the multiplicative property, Theorem 1.4.9. We imagine the first step of a row re
duction of A, say EA =  A'. Suppose we have shown that 8 (A'B) = 8(A ')8(B). We apply 
Corollary 1.4.13: 8(E)8(A) =  8(A'). Since A'B =  E(AB) the corollary also tells us that 
8(A'B) =  8(E)8(AB). Thus

8(E)8(AB) = 8(A'B) =  8(A')8(B) =  8(E)8(A)8(B).

Canceling 8 (E), we see that the multiplicative property is true for A and B as well. This being 
so, induction shows that it suffices to prove the multiplicative property after row-reducing 
A. So we may suppose that A is row reduced. Then A is either the identity, or else its bottom 
row is zero. The property is obvious when A = I. If the bottom row of A is zero, so is the 
bottom row of AB, and Theorem 1.4.10 shows that 8(A) =  8( AB) =  O. The property is true 
in this case as well. □

Proof o f  uniqueness o f the determinant, Theorem 1.4.7. Th ere are two parts. To prove unique
ness, we perform row reduction on a matrix A, say A' =  Ek • • EjA. Corollary 1.4.13 tells us 
how to compute 8(A) from 8(A'). If A' is the identity, then 8(A') =  1. Otherwise the bottom 
row of A' is zero, and in that case Theorem 1.4.10 shows that 8 (A ’) =  0. This determ ine s 
8(A) in both cases.

8
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Note: It is a natural idea to try defining determinants using compatibility with multiplication 
and Corollary 1.4.13. Since we can write an invertible matrix as a product of elementary 
matrices, these properties determine the determinant of every invertible matrix. But there 
are many ways to write a given matrix as such a product. Without going through some steps 
as we have, it won’t be clear that two such products will give the same answer. It isn’t easy 
to make this idea work.

To complete the proof of Theorem 1.4.7. we must show that the determinant function
(1.4.5) we have defined has the properties (1.4.7). This is done by induction on the size of the 
matrices. We note that the properties (1.4.7) are true when n =  1, in which case det [a] =  a. 
So we assume that they have been proved for determinants of (n — 1) X (n — 1) matrices. 
Then all of the properties (1.4.7), (1.4.10), (1.4.13). and (1.4.9) are true for (n — 1) X (n — 1) 
matrices. We proceed to verify (1.4.7) for the function 8 =  det defined by (1.4.5). and for 
n X n matrices. For reference, they are:

(i) With I denoting the identity matrix, det (I) =  1.
(ii) det is linear in the rows of the matrix A.

(iii) If two adjacent rows of a matrix A are equal, then det (A) =  0.

(i) If A =  In . then an  = 1 and a v  =  0 when v > 1 . The expansion (1.4.5) reduces 
to det (A) =  1 det(A u). Moreover. A i  =  In- i ,  so by induction, det (A n) =  1 and 
det (I„) =  1.
(ii) To prove linearity in the rows, we return to the notation introduced in (1.4.8). We show 
linearity of each of the terms in the expansion (1.4.5), i.e., that

(1.4.14) dvi det (Dvd  =  c a„i det (A„i) +  c' det (B„i)

for every index v. Let k be as in (1.4.8).

Case 1: v =  k. The row that we operate on has been deleted from the minors A*i, Bki, Dki so 
they are equal, and the values of det on them are equal too. On the other hand, a ^ l, bki, 
are the first entries of the rows A k, Bk , Dk, respectively. So dkl =  ca^i +  c 'b ki, and (1.4.14) 
follows.

Case 2: v*,k. If we let A^, B^, denote the vectors obtained from the rows Ak, Bk, Dk, 
respectively, by dropping the first entry, then A 'k is a row of the minor A v\, etc. Here 
D" =  c A^ +  c' B .̂ and by induction on n, det (D'yl) =  c det (A'ul) +  C det (# ^ ) . On the 
other hand, since v*' k, the coefficients a v . bvi, dyi are equal. So (1.4.14) is true in this case 
as well.
(iii) Suppose that rows k and k +  1 of a matrix A are equal. Unless v =  k  or k +  1, the minor 
Avt has two rows equal, and its determinant is zero by induction. Therefore, at most two 
terms in (1.4.5) are different from zero. On the other hand, deleting either of the equal rows 
gives us the same matrix. So a^i =  a ^+11 and Ak\ =  A^+i i . Then

det (A) =  ± ak{ det (Aki) =F ak+x i det (Ak+l i) =  0.

This completes the proof of Theorem 1.4.7. □



24 Chapter 1 Matrices

Corollary 1.4.15

(a) A square matrix A is invertible if and only if its determinant is different from zero. If A 
is invertible, then det (A-1) =  (detA)_ l.

(b) The determinant of a matrix A is equal to the determinant of its transpose A1.
(c) Properties (1.4.7) and (1.4.10) continue to hold if the word row is replaced by the word 

column throughout.

Proof (a) If A  is invertible, then it is a product of elementary matrices, say A =  E i .. • Er 
(1.2.16). Then detA =  (det E i) ■ • . (det Ek). The determinants of elementary matrices are 
nonzero (1.4.13), so detA is nonzero too. IfA is not invertible, there are elementary matrices 
El, . . . ,  Er such that the bottom row ofA' =  E\ ■ • ■ ErA is zero (1.2.15). Then detA ' =  0, and 
detA =  0 as well. If A is invertible, then det(A-1 )detA =  det(A ^ A) =  det I =  1, therefore 
det (A-1) =  (detA )-1.

(b) It is easy to check that det E =  det E* if E is an elementary matrix. If A is invertible, 
we write A =  Ei ■ ■ ■ Ek as before. Then A' =  E*k ■ ■ • E\, and by the multiplicative property, 
detA =  detA*. If A is not invertible, neither is A*. Then both detA and detA* are zero.

(c) This follows from (b). □

1.5 PERMUTATIONS
A permutation of a set S is a bijective map p  from a set S to itself:

(1.5.1) p :S  -+ S.

The table

(1.5.2) i 1 2 3 4 5
p (  0 3 5 4 1 2

exhibits a permutation p  of the set {1, 2, 3, 4, 5} of five indices: p (  1) =  3, etc. It is bijective 
because every index appears exactly once in the bottom row.

The set of all permutations of the indices {1, 2, . . . ,  n} is called the symmetric group, 
and is denoted by Sn. It will be discussed in Chapter 2.

The benefit of this definition of a permutation is that it permits composition of 
permutations to be defined as composition of functions. If q is another permutation, then 
doing first p  then q means composing the functions: q c p. The composition is called the 
product permutation, and will be denoted by qp.
Note: People sometimes like to think of a permutation of the indices 1, . . . , n as a list of 
the same indices in a different order, as in the bottom row of (1.5.2). This is not good for 
us. In mathematics one wants to keep track of what happens when one performs two or 
more permutations in succession. For instance, we may want to obtain a permutation by 
repeatedly switching pairs of indices. Then unless things are written carefully, keeping track 
of what has been done becomes a nightmare. □

The tabular form shown above is cumbersome. It is more common to use cycle notation. 
To write a cycle notation for the permutation p  shown above, we begin with an arbitrary
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index, say 3, and follow it along: p (3) =  4, p (4) =  1, and p ( l)  =  3. The string of three 
indices forms a cycle for the permutation, which is denoted by

(1.5.3) (341).

This notation is interpreted as follows: the index 3 is sent to 4, the index 4 is sent to 1, and 
the parenthesis at the end indicates that the index 1 is sent back to 3 at the front by the 
permutation:

Because there are three indices, this is a 3-cycle.
Also, p(2) =  5 and p (5) =  2, so with the analogous notation, the two indices 2, 5 form 

a 2-cycle (25). 2-cycles are called transpositions.
The complete cycle notation for p  is obtained by writing these cycles one after the 

other:

(1.5.4) p =  (341) (25).

The permutation can be read off easily from this notation.
One slight complication is that the cycle notation isn’t unique, for two reasons. First, 

we might have started with an index different from 3. Thus

• (341), (134) and (413)

are notations for the same 3-cycle. Second, the order in which the cycles are written doesn’t 
matter. Cycles made up of disjoint sets of indices can be written in any order. We might just 
as well write

p  = (5 2 )  (13 4).

The indices (which are 1 ,2 , 3, 4. 5 here) may be grouped into cycles arbitrarily, and the 
result will be a cycle notation for some permutation. For example, (34)(2)(15) represents 
the permutation that switches two pairs of indices, while fixing 2. However, 1-cycles, the 
indices that are left fixed, are often omitted from the cycle notation. We might write this 
permutation as (3 4) (15). The 4-cycle .

(1.5.5) q = (1452)

is interpreted as meaning that the missing index 3 is left fixed. Then in a cycle notation for a 
permutation, every index appears at most once. (Of course this convention assumes that the 
set of indices is known.) The one exception to this rule is for the identity permutation. We’d 
rather not use the empty symbol to denote this permutation, so we denote it by 1.

To compute the product permutation qp, with p  and q as above, we follow the indices 
through the two permutations, but we must remember that q p  means q o p, “first do p, then 
q.” So since p  sends 3 -+ 4 and q sends 4 -+ 5, qp  sends 3 -+ 5. Unfortunately, we read 
cycles from left to right, but we have to run through the permutations from right to left, in a
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zig-zag fashion. This takes some getting used to, but in the end it is not difficult. The result 
in our case is a 3-cycle:

then this first do this
qp  = [(1452)] 0 [(341)(25)] =  (135), 

the missing indices 2 and 4 being left fixed. On the other hand,

pq  = (2 3 4 ) .

Composition of permutations is not a commutative operation.

There is a permutation matrix P associated to any permutation p. Left multiplication 
by this permutation matrix permutes the entries of a vector X using the permutation p.

For example, if there are three indices, the matrix P associated to the cyclic permutation 
p  =  (123) and its operation on a column vector are as follows:

'0  0 1 ' "*i~ '*3
(1.5.6) PX = 1 0 0 X2 = Xl

0 1 0 X3 X2

Multiplication by P shifts the first entry of the vector X  to the second position and so on.
It is essential to write the matrix of an arbitrary permutation down carefully, and to 

check that the matrix associated to a product pq  of permutations is the product matrix PQ. 
The matrix associated to a transposition (25) is an elementary matrix of the second type, 
the one that interchanges the two corresponding rows. This is easy to see. But for a general 
permutation, determining the matrix can be confusing .

• To write a permutation matrix explicitly, it is best to use the n Xn  matrix units e,j, the 
matrices with a single 1 in the i, j  position that were defined before (1.1.21). The matrix 
associated to a permutation p  of Sn is

(In order to make the subscript as compact as possible, we have written p i for p(i).)

This matrix acts on the vector X  =  L  ejXj as follows:

(1.5.8) P X  = ( L  epi,i) (L :> jX j)  =  L ePMejXj =  I ] ePMe;x, =  J 2 eP‘Xi-
i j  i j  i i 

This computation is made using formula (1.1.25). The terms ep ije j in the double sum are 
zero when i =1=  j.

To express the right side of (1.5.8) as a column vector, we have to reindex so that the 
standard basis vectors on the right are in the correct order, ei, . , . ,  en rather than in the
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permuted order epi, . • . ,  epn. We set pi = k  and i = p  1 k. Then

(I.5.9) J 2 eP‘Xi = Y l ekXp~1k-
i k

This is a confusing point: Permuting the entries X, of a vector by p  permutes the 
indices by p~l.

For example, the 3x3  matrix P of (1.5.6) is e2i +  e32 +  ei3, and 

Proposition 1.5.10

(a) A permutation matrix P always has a single 1 in each row and in each column, the rest 
of its entries being O. Conversely, any such matrix is a permutation matrix.

(b) The determinant of a permutation matrix is ±  l.
(c) Let p  and q be two permutations, with associated permutation matrices P and Q. The 

matrix associated to the permutation pq is the product PQ.

Proof We omit the verification of (a) and (b). The computation below proves (c):

PQ = \ ^ , epijij  (X !  j )  =  X  ep‘■' eqj,j =  X  epqj-qjeq j j  =  X  ep q jj '
i j  ‘,J j  J

This computation is made using formula (1.1.23). The terms e p ije q jj  in the double sum are 
zero unless i = q j. So PQ is the permutation matrix associated to the product permutation 
pq, as claimed. 0

• The determinant of the permutation matrix associated to a permutation p  is called the 
sign of the permutation :

(1.5.11) signp =  detP  =  ± 1.

A permutation p  is even if its sign is +  1, and odd if its sign is -1. The permutation (123) has 
sign + 1. It is even, while any transposition, such as (12), has sign -1 and is odd.

Every permutation can be written as a product of transpositions in many ways. If a 
permutation p  is equal to the product rj . . .  r*, where r / are transpositions, the number k 
will always be even if p  is an even permutation and it will always be odd if p  is an odd 
permutation.

This completes our discussion of permutations and permutation matrices. We will come 
back to them in Ch ap ters 7 and 10.

1.6 OTHER FORMULAS FOR THE DETERMINANT
There are formulas analogous to our definition (1.4.5) of the determinant that use expansions 
by minors on other columns of a matrix, and also ones that use expansions on rows.
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Again, the notation A ij stands for the matrix obtained by deleting the ith row and the 
jth  column of a matrix A.

Expansion by minors on the jth column: 

or in summation notation,

(1.6.1) detA =  L ( - 1)v+jflwj det A j .
v=l

Expansion by minors on the ith row:

det A =  ( - l ) '+1a/idet An +  ( - l ) ,+2a ;-2det A i 2 H------ b ( - \ ) l+n aindzl A in

(1.6.2) detA =  L ( - 1 ) ‘+Vaivdet A iv.
v=l

For example, expansion on the second row gives

det
1 1 2 
0 2 1 
1 0 2

= - 0 det 1 2 
0 2 + 2 det

To verify that these formulas yield the determinant, one can check the properties (1.4.7). 
The alternating signs that appear in the formulas can be read off of this figure:

(1.6.3)

The notation (_1)i+j for the alternating sign may seem pedantic, and harder to remember 
than the figure. However, it is useful because it can be manipulated by the rules of algebra.

We describe one more expression for the determinant, the complete expansion. The 
complete expansion is obtained by using linearity to expand on all the rows, first on (row 1), 
then on (row 2), and so on. For a 2x2  matrix, this expansion is made as follows:

det a b 
c d = a  det

: ac  det

[

[ l  0 ] + a d  det [o  1

1 0 
c d

0'

+  b det

+ bc det

0 1 
c d
" 0 1 

1 1 +  bd  det 0 1 
0 1
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The first and fourth terms in the final expansion are zero, and

det a b ad  det "1 0 ‘ + be det "0 1 '
c b 0 1 1 1 =  ad — be.

Carrying this out for n X n matrices leads to the complete expansion of the determinant, 
the formula

(1.6.4) detA =  ^  (signp)ai,p i • • a„,pn, 
perm p

in which the sum is over all permutations of the n indices, and (sign p) is the sign of the 
permutation.

For a 2 x 2  matrix, the complete expansion gives us back Formula (1.4.2). For a 3x3  
matrix, the complete expansion has six terms, because there are six permutations of three 
indices:

(1.6.5) det A =

«11«22«33 +  ^12^23^31  +  «13«21«32 ~  a n « 2 3« 3 2  ~  «12«21«33 ~  «13«22a31- 

As an aid for remembering this expansion, one can display the block matrix [A|A]:

(1.6.6)
a n  « i2 013 a\\ a \ 2 a i3

\  \  x  /  /
«21 «22 «23 «21 «22 « 2  3

X X X  
«31 «32 «33 « 3 1  032  «33

The three terms with positive signs are the products of the terms along the three diagonals 
that go downward from left to right, and the three terms with negative signs are the products 
of terms on the diagonals that go downward from right to left.

Warning: The analogous method will not work with 4x4  determinants.

The complet e expansion is more of theoretical than of practical importance. Unless 
n is small or the matrix is very special, it has too many terms to be useful for com
putation. Its theoretical importance comes from the fact that determinants are exhibited 
as polynomials in the n2 variable matrix entries a j ,  with coefficients ± 1. For example, 
if each matrix entry a ij is a differentiable function of a variable t, then because sums 
and products of differentiable functions are differentiable, detA is also a differentiable 
function of t.

The Cofactor Matrix

The cofactor matrix of an n X n matrix A is the n X n matrix cof(A) whose i, j  entry is

(1.6.7) cof(A),j =  (~l)l+JdetAji,



30 Chapter 1 Matrices

where, as before, Ay is the matrix obtained by crossing out the jth  row and the ith column. 
So the cofactor matrix is the transpose of the matrix made up of the (n  — 1) X (n — 1) min ors 
of A, with signs as in (1.6.3). This matrix is used to provide a formula for the inverse matrix.

If you need to compute a cofactor matrix, it is safest to make the computation in three 
steps: First compute the matrix whose i, j  entry is the minor d e tA j, then adjust signs, and 
finally transpose. Here is the computation for a particular 3 X 3 matrix:

(1.6.8)
4 -1 -2 
2 0 -1

-3 1 2

4 1 -2
-2 0 1 
-3 -1 2

4 -2 -3
1 0 -1

-2 1 2
=  cof(A).

Theorem 1.6.9 Let A be an n Xn matrix, let C =  cof(A) be its cofactor matrix, and let 
a  = detA. If a 1=O, then A is invertible, and A- 1 =  a - 1C. In any case, CA =  AC =  a l.

Here a l  is the diagonal matrix with diagonal entries equal to a . For the inverse of a 2x2  
matrix, the theorem gives us back Formula 1.1.17. The determinant of the 3x3  matrix A 
whose cofactor matrix is computed in (1.6.8) above happens to be 1, so for that matrix, 
A- 1 =  cof(A).

Proof o f Theorem 1.6.9. We show that the i, j  entry of the product CA is equal to a  if i =  j  
and is zero otherwise. Let A/ denote the ith column of A. D enoting the entries of C and A 
by c,j and a ,j, the i, j  entry of the product CA is

(1.6.10) X  civa vj  =  ''̂ 2 ( - l ) v+ldniA vla VJ.
V  V

When i =  j ,  this is the formula (1.6.1) for the determinant by expansion by minors on 
column j . So the diagonal entries of CA are equal to a , as claimed.

Suppose that i 1= j. We form a new matrix M in the following way: The entries of M are 
equal to the entries of A, except for those in column i. The ith column Mi of M is equal to 
the j th  column Aj of A. Thus the ith and the jth  columns of M are both equal to Aj. and 
det M =  0.

Let D be the cofactor matrix of M, with entries dij. The i, i entry of DM  is 

'Y_l d ivm vi =  L  ( -1) v+l det Mvim vi.
V V

This sum is equal to det M, which is zero.
On the other hand, since the ith column of M is crossed out when forming M vi, that 

minor is equal to A„j. And since the ith column of M is equal to the jth  column of A, 
m vi = a vj. So the i, i entry of DM is also equal to

L  (-1)v+‘ det A via vj,
v



which is the i, j  entry of CA that we want to determine. Therefore the i, j  entry of CA is 
zero, and CA =  a i, as claimed. It follows that A_1 =  a - 1 cof(A) if a*O . The computation 
of the product AC is done in a similar way, using expansion by minors on rows. □

A general algebraical determinant in its developed form 
may be likened to a mixture of liquids seemingly homogeneous, 

but which, being o f differing boiling points, admit o f being separated
by the process of fractional distillation.

—James Joseph Sylvester
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EXERCISES

Section 1 The Basic Operations

1.1. What are the entries 021. and O" of the matrix A

1.2. Determine the products AB and BA for the following values of A and B:

1 2 5
2 7 8
0 9 4

A = 1 2 3 
3 3 1 , B

-8 -4 
9 5

-3 -2
A B

1.3. Let A = [ai • ■. an ] be a row vector, and let B = 
the products AB and BA.

1.4. Verify the associative law for the matrix product

bx

bn .

'1 2 
0

be a column vector. Compute

m  ? i

T
4
3

Note. This is a self-checking problem. It won’t come out unless you multiply correctly. If 
you need to practice matrix multiplication, use this problem as a model.

1.5. 3Let A, B, and C be matrices of sizes f  Xm, m Xn, and n X p. How many multiplications 
are required to compute the product AB? In which order should the triple product ABC 
be computed, so as to minimize the number of multiplications required?

1.6. Compute 1 a 
1

1 n 
1 and 1 a 

1

1.7. Find a formula for
1 1 l 

1 1 
1

, and prove it by induction.

Suggested by Gilbert Strang.
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1.8. Compute the following products by block multiplication:

"1 1 1 5 "
0 1 0 1
1 0 0 1
0 1 1 0 _

' 1 2 1 0 '
0 1 0 1
1 0 0 1
0 1 1 3 _

‘1
O 1 2 ~

0 1 0
_3 0 1 _

~1 2 CO 
i

4 2 3

5 0 4_

1.9. Let A, B be square matrices.

(a) When is (A + B) (A — B) = A2 — B2? (b) Expand (A + B)3.

1.10. Let D be the diagonal matrix with diagonal entries d i , . . . ,  dn, and let A =  (aij) be an 
arbitrary n Xn matrix. Compute the products DA and AD.

1.11. Prove that the product of upper triangular matrices is upper triangular.
1.U. In each case, find all 2 x 2 matrices that commute with the given matrix.

(a) 1 0 
0 0 (b) 0 

0 6].
(c ) '2  0 ' '1 3 ' r 9

0 0_. (d)
. 0 3.

. (e)

1 0 
1 6

»

1.13. A square matrix A is nilpotent if Ak = 0 for some k > 0 . Prove that if A is nilpotent, then 
I +  A is invertible. Do this by finding the inverse.

1.14. Find infinitely many matrices B such that BA = /2 when

and prove that there is no matrix C such that AC = / 3 .
1.15. With A arbitrary, determine the products e/jA, Ae/j, ejAek, euAejj, and e/jAe^e-

Section 2 Row Reduction
■ 2.1. For the reduction of the matrix M (1.2.8) given in the text, determine the elementary 

matrices corresponding to each operation. Compute the product P of these elementary 
matrices and verify that PM is indeed the end result.

2.2. Find all solutions of the system of equations A X  = B when

‘ 1 2 1 1' 0 1 0
A = 3 0 0 4 and B = (a) 0 , (b) 1 , (c) 2

1 -4 -2 2 0 0 2

2.3. Find all solutions of the equation Xi + X2 + 2x3 -  X4 =  3.
2.4. Determine the elementary matrices used in the row reduction in Example (1.2.18), and 

verify that their product is A-1.
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2.5. Find inverses of the following matrices:

1' '3 5' "i r ■ r ‘3 5'
1 1 1 2 _ 1 _ i 1 2

2.6. The matrix below is based on the Pascal triangle. Find its inverse.

1
1 1
1 2 1
1 3  3 1
1 4  6 4 1

2 -12.7. Make a sketch showing the effect of multiplication by the matrix A =
the plane ]R2. • ^2 3

2.8. Prove that if a product AB of n Xn matrices is invertible, so are the factors A  and B.
2.9. Consider an arbitrary system of linear equations A X  = B, where A and B are real 

matrices.

(a) Prove that if the system of equations A X  = B has more than one solution then it has 
infinitely many.

(b) Prove that if there is a solution in the complex numbers then there is also a real 
solution.

2.10. Let A be a square matrix. Show that if the system AX = B has a unique solution for some 
particular column vector B, then it has a unique solution for all B.

Section 3 The Matrix Transpose
3.1. A matrix 8 is symmetric jf B = Bl. Prove that for any square matrices B, BB( and B +  Bl 

are symmetric, and that if A  is invertible, then (A- 1)1 =  (A1)-  1.
3.2. Let A and B be symmetric n x n matrices. Prove th at the product AB is symmetric if and 

only if AB = BA.
3.3. Suppose we make first a row operation, and then a column operation, on a matrix A. 

Explain what happens if we switch the order of these operations, making the column 
operation first, followed by the row operation.

3.4. How much can a matrix be simplified if both row and column operations are allowed?

Section 4 Determinants
4.1. Eva luate the following determinants:

(a) 1 
2- ' (b) (c)

2 0 r
0 1 0 , (d)
1 0 2

1 0 0 0
5 2 0 0
8 6 3 0
0 9 7 4
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4.2. (self-check ing) Verify the rule detAB = (detA)(det B) for the matrices

A = and B = 1 1 
5 -2

4.3. Compute the determinant of the following n x  n matrix using induction on n:

2 -1
1 1

-1 2
-1

2 -1 
-1 2

4.4. Let A be an n X n matrix. Determine det (-A) in terms of det A.
4.5. Use row reduction to prove that detA1 =  detA.

4.6. Prove that det A
0

B
D = (detA )(det D), if A and D are square blocks.

Section 5 Permutation Matrices
5.1. Write the following p ermutations as products of disj oint cycles:

(12)(13)(14)(15), (123)(234)(345), (1234)(2345), (12)(23)(34)(45)(51),
5.2. Let p  be the permutation (1342) of four indices.

(a) Find the associated permutation matrix P.
(b) Write p  as a product of transp ositions and evaluate the corresponding matrix product.
(c) Determine the sign of p.

5.3. Prove that the inverse of a permutation matrix P is its transpose.
5.4. What is the permutation matrix associated to the permutation of n indices defined by

p(i) =  n -  i +  I? What is the cycle decomposition of p ? What is its sign?
5.5. In the text, the products qp  and pq  of the permutations (1.5.2) and (1.5.5) were seen to 

be different. However, both products turned out to be 3-cycles. Is this an accident?

Section 6 Other Formulas for the Determinant
6.1. (a) Compute the determinants of the following matrices by expansion on the bottom 

row:

1 2 
3 4

1 1
2 4 
0 2

-1 1' a b
1 -2 , 1 0

-1 1 1 1
(b) Compute the determinants of these matrices using the complete expansion.
(c) Compute the cofactor matrices of these matrices, and verify Theorem 1.6.9 

for them.
6.2. Let A be an n Xn matrix with integer entries a,y Prove that A is invertible, and that its 

inverse A - 1 has integer entries, if and only if det A = ± 1.
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Miscellaneous Problems
A B 
A B where each block is an n x >*M.l. Let a 2« X 2« matrix be given in the form M =

matrix. Suppose that A  is invertible and that A C = CA. Use block multiplication to prove 
that det M = det (AD — CB). Give an example to show that this formula need not hold if 
AC=t!:CA.

M.2. Let A be an m Xn matrix with m < n. Prove that A has no left inverse by comparing A 
to the square n X n matrix obtained by adding (n — m) rows of zeros at the bottom.

M.3. The trace of a square matrix is the sum of its diago nal entries:

trace A = an  + a 22 +------ + flnn.
Show that trace (A + B) = trace A + trace B, that trace AB = trace BA, and that if B is 
inverti ble, then trace A = trace BAB-1.

M.4. Show that the equation AB — BA = I has no solution in real n Xn matrices A and B.
f l  2 lM.S. Write the matrix j   ̂ as a product of elementary matrices, using as few as you can, 

and prove that your expression is as short as possible. ■
M.6. Determine the smallest integer n such t hat every invertible 2 X 2 matrix can be written as 

a product of at most n elemen tary matrices.
M.7. (Vandermonde determinant)

(a) Prove that det
1 1 1
a 1 c
a 2 b2 c

= (a — b)(b — c)(c — a).

(b) Prove an analogous formula for n Xn matrices, using appropriate row operations to 
clear out the first column.

(c) Use the Vandermonde determinant to prove that there is a unique polynomial p(t) 
of degree n that takes arbitrary prescribed values at n +  1 points to , . . . ,  t«.

*M.8. (an exercise in logic) Consider a general system A X  = B of m linear equations in n 
unknowns, where m and n are not necessarily equal. The coefficient matrix A may have 
a left inverse L, a matrix such that LA = In. If so, we may try to solve the system as we 
learn to do in school:

AX = B, LAX = LB, X = LB.
Butwhen we try to check our work by running the solution backward, we run into trouble: 
If X = LB, then AX = ALB. We seem to want L to be a right inverse, which isn’t what 
was given.

(a) Work some examples to convince yourself that there is a problem here.
(b) Exactly what does the sequence of steps made above show? What would the existence 

of a right inverse show? Explain clearly.

M.9. Let A be a real 2 x  2 matrix, and let A i, A2 be the columns of A.Le t P be the par allel ogram 
whose vertices are 0, A1, A2, Ai +A 2. Determine the effect of elemen tary row operations 
on the area of P, and use this to prove that the absolute value |detA| of the determinant 
of A is equal to the area of P.
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*M.I0. Let A, B be m Xn and n Xm matrices. Prove that 1m -  AB is invertible if and only if 
In -  BA  is invertible.
Hint: Perhaps the only approach available to you at this time is to find an explicit 
expression for one inverse in terms of the other. As a heuristic tool, you could try 
substituting into the power series expansion for (1 -  x)_l. The substitution will make no 
sense unless some series converge, and this needn’t be the case. But any way to guess a 
formula is permissible, provided that you check your guess afterward.

M .ll. 4(discrete Dirichlet problem) A function f (u,  v) is harmonic if it satisfies the Laplace
a2 f  -2 r ,

equation + -Vf =  O. The Dirichlet problem asks for a harmonic function on a plane 
region R with prescribed values on the boundary. This exercise solves the discrete version 
of the Dirichlet problem.

Let f  be a real valued function whose domain of definition is the set of integers Z. To 
avoid asymmetry, the discrete derivative is defined on the shifted integers Z +  J , as the 
first difference f ( n  +  j) =  f (n  +  1) — f (n).  The discrete second derivative is back on 
the integers: f ' ( n )  =  f ( n  + J) -  f ( n  -  J) =  f (n  + 1) -  2f(n ) +  f(n  -  1).
Let f (u,  v) be a function whose domain is the lattice of points in the plane with integer 
coordinates. The formula for the discrete second derivative shows that the discrete version 
of the Laplace equation for f  is

f (u  +  1, v) +  f(u  — 1, v) +  / (u , v + 1) +  f(u , v -  1) -  4f(u, v) =  0.

So f  is harmonic if its value at a point (u, v) is the average of the values at its four 
neighbors.

A discrete region R in the plane is a finite set of integer lattice points. Its boundary 
dR is the set of lattice points that are not in R, but which are at a distance 1 from some 
point of R. We’ll call R the interior of the region R = R  U dR. Suppose that a function 

is given on the boundary d R. The discrete Dirichlet problem asks for a function f  
defined on R, that is equal to on the boundary, and that satisfies the discrete Laplace 
equation at all points in the interior. This problem leads to a system of linear equations 
that we abbreviate as LX =  B. To set the system up, we write for the given value 
of the function at a boundary point. So f (u,  v) = at a boundary point (u, v). Let 

denote the unknown value of the function f (u,  v) at a point (u, v) of R. We order 
the points of R arbitrarily and assemble the unknowns into a column vector X. The 
coefficient matrix L expresses the discrete Laplace equation, except that when a point 
of R has some neighbors on the boundary, the corresponding terms will be the given 
boundary values. These terms are moved to the other side of the equation to form the 
vector B.

(a) When R  is the set of five points (0, 0), (0, ± 1), (± 1 ,0 ), there are eight boundary 
points. Write down the system of linear equations in this case, and solve the Dirichlet 
problem when is the function on dR defined by =  0 if v : :0  and = 1 if
v >O.

(b) The maximum principle states that a harmonic function takes on its maximal value 
on the boundary. Prove the maximum principle for discrete harmonic functions.

(c) Prove that the discrete Dirichlet problem has a unique solution for every region R 
and every boundary function f$.

41 learned this problem from Peter Lax, w ho told  me that he had learned it from my father, Em il Artin.



C H A P T E R  2

G r o u p s

II est peu de notions en mathematiques qui soient plus primitives
que celle de loi de composition.

—Nicolas Bourbaki

2.1 LAWS OF COMPOSITION

A law o f composition on a set S is any rule for combining pairs a, b of elements of S to get 
another element, say p, of S. Some models for this concept are addition and multiplication 
of real numbers. Matrix multiplication on the set of n X n matrices is another example. 

Formally, a law of composition is a function of two variables, or a map

S x S  -+ S.

Here S X S denotes, as always, the product set, whose elements are pairs a, b of elements 
of S.

The element obtained by applying the law to a pair a, b is usually written using a 
notation resembling one used for multiplication or addition:

p  =  ab, a  x b, a 0 b, a  +  b,

or whatever, a choice being made for the particular law in question. The element p  may be 
called the product or the sum of a  and b, depending on the notation chosen.

We will use the product notation ab  most of the time. Anything done with product 
notation can be rewritten using another notation such as addition, and it will continue to be 
valid. The rewriting is just a change of notation.

It is important to note right away that ab  stands for a certain element of S, namely for 
the element obtained by applying the given law to the elements denoted by a and b. Thus

if the law is matrix multiplication and if a  =
'7  3the matrix

and b , then ab  denotes

. Once the product ab  has been evaluated, the elements a and b cannot4 2
be recovered from it.

With multiplicative notation, a law of composition is associative if the rule

(2.1.1) (ab)c = a(bc)  (associative law)

37
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holds for all a, b, c in S, where (ab)c means first multiply (apply the law to) a  and b, then 
multiply the result ab  by c. A law of composition is commutative if

(2.1.2) ab  =  ba (commutative law)

holds for all a  and b in S. Matrix multiplication is associative, but not commutative.
It is customary to reserve additive notation a +  b for commutative laws -  laws such 

that a + b =  b +  a for all a  and b. Multiplicative notation carries no implication either way 
concerning commutativity.

The associative law is more fundam ental than the commutative law, and one reason for 
this is that composition of functions is associative. Let T be a set, and let g and f  be maps 
(or functions) from T to T. Let go f  denote the composed map t",. g(f( t ) ) :  first apply f ,  
then g. The rule

g, f -^ g o f
is a law of composition on the set of maps T -+ T. This law is associative. If J , g, and h are 
three maps from T to T, then (h o g) o f  =  h o(g  o j) :

h o g

g » f

Both of the composed maps send an element t to h(g(f ( t»)) .
When T contains two elements, say T =  {a, b}, there are four maps T

i: the identity map, defined by i(a) = a, i(b) = b; 
r: the transposition, defined by r(a )  =  b, r(b ) =  a; 
a: the constant function a (a )  =  a  (b) =  a; 
fJ: the constant function fJ (a) =  fJ (b) = b.

T:

The law of composition on the set {i, r, a , fJ} of maps T 
multiplication table:

T can be exhibited in a

(2.1.3)

which is to be read in this way:

i r a fJ
i i r a fJ
r r i fJ a
a a a a a
fJ

f

g o fg

Thus r  o a  =  f3, while a  o r  =  a . Composition of functions is not a commutative law.
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Going back to a general law of composition, suppose we want to define the product of 
a string of n elements of a set: a\ a 2 • • • an =  ? There are various ways to do this using the 
given law, which tells us how to multiply two elements. For instance, we could first use the 
law to find the product a ia 2, then multiply this element by as, and so on:

((a 1a2 )a3 )a 4 .

There are several other ways to form a product with the elements in the given order, but if 
the law is associative, then all of them yield the same element of S. This allows us to speak 
of the product of an arbitrary string of elements.

Proposition 2.1.4 Let an associative law of composition be given on a set S. There is a 
unique way to define, for every integer n, a product of n elements a i, . . . ,  an of S, denoted 
temporarily by [ai • • • a n], with the following properties:

(i) The product [ad of one element is the element itself.
(ii) The product [a ia2] of two elements is given by the law of composition.

(iii) For any integer i in the range 1 i <  n, [aj ■ ■ ■ an] = [a\ • • a;][a;+i . . .  an].

The right side of equation (iii) means that the two products [ai . . .  a ,] and [a(+i . . .  an] are 
formed first, and the results are then multiplied using the law of composition.

Proof. We use induction on n. The product is defined by (i) and (ii) for n 2, and it does 
satisfy (iii) when n =  2. Suppose that we have defined the product of r  elements when 
r  n — 1, and that it is the unique product satisfying (iii). We then define the product of n 
elements by the rule

[ai • • •an] =  [a i •••an-i][an],

where the terms on the right side are those already defined. If a product satisfying (iii) exists, 
then this formula gives the product because it is (iii) when i = n — 1. So if the product of n 
elements exists, it is unique. We must now check (iii) for i < n  — 1:

[aj • • - an] =  [ai • • ■ an^\][an] (our definition)
=  ([aj • • • a,][a!+i • • • an-i])[an] (induction hypothesis)
=  [a i ■ • • a,-]([a,-+i • • . an-i][an]) (associative law)
=  [ai • . -ad [a(+i • • a n] (induction hypothesis).

This completes the proof. We will drop the brackets from now on and denote the product by 
a i "*•an• □

An identity for a law of composition is an element e of S such that

(2.1.5) ea =  a  and ae =  a , for all a  in S.

There can be at most one identity, for if e and e' are two such elements, then since e is an 
identity, ee' =  e', and since e' is an identity, e =  ee'. Thus e =  ee' =  e'.

Both matrix multiplication and composition of functions have an identity. For n X n 
matrices it is the identity matrix I, and for the set of maps T —> T it is the identity map -  the 
map that carries each element of T to itself.
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• The identity element will often be denoted by 1 if the law of composition is written 
multiplicatively, and by 0 if the law is written additively. These elements do not need to be 
related to the numbers 1 and 0, but they share the property of being identity elements for 
their laws of composition.

Suppose that a law of composition on a set S, written multiplicatively, is associative 
and has an identity 1. An element a  of S is invertible if there is another element b such that

ab  =  I and ba =  1 ,

and if so, then b is called the inverse of a. The inverse of an element is usually denoted by 
a -1, or when additive notation is being used, by -a.

We list without proof some elementary properties of inverses. All but the last have 
already been discussed for matrices. For an example that illustrates the last statement, see 
Exercise 1.3.

• If an element a  has both a left inverse l  and a right inverse r, i.e., if l a  =  1 and 
ar  =  1, then l  = r, a is invertible, r is its inverse.

• If a  is invertible, its inverse is unique.
• Inverses multiply in the opposite order: If a  and b are invertible, so is the product 

ab, and (ab)~l = b~l a~J.
• An element a  may have a left inverse or a right inverse, though it is not invertible.

Power notation may be used for an associative law: With n > 0, an =  a -  . a  (n factors), 
a -n =  a -1 • ■. a~i, and a 0 =  1. The usual rules for manipulation of powers hold: ara s = ar+s 
and (ary  =  ars. When additive notation is used for the law of composition, the power 
notation an is replaced by the notation na  =  a + • • • +  a.

Fraction notation |  is not advisable unless the law of composition is commutative, 
because it isn’t clear from the notation whether the fraction stands for ba- 1 or for a~l b, and 
these two elements may be different.

2.2 GROUPS AND SUBGROUPS

A group is a set G together with a law of composition that has the following properties:
• The law of composition is associative: (ab)c  =  a(bc) for all a, b, c in G.
• G contains anidentity element 1, such that la  =  a and a l  =  a  for all a  in G.
• Every element a  of G has an inverse, an element b such that ab  =  1 and ba =  1.

An abelian group is a group whose law of composition is commutative.
For example, the set of nonzero real numbers forms an abelian group under multipli

cation, and the set of alt real numbers forms an abelian group under addition. The set of 
invertible n X n matrices, the general linear group, is a very important group in which the 
law of composition is matrix multiplication. It is not abelian unless n =  1.

When the law of composition is evident, i t is customary to denote a group and the set 
of its elements by the same symbol.

The order of a group G is the number of elements that it contains. We will often denote 
the order by |G |:

(2.2.1) I G | =  number of elements, the order, of G.
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If the order is finite, G is said to be a finite group. If not, G is an infinite group. The same 
terminology is used for any set. The order |S| of a set S is the number of its elements.

Here is our notation for some familiar infinite abelian groups:

(2.2.2) the set of integers, with addition as itslaw of composition 
-  the additive group of integers,
the set of real numbers, with addition as its law of 
composition -  the additive group of real numbers;
the set of nonzero real numbers, with multiplication as 
its law of composition -  the multiplicative group,
the analogous groups, where the set C of complex num
bers replaces the set JR of real numbers.

Warning: Others might use the symbol JR+ to denote the set of positive real numbers. To 
be unambiguous, it might be better to denote the additive group of reals by (JR, +), thus 
displaying its law of composition explicitly. However, our notation is more compact. Also, 
the symbol JRx denotes the multiplicative group of nonzero real numbers. The set of all real 
numbers is not a group under multiplication because 0 isn’t invertible. □

Proposition 2.2.3 Cancellation Law. Let a, b, c be elements of a group G whose law of 
composition is written multiplicatively. If ab  =  ac  or if ba = ca, then b =  c. If a b = a  or if 
ba = a, then b =  1.

Proof Multiply both sides of ab — ac on the left by a~1 to obtain b =  c. The other proofs 
are analogous. □

Multiplication by o f1 is essential for this proof. The Cancellation Law needn’t hold when 
the element a is not invertible. For instance,

' 1  r ' i  r ' 1  r ' 3  '

_ 2  _ _ i _

Two basic examples of groups are obtained from laws of composition that we have 
considered -  multiplication of matrices and composition of functions -  by leaving out the 
elements that are not invertible .
• The n Xn general linear group is the group of all invertible n Xn matrices. It is denoted by
(2.2.4) G L n =  {n X n invertible matrices A }.
If we want to indicate that we are working with real or with complex matrices, we write 
G L n (JR) or G L n (C), according to the case.

Let M  be the set of maps from a set T  to itself. A map f :  T -»• T  has an inverse 
function if and only if it is bijective, in which case we say f  is a permutation of T. The 
permutations of T  form a group, the law being composition of maps. As in section 1.5, we 
use multiplicative notation for the composition of permutations, writing qp  for q o p.
• The group of permutations of the set of indices {l, 2, . . .  , n) is called the symmetric group, 
and is denoted by S„:

(2.2.5) Sn is the group of permutations of the indices 1, 2, . . . ,  n.
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There are n! (n  factorial’ =  1 2 -3- • . n) permutations of a set of n elements. so the 
symmetric group Sn is a finite group of order n!.

The permutations of a set {a, b} of two elements are the identity i and the transposition 
r  (see 2. 1.3). They form a group of order two. If we replace a by 1 and b by 2, we see that 
this is the same group as the symmetric group 5:). There is essentially only one group G of 
order two. To see this, we note that one of its elements must be the identity 1; let the other 
element be g. The multiplication table for the group contains the four products 11, lg , g1, 
and gg. All except gg are determined by the fact that 1 is the identity element. Moreover, 
the Cancellation Law shows that gg g. The only possibility is gg = 1. So the multiplication 
table is completely determined. There is just one group law.

We describe the symmetric group S 3 next. This group, which has order six, serves 
as a convenient example because it is the smallest group whose law of composition isn’t 

. commutative. We will refer to it often. To describe it, we pick two particular permutations 
in terms of which we can write all others. We take the cyclic permutation (123), and the 
transposition (12), and label them as x and y, respectively. The rules

are easy to verify. Using the cancellation law, one seesthatthe six elements 1, x, x 2, y, x y , x 2y  
are distinct. So they are the six elements of the group:
(2.2.7) . S3 =  {1, x, x2; y, xy, x 2y }.

In the future, we will refer to (2.2.6) and (2.2.7) as our “usual presentation” of the symmetric 
group S3. Note that 53 is not a commutative group, because yx*-xy.

The rules (2.2.6) suffice for computation. Any product of the elements x and y and of 
their inverses can be shown to be equal to one of the products (2.2.7) by applying the rules 
repeatedly. To do so, we move all occurrences of y to the right side using the last rule, and 
we use the first two rules to keep the exponents small. For instance,

(2.2.8) x~xy 'x 2y  = x 2y x 2y  = x2(yx)xy =  x2(x2y)xy =  xyxy =  x(x2y)y =  L.

One can write out a multiplication table for 5:) with the aid of the rules (2.2.6), and because 
of this, those rules are called defining relations for the group. We study defining relations in 
Chapter 7.
We stop here. The structure of Sn becomes complicated very rapidly as n increases.

One reason that the general linear groups and the symmetric groups are important is 
that many other groups are contained in them as subgroups. A subset H  of a group G is a 
subgroup if it has the following properties:

(2.2.9)
• Closure: If a and b are in H, then ab is in H.
• Identity: 1 is in H.
• Inverses: If a is in H, then a is in H.

These conditions are explained as follows: The first one tells us that the law of composition 
on the group G defines a law of composition on H. called the induced law. The second and 
third conditions say that H  is a group with respect to this induced law. Notice that (2.2.9)
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mentions all parts of the definition of a group except for the associative law. We don’t need 
to mention associativity. It carries over automatically from G to the subset H.
Notes: (i) In mathematics, it is essential to learn the definition of each term. An intuitive 
feeling will not suffice. For example, the set T of invertible real (upper) triangular 2 X 2 
matrices is a subgroup of the general linear group G L 2 , and there is only one way to verify 
this, namely to go back to the definition. It is true that T is a subset of G L 2. One must verify 
that the product of invertible triangular matrices is triangular, that the identity is triangular, 
and that the inverse of an invertible triangular matrix is triangular. Of course these points 
are very easy to check.
(ii) Closure is sometimes mentioned as one of the axioms for a group, to indicate that the
product ab  of elements of G is again an element of G. We include closure as a part of what
is meant by a law of composition. Then it doesn’t need to be mentioned separately in the
definition of a group. □

Examples 2.2.10

(a) The set of complex numbers of absolute value 1, the set of points on the unit circle in 
the complex plane, is a subgroup of the multiplicative group Cx called the circle group.

(b) The group of real n X n matrices with determinant 1 is a subgroup of the general linear 
group G L„, called the special linear group. It is denoted by SL„:

(2.2.11) SLn (JR) is the set of real n X n matrices A with determinant equal to 1.

The defining properties (2.2.9) are often very easy to  verify for a particular subgroup, and 
we may not carry the verification out.
• Every group G has two obvious subgroups: the group G itself, and the trivial subgroup 
that consists of the identity element alone. A subgroup is a proper subgroup if it is not one 
of those two.

2.3 SUBGROUPS OF THE ADDITIVE GROUP OF INTEGERS

We review some elementary number theory here, in terms of subgroups of the additive 
group Z+ of integers. To begin, we list the axioms for a subgroup when additive notation is 
used in the group: A subset 5  of a group G with law of composition written additively is a 
subgroup if it has these properties:

(2.3.1)
• Closure: If a  and b are in S, then a + b is in S.
• Identity: 0 is in S.
• Inverses: If a  is in 5 then -a  is in S.

Let a  be an integer different from O. We denote the subset of Z that consists of all 
multiples of a  by Z a:
(2.3.2) Za =  {n e Z | n =  ka for some k  in Z} . '

This is a subgroup of Z+. Its elements can also be described as the integers divisible by a.
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Theorem 2.3.3 Let S be a subgroup of the additive group Z+. Either S is the trivial subgroup 
{O}, or else it has the form Za, where a is the smallest positive integer in S.

Proof Let S be a subgroup of Z+. Then 0 is in S, and if 0 is the only element of S then S 
is the trivial subgroup. So that case is settled. Otherwise, S contains an integer n different 
from 0, and either n or -n is positive. The third property of a subgroup tells us that -n is in
S, so in either case, S contains a positive integer. We must show that S is equal to Za, when 
a is the smallest positive integer in S. .

We first show that Za is a subset of S, in other words, that ka  is in S for every integer 
k. If k  is a positive integer, then ka =  a +  a + ■ ■ ■ + a (k terms). Since a is in S, closure and 
induction show that ka  is in S. Since inverses are in S, -ka  is in S. Finally, 0 =  Oa is in S.

Next we show that S is a subset of Za, that is, every element n of S is an integer 
multiple of a. We use division with remainder to write n = qa  +  r, where q and r  are integers 
and where the remainder r  is in the range 0 < r  <  a. Since Za is contained in S, qa is in S, 
and of course n is in S. Since S is a subgroup, r  =  n -  qa is in S too. Now by our choice, a is 
the smallest positive integer in S, while the remainder r  is in the range 0 < r  <  a. The only 
remainder that can be in S is O. So r  =  0 and n is the integer multiple qa  of a. □

There is a striking application of Theorem 2.3.3 to subgroups that contain two integers 
a  and b. The set of all integer combinations ra +  sb of a and b,
(2.3.4) S =  Za + Zb =  {n € Z | n = ra +  sb for some integers r, s }

is a subgroup of Z+. It is called the subgroup generated by a and b because it is the smallest 
subgroup that contains both a and b. Let’s assume that a and b aren’t both zero, so that S 
is not the trivial subgroup {O}. Theorem 2.3.3 tells us that this subgroup S has the form Zd 
for some positive integer d; it is the set of integers divisible by d. The generator d  is called 
the greatest common divisor of a and b, for reasons that are explained in parts (a) and (b) 
of the next proposition. The greatest common divisor of a and b is sometimes denoted by 
gcd(a, b).

Proposition 2.3.5 Let a and b be integers, not both zero, and let d  be their greatest common 
divisor, the positive integer that generates the subgroup S =  Za +  Zb. So Zd =  Za + Zb. 
Then
(a) d  divides a and b.
(b) If an integer e divides both a and b, it also divides d.
(c) There are integers r  and s such that d  =  ra +  sb.

Proof Part (c) restates the fact that d  is an element of S. Next, a and b are elements of S 
and S =  Zd, so d  divides a and b. Finally, if an integer e divides both a and b, then e divides 
the integer combination r a +  sb d. □

Note: If e divides a and b, then e divides any integer of the form rna + nb. So (c) implies
(b). But (b) does not imply (c). As we shall see, property (c) is a powerful tool. □

One can compute a greatest common divisor easily by repeated division with remainder: 
For example, if a =  314 and b =  136, then

314 =  2-136 + 42, 136 =  3-42 + 10, 42 =  4 -10 + 2.
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Using the first of these equations, one can show that any integer combination of 314 and 136 
can also be written as an integer combination of 136 and the remainder 42, and vice versa. So 
Z(314) +  Z(136) =  Z (136) +  Z (42), and therefore gcd(314, 136) =  gcd(136, 42). Similarly, 
gcd(136, 42) =  gcd(42, 10) =  gcd(10, 2) =  2. So the greatest common divisor of 314 and 136 
is 2. This iterative method of finding the greatest common divisor of two integers is called 
the Euclidean Algorithm.

If integers a and b are given, a second way to find their greatest common divisor is 
to factor each of them into prime integers and then to collect the common prime factors. 
Properties (a) and (b) of Proposition 2.3.5 are easy to verify using this method. But without 
Theorem 2.3.3, property (c), that the integer determined by this method is an integer 
combination of a and b wouldn’t be clear at all. Let’s not discuss this point further here. We 
come back to it in Chapter 12.

Two nonzero integers a  and b are said to be relatively prime if the only positive integer 
that divides both of them is 1. Then their greatest common divisor is 1: Za +  Zb =  Z.

Corollary 2.3.6 A pair a, b of integers is relatively prime if and only if there are integers r  
and s such that ra +  sb  =  1. □

Corollary 2.3.7 Let p  be a prime integer. If p  divides a product ab  of integers, then p  
divides a or p  divides b.

Proof Suppose that the prime p  divides ab  but does not divide a. The only positive divisors 
of p  are 1 and p. Since p  does not divide a, gcd(a, p) =  1. Therefore there are integers r
and s such that ra  +  sp  =  1. We multiply by b: rab  +  spb  =  b, and we note that p  divides
both rab  and spb. So p  divides b. □

There is another subgroup of Z+ associated to a pair a, b of integers, namely the 
intersection Za n Zb, the set of integers contained both in Za and in Zb. We assume now 
that neither a nor b is zero. Then Za n Zb is a subgroup. It is not the trivial subgroup {OJ 
because it contains the product ab, which isn’t zero. So Za n Zb has the form Zm for some 
positive integer m. This integer m is called the least common mUltiple of a  and b, sometimes 
denoted by lcm(a, b), for reasons that are explained in the next proposition.

Proposition 2.3.8 Let a  and b be integers different from zero, and let m be their least 
common multiple -  the positive integer that generates the subgroup S =  Za n Zb. So
Zm =  Za n Zb. Then

(a) m is divisible by both a  and b.
(b) If an integer n is divisible by a  and by b, then it is divisible by m.

Proof. Both statements follow from the fact that an integer is divisible by a  and by b if and 
only if it is contained in Zm =  Za n Zb. □

Corollary 2.3.9 Let d  =  gcd(a , b) and m =  lcm(a, b) be the greatest common divisor and 
least common multiple of a pair a, b of positive integers, respectively. Then ab  =  dm.

Proof Since b /d  is an integer, a  divides a b /d . Similarly, b divides a b /d . So m divides 
a b /d , and dm divides ab. Next, we write d  =  ra  +  sb. Then dm  =  ram  + sbm. Both terms
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on the right are divisible by ab, so ab  divides dm. Since ab and dm  are positive and each 
one divides the other, ab  =  dm. □

2.4. CYCLIC GROUPS

We come now to an important abstract example of a subgroup, the cyclic subgroup generated 
by an arbitrary element x of a group G. We use multiplicative notation. The cyclic subgroup 
H  generated by x is the set of all elements. that are powers of x:

(2.4.1) H  =  { . . . ,  x- 2 , x-1 , 1 , x, x2 , . . . }  .

This is the smallest subgroup of G that contains x, and it is often denoted by <x>. But to 
interpret (2.4.1) correctly, we must remember that the notation x” represents an element 
of the group that is obtained in a particular way. Different powers may represent the same 
element. For example, if G is the multiplicative group Kx and x =  -1, then all elements in 
the list are equal to I or to -1, and H  is the set {I, -I}.

There are two possibilities: Either the powers x” represent distinct elements, or they 
do not. We analyze the case that the powers of x are not distinct.

Proposition 2.4..2 Let <x> be the cyclic subgroup of-a group G generated by an element x, 
and let S denote the set of integers k such that x^ =  1.

(a) The set S is a subgroup of the additive group Z+.
(b) i T*yo powers xr =  x*, with r  :: s, are equal if and only if x r s =  1, i.e., if and only if r  -  s

is in S.
(c) Suppose that S is not the trivial subgroup. Then S =  Zn for some positive integer n. 

The powers 1, x, x2, •.., x” - 1 are the distinct elements of the subgroup < x >, and the 
order of < x ) is n.

Proof (a) If xk =  1 and x^ = 1, then x ^ +  =  xkx^ =  1. This shows that if k and t  are in S, 
then k +  I  is in S. So the first property (2.3.1) for a subgroup is verified. Also, x0 =  1. so 0 is 
in S. Finally, if k is in S, i.e., x^ =  1, then x~* =  (xk)-1 =  I too, so - k  is in S.
(b) This follows from the Cancellation Law 2.2.3.
(c) Suppose that S:;i:{O}. Theorem 2.3.3 shows that S =  Zn, where n is the smallest positive
integer in S. If x* is an arbitrary power, we divide k by n, writing k =  qn +  r  with r  in the 
range 0 r, <  n. Then x^n =  I q =  1, and x^ =  x9”x r =  xr . Therefore x* is equal to one of 
the powers 1, x, ..., x”_i. It follows from (b) -that these powers are distinct, because x” is 
the smallest positive power equal to 1. □

The group- <x> =  {I, x, ..., x"-i} described by part (c) of this proposition is called a 
cyclic group oforder n. It is called cyclic because repeated multiplication by x cycles through 
the n elements.,

An, eleIl;u;p;t.x of . a group has order n i f  n is the smallest positive integer with the 
property xn =  1, v.(hich is the same thing as saying that the. cyclic sub group <x> generated : 
by x has order n.

With the usual presen tation of the symmetric group S3, the element x has order 3, and 
y has ,order ,2: In any group., the identity element is the only.element of order 1.
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infinite order in G L 2(K), while has order 6.

hasIf x n 1=  1 for all n > 0 , one says that x has infinite order. The matrix
'  1 1 '
_ 1 1 .

When x  has infinite order, the group <x> is said to be infinite cyclic. We won’t have 
much to say about that case.

Proposition 2.4.3 Let x be an element of finite order n in a group, and let k be an integer 
that is written as k =  nq +  r  where q and r  are integers and r  is in the range 0 < r  <  n.

• x k = x r.
• x k = 1 if and only if r  =  0.
• Let d  be the greatest common divisor of k and n. The order of x* is equal

to n /d . □

One may also speak of the subgroup of a group G generated by a subset U. This is 
the smallest subgroup of G that contains U, and it consists of all elements of G that can be 
expressed as a product of a string of elements of U and of their inverses. A subset U of G 
is said to generate G  if every element of G is such a product. For example, we saw in (2.2.7) 
that the set U =  {x, y} generates the symmetric group S3. The elementary matrices generate 
G L n (1.2.16). In both of these examples, inverses aren’t needed. That isn’t always true. An 
infinite cyclic group <x> is generated by the element x, but negative powers are needed to 
fill out the group.

The Klein four group V, the group consisting of the four matrices

(2.4.4)

is the simplest group that is not cyclic. Any two of its elements different from the identity 
generate V. The quaternion group H  is another example of a small group. It consists of the 
eight matrices

(2.4.5)

where

H  =  {± 1

1 = '1 O' ' i 0 ' ' 0 1 " , k = "0 i"
0 1 , I = 0 - i  " - J = -1 0 " . i 0 '

These matrices can be obtained from the Pauli matrices of physics by multiplying by i. 
The two elements i and j generate H. Computation leads to the formulas

(2.4.6) i2 =  J2 =  k2 =  - 1 , ij =  -ji =  k , jk  =  -kj =  i , ki = - ik =  j.

2.5 HOMOMORPHISMS
Let G and G ' be groups, written with multiplicative notation. A homomorphism cp: G -+ G ' 
is a map from G to G ' such that for all a  and b in G,

(2.5.1) cp(ab) =  cp(a)cp(b).
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The left side of this equation means

first multiply a  and b in G, then send the product to G ' using the map <p,

while the right side means

first send a  and b individually to G ' using the map <p, then multiply their images in G'.

Intui tively, a homomorphism is a map that is compatible with the laws of composition in the 
two groups, and it provides a way to relate different groups.

Examples 2.5.2 The following maps are homomorphisms:
(a) the determinant function det: G Ln(M) -+ Kx (1.4.10),
(b) the sign homomorphism ct: Sn -+ {±I} that sends a permutation to its sign (1.5.11),
(c) the exponential map exp: jR+ -+ Ex defined b y x  -w eX,
(d) th e map <p:Z+ -+ G defined by <p(n) =  a n, where a  is a given element of G,
(e) the absolute value map I | : CX -+ ]R.X.

In examples (c) and (d), the law of composition is written additively in the domain and 
multiplicatively in the range. The condition (2.5.1) for a homomorphism must be rewritten 
to take this into account. It becomes

<p(a +  b) =  <p(a)<p(b).

The formula showing that the exponential map is a homomorphism is ea+b =, ea eb.

The following homomorphisms need to be mentioned, though they are less interesting. 
The trivial homomorphism <p: G -+ G ' between any two groups maps every element of G to 
the identity in G '. If H  is a subgroup of G, the inclusion map i: H  -+ G defined by i(x) =  x 
for x  in H  is a homomorphism.

Proposition 2.5.3 Let <p:G -+ G ' be a group homomorphism.

(a) If a i, . . . ,  a* are elements of G, then <p(ai . . .  ak) =  <p(ai) ■ ■ ■ <p(ak).
(b) maps the identity to the identity: <p(1g ) =  Ig '.
(c) maps inverses to  inverses: <p(a 1) =  <p(a) l .

Proof The first assertion follows by induction from the definition. Next, since 1 . 1 =  1 and 
since is a homomorphism, <p(1)<p(1) =  <p(l . 1) =  <p(l). We cancel <p(l) from both sides
(2.2.3) to obtain <p(l) =  1. Finally, <p(a~l)<p(a) =  <p(a- 1a) =  <p(l) =  1. Hence <p(a-1) is the
inverse of <p(a). □

A group homomorphism determines two important subgroups: its image and its kernel.

• The image of a homomorphism <p:G -+ G ', often denoted by im <p, is simply the image of 
as a map of sets:

(2.5.4) im =  {x e G ' | x =  <p(a) for some a  in G ),

Another notation for the image would be <p(G).
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The image of the map Z+ -+ G that sends n -~+an is the cyclic subgroup < a > generated
by a.

The image of a homomorphism is a subgroup of the range. We will verify closure and 
omit the other verifications. Let x  and y be elements of the image. This means that there 
are elements a  and b in G such that x =  IP(a) and y  =  IP(b). Since IP is a homomorphism, 
x y  = IP(a)IP(b) =  IP(ab). So xy is equal to lP(something). It is in the image too.

• The kernel of a homomorphism is more subtle and also more important. The kernel of IP, 
often denoted by ker IP, is the set of elements of G that are mapped to the identity in G':

(2.5.5) kerIP =  {a  € G | IP(a) =  1}.

The kernel is a subgroup of G because, if a  and b are in the kernel, then IP(ab) =  IP(a)IP(b) =  
1-1 =  1, so ab is in the kernel, and so on.

The kernel of the determinant homomorphism G L n (R) -+ jRx is the special linear 
group S L n(R) (2.2.11). The kernel of the sign homomorphism Sn -+ {± I} is called the 
alternating group. It consists of the even permutations, and is denoted by An:

(2.5.6) The alternating group An is the group of even permutations.

The kernel is important because it controls the entire homomorphism. It tells us not 
only which elements of G are mapped to the identity in G', but also which pairs of elements 
have the same image in G '.

• If H  is a subgroup of a group G and a  is an element of G, the notation a H  will stand for 
the set of all products ah  with h in H:

(2.5.7) a H  =  {g € G |g  =  ah  for some h in H}.

This set is called a left coset of H  in G, the word “ left” referring to the fact that the element 
a  appears on the left.

Proposition 2.5.8 Let IP : G -+ G ' be a homomorphism of groups, and let a  and b be 
elements of G. Let K  be the kernel of IP. The following conditions are equivalent:

• IP(a) =  IP(b),
• a  -l b is in K,
• b is in the coset aK ,
• The cosets bK and a K  are equal.

Proof Suppose that IP(a) =  IP(b). Then IP(a- 1b) =  IP(a-!)IP(b) =  IP(a)- 1IP(b) =  l. 
Therefore a - lb is in the kernel K. To prove the converse, we tum this argument around. 
If a -1b is in K, then 1 =  IP(a-*b) =  IP(a)-1IP(b), so IP(a) =  IP(b). This shows that the first 
two bullets are equivalent. Their equivalence with the other bullets follows. □

Corollary 2.5.9 A homomorphism IP: G -+ G ' is injective if and only if its kernel K is the 
trivial subgroup {1} of G.
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Proof. If K =  {I}, Proposition 2.5.8 shows that rp(a) =  rp(b) only when a~1b =  1, i .e., a = b. 
Conversely, if rp is injective, then the identity is the only element of G such that rp(a) =  1, 
so K  =  {I}. □

The kernel of a homomorphism has another important property that is explained in 
the next proposition. If a and g are elements of a group G, the element gag- 1 is called the 
conjugate of a by g.

Definition 2.5.10 A subgroup N  of a group G is a normal subgroup if for every a in N  and 
every g in G, the conjugate gag- 1 is in N.

Proposition 2.5.11 The kernel of a homomorphism is a normal subgroup.

Proof If a is in the kernel of a homomorphism rp: G -+ G ' and if g is any element of G, 
then rp(gag~x) =  rp(g)rp(a)rp(g-1) =  rp(g)lrp(g) - 1 =  1. Therefore gag- 1 is in the kernel 
too. □

Thus the special linear group S L n(W) is a normal subgroup of the general linear group 
GLn(lR.), and the alternating group An is a normal subgroup of the symmetric group S„. 
Every subgroup of an abelian group is normal, because if G is abelian, then gag-1 =  a  for 
all a and all g in the group. But subgroups of nonabelian groups needn’t be normal. For 
example, in the symmetric group S3, with its usual presentation (2.2.7), the cyclic subgroup 
<y> of order two is not normal, because y  is in G, but xyx-1 = x 2 y  isn’t in <y>.

• The center of a group G, which is often denoted by Z, is the set of elements that commute 
with every element of G:

(2.5.12) Z  =  {z € G | zx =  xz for all x € G }.

It is always a normal subgroup of G. The center of the special linear group SL2 (JR) consists 
of the two matrices I, -I. The center of the symmetric group S„ is trivial if n :: 3.

Example 2.5.13 A homomorphism rp:S4 -+ S3 between symmetric groups.
There are three ways to partition the set of four indices {I, 2, 3, 4} into pairs of subsets 

of order two, namely

(2.5.14) n j  : {I, 2} U {3, 4}, n 2 : {I, 3} U {2, 4}, n 3 : {I, 4} U {2, 3}.

An element of the symmetric group S4 permutes the four indices, and by doing so it 
also permutes these three partitions. This defines the map rp from S4 to the group of 
permutations of the set { n i , n 2, n 3}, which is the symmetric group S3. For example, the 
4-cycle p  =  (1234) acts on subsets of order two as follows:

{I, 2} {2, 3} {I, 3} {2, 4} {I, 4} {I, 2}
{2, 3} {3, 4} {2, 4} {I, 3} {3, 4} "'"{I, 4).

Looking at this action, one sees that p  acts on the set { n i, n 2, n 3} of partitions as the
transposition ( n i  n 3) that fixes n 2 and interchanges n i  and n 3.
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If p  and q are elements of S4, the product p q  is the composed permutation p  0 q, 
and the action of pq  on the set { n j, n 2. n 3} is the composition of the actions of q and p. 
Therefore q;(pq) =  q;(p)q;(q), and cp is a homomorphism.

The map is surjective, so its image is the whole group S3. Its kernel can be computed. 
It is the subgroup of S4 consisting of the identity and the three products of disjoint trans
positions:

(2.5.15) K =  {l, (12)(34), (13)(24), (14)(23)}. □

2.6 ISOMORPHISMS

An isomorphism q;: G -+ G ' from a group G to a group G ' is a bijective group homomor
phism -  a bijective map such that q;(ab) =  q;(a)cp(b) for all a and b in G.

Examples 2.6.1
• The exponential map eX is an isomorphism, when it is viewed as a map from the 

additive group 1R+ to its image, the multiplicative group of positive real numbers.
• If a  is an element of infinite order in a group G, the map sending n . . a ” is an 

isomorphism from the additive group Z+ to the infinite cyclic subgroup < a> o f G.
• The set P  of n  Xn permutation matrices is a subgroup of G L n, and the map S„ -+ P  

that sends a permutation to its associated matrix (1.5.7) is an isomorphism. □

Corollary 2.5.9 gives us a way to verify that a homomorphism q; : G -+ G ' is an 
isomorphism. To do so, we check that kerq; =  {l}, which implies that q; is injective, and also 
that im q; =  G ', that is, q; is surjective.

Lemma 2.6.2 If q;: G -+ G ' is an isomorphism, the inverse map q; - 1 : G ' -+ G  is also an 
isomorphism.

Proof The inverse of a bijective map is bijective. We must show that for all x and y in G ', 
q;- l (x)q;“ l (y) =  q;~l (xy). We set a  =  q;-1^ ) ,  b =  q;_1(y), and c =  q;_1(xy). What has to 
be shown is that ab  =  c, and since q; is bijective, it suffi ces to show that q;(ab) =  q;(c). Since 
cp is a homomorphism,

q;(ab) =  q;(a)q;(b) =  xy  =  q;(c). □

This lemma shows that when q;: G -+ G' is an isomorphism, we can make a computation 
in either group. then use q; or q; - 1 to carry it over to the other. So, for computation with the 
group law, the two groups have identical properties. To picture this conclusion intuitively, 
suppose that the elements of one of the groups are put into unlabeled boxes, and that 
we have an oracle that tells us, when presented with two boxes, which box contains their 
product. We will have no way to decide whether the elements in the boxes are from G or 
from G'.

Two groups G and G ' are said to be isomorphic if there exists an isomorphism q; from 
G to G '. We sometimes indicate that two groups are isomorphic by the symbol «

(2.6.3) G ~  G ' means that G is isomorphic to G '.
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Since isomorphic groups have identical properties, it is often convenient to identify them with 
each other when speaking informally. For instance, we often blur the distinction between 
the symmetric group Sn and the isomorphic group P  of permutation matrices.

• The groups isomorphic to a given group G form what is called the isomorphism class of G.

Any two groups in an i somorphism class are isomorphic. When one speaks ofclassifying 
groups, what is meant is to describe these isomorphism classes. This is too hard to do for all 
groups, but we will see that every group of prime order p  is cyclic. So all groups of order 
p  are isomorphic. There are two isomorphism classes of groups of order 4 (2.11.5) and five 
isomorphism classes of groups of order 12 (7.8.1).

An interesting and sometimes confusing point about isomorphisms is that there exist 
isomorphisms q; : G -+ G from a group G to itself. Such an isomorphism is called an 
automorphism. The identity map is an automorphism, of course, but there are nearly always 
others. The most important type of automorphism is conjugation: Let g  be a fixed element 
of a group G. Conjugation by g is the map q; from G to itself defined by

(2.6.4) q;(x) = gxg-1^

This is an automorphism because, first of all, it is a homomorphism:

q;(xy) =  gxyg -  =  gxg- 1 gyg - 1  =  q;(x)q;(y),

and second, it is bijective because it has an inverse function -  conjugation by g -1.
If the group is abelian, conjugation by any element g is the identity map: gxg - 1 =  x. 

But any noncommutative group has nontrivial conjugations, and so it has automorphisms 
different from the identity. For instance, in the symmetric group S3, presented as usual, 
conjugation by y  interchanges x  and x 2.

As was said before, the element gxg- 1 is the conjugate of x  by g, and two elements 
x  and x' of a group G are conjugate if x' =  g x g - 1 for some g  in G. The conjugate g x g - 1 

behaves in much the same way as the element x  itself; for example, it has the same order in 
the group. This follows from the fact that it is the image of x  by an automorphism. (See the 
discussion following Lemma 2.6.2.)

Note: One may sometimes wish to determine whether or not two elements x  and y  of a 
group G are conjugate, i.e., whether or not there is an element g in G such that y  = g x g -1. 
It is almost always simpler to rewrite the equation to be solved for g as yg  = gx. □

• The commutator aba-^b" 1 is another element associated to a pair a, b of elements of a 
group.

The next lemma follows by moving things from one side of an equation to the other.

Lemma 2.6.5 Two elements a and b of a group commute, ab = ba, if and only if aba-1 = b, 
and this is true if and only if a b a ^ b - 1 =  1. □

2.7 EQUIVALENCE RELATIONS AND PARTITIONS
A fundamental mathematical construction starts with a set S and forms a newsetby equating 
certain elements of S. For instance, we may divide the set of integers into two classes, the
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even integers and the odd integers. The new set we obtain consists of two elements that 
could be called Even and Odd. Or, it is common to view congruent triangles in the plane 
as equivalent geometric objects. This very general procedure arises in several ways that we 
discuss here .

• A partition n  of a set S is a subdivision of S into nonoverlapping, nonempty subsets:

(2.7.1) S = union of disjoint nonempty subsets.

The two sets Even and Odd partition the set of integers. With the usual notation, 
the sets

form a partition of the symmetric group S3.
• An equivalence relation on a set S is a relation that holds between certain pairs of elements.

• transitive: If a ~  b and b c , then a c.
• symmetric: If a ~  b , then b ~  a.
• reflexive: For all a, a a.

Congruence of triangles is an example of an equivalence relation on the set of triangles 
in the plane. If A , B, and C are triangles, and if A  is congruent to B  and B is congruent to 
C, then A is congruent to C, etc.

Conjugacy is an equivalence relation on a group. Two group elements are conjugate, 
a""b, if b =  gag - 1 for some group element g. We check transitivity: Suppose that a""b  
and b ~  c. This means that b =  g iag ^1 and c =  gibg ^ 1 for some group elements gi and g2. 
Then c =  g2(g iag11 ) g ^  =  (g 2 g i)a (g 2 g i)~ \ so a  c.

The concepts of a partition of S and an equivalence relation on S are logically 
equivalent, though in practice one may be presented with just one of the two.

Proposition 2.7.4 An equivalence relation on a set S determines a partition of S, and

Proof Given a partition of S, the corresponding equivalence relation is defined by the rule 
that a ~  b if a and b lie in the same subset of the partition. The axioms for an equivalence 
relation are obviously satisfied. Conversely, given an equivalence relation, one defines a 
partition this way: The subset that contains a is the set of all elements b such that a ~  b. This 
subset is called the equivalence class of a. We’ll denote it by Ca here:

(2.7.2)

conversely.

(2.7.5) Ca = {b e S | a""b}.

The next lemma completes the proof of the proposition. □
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Lemma 2.7.6 Given an equivalence relation on a set S, the subsets of S that are equivalence 
classes partition S.

Proof This is an important point, so we will check it carefully. We must remember that the 
notation Ca stands for a subset defined in a certain way. The partition consists of the subsets, 
and several notations may describe the same subset.

The reflexive axiom tells us that a  is in its equivalence class. Therefore the class C a is 
nonempty, and since a  can be any element, the union of the equivalence classes is the whole 
set S. The remaining property of a partition that must be verified is that equivalence classes 
are disjoint. To show this, we show:

(2.7.7) If Ca and Cb have an element in common, then C a =  Cb.

Since we can interchange the roles of a  and b, it will suffice to show that if Ca and Cb have 
an element, say d, in common, then Cb C Ca, i.e., any element x  of Cb is also in Ca. If x  is 
in Cb, then b ~  x. Since d  is in both sets, a  ~  d  and b ~  d, and the symmetry property tells 
us that d  ~  b. So we have a d, d  ~  b, and b ~  x. Two applications of transitivity show that 
a  ~  x, and therefore that x  is in Ca. □

For example, the relation on a group defined by a  ~  b if a  and b are elements of the 
same order is an equivalen ce relation. The corresponding partition is exhibited in (2.7.2) for 
the symmetric group S3. _

If a partition of a set S is given, we may construct a new set S whose elements are 
the subsets. We imagine putting the subsets into separate piles, and we regard the piles as 
the elements of our new set S. It seems advisable to have a notation to distinguish a subset 
from the element of the set S (the pile) that it represents. If U is a subset, we will denote by 
[U] the corresponding element of S. Thus if S is the set of integers and if Even and Odd 
denote the subsets of even and odd integers, respectively, then S contains the two elements 
[Even] and [Odd].

We will use this notation more generally. When we want to re gard a subset U of S as 
an element of a set of subsets of S, we denote it by [U].

When an equivalence relation on S is given, the equivalence classes form a partition, 
and we obtain a new set S whose elements are the equivalence classes [Ca] We can think of 
the elements of this new set in another way, as the set obtained by changing what we mean 
by equality among elements. If a  and b are in S, we interpret a  ~  b to mean that a  and b 
become equal in S, because Ca =  Cb. With this way of looking at it, the difference between 
the two sets S and S is that in S more elements have been declared “equal,” i.e., equivalent. 
It seems to me that we often treat congruent triangles this way in school.

For any equivalence relation, there is a natural surjective map

(2.7.8) n : S - + S

that maps an element a of S to its equivalence class: n (a )  =  [Ca]. When we want to regard 
S as the set obtained from S by changing the notion of equality, it will be convenient to 
denote the element [Ca] of S by the symbol a. Then the map n  becomes

n (a ) =  a
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We can work in S with the symbols used for elements of S, but with bars over them to 
remind us of the new rule:

(2.7.9) If a and b are in S, then Ii =  b means a b.

A disadvantage of this bar notation is that many symbols represent the same element 
of S. Sometimes this disadvantage can be overcome by choosing a particular element, a 
representative element, in each equivalence class. For example, the even and the odd integers 
are often represented by 0 and 1:

(2.7.10) {[Even], [Odd]} =  {0, I}.

Though the pile picture may be easier to grasp at first, the second way of viewing S is often 
better because the bar notation is easier to manipulate algebraically.

The Equivalence Relation Defined by a Map

Any map of sets f :  S -+ T gives us an equivalence relation on its domain S. It is defined by 
the rule a b if f (a )  =  f ib ) .

• The inverse image of an element t of T is the subset of S consisting of all elements s such 
that f (s )  = t. It is denoted symbolically as

(2.7.11) r H t )  =  {s e S  I f ( s )  = t} .

This is symbolic notation. Please remember that unless f  is bijective, r  1 will not be a map. 
The inverse images are also called the fibres of the map f ,  and the fibres that are not empty 
are the e quivalence_classes for the relation defined above.

Here the set S of equivalence classes has another incarnation, as the image of the map. 
The elements of the image correspond bijectively to the nonempty fibres, which are the 
equivalence classes.

(2.7.12) Some Fibres of the Absolute Value Map CX -+ ]RX.

Example 2.7.13 If G is a finite group, we can define a map j : G  -+ N to the set {I, 2, 3, ... } 
of natural numbers, letting f (a )  be the order of the element a  of G. The fibres of this map 
are th e sets of elements with the same order (see (2.7.2), for example). □
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We go back to a group homomorphism ({J: G -+ G '. The equivalence relation on G 
defined by ({J is usually denoted by =, rather than by and is referred to as congruence:

(2.7.14) a  =  b if ({J(a) =  ({J(b).

We have seen that elements a and b of G are congruent, i.e., ({J(a) =  ({J(b) , if and only if b is 
in the coset a K  of the kernel K  (2.5.8).

Proposition 2.7.15 Let K  be the kernel of a homomorphism ({J: G -+ G '. The fibre of ({J that 
contains an element a of G is the coset aK  of K. These cosets partition the group G, and 
they correspond to elements of the image of ({J. □

(2.7.16) A Schematic Diagram of a Group Homomorphism.

2.8 COSETS
As before, if H  is a subgroup of G and if a is an element of G, the subset

(2.8.1) a H  =  {ah | h in H}.

is called a left coset. The subgroup H  is a particular left coset because H  =  1H.
The cosets of H  in G are equivalence classes for the congruence relation

(2.8.2) a  =  b if b =  ah for some h in H .

This is very simple, but let’s verify that congruence is an equivalence relation.

Transitivity: Suppose that a = b  and b e c .  This means that b =  ah and c =  bh ' for some 
elements h and h ' of H. Therefore c =  ahh '. Since H  is a subgroup, hh ' is in H, and thus 
a  =  c.
Symmetry: Suppose a  =  b, so that b =  ah. Then a = bh-1 and h-1 is in H , so b =  a. 
Reflexivity: a = a l  and 1 is in H , so a  =  a.

Notice that we have made use of all the defining properties of a subgroup here: closure, 
inverses, and identity.
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Corollary 2.8.3 The left cosets of a subgroup H  of a group G  partition the group.

Proof. The left cosets are the equivalence classes for the congruence relation (2.8.2). □

Keep in mind that the notation a H  defines a certain subset of G . As with any
equivalence relation, several notations may define the same subset. For example, in the 
symmetric group S3, with the usual presentation (2.2.6), the element y generates a cyclic 
subgroup H  =  < y> of order 2. There are three left cosets of H  in G:

(2.8.4) H  =  {I, y} = yH , x H  =  {x, xy} = xy H , x2 H  = {x2, x2y) =  x2yH.

These sets do partition the group.
Recapitulating, let H  be a subgroup of a group G and let a and b be elements of G. 

The following are equivalent:
(2.8.5)

• b =  ah  for some h in H, or, a  1 b i s an element of H,
• b is an element of the left coset a H ,
• the left cosets a H  and bH  are equal.

The number of left cosets of a subgroup is called the index of H  in G. The index is 
denoted by

(2.8.6) [G:H].

Thus the index of the subgroup < y > of S3 is 3. When G is infinite, the index may be infinite 
too.

Lemma 2.8.7 All left cosets aH  of a subgroup H  of a group G have the same order.

Proof Multiplication by a  defines a map H  -+ aH  that sends h ah. This map is bijective 
because its inverse is multiplication by a - 1. □

Since the cosets all have the same order, and since they partition the group, we obtain 
the important Counting Formula

(2.8.8) \G\ =  \H \[G :H ]
(order o f  G) =  (order o f  H) {number o f cosets),

where, as always, \ G  \ denotes the order of the group. The equality has the obvious meaning 
if some terms are infinite. For the subgroup <y> of S3, the formula reads 6 =  2 3.

It follows from the counting formula that the terms on the right side of (2.8.8) divide 
the left side. One of these facts is called Lagrange’s Theorem:

Theorem 2.8.9 Lagrange’s Theorem. Let H  be a subgroup of a finite group G. The order of 
H  divides the order of G. □

Corollary 2.8.10 The order of an element of a finite group divides the order of the group.
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Proof. The order of an element a  of a group G is equal to the order of the cyclic subgroup 
<a) generated by a  (Proposition 2.4.2). □

Corollary 2.8.11 Suppose that a group G has prime order p. Let a  be any element of G 
other than the identity. Then G is the cyclic group <a> generated by a.

Proof. The order of an element a*" 1 is greater than 1 and it divides the order of G, which 
is the prime integer p. So the order of a  is equal to p. This is also the order of the cyclic 
subgroup < a > generated by a. Since G has order p, < a  > =  G. □

This corollary classifies groups of prime order p. They form one isomorphism class, the class 
of the cyclic groups of order p. '

The counting formula can also be applied when a homomorphism cp: G -+ G' is given. 
As we have seen (2.7.15), the left cosets of the kernel kercp are the nonempty fibres of the 
map cp. They are in bijective correspondence with the elements of the image.

(2.8.12) [G:kercp] = |im cp |.

Corollary 2.8.13 Let cp:G -+ G ' be a homomorphism of finite groups. Then
• |G | =  |kercp| • |im cp|,
• |kercp| divides |G |, and
• |im cp| divides both |G | and |G '|

Proof The first formula is obtained by combining (2.8.8) and (2.8.12), and it implies that 
Ikercpl and |im cp| divide |G |. Since the image is a subgroup of G', Lagrange’s theorem tells 
us that its order divides | G ' | too. □

For example, the sign homomorphism (f: Sn ^  {±1} (2.5.2)(b) is surjective, so its 
image has order 2. Its kernel, the alternating group An, has order \n \. Half of the elements 
of Sn are even permutations, and half are odd permutations.

The Counting Formula 2.8.8 has an analogue when a chain of subgroups is given.

Proposition 2.8.14 Multiplicative Property of the Index. Let G H  K  be subgroups of 
a group G. Then [G : K] =  [G: H ][H : K].

Proof We will assume that the two indices on the right are finite, say [G : H] =  m  and 
[H: K] =  n. The reasoning when one or the other is infinite is similar. We list the m  cosets 
of H  in G, choosing representative elements for each coset, say as g iH , . . . ,  gmH. Then 
81 H  U • ■■ U gm H  is a partition of G. Similarly, we choose representative elements for each 
coset of K  in H , obtaining a partition H  =  h iK U  ■ • • U hnK. Since multiplication by gi is 
an invertible operation, g ,H  =  g ih \K  U- • ■ U g;hnK will be a partition of the coset giH . 
Putting these partitions together, G is partitioned into the m n  cosets gjhj K. □

Right Cosets

Let us go back to the definition of cosets. We made the decision to work with left cosets a R . 
One can also define right cosets of a subgroup H  and repeat the above discussion for them.
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The right cosets of a subgroup H  of a group G  are the sets

(2.8.15) Ha =  {ha  \ h e H }.

They are equivalence classes for the relation (right congruence)

a  =  b if b =  ha, for some h in H.

Right cosets also partition the group G, but they aren’t always the saine as left cosets. For 
instance, the right cosets of the subgroup < y > of S3 are

(2.8.16) H  = {l, y} =  H y, Hx = {x, x2y} = H x2y , Hx2 = {x2, xy} =  H xy .

This isn’t the same as the partition (2.8.4) into left cosets. However, if a subgroup is normal, 
its right and left cosets are equal.

Proposition 2.8.17 Let H  be a subgroup of a group G. The following conditions are 
equivalent:

(i) H  is a normal subgroup: For all h in H  and all g in G, ghg- 1 is in H.
(ii) For all g in G, gH g- 1 =  H.
(iii) For all g in G, the left coset gH is equal to the right coset Hg.
(iv) Every left coset of H  in G is a right coset.

Proof The notation gH g-1 stands for the set of all elements ghg-1, with h in H.
Suppose that H  is normal. So (i) holds, and it implies that gH g-1 C H  for all g in G. 

Substituting g- 1 for g shows that g-1 Hg C H  as well. We multiply this inclusion on the left
by g and on the right by g- 1 to conclude that H  C g H g -1. Therefore gH g- 1 =  H. This
shows that (i) implies (ii). It is clear that (ii) implies (i). Next, if g Hg- 1 =  H, we multiply 
this equation on the right by g to conclude that g H  =  H g . This shows th at (ii) implies (iii). 
One sees similarly that (ii) implies (ii). Since (iii) implies (iv) is obvious, it remains only to 
check that (iv) implies (iii).

We ask: Under what circumstances can a left coset be equal to a right coset? We recall 
that the right cosets partition the group G, and we note that the left coset g H  and the right 
coset H g  have an element in common, namely g =  g . 1 =  1 . g. So if the left coset gH  is 
equal to any ri ght coset, that coset must be Hg. □

Proposition 2.8.18
(a) If H  is a subgroup of a group G and g is an element of G, the set gH g- 1 is also a 

subgroup.
(b) If a group G has just one subgroup H  of order r, then that subgroup is normal.

Proof (a) Conjugation by g is an automorphism of G (see (2.6.4)), and gH g- 1 is the image 
of H. (b) See (2.8.17): gH g- 1 is a subgroup of order r. □

Note: If H  is a subgroup of a finite group G, the counting formulas using right cosets or left 
cosets are the same, so the number of left cosets is equal to the number of right cosets. This 
is also true when G is infinite, though the proof can’t be made by counting (see Exercise
M.8). □
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2.9 MODULAR ARITHMETIC
This section contains a brief discussion of one of the most important concepts in number 
theory, congruence of integers. If you have not run across this concept before, you will want 
to read more about it. See, for instance, [Stark]. We work with a fixed positive integer n 
throughout the section.

• Two integers a  and b are said to be congruent modulo n

(2.9.1) a  == b modulo n,

if n divides b — a, or if b =  a  +  n k  for some integer k. For instance, 2 == 17 modulo 5.
It is easy to check that congruence is an equivalence relation, so we may consider 

the equivalence classes, called congruence classes, that it defines. We use bar notation, and 
denote the congruence class of an integer a modulo n by the symbol a. This congruence 
class is the set of integers

(2.9.2) a =  { . . .  , a  — n, a, a  +  n , a + 2n, . . . }.

If a  and b are integers, the equation a  =  b means that a  == b modulo n, or that n divides 
b — a. The congruence class 0 is the subgroup

0 =  Zn =  { . . . ,  -n , 0, n, 2n, . . .  } =  {kn I k e  Z}

of the additive group Z+. The other congruence classes are the cosets of this subgroup. 
Please note that Zn is not a right coset -  it is a subgroup of Z+. The notation for a coset of 
a subgroup H  analogous to aH , but using additive notation for the law of composition, is 
a  +  H  =  {a  +  h | h e H}. To simplify notation, we denote the subgroup Zn by H. Then 
the cosets of H , the congruence classes, are the sets

(2.9.3) a  +  H  = { a + kn I k e  Z}.

The n integers 0 ,1 , . . .  , n — 1 are representative elements for the n congruence classes.

Proposition 2.9.4 There are n congruence classes modulo n, namely 0, 1, . . .  , n — 1. The 
index [Z: Zn] of the subgroup Zn in Z is n. □

Let a  and b be congruence classes represented by integers a  and b. Their sum is defined 
to be the congruence class of a  +  b, and their product is the class of ab. In other words, by 
definition,

(2.9.5) a + b = a + b and ab — ab.

This definition needs some justification, because the same congruence class can be repre
sented by many different integers. Any integer a ' congruent to a modulo n represents the 
same class as a does. So it had better be true that if a' == a  and b' == b, then a ' +  b' == a  +  b 
and a 'b ' == ab. Fortunately, this is so.

Lemma 2.9.6 If d  == a and b' == b modulo n, then d  +  b’ == a + b  and a'b'==ab 
modulo n.
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Proof. Assume that a' = a and b ' = b, so that a' = a + rn and b ' = b + sn  for some 
integers r  and s. Then a ' +  b' =  a  +  b +  (r +  s)n. This shows that a ' +  b '= a +  b. Similarly, 
a'b' = (a +  rn ) (b + sn) = ab  +  (as +  rb +  rns)n , so a'b' = ab. □

The associative, commutative, and distributive laws hold for addition and multiplication 
of congruence classes because they hold for addition and multiplication of integers. For 
example, the distributive law is verified as follows:

a(b  +  c) =  a(b  +  (b+e) =  a(b  +  c) (definition o f  +  and Xfor congruence classes)

= ab + ac (distributive law in the integers)

= ab + ac = ab + a c  (definition o f  + and Xfor congruence classes).

The verifications of other laws are similar, and we omit them.

The set of congruence classes modulo n may be denoted by any one of the symbols 
Z /Z n , Z /nZ , or Z /(n ) . Addition, subtraction, and multiplication in Z /Zn can be made 
explicit by working with integers and taking remainders after division by n. That is what the 
formulas (2.9.5) mean. They tell us that the map

(2.9.7) Z -+ Z/Zn

thatsends an integer a  to its congruence class a is compatible with addition and multiplication. 
Therefore computations can be made in the integers and then carried over to Z /Z n  at the 
end. However, computations are simpler if the numbers are kept small. This can be done by 
computing the remainder after some part of a computation ha^been made.

Thus ifn  =_29, so that Z /Z n = {0, T, 2, . . .  , 28}, then (35)(17 +  7) can be computed 
as 35 . 24 =  6 . (-:5) =  -30 =  -1.

In the long run, the bars over the numbers become a nuisance. They are often left off. 
When omitting bars, one just has to remember this rule:

(2.9.8) To say a = b in Z /Z n means that a = b modulo n.

Congruences modulo a prime integer have special properties, which we discuss at the 
beginning of the next chapter.

2.10 THE CORRESPONDENCE THEOREM
Let <P: G -+ Q be a group homomorphism, and let H  be a subgroup of G. We may restrict 
to H , obtaining a homomorphism

(2.10.1) CPIn:tf --+ g.

This means that we take the same map but restrict its domain: So by definition, if h is in
H, then [<p| H](h) =  <p(h). (We’ve added brackets around the symbol <P|# for clarity.) The 
restriction is a homomorphism because is one, and the kernel of <P|H is the intersection of 
the kernel of with H:

(2.10.2) ker (<p| h ) =  (ker<p) n H .
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This is clear from the definition of the kernel. The image of <p| h  is the same as the image 
<p(H) of H  under the map <p.

The Counting Formula may help to describe the restriction. According to Corollary 
(2.8.13), the order of the image divides both |H | and |9|. If |H | and |9| have no common 
factor, <p(H) =  {l}, so H  is contained in the kernel.

Example 2.10.3 The image of the sign homomorphism (f: Sn ^  { ± I} has order 2. If a 
subgroup H  of the symmetric group Sn has odd order, it will be contained in the kernel 
of a, the alternating group An of even permutations. This will be so when H  is the cyclic 
subgroup generated by a permutation q that is an element of odd order in the group. Every 
permutation whose order in the group is odd, such as an n-cycle with n odd, is an even 
permutation. A permutation that has even order in the group may be odd or even. □

Proposition 2.10.4 Let : G -+ 9 be a homomorphism with kernel K  and let H be a 
subgroup of g. Denote the inverse image <p-* ('H) by H. Then H  is a subgroup of G that 
contains K. If H is a normal subgroup of g, then H  is a normal subgroup of G. If is 
surjective and if H  is a normal subgroup of G, then H is a normal subgroup of 9.

For example, let denote the determinant homomorphism GLn(lR) -+ ]RX. The set of 
positive real numbers is a subgroup of JRX; it is normal because Kx is abelian. Its inverse 
image, the set of invertible matrices with positive determinant, is a normal subgroup of 
GL„(K).

Proof. This proof is simple, but we must keep in mind that <p-1 is not a map. By definition, 
<p-! (H) =  H  is the set of elements x of G such that <p(x) is in H. First, if x is in the kernel 
K, then <p(x) =  1. Since 1 is in H, x is in H. Thus H  con tains K. We verify the conditions 
for a subgroup.
Closure: Suppose that x and y are in H . Then <p(x) and (y) are in H. Since H is a subgroup, 
<p(x)<p(y) is in H. Since is a homomorphism, <p(x)<p(y) =  <p(xy). So <p(xy) is in H, and 
xy is in H.
Identity. 1 is in H  because <p(1) =  1 is in H.
Inverses: Let x be an element of H. Then (x) is in 'H, and since 'H is a subgroup, <p(x)-1 
is also in H. Since is a homomorphism, <p(x)-1 =  <p(x-1), so <p(x-1) is in H, and x - 1 is 
in H.

Suppose that H is a normal subgroup. Let x and g be elements of H  and G, respec
tively. Then <p(gxg-J) =  <p(g)<p(x)<p(g)-1 is a conjugate of <p(x) , and <p(x) is in 'H. Because 
'H is normal, <p(gxg-1) is in H, and therefore gxg-1 is in H.

Suppose that is surjective, and that H  is a normal subgroup of G. Let a  be in
H, and let b be in Q. There are elements x of H  and y of G such that <p(x) =  a 
and <p(y) =  b. Since H  is normal, yxy- 1 is in H, and therefore <p(yxy-J) =  bab- 1 is 
m H. □

Theorem 2.10.5 Correspondence Theorem. Let : G -+ 9 be a surjective group homo
morphism with kernel K. There is a bijective correspondence between subgroups of 9 and 
subgroups of G that contain K:

{subgroups of G that contain K} <— > {subgroups of g}.
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This corresponde nce is defined as follows:

a subgroup H  of G that contains K  its image (fJ(ll) in g,

a subgroup o f9 its inverse image (fJ- 1 (1i) in G.

If H  and are corresponding subgroups, then H  is normal in G if and only if is normal 
in g.
If H  and are corresponding subgroups, then |H | =  |1 i||K |.

Example 2.10.6 We go back to the homomorphism (fJ: S4 -)0 S3 that was defined in Example
2.5.13, and its kernel K (2.5.15).

The group S3 has six subgroups, four of them proper. With the usual presentation, 
there is one proper subgroup o f order 3, the cyclic group <x>, and there are three subgroups 
of order 2, including < y). The Correspondence Theorem tells us that there are four proper 
subgroups of S4 that contain K. Since |K | =  4, there is one subgroup of order 12 and there 
are three of order 8.

We know a subgroup of order 12, namely the alternating group A 4. That is the subgroup 
that corresponds to the cyclic group <x> of S3.

The subgroups of ord er 8 can be explain ed in terms of symmetries of a square. With 
vertices of the square labeled as in the figure below, a counterclockwise rotation through 
the angle 1 C/ 2  corresponds to the 4-cycle (12 34). Reflection about the diagonal through the 
vertex 1 corresponds to th e transposition (24). These two permutations generate a subgroup 
of order 8. The other subgroups of order 8 can be obtained by labeling the vertices in 
other ways.

There are also some subgroups of S4 that do not contain K . The Correspondence 
Theorem has nothing to say about those subgroups. □

P roofo f the Correspondence Theorem. Let H  be a subgroup of G  that contains K, and let 
be a subgroup of g. We must check the following points:

• (fJ(ll) is a subgroup of g.
• (fJ-!(1i) is a subgroup of G, and it contains K.
• is a normal subgroup of 9 if and only if (fJ-1 (1i) is a normal subgroup of G.
• (bijectivity o f  the correspondence) (fJ((fJ_1(1i) ) =  and (fJ-*((fJ(ll)) =  H.
• |(fJ-l (1i)| =  |1i||K |.

Since (fJ(ll) is the image of the homomorphism (fJ|#, it is a subgroup of g. The second and 
third bullets form Proposition 2.10.4.

Concerning the fourth bullet, the equality (fJ((fJ_1(1i)) =  is true for any surjective 
map of sets (fJ: S -)0 S' and any subset of S'. Also, H  C (fJ_1((fJ(ll)) is true for any map
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rp of sets and any subset H  of S. We omit the verification of these facts. Then the only 
thing remaining to be verified is that H  :: rp_ l(rp(Il)). Let x be an element of rp-!(rp(.H)). 
We must show that x  is in H . By definition of the inverse image, rp(x) is in rp(ll), say 
rp(x) =  rp(a), with a in H . Then a~lx  is in the kernel K  (2.5.8), and since H  contains K, 
a~1x  is in H. Since both a and a -1x  are in H, x  is in H  too.

We leave the proof of the last bullet as an exercise. □

2.11 PRODUCT GROUPS

Let G , G' be two groups. The product set G X G ', the set of pairs of elements (a, a') with 
a in G and a ' in G ', can be made into a group by component-wise multiplication -  that is, 
multiplication of pairs is defined by the rule

(2.11.1) (a , d )  • (b, b ) =  (ab, d b ') .

The pair (1, 1) is the identity, and the inverse of (a, a '  is (a -1, a d ). The associative law in 
G X G ' follows from the fact that it holds in G and in G'.

The group obtained in this way is called the product of G  and G ' and is denoted by 
G X G '  It is related to the two factors G and G' in a simple way that we can sum up in terms 
of some homomorphisms

G .  G
P

GxG' :

(2.11.2) G  V P  G' .

They are defined by V(x) =  (x, 1), i'(x ') =  (1, x '), p (x , x ') =  x, p '(x , x ') =  X. The 
injective homomorphisms i and V may be used to identify G and G ' with their images, the 
subgroups G  X 1 and 1 x  G ' of G x  G'. The maps p  and p ' are surjective, the kernel of p  is
1 x  G', and the kernel of p ' is G x  1. These are the projections.

It is obviously desirable to decompose a given group G as a product, that is, to find 
groups H  and H ' such that G  is isomorphic to the product H  X H'. The groups H  and H ' 
^ 1  be simpler, and the relation between H  X H ' and its factors is easily understood. It is 
rare that a group is a product, but it does happen occasionally.

For example, it is rather surprising that a cyclic group of order 6 can be decomposed: 
A cyclic group C6 of order 6 is isomorphic to the product C 2 X C 3 of cyclic groups of orders
2 and 3. To see this, say that C2 =  <y> and C 3 =  <z>, with y2 = 1 and z3 =  1, and let x  
denote the element (y, z) of the product group C2 X C3. The smallest positive integer k such 
that x k = (yk, z*) is the identity (1,1) is k = 6 . So x  has order 6. Since C2 X C3 also has 
order 6, it is equal to the cyclic group <x>. The powers of x, in order, are

(1, 1), (y, z), (1, z2), (y, l) , Q, z), (y, z2). □

There is an analogous statement for a cyclic group of order rs, whenever the two 
integers r  and s have no common factor.

Proposition 2.11.3 Let r  and s be relatively prime integers. A cyclic group of order rs is 
isomorphic to the product of a cyclic group of order r  and a cyclic group of order s. □
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On the other hand, a cyclic group of order 4 is not isomorphic to a product of two cyclic 
groups of order 2. Every element of Cz X Cz has order 1 or 2, whereas a cyclic group of order
4 contains two elements of order 4.

The next proposition describes product groups.

Proposition 2.11.4 Let H  and K  be subgroups of a group G, and let f :  H  X K -+ G be the 
multiplication map, defined by f (h ,k )  =  hk. Its image is the set H K  =  {hk|h E H, k E K].
(a) f  is injective if and only if H  n K  =  {l}.
(b) f  is a homomorphism from the product group H  X K  to G ifand only if elements of K 

commute with elements of H: hk = kh.
(c) If H  is a normal subgroup of G, then H K  is a subgroup of G.
(d) f  is an isomorphism from the product group H  X K to G if and only if H  n  K  =  {1}, 

H K  =  G, and also H  and K  are normal subgroups of G.

It is important to note that the multiplication map may be bijective though it isn’t a group 
homomorphism. This happens, for instance, when G =  S3, and with the usual notation,
H  =  < x ) and K  =  < y).

Proof (a) If H  nK contains an element x:;t 1, then x 1 is in H , and f ( x  1, x) =  1 =  f(1 , 1), 
so f  is not injective. Suppose that H  n K  =  {1}. Let (h i, k\) and (hz, kz) be elements of 
H x  K  such that h ik i =  hzkz. We multiply both sides of this equation on the left by h and 
on the right by k^1, obtaining kik^1 =  hJl hz. The left side is an element of K  and the right 
side is an element of H . Since H  n K  =  {1}, ki k'21 =  h j lh 2 = 1. Then ki =  £2, h 1 = h 2 , 
and (h i, ki) =  (h2, k2).
(b) Let (h i , ki) and (h2, £2) be elements ofthe product group H  x K. The product ofthese 
elements in the product group H x K  is (h ih 2, £1^2), and f(h ih z , kik2) =  h ih 2kik2, while 
f (h i ,  k i ) f (h 2, k2) =  h ik ih 2k2. These elements are equal if and only if h2ki =  k ih 2.
(c) Suppose that H  is a normal subgroup. We note that K  H  is a union of the left cosets 
k H  with k in K, and that H K  is a union of the right cosets Hk. Since H  is normal, 
kH  =  Hk, and therefore H K  =  KH. Closure of H K  under multiplication follows, because 
H K H K  =  H H K  K =  HK. Also, (hk)-1 =  k_ih — is in K H  =  HK . This proves closure of 
H K  under inverses.

(d) Suppose that H  and K  satisfy the conditions given. Then f  is both injective and surjective,
so it is bijective. According to (b), it is an isomorphism if and only if hk =  kh for all h in H  
and k in K. Consider the commutator (hkh_i)k_1 =  h(kh~ik_1). Since K  is normal, the left 
side is in K, and since H  is normal, the right side is in H. Since H  n K  =  {l}, hkh_1k_1 =  1, 
and hk =  kh. Conversely, if f  is an isomorphism, one may verify the conditions listed in the 
isomorphic group H  X K instead of in G. □

We use this proposition to classify groups of order 4:

Proposition 2.11.5 There are two isomorphism classes of groups of order 4, the class of the 
cyclic group C4 of order 4 and the class of the Klein Four Group, which is isomorphic to the 
product C 2 X C2 of two groups of order 2.
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Proof Let G be a group of order 4. The order of any element x of G divides 4, so there are 
two cases to consi der:
Case 1: G  contains an element of order 4. Then G is a cyclic group of order 4.
Case 2: Every element of G except the identity has order 2.

In this case, x =  [ I for every element x  of G. Let x  and y be two elements of G. Then 
xy has order 2, so xy[ _1 y-1 =  (xy)(xy) =  1. This shows that x  and y commute (2.6.5), and 
since these are arbitrary elements, G is abelian. So every subgroup is normal. We choose 
distinct elements x  and y in G, and we let H  and K be the cyclic groups of order 2 that they 
generate. Proposition 2.11.4(d) shows that G is isomorphic to the pro duct group H  X K. □

2.12 QUOTIENT GROUPS

In this section we show that a law of composition can be defined on the set of cosets of a 
normal subgroup N of any group G. This law makes the set of cosets of a normal subgroup 
into a group, called a quotient group.

Addition of congruence classes of integers modulo n is an example of the quotient 
construction. Another familiar example is addition of angles. Every real number represents 
an angle, and two real numbers represent the same angle if they differ by an integer multiple 
of 21T. The group N of integer multiples of 21T is a subgroup of the additive group lR.+ of real 
numbers, and angles correspond naturally to (additive) cosets () +  N  of N  in G. The group 
of angles is the quotient group whose elements are the cosets.

The set of cosets of a normal subgroup N of a group G is often denoted by G /  N.

(2.12.1) G /  N  is the set of cosets of N  in G.

When we regard a coset C as an element of the set of cosets, the bracket notation [C] 
may be used. If C =  aN, we may also use the bar notation to denote the element [C] by a, 
and then we would denote the set of cosets by G:

G =  G /N .

Theorem 2.12.2 Let N  be a normal subgroup of a_group G, and let G denote the set of 
cosets of N  in G. There is a law of composition on G that makes this set into a group, such 
that the map 1T: G ^  G defined by 1T(a) =  a is a surjective homomorphism whose kernel 
is N.

• The map is often referred to as the canonical map from G to G. The word “canonical” 
indicates that this is the only map that we might reasonably be talking about.

The next corollary is very simple, but it is important enough to single out:

Corollary 2.12.3 Let N  be a normal subgroup of a group G, and let G denote the set 
of cosets of N  in G. Let : G G be the canonical homomorphism. Let a i, ... , a* be 
elements of G such that the product ai ■ ■ - ak is in N. Then ai ■ ■ - ak =  1.

Proof Let p  =  a i • . ■ a*. Then p  is in N, so 1T (p ) =  p  =  1. Since is a homomorphism, 
a\- -ak =  p. □
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Proofo f Theorem 2.12.2. There are several things to be done. We must

• define a law of composition on G,
• prove that the law makes G into a group,
• prove that JT is a surjective homomorphism, and
• prove that the kernel of JT is N.

We use the following notation: If A and B are subsets of a group G, then A B  denotes the 
set of products ab:

(2.12.4) A B = {x e G | x  = ab for some a e A  and b e B}.

We will call this a product set, though in some other contexts the phrase “product set” refers 
to the set A x B  of pairs of elements.

Lemma 2.12.5 Let N  be a normal subgroup of a group G, and let a N  and b N  be cosets of 
N. The product set (aN )(bN )  is also a coset. It is equal to the coset abN.

We note that the set (aN )(bN )  consists of all elements of G that can be written in the 
form anbn ', with n and n' in N.

Proof. Since N  is a subgroup, N N  = N. Since N  is normal, left and right cosets are equal: 
N b = bN  (2.8.17). The lemma is proved by the following formal manipulation:

(aN )(bN ) = a (N b )N  = a (b N )N  = a b N N  = abN. □

This lemma allows us to define multiplication on the set G =  G /  N. Using the bracket 
notation (2.7.8), the definition is this: If C\ and C2 are cosets, then [Ci][C2] =  [C1C 2], 
Where Ci C2 is the product set. The lemma shows that this product set is another coset. To 
compute the product [Ci][C2], take any elements a in Ci and b in C2. Then Ci =  aN , 
C2  =  bN , and Ci C2 is the coset ab N  that contains ab. So we have the very natural formula

(2.12.6) [aN][bN] =  [abN] or lib = ab.

Then by definition of the map JT in (2.12.2),

(2.12.7) JT(a)JT(b) = lib = ab = JT(ab).

The fact that JT is a homomorphism will follow from (2.12.7), once we show that G is a group. 
Since the canonical map JT is surjective (2.7.8), the next lemma proves this.

Lemma 2.12.8 Let G be a group, and let Y be a set with a law of composition, both 
laws written with multiplicative notation. Let cp : G -> Y be a surjective map with the 
homomorphism property, that cp(ab) = cp(a)cp(b) for all a and b in G. Then Y is a group 
and cp is a homomorphism.
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Proof The group axioms that are true in G are carried over to Y by the surjective map q;. 
Here is the proof of the associative law: Let yi, y 2, Y3 be elements of Y. Since q; is surjective, 
Yi =  q;(xi) for some Xi in G. Then

(yiY2) Y3 =  (q;(Xi)q;(*2))q;(X3)=q;(X!X2)q;(X3)=q;((XiX2)X3)
=  q;(Xi (X2X3» ) =  q;(Xi)q;(X2X3)=q;(Xi)(q;(X2)q;(X3)) =  yi (Y2Y3).

The equality marked with an asterisk is the associative law in G. The other equalities follow 
from the homomorphism property of q;. The verifications of the other group axioms are 
similar. □

The only thing remaining to be verified is that the kernel of the homomorphism n  is 
the subgroup N. Well, n (a )  =  n ( l)  if and only if =  1, or [aN] =  [IN], and this is true if 
and only if a  is an element of N. □

(2.12.9) A Schematic Diagram of Coset Multiplication.

Note: Our assumption that N  be a normal subgroup of G is crucial to Lemma 2.12.5. If H  
is not normal, there will be left cosets Ci and C 2 of H  in G such that the product set C iC 2 
does not lie in a single left coset. Going back once more to the subgroup H  =  <y> of S3, 
the product set ( lH )(x H ) contains four elements: {I, y}{x, xy} = {x, xy, x2y, x2}. It is not 
a coset. The subgroup H  is not normal. □

The next theorem relates the quotient group construction to a general group homo
morphism, and it provides a fundamental method of identifying quotient groups.

Theorem 2.12.10 First Isomorphism Theorem. Let_q; : G G ' be a surjective group 
homomorphism with kernel N. The quotient group G =  G /  N  is isomorphic to the image 
G'. To be precise, let n :  G -> G  be the canonical map. There is a unique isomorphism 
( j : G -*■ G ' such that q; =  (j 0 n.

G
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Proof. The elements of G are the cosets of N, and they are also the fibres of the map cp
(2.7.15). The m ap qi referred to in the theorem is the one that sends a nonempty fibre to 
its image: qi(x) =  cp(x). For any surjective map of sets cp: G -+ G', one can form the set 
G  of fibres, and then one obtains a diagram as above, in which (j is the bijective map that 
sends a fibre to its image. When cp is a group homomorphism, qi is an isomorphism because 
qi(ab) = cp(ab) = cp(a)cp(b) = qi(a)qi(b). □

Corollary 2.12.11 Let cp: G -+ G' be a group homomorphism with kernel N  and image H '. 
The quotient group G = G /N  is isomorphic to the image H . □

Two quick examples: The image of the absolute value map Cx -+ Kx is the group 
of positive real numbers, and its kernel is the unit circle V. The theorem asserts that the 
quotient group Cx/ U  is isomorphic to the multiplicative group of positive real numbers. 
The determinant is a surjective homomorphism G L n (R) -+ Mx, whose kernel is the special 
linear group SLn (X). So the quotient GLn(M )/ SLn(K) is isomorphic to Mx.

There are also theorems called the Second and the Third Isomorphism Theorems, 
though they are less important.

jfelif olfo feijt liter derfcljtebene :ntten lion £clipen, 
llIelclje pclj nlcijt llIoijl ijel'3eOlen (open; 

un6 6n0et entfIeften 6fe 6etfrljte6ene 3ljel(e 6et ôHjemolfc, 
tieten etne jegflclje mil einer 6tfOntiem art lion t̂dpen lielcljd'tfljel Ip.

—Leonhard Euler

EXERCISES

Section 1 Laws of Composition
1.1. Let S be a set. Prove that the law ofcomposition defined by ab = a for all a and b in Sis 

associative. For which sets does this law have an identity?
1.2. Prove the properties of inverses that are listed near the end of the section.
1.3. Let N denote the set {1, 2, 3, ... , } of natural numbers, and let s:N -+ N be the shift map, 

defined by s(n) = n + 1. Prove that s has no right inverse, but that it has infinitely many 
left inverses.

Section 2 Groups and Subgroups

2.1. Make a multiplication table for the symmetric group S3.
2.2. Let S be a se t with an associative law of composition and with an identity element. Prove 

that the subset consisting of the invertible elements in S is a group.
2.3. Let x, y, z, and w be elements of a group G.

(a) Solve for y, given that xyz  1 w =  1.
(b) Suppose that xyz = 1. Does it follow that yzx =  1? Does it follow that yxz =  1?
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(a) G =  GL„(C) and H  = GL„(R).
(b) G = KX and H  =  {I, -1}.
(c) G =  Z+ and H  is the set of positive integers.
(d) G =  jRx and H  is the set of positive reals.

(e) G =  G L2 (JR) and H  is the set of matrices

2.4. In which of the following cases is H  a subgroup of G ?

], wiwith a*"O.

2.5. In the definition of a subgroup, the identity element in H  is required to be the identity 
of G. One might require only that H have an identity element, not that it need be the 
same as the identity in G. Show that if H  has an identity at all, then it is the identity in 
G. Show that the analogous statement is true for inverses.

2.6. Let G be a group. Define an opposite group G° with law of composition a * b as follows: 
The underlying set is the same as G, but the law of composition is a * b =  ba. Prove that 
G° is a group.

Section 3 Subgroups of the Additive Group of Integers

3.1. Let a =  123 and b =  321. Compute d =  gcd(a, b), and express d as an integer 
combination ra  +  bs.

3.2. Prove that if a and b are positive integers whose sum is a prime p, their greatest common 
divisor is 1.

3.3. (a) Define the greatest common divisor of a set fai, . . . ,  a„} of n integers. Prove that it
exists, and that it is an integer combination of a i, . . . , an.

(b) Prove that if the greatest common divisor of {aj, . . . ,  a„] is d, then the greatest 
common divisor of (add , . . . ,  an/d) is 1. .

Section 4 Cyclic Groups

4.1. Let a and b be elements of a group G. Assume that a has order 7 and that a 3b = ba3. 
Prove that a b =  ba.

4.2. An nth root of unity is a complex number z such that zn =  1.

(a) Prove that the nth roots of unity form a cyclic subgroup of Cx of order n.
(b) Determine the product of all the nth roots of unity.

4.3. Let a and b be elements of a group G. Prove that ab and ba have the same order.
4.4. Describe all groups G that contain no proper subgroup.
4.5. Prove that every subgroup of a cyclic group is cyclic. Do this by working with exponents, 

and use the description of the subgroups of Z+.
4.6. (a) Let G be a cyclic group of order 6. How many of its elements generate G? Answer

the same question for cyclic groups of orders 5 and 8.
(b) Describe the number of elements that generate a cyclic group of arbitrary order n.

4.7. Let x and y be elements ofa group G. Assume that each of the elements x, y , and xy has 
order 2. Prove that the set H  = {I, x, y, xy} is a subgroup of G, and that it has order 4.
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4.8. (a) Prove that the elementary matrices of the first and third types (1.2.4) generate
G L nClR).

(b) Prove that the elementary matrices of the first type generate SLn (K). Do the 2 X 2 
case first.

4.9. How many elements of order 2 does t he s ymmetric group S4 contain?
4.10. Show by example that t he product of elements of finite order i n a group need not have 

finite order. What if t he group i s abelian?
4.11. (a) Adapt the method of row reduction to prove that the transpositions generate the

symmetric group Sn.
(b) Prove t hat, for n 2:  3, the three-cycles generate the alternating group A n.

Section 5 Homomorphisms

5.1. Let q;:G -+ G' be a surjective homomorphism. Prove t hat i f G is cyclic, t hen G' is cyclic, 
and if G is abelian, t hen G' is abelian.

5.2. Prove that the intersection K n H  of subgroups of a group G is a subgroup of H, and 
that i f K is a normal s ubgroup of G, then K n H  is a normal s ubgroup of H.

a b
0 b , and5.3. Let U denote t he group of invertible upper t riangular 2 X 2 matrices A

let q; : U -+ Kx be the map that sends A  -~-+ a2. Prove that q; is a homomorphism, and 
determine i ts kernel and image.

5.4. Let f  :K+ -+ C* be t he map f(x) =  eix. Prove t hat /  is a homomorphism, and determine 
its kernel and i mage.

r a  b5.5. Prove that the n X n matrices that have the block form M = ^ ^

A  in G Lr(lR) and D in G L „-r(lR), form a subgroup H  of G L n (K), and that the 
map H -+ G Lr(lR) that s ends M A  is a homomorphism. What i s i ts kernel?

5.6. Determine t he c enter of G Ln (lR).
Hint: You are asked to determine the invertible matrices A  that commute with every 
invertible matrix B. Do not test with a general matrix B. Test with elementary matrices.

with

Section 6  Isomorphisms
1 x 

1 . Is the map lR+ -+ G' that6.1. Let G' be the group of real matrices of the form 
sends x to t his matrix an isomorphism?

6.2. Describe all homomorphisms q; : Z+ -+ Z+. Determine which are i njective, which are 
surjective, and which a re i somorphisms.

6.3. Show t hat t he functions f  =  1/x, g =  (x — 1) /x  generate a group of functions, t he law of 
composition being c omposition of functions, t hat i s isomorphic to t he s ymmetric group S3.

6.4. Prove that in a group, the products ab and ba are conjugate elements.

6.5. Decide whether or not t he t wo matrices A  = 

elements of t he general l inear group G L 2OR).

'3  ' and B = ' 1 r
_ 2^ _2 4 are conjugate
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6.6. Are the matrices ■ 1 1 ■ '1 '
_ 1 _5

1 1 .
conjugate elements of the group G L 2 (lR)? Are they

conjugate elements of SL2(lR)?
6.7. Let H  be a subgroup of G, and let g be a fixed element of G. The conjugate subgroup 

gHg_1 is defined to be the set of all conjugates ghg-1, with h in H. Prove that gHg-1 is 
a subgroup of G.

6.8. Prove that the map A (At)— is an automorphism of G (lR).
6.9. Prove that a group G and its opposite group G° (Exercise 2.6) are isomorphic.

6.10. Find all automorphisms of
(a) a cyclic group of order 10, (b) the symmetric group S3.

6.11. Let a be an element of a group G. Prove that if the set {l, a} is a normal subgroup of G, 
then a is in the center of G.

Section 7 Equivalence Relations and Partitions

7.1. Let G be a group. Prove that the relation a '" b  if b =  gag-1 for some g in G is an 
equivalence relation on G.

7.2. An equivalence relation on Sis determined by the subset R ofthe set S X S consisting of 
those pairs (a, b) such that a  b. Write the axioms for an equivalence relation in terms 
of the subset R.

7.3. With the notation of Exercise 7.2, is the intersection R n R' of two equivalence relations 
R and R' an equivalence relation? Is the union?

7.4. A relation R on the set of real numbers can be thought of as a subset of the (x, y)-plane. 
With the notation of Exercise 7.2, explain the geometric meaning of the reflexive and 
symmetric properties.

7.5. With the notation of Exercise 7.2, each of the following subsets R  of the (x, y)-plane 
defines a relation on the set K of real numbers. Determine which of the axioms (2.7.3) 
are satisfied: (a) the set {(s, s) | s  e  K}, (b) the empty set, (c) the locus {xy +  1 =  OJ,
(d) the locus {x2y — xy 2 — x + y =  OJ.

7.6. How many different equivalence relations can be defined on a set of five elements?

Section 8 Cosets
8.1. Let H  be the cyclic subgroup of the alternating group A4 generated by the permutation 

(123). Exhibit the left and the right cosets of H  explicitly.
8.2. In the additive group Mm of vectors, let W be the set of solutions of a system of homo

geneous linear equations A X  =  O. Show that the set of solutions of an inhomogeneous 
system AX = B is either empty, or else it is an (additive) coset of W.

8.3. Does every group whose order is a power of a prime p  contain an element of order p ?
8.4. Does a group of order 35 contain an element of order 5? of order 7?
8.5. A finite group contains an element x of order 10 and also an element y of order 6. What 

can be said about the order of G?
8.6. Let cp: G -> G ' be a group homomorphism. Suppose that |G| =  18, |G '| =  15, and that 

cp is not the trivial homomorphism. What is the order of the kernel?



8.7. A group G of order 22 contains elements x and y, where x=j:. 1 and y  is not a power of x. 
Prove that the subgroup generated by these elements is the whole group G.

8.8. Let G be a group of order 25. Prove that G has at least one subgroup of order 5, and that 
if it contains only one subgroup of order 5, then it is a cyclic group.

8.9. Let G be a finite group. Under what circumstances is the map ({l: G -> G defined by 
({l(x) =  x2 an automorphism of G?

8.10. Prove that every subgroup ofindex 2 is a normal subgroup, and show by example that a 
subgroup of index 3 need not be normal.

8.11. Let G and H  be the following subgroups of G L 2 (1R):
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G = x  0
0 1

with x  and y  real and x >  O. An element of G can be represented by a point in the right 
half plane. Make sketches showing the partitions of the half plane into left cosets and into 
right cosets of H.

8.U. Let S be a subset of a group G that contains the identity element 1, and such that the left 
cosets aS, with a in G, partition G. Prove that S is a subgroup of G.

8.13. Let S be a set with a law of composition: A partition TIi U TI2 U ••• of S is compatible 
with the law of composition if for all i and j, the product set

is contained in a single subset TIk of the partition.

(a) The set Z of integers can be partitioned into the three sets [Pos] , [Neg], [{OJ]. Discuss 
the extent to which the laws of composition + and X are compatible with this 
partition.

(b) Describe all partitions of the integers that are compatible with the operation +.

Section 9 Modular Arithmetic
9.1. For which integers n does 2 have a multiplicative inverse in Z/Zn?
9.2. What are the possible values of a2 modulo 4? modulo 8?
9.3. Prove that every integer a is congruent to the sum of its decimal digits modulo 9.
9.4. Solve the congruence 2x == 5 modulo 9 and modulo 6.
9.5. Determine the integers n for which the pair of congruences 2x — y"" 1 and 4x +  

3y == 2 modulo n has a solution.
9.6. Prove the Chinese Remainder Theorem: Let a, b, u, v be integers, and assume that the 

greatest common divisor of a and b is 1. Then there is an integer x  such that x == u  modulo
a and X == v modulo b.
Hint: Do the case u  = 0 and v =  1 first.

9.7. Determine the order of each of the matrices A 
matrix entries are interpreted modulo 3.

and B when the
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Section 10 The Correspondence Theorem

10.1. Describe how to tell from the cycle decomposition whether a permutation is odd or even.
10.2. Let H  and K be subgroups of a group G.

(a) Prove that the intersection xH  n y K  of two cosets of H  and K is either empty or 
else is a coset of the subgroup H  0 K.

(b) Prove that if H  and K have finite index in G then H n K also has finite index in G.

10.3. Let G and G ' be cyclic groups of orders 12 and 6, generated by elements x and y, 
respectively, and let cp : G  -+ G ' be the map defined by cp(X ) =  y l. Exhibit the 
correspondence referred to in the Correspondence Theorem explicitly.

10.4. With the notation of the Correspondence Theorem, let H  and H ' be corresponding 
subgroups. Prove that [G : H] =  [G ': H'].

10.5. With reference to the homomorphism S4 —> S3 described in Example 2.5.13, determine 
the six subgroups of S4 that contain K.

Section 11 Product Groups

11.1. Let x be an element of order r  of a group G, and let y be an element of G ' of order s. 
What is the order of (x, y) in the product group G x G'?

11.2. What does Proposition 2.11.4 tell us when, with the usual notation for the symmetric 
group S3, K and H  are the subgroups <y> and <x>?

11.3. Prove that the product of two infinite cyclic groups is not infinite cyclic.
11.4. In each of the following cases, determine whether or not G is isomorphic to the product 

group H x K .

(a) G = Kx, H  =  {± I}, K = {positive real numbers}.
(b) G = {invertible upper triangular 2 X 2 matrices), H  =  {invertible diagonal matrices}, 

K =  {upper triangular matrices with diagonal entries I}.
(c) G = Cx, H  =  {unit circle}, K =  {positive real numbers}.

11.5. Let G 1 and G 2 be groups, and let Zj be the center of G,. Prove that the center of the 
product group Gi X G2 is Zi X Z2.

11.6. Let G be a group that contains normal subgroups of orders 3 and 5, respectively. Prove 
that G contains an element of order 15.

11.7. Let H  be a subgroup of a group G, let cp: G -+ H  be a homomorphism whose restriction 
to H  is the identity map, and let N be its kernel. What can one say about the product 
map H x N  -+ G?

11.8. Let G, G', and H  be groups. Establish a bijective correspondence between homomor
phisms : H  -+ G X G ' from H  to the product group and pairs (cp, cp') consisting of a 
homomorphism cp: H  -+ G and a homomorphism cp' : H  -+ G'.

11.9. Let H  and K be subgroups of a group G. Prove that the product set HK is a subgroup 
of G if and only if H K  =  KH.

Section U  Quotient Groups

U .l. Show that if a subgroup H  of a group G is not normal, there are left cosets aH  and bH  
whose product is not a coset.
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12.2. In the general linear group G  L 3 (lR), consider the subsets

" 1 * * " 1 0 *
H  = 0 1 * , and K = 0 1 0

0 0 1_ 0 0 1
where * represents an arbitrary real number. Show that H  is a subgroup of G L 3 , that K 
is a normal subgroup of H, and identify the quotient group H / K. Determine the center 
of H.

12.3. Let P be a partition of a group G with the property that for any pair of elements A, B of 
the partition, the product set AB is contained entirely within another element C of the 
partition. Let N be the element of P that contains 1. Prove that N is a normal subgroup 
of G and that P is the set of its cosets.

12.4. Let H  =  {±1,  ± i} be the subgroup of G =  Cx of fourth roots of unity. Describe the 
cosets of H  in G explicitly. Is G /  H  isomorphic to G?

b12.5. Let G be the group of upper triangular real matrices d with a and d different
from zero. For each of the following subsets, determine whether or not S is a subgroup, 
and whether or not S is a normal subgroup. If S is a normal subgroup, identify the 
quotient group G /S.

(i) S is the subset defined by b =  0.
(ii) S is the subset defined by d =  1.
(iii) S is the subset defined by a = d.

Miscellaneous Problems
M.1. Describe the column vectors (a, c)f that occur as the first column of an integer matrix A 

whose inverse is also an integer matrix.
M.2. (a) Prove that every group of even order contains an element of order 2.

(b) Prove that every group of order 21 contains an element of order 3.
M.3. Classify groups of order 6 by analyzing the following three cases:

(i) G contains an element of order 6.
(ii) G contains an element of order 3 but none of order 6.
(iii) All elements of G have order 1 or 2.

M.4. A semigroup S is a set with an associative law of composition and with an identity. 
Elements are not required to have inverses, and the Cancellation Law need not hold. A 
semigroup S is said to be generated by an element s if the set {1, s, s2, . . .  } of nonnegative 
powers of s is equal to S. Classify semigroups that are generated by one element.

M.S. Let S be a finite semigroup (see Exercise MA) in which the Cancellation Law 2.2.3 holds. 
Prove that S is a group.

*M.6. Let a =  (a^, . . . ,  ak) and b =  (bi, . . . ,  bk) be points in k-dimensional space ]Rk. A 
path from a to b is a continuous function on the unit interval [O, 1] with values in Rk, a 
function X : [ 0, 1] --+ Rk, sending t X ( t )  = ( x  (t), . . . ,  Xk(t)), such that X(O) =  a and 
X(1) =  b. if S is a subset of and if a and b are in S, define a ~  b if a and b can be 
joined by a path lying entirely in S.
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(a) Show that ~  is an equivalence relation on S. Be careful to check that any paths you 
construct stay within the set S.

(b) A subset S is path connected if a ~  b for any two points a and b in S. Show that every 
subset S is partitioned into path-connected subsets with the property that two points 
in different subsets cannot be connected by a path in S.

(c) Which of the following loci in JR2 are path-connected: {x2 +  y2 = 1}, {xy = OJ, 
{xy = 1 }?

*M.7. The set of n x  n matrices can be identified with the space JRnxn. Let G be a subgroup of 
G L n (JR). With the notation of Exercise M.6, prove:

(a) If A, B, C, D are in G, and if there are paths in G from A to B and from C to D, then
there is a path in G from AC to BD.

(b) The set of matrices that can be joined to the identity I forms a normal subgroup of
G. (It is called the connected component of G .)

*M.8. (a) ' The group SLn (JR) is generated by elementary matrices of the first type (see 
Exercise 4.8). Use this fact to prove that SLn (JR) is path-connected.

(b) Show that G L n (JR) is a union of two path-connected subsets, and describe them.
M.9. (double cosets) Let H  and K be subgroups of a group G, and let g  be an element of G. 

The set H gK  — {x E G | x =  h g k for some h E H, k e K} is called a double coset. Do 
the double cosets partition G?

M.10. Let H  be a subgroup of a group G. Show that the double cosets (see Exercise M.9)

are the left cosets g H  if and only if H  is normal.
*M.l1. Most invertible matrices can be written as a product A = LUof  a lower triangular matrix 

L and an upper triangular matrix U, where in addition all diagonal entries of U are 1.

(a) Explain how to compute L and U when the matrix A is given.
(b) Prove uniqueness, that there is at most one way to write A as such a product.
(c) Show that every invertible matrix can be written as a product LPU, where L, U are 

as above and P is a permutation matrix.
(d) Describe the double cosets LgU  (see Exercise M.9).

M.12. (postage stamp problem) Let a and b be positive, relatively prime integers.

(a) Prove that every sufficiently large positive integer n can be obtained as ra +  sb, 
where r  and s are positive integers.

(b) Determine the largest integer that is not of this form.

M.13. (a game) The starting position is the point (1,1), and a permissible “move” replaces a 
point (a, b) by one of the points (a +  b, b) or (a, a +  b). So the position after the first 
move will be either (2, 1) or (1, 2). Determine the points that can be reached.

M.14. (generating S L i(Z )) Prove that the two matrices

zr-T1 l l  f ' - T1 °!
E ~  0 1 ’ E =  1 1
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generate the group SL2 (7.) of all integer matrices with determinant 1. Remember that 
the subgroup they generate consists of all elements that can be expressed as products 
using the four elements E, E ', E ”1, E '-1.
Hint: Do not try to write a matrix directly as a product of the generators. Use row 
reduction.

M.1S. (the semigroup generated by elementary matrices) Determine the semigroup S  (see 
Exercise M.4) of matrices A that can be written as a product, of arbitrary length, each of 
whose terms is one of the two matrices

'1 r '1 0 ‘
0 i_ or 1 l _

Show that every element of S can be expressed as such a product in exactly one way. '
M.16. 1(the homophonic group: a mathematical diversion) By definition, English words have 

the same pronunciation if their phonetic spellings in the dictionary are the same. The 
homophonic group is generated by the letters of the alphabet, subject to the following 
relations: English words with the same pronunciation represent equal elements of the 
group. Thus be =  bee, and since is a group, we can cancel be to conclude that e =  1. 
Try to determine the group ft.

1 I learned this problem from a paper by Mestre, Schoof, Washington and Zagier.
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Vector Spaces

fmmer mit den einfachsten Beispielen anfangen.

—David Hilbert

3.1 SUBSPACES OF IRn
Our basic models of vector spaces, the topic of this chapter, are subspaces of the space IRn of 
n-dimensional real vectors. We discuss them in this section. The definition of a vector space 
is given in Section 3.3.

Though row vectors take up less space, the definition of matrix multiplication makes 
column vectors more convenient, so we usually work with them. To save space, we sometimes 
use the matrix transpose to write a column vector in the form (ai, . . . ,  a n)1. As mentioned 
in Chapter 1, we don’t distinguish a column vector from the point of IRn with the same 
coordinates. Column vectors will often be denoted by lowercase letters such as v or w, and 
if v is equal to ( a t , . . . ,  an)1, we call (a \ , . . . ,  a n1  the coordinate vector of v.

We consider two operations on vectors:

(3.1.1)

vector addition:

scalar multiplication:

a\ ~ai + b\
+ =

an - bn „ an + bn _
r r

and

~ai ' ca i

an can _

These operations make IRn into a vector space.

A subset W of IRn (3.1.1) is a subspace if it has these properties:

(3.1.2)

(a) If w and w ' are in W, then w + w '  is in W.

78
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(b) If w  is in W and c is in ]R, then cw is in W.
(c) The zero vector is in W.

There is another way to state the conditions for a subspace:

(3.1.3) W is not empty, and if w i, . . . ,  wn are elements of W and ci, . . . ,  cn are scalars,
the linear combination c\ W\ +---- + cn w n is also in W.

Systems of homogeneous linear equations provide examples. Given an m X n matrix 
A with coefficients in JR, the set of vectors in ]R.n whose coordinate vectors solve the 
homogeneous equation AX =  0 is a subspace, called the nullspace of A. Though this is very 
simple, we'll check the conditions for a subspace:

• AX =  0 and AY =  0 imply A (X  + Y) =  0: If X  and Y are solutions, so is X  + Y.
• A X  = 0 implies A cX  = 0: If X is a solution, so is cX.
• AO =  0: The zero vector is a solution.

The zero space W =  {0} and the whole space W =  ]Rn are subspaces. A subspace is proper 
if it is not one of these two. The next proposition describes the proper subspaces of R2.

Proposition 3.1.4 Let W be a proper subspace of the space JR.2, and let w  be a nonzero 
vector in W. Then W consists of the scalar multiples cw of w. Distinct proper subspaces 
have only the zero vector in common.

The subspace consisting of the scalar multiples cw of a given nonzero vector w  is called the 
subspace spanned by w. Geometrically, it is a line through the origin in the plane ]R2.

Proofo f the proposition. We note first that a subspace W that is spanned by a nonzero 
vector w  is also spanned by any other nonzero vector w '  that it contains. This is true 
because if w '  =  cw with c:#=O, then any multiple aw  can also be written in the form ac_1w'. 
Consequently, if two subspaces Wi and W2 that are spanned by vectors Wi and W2 have a 
nonzero element v in common, then they are equal. ,

Next, a subspace W of R2, not the zero space, contains a nonzero element wi. Since 
W is a subspace, it contains the space Wi spanned by w 1, and if Wi =  W, then W consists 
of the scalar multiples of one nonzero vector. We show that if W is not equal to Wi, then it 
is the whole space ]R2. Let W2 be an element of W not in Wi, and let W2 be the subspace 
spanned by W2. Since Wi W2, these subspaces intersect only in O. So neither of the two 
vectors wi and W2 is a multiple of the other. Then the coordinate vectors, call them A,-, of Wi 
aren’t proportional, and the 2x2 block matrix A =  [A1IA2] with these vectors as columns has 
a nonzero determinant. In that case we can solve the equation AX =  B for the coordinate 
vector B of an arbitrary vector v, obtaining the linear combination v =  W\X\ + W2 X2 . This 
shows that W is the whole space JR2. □

It can also be seen geometrically from the parallelogram law for vector addition that 
every vector is a linear combination ct wi +  C2W2.
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The description of subspaces of ]R2 that we have given is clarified in Section 3.4 by the 
concept of dimension.

3.2 FIELDS

As mentioned at the beginning of Chapter 1, essentially all that was said about matrix 
operations is true for complex matrices as well as for real ones. Many other number systems 
serve equally well. To describe these number systems, we list the properties of the “ scalars” 
that are needed, and are led to the concept of a field. We introduce fields here before turning
to vector spaces, the main topic of the chapter.

Subfields of the field C of complex numbers are the simplest fields to describe. A 
subfield of C is a subset that is closed under the four operations of addition, subtraction, 
multiplication, and division, and which contains 1. In other words, F  is a subfield of C if it 
has these properties:

(3.2.1) (+ , - , x, 7 , i)

• If a and b are in F , then a +  b is in F.
• If a  is in F, then -a  is in F.
• If a and b are in F , then ab  is in F.
• If a is in F  and a O, then a~l is in F.
• 1 is in F.

These axioms imply that 1 — 1 =  0 is an element of F. Another way to state them is to say 
that F  is a subgroup of the additive group C+, and that the nonzero elements of F  form a 
subgroup of the multiplicative group Cx.

Some examples of subfields of C:
(a) the field lR of real numbers,
(b) the field Q of rational numbers (fractions of integers),
(c) the field Q[J2 ] of all complex numbers of the form a +  b J2 , with rational numbers

a  and b.

The concept of an abstract field is only slightly harder to grasp than that of a subfield, 
and it contains important new classes of fields, including finite fields.

Definition 3.2.2 Afield  F  is a set together with two laws of composition

F X F - + F  and F x F ^ F  
called addition: a, b a +  b and multiplication: a, b ab, which satisfy these axioms:
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(i) Addition makes F  into an abelian group F+; its identity element is denoted by O.
(ii) Multiplication is commutative, and it makes the set of nonzero elements of F  into an 

abelian group F x; its identity element is denoted by l.
(iii) distributive law. For all a, b, and c in F , a(b + c) =  ab  + ac.

The first two axioms describe properties of the two laws of composition, addition and 
multiplication, separately. The third axiom, the distributive law, relates the two laws.

You will be familiar with the fact that the real numbers satisfy these axioms, but the fact 
that they are the only ones needed for the usual algebraic operations can only be understood 
after some experience.

The next lemma explains how the zero element multiplies.

Lemma 3.2.3 Let F  be a field.

(a) The elements 0 and 1 of F  are distinct.
(b) For all a in F, aO =  0 and Oa =  O.
(c) Multiplication in F  is associative, and 1 is an identity element.

Proof, (a) Axiom (ii) implies that 1 is not equal to O.

(b) Since 0 is the identity for addition, 0 +  0 =  O. Then aO +  aO =  a(O +  0) =  aO. Since F+ 
is a group, we can cancel aO to obtain aO =  0, and then Oa =  0 as well.

(c) Since F  -  {O} is an abelian group, multiplication is associative when restricted to this
subset. We need to show that a(bc) =  (ab)c when at least one of the elements is zero. In 
that case, (b) shows that the products in question are equal to zero. Finally, the element 1 is 
an identity on F  -  {O}. Setting a = 1 in (b) shows that 1 is an identity on all of F. □

Aside from subfields of the complex numbers, the simplest examples of fields are 
certain finite fields called prime fields, which we describe next. We saw in the previous 
chapter that the set Z /nZ  of congruence classes modulo an integer n has laws of addition 
and multiplication derived from addition and multiplication of integers. All of the axioms 
for a field hold for the integers, except for the existence of multiplicative inverses. And as 
noted in Section 2.9, such axioms carry over to addition , and multiplication of congruence 
classes. But the integers aren’t closed under division, so there is no reason to suppose that 
congruence classes have multiplicative inverses. In fact they needn’t. The class of 2, for 
example, has no multiplicative inverse modulo 6. It is somewhat surprising that when p  is a 
prime integer, all nonzero congruence classes modulo p  have inverses, and therefore the set 
Z /p Z  is a field. This field is called a prime field, and is often denoted by IF p.

Using bar notation and choosing the usual representative elements for the p  congruence 
classes,

(3.2.4) JFp = (0, I ,  . . .  , P - l}  =  Z /pZ .

Theorem 3.2.5 Let p  be a prime integer. Every nonzero congruence class modulo p  has a 
multiplicative inverse, and therefore Fp is a field of order p.

We discuss the theorem before giving the proof.
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If a and b are integers, then a:;t: 0 means that p  does not divide a, and ab = 1 means 
ab  =  1 modulo p. The theorem can be stated in terms of congruence in this way:

(3 2 6) Let p  be a prime, and let a  be an integer not divisible by p.
There is an integer b such that a b = 1 modulo p.

Finding the inverse of a congruence class a  modulo p  can be done by trial and error if p  is 
small. A  systematic way is to compute the powers of a. If p  =  13 and a  =  3, then cP =  9 and
a 3 =  27 =  i  We are lucky: a  has order 3, and therefore r 1 = 3  =  9. On the other hand,
the powers of 6 run through every nonzero congruence class modulo 13. Computing powers
may not be the fastest way to find the inverse of 6. But the theorem tells us that the set of 
nonzero congruence classes forms a group. So every element a  of IF; has finite order, and if
a  has order r, its inverse will be a Cr-I).

To make a proof of the theorem using this reasoning, we need the cancellation law:

Proposition 3.2.7 Cancellation Law. Let p  be a prime integer, and let a , b  and c be 
elements of IFp.

(a) If ab = 0, then a  =  0 or b =  O.
(b) lf  a:;t:O and i f ab =  a c , then b  =  c.

Proof. (a) We represent the congruence classes a  and b by integers a and b, and we translate 
into congruence. The assertion to be proved is that if p  divides ab  then p  divides a  or p  
divides b. This is Corollary 2.3.7.

(b) It follows from (a) that if a:;t:O and a (b  — c) =  0, then b — c =  O. □

P roofo f Theorem (3.2.5). Let a  be a nonzero element of IFp. We consider the powers 
I , a, a 2, a 3, ••. Since there are infinitely many exponents and only finitely many elements 
in IFp, there must be two powers that are equal, say a m =  a ” , where m < n. We cancel a'" 
from both sides: I  =  a (n~m). Then is the inverse of a. □

It will be convenient to drop the bars over the letters in what follows, trusting 
ourselves to remember whether we are working with integers or with congruence classes, 
and remembering the rule (2.9.8):

If a  and b are integers, then a  =  b in Fp means a ; ;  b modulo p.

As with congruences in general, computation in the field Fp can be done by working 
with integers, except that division cannot be carried out in the integers. One can ope
rate with matrices A whose entries are in a field, and the discussion of Chapter 1 can be 
repeated with no essential change.

Suppose we ask for solutions of a system of n  linear equations in n unknowns in 
the prime field IFp. We represent the system of equations by an integer system, choosing 
representatives for the congruence classes, say A X  = B, where A  is an n x  n integer matrix 
and B is an integer column vector. To solve the system in IFp. we invert the matrix A  
modulo p. The formula cof(A)A =  81, where 8  = detA (Theorem 1.6.9), is valid for integer
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matrices, so it also holds in Fp when the matrix entries are replaced by their congruence 
classes. If the congruence class of 8  isn’t zero, we can invert the matrix A in Fp by computing 
5- 1 cof(A).

Corollary 3.2.8 Let AX =  B be a system of n linear equations in n unknowns, where the 
entries of A and B are in Fp , and let 5 =  detA. If 5 is not zero, the system has a unique 
solution in Fp . □

Consider, for example, the system AX =  B, where

and B =yl =

The coefficients are integers, so A X  =  B defines a system of equations in Fp for any prime 
p. The determinant of A is 42, so the system has a unique solution in Fp for all p  that do 
not divide 42, i.e., all p  different from 2, 3, and 7. For instance, detA =  3 when evaluated 
modulo 13. Since 3_1 =  9 in F13,

A~ ! = 9 ' 6 -3 ' '2  - 1 ' and X =  A~l B = '7 '
-2 8 8 7 4 , modulo 13.

The system has no solution in lF2 or F3. It happens to have solutions in F 7, though detA =  0 
modulo 7.

Invertible matrices with entries in the prime field Fp provide new examples of finite 
groups, the general linear groups over finite fields:

G L n (Fp) =  {n X n invertible matrices with entries in Fp}
SLn (Fp) =  {n X n matrices with entries in Fp and with determinant I}

For example, the group of invertible 2 X 2 matrices with entries in lF2 contains the six 
elements

(3.2.9) G L 2(F2) = 1 1 1 1 1 1 1
1 ’ 1 1 1 1 5 1

1
1 1

This group is isomorphic to the symmetric group S3. The matrices have been listed in an 
order that agrees with our usual list {l, x, x2, y, xy , x2y} of the elements of S3.

One property of the prime fields Fp that distinguishes them from subfields of C is that 
adding 1 to itself a certain number of times, in fact p  times, gives zero. The characteristic of 
a field F  is the order of 1, as an element of the additive group F+, provided that the order 
is finite. It is the smallest positive integer m such that the sum 1 +  . . .  +  1 of m copies of 
1 evaluates to zero. If the order is infinite, that is, 1 +  . . .  +  1 is never 0 in F, the field is, 
somewhat perversely, said to have characteristic zero. Thus subfields of C have characteristic 
zero, while the prime field Fp has characteristic p.

Lemma 3.2.10 The characteristic of any field F  is either zero or a prime number.



84 Chapter 3 Vector Spaces

Proof To avoid confusion, we let 0 and 1 denote the additive and the multiplicative identities 
in the field F, respectively, and if k  is a positive integer, we let k  denote the sum of k  copies 
of 1. Suppose that the characteristic m is not zero. Then I  generates a cyclic subgroup H  of 
F+ of order m, and m =  O. The distinct elements of the cyclic subgroup H  generated by I  
are the elements k with k  =  0, 1, . . . ,  m-1 (Proposition 2.4.2). Suppose that m isn’t prime, 
say m =  rs, with 1 <  r, s <  m. Then r  and s are in the multiplicative group F x = F  — {0}, 
but the product rs , which is equal to 0, is not in F x. This contradicts the fact that F x is a 
group. Therefore m must be prime. □

The prime fields IF, have another remarkable property:

Theorem 3.2.11 Structure of the Multiplicative Group. Let p  be a prime integer. The 
multiplicative group IF; of the prime field is a cyclic group of order p  -  1.

We defer the proof of this theorem to Chapter 15, where we prove that the multiplicative 
group of every finite field is cyclic (Theorem 15.7.3).

• A generator for the cyclic group F ;  is called a primitive root modulo p.

There are two primitive roots modulo 7, namely 3 and 5, and four primitive roots 
modulo 11. Dropping bars, the powers 30, 31, 32, . . .  of the primitive root 3 modulo 7 list the 
nonzero elements of IF 7 in the following order:

Thus there are two ways to list the nonzero elements of F ,, additively and multiplica
tively. If a  is a primitive root modulo p,

3.3 VECTOR SPACES
Having some examples and the concept of a field, we proceed to the definition of a vector
space.

Definition 3.3.1 A vector space V  over a field F  is a set together with two laws of 
composition:

(a) addition: V x  V -*■ V, written v, w  -w v + w, for v and w in V,
(b) scalar multiplication by elements of the field: F  x V -*■ V, written c, v . .  cv, for c in

F  and v in V.
These laws are required to satisfy the following axioms:

• Addition makes V into a commutative group V+, with identity denoted by 0.
• 1 v =  v, for all v in V.
• associative law: (ab)v  =  a(bv), for all a and b in F  and all v in V.
• distributive laws: (a +  b) v = av + bv and a(v  +  w) = av  +  aw , for all a and b in

F  and all v and w in V.

(3.2.12) F* =  {I, 3, 2, 6 , 4, 5} =  {l, 3, 2, -1, -3, -2}.

(3.2.13) Fpx =  (I, 2, 3, . . . ,  p -l}  =  (I, a ,  a 2, . . • , a P - 2},
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The space F n of column vectors with entries in the field F  forms a vector space over F , 
when addition and scalar multiplication are defined as usual (3.1.1).

Some more examples of real vector spaces (vector spaces over lR):

Examples 3.3.2
(a) Let V =  C be the set of complex numbers. Forget about multiplication of two complex 

numbers. Remember only addition ex +  and multiplication rex of a complex number ex 
by a real number r. These operations make V into a real vector space.

(b) The set of real polynomials p(x) =  anx n +  +  ao is a real vector space, with
addition of polynomials and multiplication of polynomials by real numbers as its laws of 
composition.

(c) The set of continuous real-valued functions on the real line is a real vector space, with 
addition of functions f  +  g and multiplication of functions by real numbers as its laws 
of composition.

(d) The set of solutions of the differential equation ^  =  -y  is a real vector space. □

Each of our examples has more structure than we look at when we view it as a vector space. 
This is typical. Any particular ex ample is sure to have extra features that distinguish it from 
others, but this isn’t a drawback. On the contrary, the strength of the abstract approach lies 
in the fact that consequences of the axioms can be applied in many different situations.

Two important concepts, subspace and isomorphism, are analogous to subgroups and 
isomorphisms of groups. As with subspaces of ]Rn, a subspace W of a vector space V 
over a field F  is a nonempty subset closed under the operations of addition and scalar 
multiplication. A subspace W is proper if it is neither the whole space V nor the zero 
subspace {OJ. For example, the space of solutions of the differential equation (3.3.2)(d) is a 
proper subspace of the space of all continuous functions on the real line.

Proposition 3.3.3 Let V =  F 2 be the vector space of column vectors with entries in a field 
F. Every proper subspace W of V consists of the scalar multiples {cw} of a single nonzero 
vector w. Distinct proper subspaces have only the zero vector in common.

The proof of Proposition 3.1.4 carries over. □

Example 3.3.4 Let F  be the prime field F,. The space F 2 contains p 2 vectors, p 2 -  1 
of which are nonzero. Because there are p  -  1 nonzero scalars, the subspace W =  {cw} 
spanned by a nonzero vector w will contain p  -  1 nonzero vectors. Therefore F 2 contains 
(p 2 — 1) / ( p  — 1) =  p  +  1 proper subspaces. □

An isomorphism from a vector space V to a vector space V', both over the same field
F, is a bijective map : V --+ V' compatible with the two laws of composition, a bijective
map such that

for all v and w in V and all c in F.

(3.3.5) <p(v +  w) =  <p(v) +  <p(w) and <p(cv) = c<p(v),
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Examples 3.3.6

(a) Let F  nXn denote the set of n X n matrices with entries in a field F. This set is a vector 
space over F , and it is isomorphic to the space of column vectors of length n 2^

(b) If we view the set of complex numbers as a real vector space, as in (3.3.2)(a), the map
qJJR. 2  --+ c  sending (a, b)  —> a  + bi is an isomorphism. □

3.4 BASES AND DIMENSION
We discuss the terminology used when working with the operations of addition and scalar 
multiplication in a vector space. The new concepts are span, independence, and basis.

We work with ordered sets of vectors here. We put curly brackets around unordered 
sets, and we enclose ordered sets with round brackets in order to make the distinction clear. 
Thus the ordered set (v, w) is different from the ordered set (w, v), whereas the unordered 
sets {v, w} and {w, v} are equal. Repetitions are allowed in an ordered set. So (v, v, w) is 
an ordered set, and it is different from (v, w), in contrast to the convention for unordered 
sets, where {v, v, w} and {v, w} denote the same sets.

• Let V be a vector space over a field F, and let S =  (vi, . . . ,  vn) be an ordered set of 
elements of V. A linear combination of S is a vector of the form

(3.4.1) w ci vi +------ + Cn vn, with Ci in F.

It is convenient to allow scalars to appear on either side of a vector. We simply agree 
that if v is a vector and c is a scalar, then the notations vc and cv stand for the same vector, 
the one obtained by scalar multiplication. So ujCi +  . . .  +  UnCn = q u i  +  . . .  +  cnUn-

Matrix notation provides a compact way to write a linear combination, and the way we 
write ordered sets of vectors is chosen with this in mind. Since its entries are vectors, we call 
an array S = ( v  , • . . ,  un) a hypervector. Multiplication of two elements of a vector space 
is not defined, but we do have scalar multiplication. This allows us to interpret a product of 
the hypervector S and a column vector X in F  n , as the matrix product

(3.4.2) SX = ( v ) , . . . ,  Vn)
Xi

= UiXi +------ + VnXn-

Evaluating the right side by scalar multiplication and vector addition, we obtain another 
vector, a linear combination in which the scalar coefficients x; are on the right.

We carry along the subspace W of JR. of solutions of the linear equation

(3.4.3) 2xi — X2  -  2x3 =  0, or AX = 0, where A =  (2, -1, -2)

as an example. Two particular solutions W\ and W2  are shown below, together with a linear 
combination Wi yi +  ui2 y2.

T T ~yi + y 2

(3.4.4) = 0 , W2 = 2 , W iyi +  w 2 y 2 = 2 yz
1 0 _ yi .
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If we write S = (wi ,  W2) with w  as in (3.4.4) and Y =  (yi , y i)1, then the combination 
wiYi +  W2Y2 can be written in matrix form as SY.

• The set of all vectors that are linear combinations of S =  (vi, • • . , vn) forms a subspace 
of V, called the subspace spanned by the set.

As in Section 3.1, this span is the smallest subspace of V that contains S, and it will 
often be denoted by Span S. The span of a single vector (vi) is the space of scalar multiples 
cvi of Vi.

One can define span also for an infinite set of vectors. We discuss this in Section 3.7. 
Let’s assume for now that the sets are finite.

Lemma 3.4.5 Let S be an ordered set of vectors of V, and let W be a subspace of V. If 
S C  W, then SpanS C W. □

The column space of an m X n matrix with entries in F  is the subspace of F m spanned 
by the columns of the matrix. It has an important interpretation:

Proposition 3.4.6 Let A be an m x n matrix, and let B be a column vector, both with enti es 
in a field F. The system of equations AX = B has a solution for X in F m if and only if B is 
in the column space of A.

Proof. Let A \ , ". " ,An  denote the columns ofA. For any column vector X =  (xi, . . . ,  Xn)l 
the matrix product AX is the column vector A1 x \  +  . . .  +  A n Xn. This is a linear combination 
of the columns, an element of the column space, and if A X  =  B, then B is this linear 
combination. □

A linear relation among vectors vi, • . • , is any linear combination that evaluates to 
zero -  any equation of the form

(3.4.7) ViXi +  V2X2 +------ + VnXn = 0

that holds in V, where the coefficients x, are in F. A linear relation can be useful because, if 
Xn is not zero, the equation (3.4.7) can be solved for Vn.

Definition 3.4.8 An ordered set of vectors S =  (vj,  • • . , Un) is independent, or linearly 
independent if there is no linear relation SX =  0 except for the trivial one in which X =  0, 
i.e., in which all the coefficients x,- are zero. A set that is not independent is dependent.

An independent set S cannot have any repetitions. If two vectors v,- and Vj of S are 
equal, then v,- — Vj =  0 is a linear relation of the form (3.4.7), the other coefficients being 
zero. Also, no vector Vi in an independent set is zero, because if v, is zero, then Vi =  0 is a 
linear relation.

Lemma 3.4.9
(a) A set (vi) of one vector is independent if and only if vi O.
(b) A set (vi , V2) of two vectors is independent if neither vector is a multiple of the other.
(c) Any reordering of an independent set is independent. □
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Suppose that V is the space F  m and that we know the coordinate vectors of the vectors 
in the set S =  (vi, . . .  , vn). Then the equation SX =  0 gives us a system of m homogeneous 
linear equations in the n unknowns Xi, and we can decide independence by solving this 
system.

Example 3.4.10 Let S
are

(vi, V2 , V3, V4) be the set of vectors in IR3 whose coordinate vectors

T T ~2 ~ ' l ~

II1.4.(3 0 . A 2 = 2 . A 3 = 1 , A 4 = l
1 0 2 3

Let A denote the matrix made upofthese column vectors:

(3.4.12) A  =
1 1 2  1
0 2 1 1  
1 0  2 3

A linear combination will have the form SX  =  viXi +  V2X2 +  V3X3 +  V4X4, and its coordinate 
vector will be A X  =  A\X\ +  A2X2 +  A3X3 +  A4X4. The homogeneous equation A X  =  0 has a 
nontrivial solution because it is a system of three homogeneous equations in four unknowns. 
So the set S is dependent. On the other hand, the determinant of the 3 X 3 matrix A' formed 
from the first three columns of (3.4.12) is equal to 1, so the equation A'X =  0 has only the 
trivial solution. Therefore (vi, V2, V3) is an independent set. □

Definition 3.4.13 A basis of a vector space V is a set (vi,  . . . ,  Vn) of vectors that is 
independent and also spans V.

We will often use a boldface symbol such as B to denote a basis. The set (vi, V2, V3) 
defined above is a basis of K3 because the equation A'X  =  B has a unique solution for all 
B (see 1.2.21). The set (wi ,  W2) defined in (3.4.4) is a basis of the space of solutions of the 
equation 2xi -  X2 -  2x3 =  0, though we haven’t verified this.

Proposition 3.4.14 The set B =  (vi, . • . , vn) is a basis of V if and only if every vector w in
V can be written in a unique way as a combination W =  vi Xi +-----+  VnXn =  BX.

Proof The definition of independence can be restated by saying that the zero vector can be 
written as a linear combination in just one way. If every vector can be written uniquely as a 
combination, then B is independent, and spans V, so it is a basis. Conversely, suppose that B 
is a basis. Then every vector w  in V can be written as a linear combination. Suppose that w 
is written as a combination in two ways, say w =  BX =  BX'. Let Y =  X -  X'. Then BY =  O. 
This is a linear relation among the vectors vi, • . . , Vn, which are independent. Therefore 
X -  X ' =  O. The two combinations are the same. □

Let V = F n be the space of column vectors. As before, e, denotes the column vector 
with 1 in the ith position and zeros elsewhere (see (1.1.24». The set E =  (ei, . . . ,  en) is 
a basis for F n called the standard basis. If the coordinate vector of a vector v in F n is
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X =  (xi , . . . ,  Xn)t, then v = EX =  eiXi +------ + enxn is the unique expression for v in terms
of the standard basis.

We now discuss the main facts that relate the three concepts, of span, independence, 
and basis. The most important one is Theorem 3.4.18.

Proposition 3.4.15 Let S =  (vi, . . . ,  v„) be an ordered set of vectors, let w be any vector in 
V, and let S' =  (S, w) be the set obtained by adding w to S.
(a) Span S =  Span S' if and only if w is in Span S.
(b) Suppose that S is independent. Then S' is independent if and only if w is not in Span S.

Proof. This is very elementary, so we omit most of the proof. We show only that if S is 
independent but S' is not, then w is in the span of S. If S' is dependent, there is some linear 
relation

V\X\ +------+ VnXn +  w y  =  0,

in which the coefficients Xi........ Xn and y are not all zero. If the coefficient y were zero,
the expression would reduce to SX =  0, and since S is assumed to be independent, we could 
conclude that X =  0 too. The relation would be trivial, contrary to our hypothesis. So y:;t:O, 
and then we can solve for w as a linear combination of Vi, . , .  , v„. □

• A vector space V  is finite-dimensional if some finite set of vectors spans V. Otherwise, V  
is infinite-dimensional.

For the rest of this section, our vector spaces are finite-dimensional.

Proposition 3.4.16 Let V be a finite-dimensional vector space.
(a) Let S be a finite subset that spans V, and let L be an independent subset of V. One can 

obtain a basis of V  by adding elements of S to L.
(b) Let S be a finite subset that spans V. One can obtain a basis of V  by deleting elements 

from S.

Proof, (a) If S is contained in Span L, then L spans V, and so it is a basis (3.4.5). If not, 
we choose an element v in S, which is not in Span L. By Proposition 3.4.15, L' =  (L, v) 
is independent. We replace L by L'. Since S is finite, we can do this only finitely often. So 
eventually we will have a basis.

(b) If S is dependent, there is a linear relation vici +-----+ v„c„ =  0 in which some coefficient,
say is not zero. We can solve this equation for vn, and this shows that vn is in the span of 
the set Si of the first n -  1 vectors. Proposition 3.4.15(a) shows that SpanS =  SpanSi. So Si 
spans V. We replace S by Si. Continuing this way we must eventually obtain a family that is 
independent but still spans V: a basis.

Note: There is a problem with this reasoning when V is the zero vector space {OJ. Starting 
with an arbitrary set S of vectors in V, all equal to zero, our procedure will throw them 
out one at a time until there is only one vector Vi left. And since Vi is zero, the set (vi) is 
dependent. How can we proceed? The zero space isn’t particularly interesting, but it may
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lurk in a corner, ready to trip us up. We have to allow for the possibility that a vector space 
that arises in the course of some computation, such as solving a system of homogeneous 
linear equations, is the zero space, though we aren’t aware of this. In order to avoid having 
to mention this possibility as a special case, we adopt the following definitions:

(3.4.17)
• The empty set is independent.
• The span of the empty set is the zero space {OJ.

Then the empty set is a basis for the zero vector space. These definitions allow us to throw 
out the last vector Vi, which rescues the proof. □

We come now to the main fact about independence:

Theorem 3.4.18 Let S and L be finite subsets of a vector space V. Assume that S spans V  
and that L is independent. Then S contains at least as many elements as L does: |S| 2:  |L|.

As before, |S| denotes the order, the number of elements, of the set S.

Proof. Say that S =  (vi, . . .  , vm) and that L =  (w \ , . . . ,  wn). We assume that |S| <  |L|, 
i.e., that m < n, and we show that L is dependent. To do this, we show that there is a linear 
relation W\X\ + .. +  wnXn =  0, in which the coefficients Xi aren’t all zero. We write this 
undetermined relation as L X  =  0.

Because S spans V, each element Wj of L is a linear combination of S, say Wj = 
v ia ij  +  .. +  vmamj = SAj, where Aj is the column vector of coefficients. We assemble 
these column vectors into an m X n matrix

(3.4.19) A  =

Then

(3.4.20) SA =  (SAi, . . .  , SAn) =  (wi ,  . . .  , Wn) =  L.
We substitute SA for L into our undetermined linear combination:

LX = (SA)X.
The associative law for scalar multiplication implies that (SA)X =  S(AX). The proof is the 
same as for the associative law for multiplication of scalar matrices (which we omitted). If 
A X  = 0, then our combination L X  will be zero too. Now since A is an m X n matrix with 
m <  n, the homogeneous system A X  = 0 has a nontrivial solution X. Then LX =  0 is the 
linear relation we are looking for. □

Proposition 3.4.21 Let V  be a finite-dimensional vector space.
(a) Any two bases of V have the same order (the same number of elements).
(b) Let B be a basis. If a finite set S of vectors spans V, then |S| 2:  |B|, and |S| =  |B| if and 

only if S is a basis.

A i ■■■ A n
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(c) Let B be a basis. If a set L of vectors is independent, then |L| |B|, and |L| =  |B| if and
only if L is a basis.

Proof, (a) We note here that two finite bases Bi and B2 have the same order, and we will 
show in Corollary 3.7.7 that every basis of a finite-dimensional vector space is finite. Taking 
S =  Bi and L =  B2 in Theorem 3.4.18 shows that |Bi| > IB2I, and similarly, IB2I > |Bi|. 
Parts (b) and (c) follow from (a) and Proposition 3.4.16. □

Definition 3.4.22 The dimension of a finite-dimensional vector space V  is the number of 
vectors in a basis. This dimension will be denoted by dim V.

The dimension of the space F n of column vectors is n because the standard basis E =  
(ei, . . . , e„) contains n elements.

Proposition 3.4.23 If W is a subspace of a finite-dimensional vector space V, then W is 
finite-dimensional, and dim W dim V. Moreover, dim W  = dim V if and only if W = V.

Proof We start with any independent set L of vectors in W, possibly the empty set. If L 
doesn’t span W, we choose a vector w in W not in the span of L. Then L' =  (L, w) will be 
independent (3.4.15). We replace L by L'.

Now it is obvious that if L is an independent subset of W, then it is also independent 
when thought of as a subset of V. So Theorem 3.4.18 tells us that |L| dim V. Therefore 
the process of adding elements to L must come to an end, and when it does, we will have a 
basis of W. Since L contains at most dim V  elements, dim W dim V. If |L| =  dim V, then 
Proposition 3.4.21(c) shows that L is a basis of V, and therefore W = V. □

3.5 COMPUTING WITH BASES
The purpose of bases is to provide a method of computation, and we learn to use them in 
this section. We consider two topics: how to express a vector in terms of a basis, and how to 
relate different bases of the same vector space.

Suppose we are given a basis B =  (vi, . . . ,  vn) of a vector space V over F . Remember: 
This means that every vector v in V can be expressed as a combination
(3.5.1) v =  V1X1 +------ + VnXn, with Xi in F,
in exactly one way (3.4.14). The scalars x (- are the coordinates of v, and the column vector

(3.5.2)

is the coordinate vector of v, with respect to the basis B.
For example, (cos f, sinf) is a basis of the space of solutions of the differential equation 

y" =  - y. Every solution of this differential equation is a linear combination of this basis. If 
we are given another solution J(t), the coordinate vector (xi, X2)  of J  is the vector such 
that J ( t)  =  (cos t)xi +  (sin t)X2. Obviously, we need to know something about J  to find X.
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Not very much: just enough to determine two coefficients. Most properties of f  are implicit 
in the fact that it solves the differential equation.

What we can always do, given a basis B of a vector space of dimension n, is to define 
an isomorphism o f vector spaces (see 3.3.5) from the space F n to V:

(3.5.3) 1/J': F n - 4  V that sends X BX.

We will often denote this isomorphism by B, because it sends a vector X  to BX.

Proposition 3.5.4 Let S =  (vi, . . .  , vn) be a subset of a vector space V, and let 1/J': F n ->• V 
be the map defined by 1/J'(X) =  SX. Then
(a) is injective if and only if S is independent,
(b) is surjective if and only if S spans V, and
(c) is bijective if and only if S is a basis of V.

This follows from the definitions of independence, span, and basis. □

Given a basis, the coordinate vector of a vector v in V is obtained by inverting the map
(3.5.3). We won’t have a formula for the inverse function unless the basis is given more 

explicitly, but the existence of the isomorphism is interesting:

Corollary 3.5.5 Every vector space V  of dimension n over a field F  is isomorphic to the 
space F n of column vectors. □

Notice also that F n is not isomorphic to F m when m :f.n, because F n has a basis of n 
elements, and the number of elements in a basis depends only on the vector space. Thus the 
finite-dimensional vector spaces over a field F  are completely classified. The spaces F n of 
column vectors are representative elements for the isomorphism classes.

The fact that a vector space of dimension n is isomorphic to F n will allow us to 
translate problems on vector spaces to the familiar algebra of column vectors, once a basis 
is chosen. Unfortunately, the same vector space V will have many bases. Identifying V with 
the isomorphic space F n is useful when a natural basis is in hand, but not when a basis is 
poorly suited to a given problem. In that case, we will need to change coordinates, i.e., to 
change the basis.

The space of solutions of a homogeneous linear equation A X  =  0, for instance, almost 
never has a natural basis. The space W of solutions of the equation 2xi — X2 — 2x3 = 0 
has dimension 2, and we exhibited a basis before: B = (w i, W2), where w  = (1, 0, 1 )  and 
W2 = (1, 2, 0)1 (see (3.4.4)). Using this basis, we obtain an isomorphism of vector spaces 
]R2 —y W that we may denote by B. Since the unknowns in the equation are labeled x;, we 
need to choose another symbol for variable elements of ]R2 here. We’ll use Y = (yi, y2) 1. 
The isomorphism B sends Y to the coordinate vector of BY =  Wiyi +  W2Y2 that was 
displayed in (3.4.4).

However, there is nothing very special about the two particular solutions wi and w2. 
Most other pairs of solutions would serve just as well. The solutions wi =  (0, 2, -1 )1 and 
w'; =  (1, 4, - 1 )  give us a second basis B' =  (w[, w'2) of W. Either basis suffices to express 
the solutions uniquely. A solution can be written in either one of the forms



Section 3.5 Computing with Bases 93

(3.5.6)
Yi + Y2 

2Y2
. yi .

Change of Basis

Suppose that we are given two bases of the same vector space V, say B =  (vi, . . . ,  v„) and 
B' =  (v^, . . . ,  v^). We wish to make two computations. We ask first: How are the two bases 
related? Second, a vector v in V  will have coordinates with respect to each of these bases, 
but they will be different. So we ask: How are the two coordinate vectors related? These are 
the basechange computations, and they will be very important in later chapters. They can 
also drive you nuts if you don’t organize the notation carefully.

Let’s think of B as the old basis and B' as a new basis. We note that every vector of the 
new basis B' is a linear combination of the old basis B. We write this combination as

(3.5.7) VIPI j  + V2P2j  +  • . ■ +  VnPnj.

The column vector Pj =  (P ij, . . . ,  P n /)  is the coordinate vector of the new basis vector 
vj, when it is computed using the old basis. We collect these column vectors into a square 
matrix P, obtaining the matrix equation B' =  BP:

(3.5.8) B' =  (v[, . . . , v'n) = (Vi, . . . , Vn) =  BP.

The j th  column of P is the coordinate vector of the new basis vector vj with respect to the
old basis. This matrix P is the basechange matrix. 1

Proposition 3.5.9
(a) Let B and B' be two bases of a vector space V. The basechange matrix P is an invertible 

matrix that is determined uniquely by the two bases B and B'.
(b) Let B =  (vi, . . . ,  vn) be a basis of a vector space V. The other bases are the sets of the 

form B' =  BP, where P can be any invertible n x n matrix.

Proof. (a) The equation B' =  BP expresses the basis vectors vi as linear combinations of
the basis B. There is just one way to do this (3.4.14), so P is unique. To show that P  is 
an invertible matrix, we interchange the roles of B and B'. There is a matrix Q such that 
B =  B'Q. Then

v

B =  B'Q =  BPQ, or PQ

This equation expresses each v(- as a combination of the vectors (vi, • • . , t>n). The entries 
of the product matrix PQ are the coefficients. But since B is a basis, there is just one way to

l-This basechange matrix is the inverse of the one that was used in the first edition.
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write v, as a combination of (v\ , . . .  , vn), namely v, 
PQ = I.

Vi, or in matrix notation, B =  BI. So

(b) We must show that if B is a basis and if P is an invertible matrix, then B' =  BP is also a 
basis. Since P is invertible, B =  B 'p-1. This tells us that the vectors v, are in the span of B'. 
Therefore B' spans V, and since it has the same number of elements as B, it is a basis. □

Let X and X ' be the coordinate vectors of the same arbitrary vector v, computed with 
respect to the two bases B and B', respectively, that is, v =  BX and v =  B'X'. Substituting 
B =  B'p- 1 gives us the matrix equation

(3.5.10) BX = B'P- 1X.

This shows that the coordinate vector of v with respect to the new basis B', which we call X', 
is P-1 X. We can also write this as X =  PX'.

Recapitulating, we have a single matrix P, the basechange matrix, with the dual 
properties

(3.5.11) B' and

where and X ' denote the coordinate vectors of the same arbitrary vector v, with respect 
to the two bases. Each of these properties characterizes P. Please take note of the positions 
of in the two relations.

Going back once more to the equation 2xi — X2  — 2x3 =  0, let B and B' be the bases 
of the space W of solutions described above, in (3.5.6). The basechange matrix solves the 
equation

" 0 1" '  1 1"
2 4 _ 0 2 P u Pm . It is P =

-1 -1 1 o ,P 21 P22 . -

The coordinate vectors Y and Y' of a given vector v with respect to these two bases, the ones 
that appear in (3.5.6), are related by the equation

Another example: Let B be the basis (cos t, sin t) of the space of solutions of the differential 
equation = _y. if we allow complex valued functions, then the exponential functions 
e±l'  =  cos t ± i sin t are also solutions, and B' =  (e", g -") is a new basis of the space of 
solutions. The basechange computation is

(3.5.12) (elt , e-lt) = (cos t, sin t) 1 \

One case in which the basechange matrix is easy to  determine is that V is the space 
F n of column vectors, the old basis is the standard basis E =  (e\, . . .  ,e n), and the new



Section 3.6 Direct Sums 95

basis, we’ll denote it by B =  (vi, . • . ,  vn) here, is arbitrary. Let the coordinate vector of u,, 
with respect to the standard basis, be the column vector B;. So v; = EB;. We assemble these 
column vectors into an n X n matrix that we denote by [B]:
(3.5.13)

[B] = 1 1 =  (ei , . . .  , e„) B\ ■ ■ ■ Bn

i.e., B =  E[B]. Therefore [B] is the basechange matrix from the standard basis E to B.

3.6 DIRECT SUMS

The concepts of independence and span of a set of vectors have analogues for subspaces. 
If W i, • . . , Wk are subspaces of a vector space V, the set of vectors v that can be written 
as a sum

(3.6.1) v =  wi +------ + Wh

where w, is in Wi is called the sum of the subspaces or their span, and is denoted by 
Wi +  . • • + Wk:

(3.6.2) W i +---- +  Wk =  {v e V | v =  wi + ------+ Wh with w ; in W(}.

The sum of the subspaces is the smallest subspace that contains all of the subspaces 
Wi . . . . ,  Wk. It is analogous to the span of a set of vectors.

The subspaces Wi, . . . ,  Wk are called independent if no sum wi + ---- + Wk with w; in
Wi is zero, except for the trivial sum, in which w; =  0 for all i. In other words, the spaces are 
independent if

(3.6.3) wi + ---- + Wk =  0, with w ; in Wi, implies w; =  0 for all i.

Note: Suppose that vi, . . . , Vk are elements of V, and let W, be the span of the vector 
u,. Then the subspaces Wi, . . . ,  Wk are independent if and only if the set (vi, . . . ,  v„) is 
independent. This becomes clear if we compare (3.4.8) and (3.6.3). The statement in terms 
of subspaces is actually the neater one, because scalar coefficients don’t need to be put in 
front of the vectors w; in (3.6.3). Since each of the subspaces Wi is closed under scalar 
multiplication, a scalar multiple cw; is simply another element of W,. □

We omit the proof of the next proposition.

Proposition 3.6.4 Let Wi , . . . ,  Wk be subspaces of a finite-dimensional vector space V, and 
let B, be a basis of Wi.

(a) The following conditions are equivalent:
• The subspaces W; are independent, and the sum W i +---- +  Wk is equal to V.
• The set B =  (Bi, . . .  , Bk) obtained by appending the bases Bi is a basis of V.

(b) dim(Wi +  ■ ■ ■ +  Wk) :: dim Wi + -----+ dim Wk, with equality if and only if the spaces
are independent.
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(c) If Wi is a subspace of W, for i =  1, ... , k, and if the spaces Wi, . . . ,  Wk are independent, 
then so are the W i, . . . ,  W^. □

If the conditions of Proposition 3.6.4(a) are satisfied, we say that V  is the direct sum of 
W \ , . . .  , Wk, and we write V  =  W i EB ■ ■ ■ EB W k

( 3  6  5) V =  Wi EB .. .  EB Wk, if Wi +  •• . +  Wk =  V
( ' ' '  and Wi, . . . ,  Wk are independent.

If V  is the direct sum, every vector v in V  can be written in the form (3.6.1) in exactly one 
way.

Proposition 3.6.6 Let Wi and W2 be subspaces of a finite-dimensional vector space V.

(a) dim Wi +  dim W2 = dim(W inW 2) +  dim(Wi +  W2).
(b) Wi and W2 are independent if and only if Wi 0 W2 = {OJ.
(c) V  is the direct sum Wi EB W2 if and only if Wi n W2 =  {OJ and Wi +  W2 =  V.
(d) If Wi +  W2 = V, there is a subspace W  ̂of W2 such that Wi EB W'2 = V.

Proof. We prove the key part (a): We choose a basis, U = (u i, . . . ,  uk) for W \ 0 W2, and we 
extend it to a basis (U, V) =  (u i, . . . ,  uk; Vi, . . .  , vm) of Wi. We also extend U to a basis 
(U, W) =  (u i, . . " , uk; w i, . . . ,  w n) of W2. Then dim(Wi 0 W2) =  k, dim Wi =  k  + m, 
and dim W2 = k +  n. The assertion will follow if we prove that the set o fk  +  m +  n elements 
(U, V, W) =  (u i, . . . ,  uk; vi, . . .  , Vm; W i, . . . ,  wn) is a basis of Wi +  W2.

We must show that (U, V, W) is independent and spans Wi +  W2. An element v of 
Wi +  W2 has the form w' +  w" where w' is in W  and w" is in W2. We write w ' in terms of
our basis (U, V) for Wi, say w' =  UX + VY = uiXi +  . • • +  ukXk +  V1Y1 +---- +  VmYm. We
also write w" as a combination UX' +  WZ of our basis (U, W) for W2. Then V =  w' +  w" = 
U(X +  X') +  VY +  WZ.

Next, suppose we are given a linear relation UX +  VY + WZ = 0, among the elements 
(U, V, W). We write this as UX + VY = -WZ. The left side of this equation is in Wi and the 
right side is in W2. Therefore -W Z is in Wi 0 W2, and so it is a linear combination UX' of the 
basis U. This gives us an equation UX' +  WZ =  O. Since the set (U, W) is a basis for W2, it is 
independent, and therefore X ' and Z are zero. The given relation reduces to UX +  VY = O. 
But (U, V) is also an independent set. So X and Y are zero. The relation was trivial. □

3.7 INFINITE-DIMENSIONAL SPACES
Vector spaces that are too big to be spanned by any finite set of vectors are called infinite
dimensional. We won’t need them very often, but they are important in analysis, so we 
discuss them briefly here.

One of the simplest examples of an infinite-dimensional space is the space jRoo of 
infinite real row vectors

(3.7.1) (a) =  ( a i ,a 2, a 3, . . . ) .

An infinite vector can be thought ofas a sequence a^, «2, of real numbers.
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The space jRoo has many infinite-dimensional subspaces. Here are a few; you will be 
able to make up some more:

Examples 3.7.2

(a) Convergent sequences: C =  {(a) e jRoo | the limit lim exists }.
OQ

(b) Absolutely convergent series: £* =  {(a) e JROO | L  ian I <  oo}.
I

(c) Sequences with finitely many terms different from zero.

Z =  {(a) € RC)O ! =  0 for all but finitely many n}.

Now suppose that V is a vector space, infinite-dimensional or not. What do we mean 
by the span of an infinite set S of vectors? It isn’t always possible to assign a value to 
an infinite combination c  vi +  C2 V2 +  .. ' . If V is the vector space ]Rn, then a value can 
be assigned provided that the series Ci vi +  C2V2 + • . converges. But many series don’t 
converge, and then we don’t know what value to assign. I n algebra it is customary to speak 
only of combinations of finitely many vectors. The span of an infinite set S is defined to be 
the set of the vectors v  that are combinations of finitely many elements of S:

(3.7.3) v =  civi +  ■. +  CrW, where u i , . . " , v r are in S.

The vectors v; in S can be arbitrary, and the number r  is allowed to depend on the vector v 
and to be arbitrarily large:

(3.7.4) s  pan S = finite combinations 
of elements of S

For example, let e  =  (0, . . . ,  0, 1, 0, . . . )  be the row vector in with 1 in the ith 
position as its only nonzero coordinate. Let E =  (ei, e2, e3, . . . )  be the set of these vectors. 
This set does not span ]Roo, because the vector

w = (1, 1, 1, . . . )

is not a (finite) combination. The span of the set E is the subspace Z  (3.7.2)(c).
A set S, finite or infinite, is independent if there is no finite linear relation

(3.7.5) Cjui +  • ■' +  c^vr =  O, with t i ,  . . . ,  tv in S,

except for the trivial relation in which Ci =  . . .  =  Cr =  O. Again, the number r  is allowe d to 
be arbitra ry, that is, the condition has to hold for arbitrarily large r  and arbitrary elements 
vi , . . . ,  vr of S. For example, the set S' =  (w; e i , e2, e3, .. .) is independent, if w and e; are 
the vectors defined above. With this definition of indep endence, Proposition 3.4.15 continues 
to be true.

As with finite sets, a basis S of V is an independent set that spans V. The set 
S =  (ej , e2, . . . )  is a basis of the space Z. The monomials x l form a basis for the space
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of polynomials. It can be shown, using Zorn’s Lemma or the Axiom o f Choice, that every 
vector space V  has a basis (see the appendix, Proposition A.3.3). However, a basis for Roo 
will have uncountably many elements, and cannot be made very explicit.

Let us go back for a moment to the case that our vector space V  is finite-dimensional
(3.4.16), and ask if there can be an infinite basis. We saw in (3.4.21) that any two finite bases 
have the same number of elements. We complete the picture now, by showing that every 
basis is finite. This follows from the next lemma.

Lemma 3.7.6 Let V be a finite-dimensional vector space, and let S be any set that spans V. 
Then S contains a finite subset that spans V.

Proof. By hypothesis, there is a finite set, say (wi, . . . ,  u m), that spans V. Because S spans 
V, each of the vectors Uj is a linear combination of finitely many elements of S. The elements 
of S that we use to write all of these vectors as linear combinations make up a finite subset 
S' of S. Then the vectors w; are in SpanS', and since (wi, . . .  , u m) spans V, so does S'. □

Corollary 3.7.7 Let V  be a finite-dimensional vector space.
• Every basis is finite.
• Every set S that spans V contains a basis.
• Every independent set L is finite, and can be extended to a basis. □

I don't need to learn 8 + 7: I'll remember 8 + 8 and subtract 7.
—T. Cuyler Young, Jr.

EXERCISES

Section 1 Fields
1.1. Prove that the numbers of the form a +  b. . ,  where a and b are rational numbers, form a 

subfield of C.
1.2. Find the inverse of 5 modulo p, for p  =  7, 11, 13, and 17.
1.3. Compute the product polynomial (x3 +  3x2 +  3x +  1) (x4 + 4x3 + 6x2 +  4x +  1) when the 

coefficients are regarded as elements of the field IF 7. Explain your answer.

1.4. Consider the system of linear equations ' 6 -  3 ' xx V
_ 6 3 _ .¾ . 1

(a) Solve the system in Fp when p  =  5,11, and 17.
(b) Determine the number of solutions when p  =  7.

1.5. Determine the primes p  such that the matrix

A

is invertible, when its entries are considered to be in Fp.

1 2 0
0 3 -1

-2 0 2



Exercises 99

1.6. Solve completely the systems of linear equations AX = 0 and AX = B, where

'1 1 0" ‘ 1 '
1 0 1 , and B = -1
1 -1 -1 1

(a) in Q , (b) in lF2 , (c) in F3, (d) inlF7.
1.7. By finding primitive elements, verify that the multiplicative group IF; is cyclic for all primes 

p  <  20.
1.8. Let p  be a prime integer.

(a) Prove Fermat’s Theorem: For every integer a, aP =  a  modulo p.
(b) Prove Wilson’s Theorem, (p  — 1)! == -1(modulo p).

1.9. Determine the orders of the matrices in the group G L 2 (IF 7).

1.10. Interpreting matrix entries inthe field lF2, prove that the four matrices
' 0  0 '

0 0
)1 Tl 01
)J ’ [0  1 _

0 ' '1  r ‘0 r
1 ’ 1 0 ’ _1 1 _ form a field.

Hint, You can cut the work down by using the fact that various laws are known to hold for 
addition and multiplication of matrices.

1.11. Prove that the set of symbols {a + bi | a, b e F3} forms a field with nine elements, if the 
laws of composition are made to mimic addition and multiplication of complex numbers. 
Will the same method work for F5? For F7? Explain.

Section 2 Vector Spaces

2.1. (a) Prove that the scalar product of a vector with the zero element of the field F  is the
zero vector.

(b) Prove that if w is an element of a subspace W, then -w is in W too.
2.2. Which of the following subsets is a subspace of the vector space FnXn of n x n matrices 

with coefficients in F?
(a) symmetric matrices (A = A1), (b) invertible matrices, (c) upper triangular matrices.

Section 3 Bases and Dimension
3.1. Find a basis for the space of n X n symmetric matrices (Ar =  A).
3.2. Let W C 1R4 be the space of solutions of the system of linear equations AX = 0, where

A 1 2 3 
1 2 3 . Find a basis for W.

3.3. Prove that the three functions x2, cos x, and e* are linearly independent.
3.4. Let A be an m X n matrix, and let A' be the result of a sequence of elementary row

operations on A. Prove that the rows of A span the same space as the rows of A'.
3.5. Let V =  F n be the space of column vectors. Prove that every subspace W of V is the

space of solutions of some system of homogeneous linear equations AX =  0.
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3.6. Find a basis of the space of solutions in jRn of the equation

Xi +  2x2 +  3X3 +------ + nXn =  O.

3.7. Let (Xi, . . . ,  Xm) and (Yi , . . . ,  Yn) be bases for jR™ and jRn, respectively. Do the mn 
matrices Xi Yj form a basis for the vector space jRm><n of all m X n matrices?

3.8. Prove that a set (vi , . . . ,  vn) of vectors in F n is a basis if and only if the matrix obtained 
by assembling the coordinate vectors of v, is invertible.

Section 4 Computing with Bases

4.1. (a) Prove that the set B =  ((1, 2, 0)\  (2, 1, 2 )\ (3, 1 ,1)‘) is a basis of R3.
(b) Find the coordinate vector of the vector V =  (1 ,2 ,3)1 with respect to this basis.
(c) Let B' =  ((0; 1, 0)1, (1, 0 ,1)1, (2, 1, 0)1). Determine the basechange matrix P from B 

to B'.
4.2. (a) Determine the basechange matrix in jRz, when the old basis is the standard basis

E =  (ei, ez) and the new basis is B =  (ei +  ez, ei — eZ).
(b) Determine the basechange matrix in jRn, when the old basis is the standard basis E 

and the new basis is B =  {fin, £n-i, • .. , ei).
(c) Let B be the basis of ]R2 in which vi =  ei and Vz is a vector of unit length making an 

angle of 120° with Vi. Determine the basechange matrix that relates E to B.
4.3. Let B =  (vi , . . . ,  Vn) be a basis of a vector space V. Prove that one can get from B to any 

other basis B' by a finite sequence of steps of the following types:

(i) Replace v, by v, +  avj, i =1=  j, for some a in F,
(ii) Replace V, by cVj for some c=I= 0,

(iii) Interchange v(- and Vj.

4.4. Let Fp be a prime field, and let V = F2. Prove:

(a) The number of bases of V is equal to the order of the general linear group GLz(lF'p).
(b) The order of the general linear group G Lz(lF'p) is p (p  +  l) (p  — 1)2, and the order of 

the special linear group SLz(Fp) is p (p  +  l) (p  — 1).

4.5. How many subspaces ofeach dimension are there in (a) IF'P’ (b) F£?

Section 5 Direct Sums
5.1. Prove that the space ]RnXn of all n X n real matrices is the direct sum of the space of 

symmetric matrices (A‘ =  A) and the space of skew-symmetric matrices (A‘ =  -A).
5.2. The trace of a square matrix is the sum ofits diagonal entries. Let Wi be the space of n X n 

matrices whose trace is zero. Find a subspace W2 so th at jRnXn =  Wi ffi W2.
5.3. Let Wi , . . . ,  Wk be subspaces of a vector space V, such that V =  L  W  Assume that

Wi n W2 =  0, (Wi + W2) n W3 = 0, . . .  , (Wi +  W2 +------+ Wk_i) n Wk =  0. Prove that
V is the direct sum of the subspaces Wi , . . . ,  Wk.
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6.1. Let E be the set of vectors (ei, e2 , . . . )  in and let w = (1,1,1, . . .  ). Describe the 
span of the set (w, ei, e2, . . . )  .

6.2. The doubly infinite row vectors (a) =  (• • . , a - i , ao, a i, . . . )  , with a,- real form a vector 
space. Prove that this space is isomorphic to ]Roo.

*6.3. For every positive integer, we can define the space f p to be the space of sequences such 
that L  la  |P <  °°. Prove that fP is a proper subspace of £P+1.

*6.4. Let V be a vector space that is spanned by a countably infinite set. Prove that every 
independent subset of V is finite or countably infinite.

Miscellaneous Problems
M.I. Consider the determinant function det: F 2x2 -4 F, where F  =  IF'p is the prime field of 

order p  and F lx2 is the space of 2 X 2 matrices. Show that this map is surjective, that all 
nonzero values of the determinant are taken on the same number of times, but that there 
are more matrices with determinant 0 than with determinant 1.

M.2. Let A be a real n X n matrix. Prove that there is an integer N such that A satisfies a 
nontrivial polynomial relation A'v + cn -1 An  -1 +------ + Ci A  + C o =  O.

M.3. (polynomial paths) (a) Let x(t) and y(t) be quadratic polynomials with real coefficients. 
Prove that the image of the path (x(t) , y(t)) is contained in a conic, i.e., that there is a real 
quadratic polynomial f ( x ,  y) such that f(x (t) , y(t)) is identically zero.
(b) Let x(t) =  t2 — 1 and y(t) = t3 — t. Find a nonzero real polynomial f(x , y) such that 
f(x(t), y(t)) is identically zero. Sketch the locus {/(x, y) =  0} and the path (x(t) , y (t»  
in ]R2.
(c) Prove that every pair x(t), y(t) of real polynomials satisfies some real polynomial 
relation f(x , y) =  0.

*M.4. Let V be a vector space over an infinite field F. Prove that V is not the union of finitely 
many proper subspaces.

*M.S. Let a  be the real cube root of 2.

(a) Prove that (1, a, a 2) is an independent set over Q, i.e., that there is no relation of the 
form a + ba + c a 2 =  0 with integers a, b, c.
Hint: Divide x 3 -  2 by cx2 + bx + a.
(b) Prove that the real numbers a +  ba +  c a 2 with a, b, c in Q form a field.

M.6. (Tabasco sauce: a mathematical diversion) My cousin Phil collects hot sauce. He has about 
a hundred different bottles on the shelf, and many of them, Tabasco for instance, have only 
three ingredients other than water: chilis, vinegar, and salt. What is the smallest number 
of bottles of hot sauce that Phil would need to keep on hand so that he could obtain any 
recipe that uses only these three ingredients by mixing the ones he had?

Section 6 Infinite-Dimensional Spaces
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L i n e a r  O p e r a t o r s

That confusions o f thought and errors o f reasoning 
still darken the beginnings ofAlgebra, 

is the earnest and just complaint of sober and thoughtful men.

—Sir William Rowan Hamilton

4.1 THE DIMENSION FORMULA
A linear transformation T : V --+ W from one vector space over a field F  to another is a
map that is compatible with addition and scalar multiplication:

(4.1.1) T(vi + V2 ) -  T (v\) + T(v2) and T(cv\) = cT (vr),

for all vi and v2 i n V and all c in F . This is analogous to a homomorphism of groups, and
calling it a homomorphism would be appropriate too. A linear transformation is compatible 
with arbitrary linear combinations:

(4.1.2) T ( l u i C i )  =  L  T(v,')C|.
i i

Left multiplication by an m Xn  matrix A with entries in F, the map

(4.1.3) F n ^  F m that sends X "",A X

is a linear transformation. Indeed, A(X i + X2) =  AX i + AX2, and A (cX) =  cAX.
If B =  (vi, • • . , Vn) is a subset of a vector space V over the field F, the map F n --+ V 

that sends X BX is a linear transformation.
Another example: Let Pn be the vector space of real polynomial functions

(4.1.4) d n f 1 +  ^ - ] ^   ̂+  +

of degree at most n. The derivative f, defines a linear transformation from Pn to Pn-i.
There are two important subspaces associated with a linear transformation: its kernel 

and its image:

ker T =  kernel of T =  {v 6 V | T(v) =OJ,
( . . ) im T  =  image of T =  (w e W | w =  T(v) for some v e V}.

102
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The kernel is often called the nullspace of the linear transformation. As one may guess from 
the analogy with group homomorphisms, the kernel is a subspace of V  and the image is a 
subspace of W.

The main result of this section is the next theorem.

Theorem 4.1.6 Dimension Formula. Let T: V -> W be a linear transformation. Then

dim(ker 1) +  dim(im 1) =  dim V.

The nullity and the rank of a linear transformation T are the dimensions of the kernel 
and the image, respectively, and the nullity and rank of a matrix A are defined analogously. 
With this terminology, (4.1.6) becomes

(4.1.7) nullity +  rank =  dimension of V.

Proof o f Theorem (4.1.6). We’ll assume that V  is finite-dimensional, say of dimension n. Let 
k be the dimension of ker T, and let (ui ,  . , . ,  «k) be a basis for the kernel. We extend this 
set to a basis of V:

(4.1.8) ( u \ , . . . , u k\ v  i , . . . , v n-k).

(see (3.4.15». For i =  1, . . .  , n — k, let w ,• =  T(u,). If we prove that C =  (wi  , • . . , wn-k) is 
a basis for the image, it will follow that the image has dimension n — k, and this will prove 
the theorem.

We must show that C spans the image and that it is an independent set. Let w be an 
element of the image. Then W = T(v) for some v in V. We write v in terms of the basis:

v =  a\U\ +-+ CLkUk +  b\ Vi +------------- + bn-kVn-k

and apply T, noting that T(u,) =  0:

W = T(v) =  bi Wi +  ■ ■ . +  bn-kwn-k .

Thus w is in the span of C.
Next, we show that C is independent. Suppose we have a linear relation

(4.1.9) Cl Wi + .. • +  Cn-kWn-k =  0.

Let v =  C1V1 + ---- + Cn- kVn- k> where u, are the vectors in (4.1.8). Then

T(v) =  Ct WI + .. • +  Cn-kWn-k =  °>

so v is in the nullspace. We write v in terms of the basis (Ui, . . . ,  uk) of the nullspace, say 
v =  a iu i  +------ + akUk. Then

-a iM i---------akuk + c iv r + ■ ■ ■ +  cn-k vn-k =  - v  + v =  0.

But the basis (4.1.8) is independent. So -a i  =  0, . . . ,  -ak = 0, and ci =  0, . . .  , Cn- k =  0. 
The relation (4.1.9) was trivial. Therefore C is independent. □
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When T is left multiplication by a matrix A (4.1.3), the kernel of T, the nullspace of A, 
is the set of solutions of the homogeneous equation A X  =  O. The image of T is the column 
space, the space spanned by the columns of A, which is also the set of vectors B in F m such 
that the linear equation A X  =  B has a solution (3.4.6).

It is a familiar fact that by adding the solutions of the homogeneous equation AX = 0 to 
a particular solution Xo of the inhomogeneous equation A X  =  B, one obtains all solutions of 
the inhomogeneous equation. Another way to say this is that the set of solutions of A X  =  B 
is the additive coset Xo +  N of the nullspace N  in F n.

An n X n matrix A whose determinant isn’t zero is invertible, and the system of 
equations AX =  B has a unique solution for every B. In this case, the nullspace is {O}, and 
the column space is the whole space F n. On the other hand, if the determinant is zero, the 
nullspace N  has positive dimension, and the image, the column space, has dimension less 
than n. Not all equations A X  =  B have solutions, but those that do have a solution have 
more than one solution, because the set of solutions is a coset of N.

4.2 THE MATRIX OF A LINEAR TRANSFORMATION
Every linear transformation from one space of column vectors to another is left multiplication 
by a matrix.

Lemma 4.2.1 Let T  : F n -+ F w be a linear transformation between spaces of column 
vectors, and let the coordinate vector of T(ej) be Aj  =  (a\j,  . . . ,  am j ) f. Let A be the m Xn  
matrix whose columns are A i, . . . ,  An. Then T acts on vectors in F n as multiplication by A.

Proof. T(X) = T(Y,j ejxj )  =  Y.j T(ej )x j  =  Ey Aj xj = A X - □

For example, let c =  cos 0, s =  sin 0. Counterclockwise rotation p : ]R2 -+ ]R2 of the 
plane through the angle 0 about the origin is a linear transformation. Its matrix is

(4.2.2)

Let’s verify that multiplication by this matrix rotates the plane. We write a vector X  in the 
form r  (cosa, s in a ) \  where r  is the length of X.  Let c' =  cos a  and s ' =  sina. The addition 
formulas for cosine and sine show that

*3 X = c -s c' =  r

I
c ' - s _ = r cos (e +  a )
s c .'I' sc + cs' sin(0 +  a )

So RX  is obtained from X  by rotating through the angle 0, as claimed.
One can make a computation analogous to that of Lemma 4.2.1 with any linear 

transformation T :V  -+ W,  once bases of the two spaces are chosen. If B =  (v i, . . .  , Vn) is 
a basis of V, we use the shorthand notation T(B) to denote the hypervector

(4.2.3) T(B) = ( T M ,  . . . ,  T{vn)).
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If v =  BX = ViXi + ---- + VnXn, then

(4. 2. 4) T(v) =  r(V i)xi + ----------b T(vn)xn =  T(fi)X.

Proposition 4.2.5 Let T: V  -+ W be a linear transformation, and let B =  (vi,  . • . , vn) and 
C = (w i , . . . ,  wm) be bases of V and W, respectively. Let X be the coordinate vector of an 
arbitrary vector v with respect to the basis B and let Y be the coordinate vector of its image 
T(v). So v =  BX and T(v) = CY.  There is an m Xn  matrix A with the dual properties

(4.2.6) T(B) =  CA and AX =  Y.

This matrix A is the matrix o f  the transformation T  with respect to the two bases. Either of 
the properties (4.2.6) characterizes the matrix.

Proof We write T(vj) as a linear combination of the basis C, say

(4.2.7)

and we assemble the coefficients a (-j into a column vector Aj  =  ( a , ,  . . . ,  amj ) {, so that 
T( Vj) =  CA,-. Then if A is the matrix whose columns are A 1, . . . ,  A n,

(4.2.8) 1'(B) =  (1'(Vi), . . . , 1'(V.)) =  (Wi, . . . , Wm) A

as claimed. Next, if v =  BX, then

T(v) =  T(B)X =  CAX.

Therefore the coordinate vector of T(v), which we named Y, is equal to AX. □

The isomorphisms F n -+ V  and F m -+ W determined by the two bases (3.5.3) help to 
explain the relationship between T and A. If we use those isomorphisms to identify V  and 
W with F n and Fm,  then T corresponds to multiplication by A, as shown in the diagram 
below:

(4.2.9) F n — F m X  ------------- -- AX

V — T—^  W  BX  T(B)X =  CAX

Going from F n to W along the two paths gives the same answer. A diagram that has this 
property is said to be commutative. All diagrams in this book are commutative.

Thus any linear transformation between finite-dimensional vector spaces V  and W 
corresponds to matrix multiplication, once bases for the two spaces are chosen. This is a nice 
result, but if we change bases we can do much better.
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Theorem 4.2.10
(a) Vector space form: Let T: V -> W  be a linear transformation between finite-dimensional 

vector spaces. There are bases B and C of V  and W, respectively, such that the matrix 
of T with respect to these bases has the form

A' =

(4.2.11)

lr

o

where / r is the r  X r  identity matrix and r  is the rank of T.
(b) Matrix form: Given an m Xn matrix A, there are invertible matrices Q and P such that 

A' =  Q -J AP has the form shown above.

Proof, (a) Let (mi, . . . , uk) be a basis for the kernel of T. We extend this set to a basis B 
of V, listing the additional vectors first, say (vi, . . . ,  v r  mi, . . . ,  uk), where r  +  k =  n. Let 
Wi =  T(Vi). Then, as in the proof of (4.1.6), one sees that (w i, . . .  , wr) is a basis for the 
image of T. We extend this set to a basis C of W, say (wi ,  . • . , w r; Zi, . . ,  Zs), listing the 
additional vectors last. The matrix of T with respect to these bases has the form (4.2. 11).

Part (b) of the theorem can be proved using row and column operations. The proof is 
Exercise 2.4. □

This theorem is a prototype for a number of results that are to come. It shows the 
advantage of working in vector spaces without fixed bases (or coordinates), because the 
structure of an arbitrary linear transformation is described by the very simple matrix (4.2.11). 
But why are (a) and (b) considered two versions of the same theorem? To answer this, we 
need to analyze the way that the matrix of a linear transformation changes when we make 
other choices of bases.

Let A be the matrix of T with respect to bases B and C of V and W,  as in (4.2.6), and 
let B' =  (v^, . . . ,  v 'n) and C' =  (w'j, . . . ,  w:n) be new bases for V and W. We can relate the 
new basis B' to the old basis B by an invertible n X n matrix P, as in (3.5.11). Similarly, C' is 
related to C by an invertible m Xm matrix Q. These matrices have the properties

(4.2.12) B' =  BP, PX' =  X  and C' =  CQ, QY' =  Y.

Proposition 4.2.13 Let A be the matrix of a linear transformation T with respect to given 
bases B and C.

(a) Suppose that new bases B' and C' are related to the given bases by the matrices P and 
Q, as above. The matrix of T with respect to the new bases is A' =  Q_I AP.

(b) The matrices A' that represent T with respect to other bases are those of the form 
A' =  Q -J AP, where Q and P can be any invertible matrices of the appropriate sizes.

Proof (a) We substitute X  =  PX'  and Y =  QY' into the equation Y =  A X  (4.2.6), obtaining 
QY' =  APX'. So y ' =  (Q_IAP)X'. Since A' is the matrix such that A'X' =  Y', this shows 
that A' =  Q-1 AP. Part (b) follows because the basechange matrices can be any invertible 
matrices (3.5.9). □
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It foirows from the proposition that the two parts of the theorem amount to the same 
thing. To derive (a) from (b), we suppose given the linear transformation T, and we begin 
with arbitrary choices of bases for V and W, obtaining a matrix A. Part (b) tells us that there 
are invertible matrices P and Q such that A' =  Q -lAP  has the form (4.2.11). When we use 
these matrices to change bases in V and W, the matrix A is changed to A'.

To derive (b) from (a), we view an arbitrary matrix A  as the matrix of the linear 
transformation “left multiplication by A” on column vectors. Then A  is the matrix of T with 
respect to the standard bases of F n and F m, and (a) guarantees the existence of P, Q so that 
Q-lAP  has the form (4.2.11).

We also learn something remarkable about matrix multiplication here, because left 
multiplication by a matrix is a linear transformation. Left multiplication by an arbitrary 
matrix A is the same as left multiplication by a matrix of the form (4.2.11), but with reference 
to different coordinates.

In the future, we will often state a result in two equivalent ways, a vector space form 
and a matrix form, without stopping to show that the two forms are equivalent. Then we will 
present whichever proof seems simpler to write down.

We can use Theorem 4.2.10 to derive another interesting property of matrix mul
tiplication. Let N  and V denote the nullspace and column space of the transformation 
A : F n -+ F m. So N  is a subspace of F n and V is a subspace of F m. Let k and r  denote the 
dimensions of N  and V. So k is the nullity of A and r  is its rank.

Left multiplication by the transpose matrix A 1 defines a transformation A1: F m -+ F n 
in the opposite direction, and therefore two more subspaces, the nullspace N i and the 
column space Ui of A 1. Here Ui is a subspace of F n, and Ni is a subspace of Fm. Let 
ki and ri denote the dimensions of Ni and U\, respectively. Theorem 4.1.6 tells us that 
k +  r  =  n, and also that ki +  ri =  m. Theorem 4.2.14 below gives one more relation among 
these integers:

Theorem 4.2.14 With the above notation, r i =  r :  The rank of a matrix is equal to the rank 
of its transpose.

Proof Let P and Q be invertible matrices such that A' =  Q -lAP  has the form (4.2.11). 
We begin by noting that the assertion is obvious for the matrix A'. Next, we examine the 
diagrams

(4.2.15)

The vertical arrows are bijective maps. Therefore, in the left-hand diagram, Q carries the 
column space of A' (the image of multiplication by A') bijectively to the column space of A. 
The dimensions of these two column spaces, the ranks of A and A', are equal. Similarly, the 
ranks of A 1 and A'  are equal. So to prove the theorem, we may replace the matrix A by A'. 
This reduces the proof to the trivial case of the matrix (4.2.11). □
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We can reinterpret the rank ri of the transpose matrix A*. By definition, it is the 
dimension of the space spanned by the columns of A *, and this can equally well be thought 
of as the dimension of the space of row vectors spanned by the rows of A. Because of this, 
people often refer to ri as the row rank of A, and to r  as the column rank.

The row rank is the maximal number of independent rows of the matrix, and the 
column rank is the maximal number of independent columns. Theorem 4.2.14 can be stated 
this way:

Corollary 4.2.16 The row rank and the column rank of an m X n matrix A are equal. □

4.3 LINEAR OPERATORS

In this section, we study linear transformations T: V  --+ V that map a vector space to itself. 
They are called linear operators. Left multiplication by a (square) n X n matrix with entries 
in a field P  defines a linear operator on the space F n of column vectors.

For example, let c =  cosO and s =  sin0. The rotation matrix (4.2.2)

is a linear operator on the plane ]R2.
The dimension formula dim(ker 1) +  dim(im 1) =  dim V  is valid for linear operators. 

But here, since the domain and range are equal, we have extra information that can be 
combined with the formula. Both the kernel and the image of T are subspaces of V.

Proposition 4.3.1 Let K and W denote the kernel and image, respectively, of a linear 
operator T on a finite-dimensional vector space V.

(a) The following conditions are equivalent:
• T is bijective,
• K =  {0},
• W = V.

(b) The following conditions are equivalent:
• V  is the direct sum K $  W,
• K n  W = {0},
• K + W = V.

Proof, (a) T is bijective if and only if the kernel K is zero and the image W is the whole 
space V. If the kernel is zero, the dimension formula tells us that dim W = dim V, and 
therefore W = V. Similarly, if W = V, the dimension formula shows that dim K =  0, and 
therefore K = O. In both cases, T is bijective.
(b) V  is the direct sum K $  W if and only if both of the conditions K n W = {0} and 
K + W = V  hold. If K n W = {0}, then K and W are independent, so the sum U  =  K +  W 
is the direct sum K $  W, and dim U =  dim K +  dim W (3.6.6)(a). The dimension formula 
shows that dim U = dim V, so U = V, and this shows that K $  W =  V. If K +  W = V, 
the dimension formula and Proposition 3.6.6(a) show that K and W are independent, and 
again, V is the direct sum. □
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• A linear operator that satisfies the conditions (4.3.1)(a) is called an invertible operator. 
Its inve rse function is also a linear operator. An operator that is not invertible is a singular 
operator.

The conditions of Proposition 4.3.1(a) are not equivalent when the dimension of V 
is infinite. For example, let V = Roo be the space of infinite row vectors (« j, 02, . . .  ) (see 
Section 3.7). The kernel of the right shift operator S+, defined by

(4.3.2) S+ (a i, a2, . . . ) =  (0, a i , a 2-----),

is the zero space, and its image is a proper su bspace of V. The kernel of the /eft shift operator 
S~ , defined by

S“ (a i, az, a3, . . . )  =  (az, 0 3 , . . .  ),
is a proper subspace of V, and its image is the whole space.

The discussion of bases in the previous section must be changed slightly when we are 
dealing with linear operators. We should pick only one basis B for V, and use it in place of 
both of the bases B and C in (4.2.6). In other words, to define the matrix A of T with respect 
to the basis B, we sh ould write

(4.3.3) T(B) =  BA, and AX =  Y as before.

As with any linear transformation (4.2.7), the columns of A are the coordinate vectors of the
i mages T(vj) of the basis vectors:

(4.3.4) T(vj) =  v ia } j  + -----h v„anj.

A linear operator is invertible if and only if its matrix with respect to an arbitrary basis is an 
invertible matrix.

When one speaks of the the matrix of a linear operator on the space F ” , it is assumed 
th at the basis is the standard basis E, unless a different basis is specified. The operator is then 
multiplication by that matrix.

A new feature arises when we study the effect of a change of basis. Suppose that B is 
replaced by a new basis B'.

Proposition 4.3.5 Let A be the matrix of a linear operator T with respect to a basis B.

(a) Suppose th at a new basis B' is described by B' =  BP. The matrix that represents T with 
respect to this basis is A' =  F-1 AP.

(b) The matrices A' that represent the operator T for different bases are the matrices of the
form A' =  p -1AP, where P can be any invertible matrix. □

In other words, the matrix changes by conjugation. This is a confusing fact to grasp. 
So, th ough it follows from (4.2.13), we will rederive it. Since B' =  BP and since T(B) =  BA, 
we have

T(B') =  T(B)P =  BAP.

We are not done. The formula we have obtained expresses T(B') in terms of the old basis B. 
To obtain the new matrix, we must write T(B') in terms of the new basis B'. So we substitute 
B =  B 'p -  into the equation. Doing so gives us T(B') =  B 'p -lAP. □
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In general, we say that a square matrix A is similar to another matrix A' if A' =  p - lAP  
for some invertible matrix P. Such a matrix A' is obtained from A by conjugating by p - 1,
and since P can be any invertible matrix, p- 1 is also arbitrary. It would be correct to use the
term conjugate in place of similar.

Now if we are given the matrix A, it is natural to look for a similar matrix A' that 
is particularly simple. One would like to get a result somewhat like Theorem 4.2.10. But 
here our allowable change is much more restricted, because we have only one basis, and 
therefore one matrix P, to work with. Having domain and range of a linear transformation 
equal, which seems at first to be a simplification, actually makes things more difficult.

We can get some insight into the problem by writing the hypothetical basechange 
matrix as a product of elementary matrices, say P — E \ . ■ ■ Er. Then

p -1AP =  ■■. E l1 A E 1 ■.. E r.

In terms of elementary operations, we are allowed to change A by a sequence of steps 
A — g - 1AE. In other words, we may perform an arbitrary column operation E on A, 
but we must also make the row operation that corresponds to the inverse matrix g - 1. 
Unfortunately, these row and column operations interact, and analyzing them becomes 
confusing.

4.4 EIGENVECTORS

The main tools for analyzing a linear operator T : V --+ V are invariant subspaces and 
eigenvectors .

• A subspace W of V is invariant, or more precisely T-invariant, if it is carried to itself by 
the operator:

(4.4.1) T W C W .

In other words, W is invariant if, whenever w is in W, T(w) is also in W. When this is so, T  
defines a linear operator on W, called its restriction to W. We often denote this restriction 
by T|w.

If W is a T-invariant sub space, we may form a basis B of V  by appending vectors to a 
basis (Wb . . . ,  Wk) of W, say

Then the fact that W is invariant is reflected in the matrix of T. The columns of this matrix, 
we’ll call it M, are the coordinate vectors of the image vectors (see (4.3.3)). But T(wj) is 
in the subspace W, so it is a linear combination of the basis (wi ,  . . . ,  Wk). When we write 
T(wj) in terms of the basis B, the coefficients of the vectors vi, . • • ,  vn-k will be zero. It 
follows that M will have the block form

(4.4.3)

where A is a k x  k  matrix, the matrix of the restriction of T  to W.
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If V happens to be the direct sum Wi EEl W2 of two T-invariant subspaces, and if we 
make a basis B =  (Bi, B2) of V by appending bases of Wi and W2, the matrix of T will have 
the block diagonal form

where Ai is the matrix of the restriction of T to W;.

The concept of an eigenvector is closely related to that of an invariant subspace.

• An eigenvector v of a linear operator T is a nonzero vector such that

for some scalar A, i.e., some element of F. A nonzero column vector is an eigenvector of a 
square matrix A if it is an eigenvector for the operation of left multiplication by A.

The scalar A that appears in (4.4.5) is called the eigenvalue associated to t he eigenvector 
v. When we speak of an eigenvalue of a linear operator T or of a matrix A  without specifying 
an eigenvector, we mean a scalar A that is the eigenvalue associated to some eigenvector. 
An eigenvalue may be any element of F, including zero, but an eigenvector is not allowed 
to be zero. Eigenvalues are often denoted, as here, by the Greek letter A (lambda) .1

An eigenvector with eigenvalue 1 i s a fixed vector: T(v) = v. An eigenvector with 
eigenvalue zero is in the nullspace: T(v) =  O. When V = K” , a nonzero vector v is an 
eigenvector if v and T(v)  are parallel.

If v is an eigenvector of a linear operator T, with eigenvalue A, the subspace W  
spanned by v will be T-invariant, because T(cv) = c A v  is in W for all scalars c. Conversely, 
if the one-dimensional subspace spanned by v is invariant, then v is an eigenvector. So an 
eigenvector can be described as a basis of a one-dimensional invariant subspace.

It is easy to tell whether or not a given vector X is an eigenvector of a matrix A. We 
simply check whether or not AX is a multiple of X. And, if A is the matrix of T  with respect 
to a basis B, and if X is the coordinate vector of a vector v, then X is an eigenvector of A  if 
and only if v is an eigenvector for T.

The standard basis vector el =  ( l, O)‘ is an eigenvector, with eigenvalue 3, of the 
matrix

The vector (1, - 1 )  is another eigenvector, with eigenvalue 2. The vector (0,1,1) is an 
eigenvector, with eigenvalue 2, of the matrix

(4.4.4)

(4.4.5) T(v) = A v

3 1 
0 2 '

1 1 -1
A =  2 1 1

3 0 2

1The German word “eigen” m eans roughly “characteristic.” Eigenvectors and eigenvalues are som etim es called 
characteristic vectors.
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If (vi,  • • • , vn) is a basis of V  and if Vi is an eigenvector of a linear operator T, the 
matrix of T will have the block form

(4.4.6) k  B 
0 D

"a. * .. .  *
o

*
o

where A is the eigenvalue of Vj. This is the block form (4.4.3) in the case of an invariant 
subspace of dimension 1.

Proposition 4.4.7 Similar matrices (A' = P 1AP) have the same eigenvalues. 

This is true because similar matrices represent the same linear transformation. □

Proposition 4.4.8

(a) Let T be a linear operator on a vector space V. The matrix of T with respect to a basis 
B =  (vi, . . . ,  vn) is diagonal if and only if each of the basis vectors Vj is an eigenvector.

(b) An n Xn  matrix A is similar to a diagonal matrix if and only if there is a basis of F n that 
consists of eigenvectors.

This follows from the definition of the matrix A (see (4.3.4)). If T(vj) = Ajvj, then

P-i
(4.4.9) 7\B) =  . . . Vnk n) = O i, ..., Vn)

n_ □

This proposition shows that we can represent a linear operator simply by a diagonal 
matrix, provided that it has enough eigenvectors. We will see in Section 4.5 that every linear 
operator on a complex vector space has at least one eigenvector, and in Section 4.6 that 
in most cases there is a basis of eigenvectors. But a linear operator on a real vector space 
needn’t have any eigenvector. For example, a rotation of the plane through an angle () 
doesn’t carry any vector to a parallel one unless () is 0 or 7T. The rotation matrix (4.2. 2) with 
():;t:O, 7r has no real eigenvector.

• A general example of a real matrix that has at least one real eigenvalue is one all of whose 
entries are positive. Such matrices, called positive matrices, occur often in applications, 
and one of their most important properties is that they always have an eigenvector whose 
coordinates are positive (a positive eigenvector).

Instead of proving this fact, we’ll illustrate it by examining the effect of multiplication 
by a positive 2 x 2  matrix A  on ]R2. Let Wi =  Ae(- be the columns of A. The parallelogram 
law for vector addition shows that A sends the first quadrant S to the sector bounded by the 
vectors W\ and w 2. The coordinate vector of w,- is the ith column of A. Since the entries of
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A are positive, the vectors Wi lie in the first quadrant. So A  carries the first quadrant to  itself: 
S:J AS. Applying A to this inclusion, we find AS A2S, and so on:

(4.4.10) S D AS D A2S D A3S d  . . . ,

as is illustrated below for the matrix A
- [? ;]■

Now, the intersection of a nested set of sectors is either a sector or a half-line. In our 
case, the intersection Z  = R A rS turns out to be a half-line. This is intuitively plausible, 
and it can be shown in various ways, but we’ll omit the proof. We multiply the relation 
Z  =  H A 'S  on both sides by A;

A Z  = A = f > ' S - z -

Hence Z  =  AZ. Therefore the nonzero vectors in Z  are eigenvectors.

(4.4.11) Images of the First Quadrant Under Repeated Multiplication by
a Positive Matrix.

4.5 THE CHARACTERISTIC POLYNOMIAL
In th s section we determine the eigenvectors of an arbitrary linear operator. We recall that 
an eigenvector of a linear operator T is a nonzero vector v such that

(4.5.1) T(v) =  Av,

for some A in F . If we don’t know A, it can be difficult to find the eigenvector directly when 
the matrix of the operator is complicated. The trick is to solve a different problem, namely 
to determine the eigenvalues first. Once an eigenvalue A is determined, equation (4.5.1) 
becomes linear in the coordinates of v, and solving it presents no problem.

We begin by writing (4.5.1) in the form

(4.5.2) [A/ -  T  (v) =  O,
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where I  stands for the identity operator and AI — T  is the linear operator defined by

(4.5.3) [AI -  T] (v) =  Av -  T(v).

It is easy to check that AI -  T is indeed a linear operator. We can restate (4.5.2) as follows:

(4.5.4) A nonzero vector v is an eigenvector with eigenvalue A 
if and only if it is in the kernel of AI — T.

Corollary 4.5.5 Let T be a linear operator on a finite-dimensional vector space V.
(a) The eigenvalues of T are the scalars A in F  such that the operator AI — T is singular, 

i.e., its nullspace is not zero.
(b) The following conditions are equivalent:

• T is a singular operator.
• T has an eigenvalue equal to zero .
• If A is the matrix of T with respect to an arbitrary basis, then detA =  O. □

If A  is the matrix of T  with respect to some basis, then the matrix of AI  -  T  is M  -  A. 
So AI — T is singular if and only if det (M  — A) =  O. This determinant can be computed 
with indeterminate A, and doing so provides us, at least in principle, with a method for 
determining the eigenvalues and eigenvectors.

whose action on R2 is illustrated in3 2
4

A-3 -2
A-4

Suppose for example that A is the matrix 

Figure (4.4.11). Then

M  -  A =  [ X-  

and
det (M  -  A) =  A2 -7 A  +  10 =  (A -5 )(A  -  2).

The determinant vanishes when A =  5 or 2, so the eigenvalues ofA  are 5 and 2. To find the 
eigenvectors, we solve the two systems of equations [5/ — A]X =  0 and [2/ — A]X =  O. The 
solutions are determined up to scalar factor:

(4.5.6)

We now consider the same computation for an indeterminate matrix of arbitrary size. 
It is customary to replace the symbol A by a variable t. We form the matrix t l  — A:

' 1 ' --
--

--
--

--
--

--
--

--
--

--
-1

tS
J

II

1

II<N

1

1
I

(4.5.7) tl  - A  =

(t- a n )  - a i2 
- a 2i ( t-a 22)

- a rti • ■ ■

ain
- a 2n

(t- Ann)

The complete expansion of the determinant [Chapter 1 (1.6.4)] shows that det (t1 — A) is a 
polynomial of degree n in t whose coefficients are scalars, elements of F.
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Definition 4.5.8 The characteristic polynomial of a linear operator T is the polynomial

p(t) =  det (tJ — A),

where A is the matrix of T  with respect to some basis.

The eigenvalues of T are determined by combining (4.5.5) and (4.5.8):

Corollary 4.5.9 The eigenvalues of a linear operator are the roots of its characteristic 
polynomial. □

Corollary 4.5.10 Let A be an upper or lower triangular n X n matrix with diagonal entries 
a\\, . . . ,  ann. The characteristic polynomial of A is (t — a n )  ■ • (t — ann). The diagonal 
entries of A are its eigenvalues.

Proof If A is upper triangular, so is tJ -  A, and the diagonal entries of t l  -  A are t — an . 
The determinant of a tria ngul a r matrix is the product of its diagonal entries. □

Proposition 4.5.11 The characteristic polynomial of an operator T does not depend on the 
choice of a basis.

Proof A second basis leads to a matrix A' =  r  1 AP (4.3.5), and

t/ -  A' =  / /  -  p_1 AP = P~l (tJ -  A)P. Then 

det (t/ -  A') =  detp_1det (tJ -  A )detP  =  det (t/ — A). □

The characteristic polynomial of the 2 X 2 matrix A = a :  
c d is

(4.5.12) p(t) =  det ( J  -  A) =  det t-a  -b
-c  t-d =  t2 — (trace A) t +  (det A),

where trace A =  a  +  d.
An incomplete description of the characteristic polynomial of an n X n matrix is 

given by the next proposition, which is proved by computation. It wouldn’t be very 
difficult to determine the remaining coefficients, but explicit formulas for them aren’t often 
used.

Proposition 4.5.13 The characteristic polynomial of an n X n matrix A has the form

p  (t) =  tn — (trace A)?”- 1 +  (intermediate terms) +  (-l)" (d e tA ),

where trace A, the trace ofA,  is the sum of its diagonal entries:

trace A =  a n  +  £22 +----- + fln"- O

Proposition 4.5.11 shows that all coefficients of the characteristic polynrnmai are 
independent of the basis. For instance, trace(P"1.AP) =  t^ r e  A.
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S in c e  t h e  c h a r a c t e r is t ic  p o ly n o m ia l ,  th e  tr a c e , a n d  t h e  d e t e r m in a n t  a r e  in d e p e n d e n t  o f  

t h e  b a s is ,  t h e y  d e p e n d  o n ly  o n  t h e  o p e r a t o r  T .  S o  w e  m a y  d e f in e  t h e  t e r m s  characteristic 
polynomial, trace, a n d  determinant o f  a  lin e a r  o p e r a t o r  T .  T h e y  a r e  t h e  o n e s  o b t a i n e d  u s in g  

t h e  m a tr ix  o f  T  w i t h  r e s p e c t  t o  a n y  b a s is .

Proposition 4.5.14 L e t  T  b e  a  l in e a r  o p e r a t o r  o n  a  f in i t e - d im e n s io n a l  v e c t o r  s p a c e  V .

(a) I f  V  h a s  d im e n s io n  n , t h e n  T  h a s  a t  m o s t  n  e i g e n v a lu e s .

(b) I f  F  is  t h e  f ie ld  o f  c o m p l e x  n u m b e r s  a n d  V  * {O } , t h e n  T  h a s  a t  l e a s t  o n e  e i g e n v a l u e ,  a n d  

h e n c e  a t  l e a s t  o n e  e i g e n v e c t o r .

Proof, (a) T h e  e i g e n v a l u e s  a r e  t h e  r o o t s  o f  t h e  c h a r a c t e r is t ic  p o ly n o m ia l ,  w h ic h  h a s  d e g r e e  

n . A  p o ly n o m ia l  o f  d e g r e e  n  c a n  h a v e  a t  m o s t  n  r o o t s .  T h is  i s  t r u e  f o r  a  p o l y n o m i a l  w it h  

c o e f f ic ie n t s  in  a n y  f ie ld  F  ( s e e  ( 1 2 .2 .2 0 ) ) .

(b) T h e  F u n d a m e n t a l  T h e o r e m  o f  A lg e b r a  a s s e r t s  t h a t  e v e r y  p o ly n o m ia l  o f  p o s i t i v e  d e g r e e  

w i t h  c o m p le x  c o e f f ic ie n t s  h a s  a t  l e a s t  o n e  c o m p le x  r o o t .  T h e r e  is  a  p r o o f  o f  t h is  t h e o r e m  in  

C h a p te r  15  ( 1 5 .1 0 .1 ) .  □

F o r  e x a m p le ,  l e t  Re b e  m a tr ix  ( 4 .2 .2 )  th a t  r e p r e s e n t s  th e  c o u n t e r c lo c k w is e  r o t a t io n  o f  

]R2 t h r o u g h  a n  a n g le  d. I t s  c h a r a c t e r is t ic  p o ly n o m ia l ,  p ( t )  =  t2 -  ( 2  c o s  d)t +  1 , h a s  n o  r e a l  

r o o t  p r o v i d e d  t h a t  d*  0 ,  7(,  s o  n o  r e a l  e ig e n v a lu e .  W e  h a v e  o b s e r v e d  t h is  b e f o r e .  B u t  th e  

o p e r a t o r  o n  C 2 d e f in e d  b y  Re d o e s  h a v e  t h e  c o m p l e x  e i g e n v a l u e s  e ± 'e .

Note: W h e n  w e  s p e a k  o f  the r o o t s  o f  a  p o ly n o m ia l  p (t)  o r  the e i g e n v a l u e s  o f  a  m a tr ix  o r  

l in e a r  o p e r a t o r ,  r e p e t i t i o n s  c o r r e s p o n d in g  to  m u l t ip le  r o o t s  a r e  s u p p o s e d  t o  b e  in c lu d e d .  

T h i s  t e r m in o lo g y  is  c o n v e n i e n t ,  t h o u g h  im p r e c i s e .  □

Corollary 4.5.15 I f  A j ,  . . . ,  A n a r e  th e  e i g e n v a l u e s  o f  a n  n  X n  c o m p l e x  m a tr ix  A ,  t h e n  d e t  A  

is  th e  p r o d u c t  A i . . .  A n , a n d  t r a c e A  is  th e  s u m  A i +  . . .  +  A n .

Proof L e t  p ( t )  b e  th e  c h a r a c t e r is t ic  p o ly n o m ia l  o f  A .  T h e n

( t  - A i ) ’ - - ( t  — A „ )  =  p ( t )  =  t n -  ( t r a c e A ) t n - 1  +  . . . ±  ( d e t A ) .  □

4 . 6  T R IA N G U L A R  A N D  D I A G O N A L  F O R M S

I n  t h is  s e c t io n  w e  s h o w  t h a t  fo r  “ m o s t ”  l in e a r  o p e r a t o r s  o n  a  c o m p l e x  v e c t o r  s p a c e ,  t h e r e  is  
a  b a s is  s u c h  t h a t  t h e  m a tr ix  o f  t h e  o p e r a t o r  is  d ia g o n a l .  T h e  k e y  f a c t ,  w h ic h  W as n o t e d  a t  t h e  

e n d  o f  S e c t io n  4 .5 , is  t h a t  e v e r y  c o m p le x  p o ly n o m ia l  o f  p o s i t i v e  d e g r e e  h a s  a  r o o t .  T h is  t e l l s  

u s  th a t  e v e r y  l in e a r  o p e r a t o r  h a s  a t  l e a s t  o n e  e ig e n v e c t o r .

Proposition 4.6.1

(a) Vector space form: L e t  T  b e  a  l in e a r  o p e r a t o r  o n  a  f in i t e - d im e n s io n a l  c o m p l e x  v e c t o r  

s p a c e  V . T h e r e  is  a  b a s is  B o f  V  s u c h  t h a t  t h e  m a tr ix  o f  T  w i t h  r e s p e c t  t o  th a t  b a s is  is  

u p p e r  tr ia n g u la r .

(b) Matrix form: E v e r y  c o m p l e x  n  X n  m a tr ix  A  is  s im i la r  t o  a n  u p p e r  t r ia n g u la r  m a tr ix :  

T h e r e  is  a  m a tr ix  P e G L n  ( C )  s u c h  t h a t  p - 1A P  is  u p p e r  tr ia n g u la r .
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Proof. The two assertions are equivalent, because of (4.3.5). We will work with the matrix. 
Let V =  Cn. Proposition 4.5.14(b) shows that V contains an eigenvector of A, call it vi. 
Let A be its eigenvalue. We extend (v) to a basis B =  (vi, . . .  , vn) for V. The new matrix 
A' =  P - lAP has the block form

(4.6.2)

where D is an (n -  1) X (n — 1) matrix (see (4.4.6)). By induction on n , we may assume that 
the existence of a matrix Q E G L n-i (re) such that Q~1 DQ is upper triangular will have been 
proved. Let

Then A " =  Q- 1A1 QlQ 1

is upper triangular, and A" =  (PQi) lA(PQi).

'1 0 '
0 Q \

A" =  (

’A * '
0 Q  lDQ_

□

Corollary 4.6.3 Proposition 4.6.1 continues to hold when the phrase “upper triangular” is 
replaced by “lower triangular.”

The lower triangular form is obtained by listing the basis B of (4.6.1)(a) in reverse 
order. □

The important point for the proof of Proposition 4.6.1 is that every complex polynomial 
has a root. The same proof will work for any field F , provided that all the roots of the 
characteristic polynomial are in the field.

Corollary 4.6.4

(a) Vector space form: Let T be a linear operator on a finite-dimensional vector space V 
over a field F , and suppose that the characteristic polynomial of T is a product of linear 
factors in the field F. There is a basis B of V such that the matrix A of T is upper (or 
lower) triangular.

(b) Matrix form: Let A be an n X n matrix with entries in F , whose characteristic polynomial 
is a product of linear factors. There is a matrix P e GL„( F)  such that P XAP  is upper 
(or lower) triangular.

The proof is the same, except that to make the induction step one has to check that the 
characteristic polynomial of the matrix D that appears in (4.6.2) is p U ) /( t  -  A), where p (t) 
is the characteristic polynomial of A. Then the hypothesis that the characteristic polynomial 
factors into linear factors carries over from A to D. □

We now ask which matrices A are similar to diagonal matrices. They are called 
diagonalizable matrices. As we saw in (4.4.8) (b), they are the matrices that have bases 
of eigenvectors. Similarly, a linear operator that has a basis of eigenvectors is called a 
diagonalizable operator. The diagonal entries are determined, except for their order, by the 
linear operator T. They are the eigenvalues.

Theorem 4.6.6 below gives a partial answer to our question; a more complete answer 
will be given in the next section.
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Proposition 4.6.5 Let vi, . . . ,  Vr be eigenvectors of a linear operator T with distinct
eigenvalues Ai ........Ar. The set (vi, . . .  , Vr) is independent.

Proof. We use induction on r. The assertion is true when r  =  1, because an eigenvector 
cannot be zero. Suppose that a dependence relation

is given. We must show that a,- =  0 for all i. We apply the operator T:

This is a second dependence relation among (vi , . . . ,  Vr). We eliminate Vr from the two
relations, multiplying the first relation by Ar and subtracting the second:

0 =  a \(k r -  Ai)ui H---------+  a r _i(Ar -  Ar _ i ) u r _i .

Applying induction, we may assume that (vi , . . . , Vr _ 1) is an independent set. This tells us 
that the coefficients a,(Ar — A,), i <  r, are all zero. Since the A,- are distinct, Ar — A,- is not 
zero if i <  r. Thus a i =  •■■ =  a r _i  =  O. The original relation reduces to 0 =  arVr. Since an 
eigenvector cannot be zero, a r is zero too. □

The next theorem follows by combining (4.4.8) and (4.6.5):

Theorem 4.6.6 Let T be a linear operator on a vector space V of dimension n over a field
F. If its characteristic polynomial has n distinct roots in F, there is a basis for V with respect 
to which the matrix of T is diagonal. □

Note Diagonalization is a powerful tool. When one is presented with a diagonalizable 
operator, it should be an automatic response to work with a basis of eigenvectors.

As an example of diagonalization, consider the real matrix

(4.6.7) A = 3 2 
1 4

Its eigenvectors were computed in (4.5.6). These eigenvectors form a basis B =  (vi , V2) of 
R2. According to (3.5.13), the matrix relating the standard basis E to this basis B is

(4.6.8) P =  [B] -
1 2
1 -1 , and

(4.6.9) r - AP = 1 [1 _2 ] [3  4 ]  [1  -2 ]  =  [ 5 2 ]  =  A .

The next proposition is a variant of Proposition 4.4.8. We omit the proof.
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Proposition 4.6.10 Let F  be a field.

(a) Let T be a linear operator on F n. If B =  (vi, ..., vn) is a basis of eigenvectors of T, and 
if P = [B], then A =  p- 1 AP = [B]- 1A[B] is diagonal.

(b) Let B =  (v i, . . .  , vn) be a basis of Fn, and let A be the diagonal matrix with diagonal
entries A i, . . . ,  An that are not necessarily distinct. There is a unique matrix A such 
that, for i =  1, . . .  , n, Vi is an eigenvector of A  with eigenvalue Ai, namely the matrix 
[B] A [B]-1. □

A nice way to write the equation [B]_1A [B] =  A is

(4.6.11) A[B] =  [B]A.

One application of Theorem 4.6.6 is to compute the powers of a diagonalizable matrix. 
The next lemma needs to be pointed out, though it follows trivially when one expands the 
left sides of the equations and cancels PP~1.

Le^ma 4.6.12 Let A, B, and P be n X n matrices. If P is invertible, then (p -1AP)(p- 1 BP) 
p- 1 (AB)P, and for all k :: 1, (P~xAP)k = P~1A kP.

Thus if A, P, and A are as in (4.6.9), then

1

□

A k = P A kP~ 1 = '1  2 ' '5  ' k '1  2 1
1 -1_ _ 2 _ _1 -1_ “  3

5k + 2k+l 2-5k ~ 2 k+l 
5k -  2k 2-5k +  2k

If f ( t)  =  a 0 +  aj t +  • ■. +  a ntn is a polynomial in t with coefficients in F  and if A is an 
n X n matrix with entries in F, then f(A ) will denote the matrix obtained by substituting A 
formally for t.

(4.6.13) /(A ) — ciqI  +  cijA +  anA n.

The constant term ao gets replaced by aoI. Then if A =  PAF~1,

(4.6.14) /(A ) =  f(P A P ~x) =  a0! + a^P A P ^  +  ■ • • +  anP A nP~l = P f(A )P ~ \

The analogous notation is used for linear operators: If T is a linear operator on a vector 
space over a field F, the linear operator f (1 )  on V is defined to be

(4.6.15) f (1 )  =  aoI +  a  T + •■• +  an Tn ,

where I  denotes the identity operator. The operator f (T )  acts on a vector by / ( T v  =
aov +  ai Tv + ---- + a n Tn v. (In order to avoid too many parentheses we have omitted some
by writing Tv for T(v).)
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4.7 JORDAN FORM

Suppose we are given a linear operator T on a finite-dimensional complex vector space 
V. We have seen that, if the roots of its characteristic polynomial are distinct, there is 
a basis of eigenvectors, and that the matrix of T with respect to that basis is diago
nal. Here we ask what can be done without assuming that the eigenvalues are distinct. 
When the characteristic polynomial has multiple roots there will most often not be a 
basis of eigenvectors, but we’ll see that, nevertheless, the matrix can be made fairly 
simple.

An eigenvector with eigenvalue A of a linear operator T is a nonzero vector v such 
that (T — A)v =  O. (We will write T -  A for T — AI here.) Since our operator T may not 
have enough eigenvectors, we work with generalized eigenvectors .

• A generalized eigenvector with eigenvalue A of a linear operator T is a nonzero vector x 
such that (T  -  A)kx =  0 for some k > o. Its exponent is the smallest integer d  such that 
(T _ A ) dx  =  o.

Proposition 4.7.1 Let x  be a generalized eigenvector of T, with eigenvalue A and exponent 
d, and for j  2:  0, let uj = (T -  A )j'x . Let B =  (uo, . . .  , «d -i), and let X =  Span B. Then X  
is a T-invariant subspace, and B is a basis of X.
We use the next lemma in the proof.

Lemma 4.7.2 With uj as above, a linear combination y  = cjuj +  . . .  +  Cd- iUd- i with 
j  :: d  -  1 and c j*"O is a generalized eigenvector, with eigenvalue A and exponent d - j .

Proof Since the exponent of x  is d, (T -  A)d - lx =  Ud-i O. Therefore (T -  A)d - j _1 y  =  
Cj ud- i isn’t zero, but (T  — A)d - jy  = O. So y is a generalized eigenvector with eigenvalue A 
and exponent d  -  j, as claimed. □

Proof o f the Proposition. We note that

(4.7.3) Tuj =
Auj +  uj+i if j  <  d  — 1
Auj if j  =  d  — 1
o if j  >  d  -  l.

Therefore Tuj is in the subspace X for all j. This shows that X is invariant. Next, B 
generates X by definition. The lemma shows that every nontrivial linear combination of B is 
a generalized eigenvector, so it is not zero. Therefore B is an independent set. □

Corollary 4.7.4 Let x  be a generalized eigenvector for T, with eigenvalue A. Then A is an 
ordinary eigenvalue -  a root of the characteristic polynomial of T.

Proof. If the exponent of x is d, then with notation as above, ud-i is an eigenvector with 
eigenvalue A. □
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Formula 4.7.3 determines the matrix that describes the action of T on the basis B of 
Proposition 4.7.1. It is the d x d  Jordan block J \. Jordan blocks are shown below for low 
values of d:

(4.7.5) Jx = [X],
A
1 X

X

1 X 

1 X

X

1 X 

1 X 

1 X

The operation of a Jordan block is especially simple when A =  O. The d x d  block Jo 
operates on the standard basis of Cd as

The 1 X 1 Jordan block Jo is zero.

The Jordan Decomposition Theorem below asserts that any complex n X n  matrix is 
similar to a matrix J  made up of diagonal Jordan blocks (4.7.5) -  that it has the Jordan form

(4.7.7)

where J,- =  J \ t for some A,-. The blocks Ji can have various sizes dj, with 'Ld,- =  n, 
and the diagonal entries A, aren’t necessarily distinct. The characteristic polynomial of the 
matrix 1 is

(4.7.8) p it)  = i t -  AO* it  -  A2)*  --- ( 1 -  X i)d(.

The 2x2  and 3x3 Jordan forms are

•̂l
(4.7.9) Aj Ai

1 A! X2

X3

Ai
1 Aj

^2

Ai '
1 A-i

1 Ai

where the scalars A,- may be equal or not, and in the fourth matrix, the blocks may be listed 
in the other order.

Theorem 4.7.10 Jordan Decomposition.
(a) Vector space form : Let T  be a linear operator on a finite-dimensional complex vector 

space V. There is a basis B of V  such that the matrix of T with respect to B has Jordan 
form (4.7.7).

(b) Matrix form : Let A be an n X n complex matrix. There is an invertible complex matrix P 
such that 1' 1 AP  has Jordan form.

It is also true that the Jordan form of an operator T or a matrix A  is unique except for the 
order of the blocks.
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Proof This proof is due to Filippov [Filippov]. Induction on the dimension of V allows us 
to assume that the theorem is true for the restriction of T to any proper invariant subspace. 
So if V is the direct sum of proper T-invariant subspaces, say Vi EB . . .  EB Vr , with r  >  1, then 
the theorem is true for T.

Suppose that we have generalized eigenvectors Vi, for i =  1, . . .  , r .  Let lti be the 
subspace defined as in Proposition 4.7.1, with x = Vi. If V is the direct sum Vi EB . . .  EB Vr, 
the theorem will be true for V, and we say that vi , . . . .  vr are Jordan generators for T. We 
will show that a set of Jordan generators exists.

Step 1: We choose an eigenvalue A of T, and replace the operator T by T — AI. If A is the 
matrix of T with respect to a basis, the matrix of T — AI with respect to the same basis will 
be A -  AI, and if one of the matrices A  or A — AI is in Jordan form, so is the other. So 
replacing T by T -  AI is permissible. Having done this, our operator, which we still call T, 
will have zero as an eigenvalue. This will simplify the notation.

Step 2: We assume that 0 is an eigenvalue of T. Let K,- and U; denote the kernel and image, 
respectively, of the ith power T l. Then K\ C K 2 C. •. and U\ U2 ••• • Because Vis finite
dimensional, these chains of subspaces become constant for large r, say K m = Km+i = . . .  
and Um =  Um+l =  . ••. Let K  =  Km and U =  Um. We verify that K  and U are invariant 
subspaces, and that V is the direct sum K EB U.

The subspaces are invariant because TKm C Km -i C Km and TUm =  Um+1 =  Um. 
To show that V =  K EB U, it suffices to show that K  n U =  {OJ (see Proposition 4.3.1(b)). 
Let z be an element of K  n U. Then Tm z  =  0, and also z =  Tm v for some v in V. Therefore 
T2m v =  0, so v is an element of K 2m. But K m  =  Km, so Tmv =  0, i.e., z =  0.

Since T has an eigenvalue 0, K  is not the zero subspace. Therefore U has smaller 
dimension than V, and by our induction assumption, the theorem is true for T\u. Unfortu
nately, we can’t use this reasoning on K, because U might be zero. So we must still prove 
the existence of a Jordan form for T |k . We replace V by K and T by T\k.

• A linear operator T on a vector space V is called nilpotent if for some positive integer r, 
the operator T r is zero.

We have reduced the proof to the case of a nilpotent operator.

Step 3: We assume that our operator T is nilpotent. Every nonzero vector will be a generalized 
eigenvector with eigenvalue 0. Let N  and W denote the kernel and image of T, respectively. 
Since T is nilpotent, N  *{O}. Therefore the dimension of W is smaller than that of V, 
and by induction, the theorem is true for the restriction of the operator to W. So there 
are Jordan generators W \,. . . ,  Wr for T|w. Let ei denote the exponent of Wi, and let W; 
denote the subspace formed as in Proposition 4.7.1, using the generalized eigenvector w,. 
So W =  Wi EB .. .  EB Wr.

For each i, we choose an element v, of V such that Tvi = w ,. The exponent di of V; 
will be equal to e; +  1. Let Vi denote the subspace formed as in (4.7.1) using the vector V;.
Then Tltii =  W,. Let U denote the sum Vi +------ + Yr. Since each lti is an invariant subspace,
so is U. We now verify that v i, . • . , Vr are Jordan generators for the restriction T |u , i.e., 
that the subspaces V,- are independent.
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We notice two things: First, TV  =  W because TV, =  Wi. Second, V; n N  C Wi. This 
follows from Lemma 4.7.2, which shows that V, n  N  is the span of the last basis vector

v/. Since dt -  1 e;, which is positive, T ^ - 1̂  is in the image W,.
We suppose given a relation Vi +------ + vr 0, with Vi in V;. We must show that Vi =  0

for all i. Let Wi T v,. Then Wi + ---- + Wr = 0, and Wi is in W,. Since the subspaces Wi are
independent, Wi 0 for aU i. So TVi =  0, which means that Vi is in Vi n N. Therefore V, is 
in Wi. Using the fact that the subspaces W, are independent once more, we conclude that, 
V,' =  0 for all i.

Step 4: We show that a set of Jordan generators for T  can be obtained by adding some 
elements of N  to the set {vi, , . • , of Jordan generators for T| u.

Let v be an arbitrary element of V and let Tv w. Since T V  =  W, there is a vector u 
in U such that Tw =  w Tv. Then z == v -  u is in N  and V u  + z. Therefore U +  N  = V. 
This being so, we extend a basis of U to a basis of V by adding elements, say zi, . . .  , Ze, of 
N  (see Proposition 3.4.16(a)). Let N  be the span of (zi, . . . ,  ze). Then U n  N ' = t0} and 
U +  N ' =  V, so V is the direct sum U $  N'.

The operator T  is zero on N \  so N ' is an invariant subspace, and the matrix of T |n ' is 
the zero matrix, which has Jordan form. Its Jordan blocks are 1 X 1 zero matrices. Therefore 
{vi, • . . ,  Vr; Zi, . . • ze} is a set of Jordan generators for T. □

It isn’t difficult to determine the Jordan form for an operator T, provided that the 
eigenvalues are known, and the analysis also proves uniqueness of the form. However, 
finding an appropriate basis of V can be painful, and is best avoided.

To determine the Jordan form, one chooses an eigenvalue A, and replaces T  by T - A / ,  
to reduce to the case that A =  0. Let Ki denote the kernel of T ', and let k,- be the dimension 
of K,. In the case of a single d x d  Jordan block with A =  0, these dimensions are:

kWocfc _  {* if * < d
i |  d  if i > d  '

The dimensions ki for a general operator T are obtained by adding the numbers k!?lock for 
each block with A =  0. So ki will be the number of blocks with A =  0, k2 -  ki will be the 
number of blocks of size d  > 2 with A =  0, and so on.

Two simple examples:

"0 1 0 " ■ 1 -1 1 '
1 o 1 and B = 2 -2 2
0 -1 0 - 1 1 -1

Here A3 =  0, but A2,*0. If v is a vector such that A2v,*0, for instance v =  ei, then 
(v, Tv, T2 v) will be a basis. The Jordan form consists of a single 3 x 3 block.

On the other hand, B2 =  0. Taking v =  ei again, the set (v, Tv) is independent, and 
this gives us a 2x2  block. To obtain the Jordan form, we have to add a vector in N, for 
example v' =  e2 +  £3, which will give a 1 x 1 block (equal to zero). The required basis is 
(v, Tv, v').
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It is often useful to write the Jordan form as J = D +  N, where D is the diagonal part 
of the matrix, and N is the part below the diagonal. For a single Jordan block, we will have 
D =  XI and N  = Jo, as is illustrated below for a 3 x3  block:

XI + J0  = D + N .

Writing J = D +  N is convenient because D and N commute. The powers of J  can be 
computed by the binomial expansion:

~ X " "A ' "0 '
Jx - 1 X = 0 A + 1 0

1 X 0 A 1 0

(4.7.11) Jr = (D + N )r = Dr + Q D r~lN  + Q D r~2 N 2 +

When J  is an n X n matrix, =  0, and this expansion has at most n terms. In the case of a 
single block, the formula reads

(4.7.12) r  = (x i+ J o )r =  x r i  + ( ;) ;/-  ’/o +  (r2)x r - 2.i2 +

Corollary 4.7.13 Let T be a linear operator on a finite-dimensional complex vector space. 
The following conditions are equivalent:

(a) T is a diagonalizable operator,
(b) every generalized eigenvector is an eigenvector,
(c) all of the blocks in the Jordan form for T are 1 x 1 blocks.

The analogous statements are true for a square complex matrix A.

Proof, (a) ^  (b): Suppose that T is diagonalizable, say that the matrix of T with respect to 
the basis B =  (vi, . . . ,  vn) is the diagonal matrix A with diagonal entries Xi, . . . ,  A„. Let 
v be a generalized eigenvector in V, say that (T — A)kv =  0 for some X and some k > 0 . 
We replace T by T -  X to reduce to the case that Tkv =  0. Let X  = (x i, . .. , x n) f be the 
coordinate vector of v. The coordinates of Tkv will be XkX(. Since T kv = 0, either X,■ =  0, 
or x,- =  0, and in either case, X*x,- =  0. Therefore Tv =  0.

(b) (c): We prove the contrapositive. If the Jordan form of T has a k x k  Jordan block with 
k > 1, then looking back at the action (4.7.6) of h  — XI, we see that there is a generalized 
eigenvector that is not an eigenvector. So if (c) is false, (b) is false too. Finally, it is clear that
(c) ^  (a). □

Here is a nice application of Jordan form.

Theorem 4.7.14 Let T be a linear operator on a finite-dimensional complex vector space V. 
If some positive power of T is the identity, say T r =  I, then T  is diagonalizable.

Proof It suffices to show that every generalized eigenvector is an eigenvector. To do this, 
we assume that (T — Xl)2v = 0 with v # 0 , and we show that (T — X)v = 0. Since A is an 
eigenvalue and since Tr =  I, Xr = 1. We divide the polynomial r  — 1 by t — X:

;  - 1 =  ( ; -  +  x ; - 2 +  .. .  +  Xr-2t +  x ^ 1) (t — x).
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We substitute T for t  and apply the operators to v. Let w =  (T -  ).)v. Since T  -  1 =  0, 

0 =  ( r r  -  =  ( r r - 1 +  ).T r- 2 +  . . .  +  ).r-2r  +  ).r-l )(T  -  ).)v
=  ( Tr~ 1 +  ) . r r-2 +  . . .  +  ).r-2T +  A '-1)  w 
=  r).r_1w.

(For the last equality, one uses the fact that Tw =  ).w.) Since r).r-iw  =  0, w =  O. □

We go back for a moment to the results of this section. Where has the hypothesis that 
V be a vector space over the complex numbers been used? The answer is that its only use is 
to ensure that the characteristic polynomial has enough roots.

Corollary 4.7.15 Let V be a finite-dimensional vector space over a field F , and let T be a 
linear operator on V whose characteristic polynomial factors into linear factors in F. The 
Jordan Decomposition theorem 4.7.10 is true for T. □

The proof is identical to the one given for the case that F  =  C.

Corollary 4.7.16 Let T be a linear operator on a finite-dimensional vector space over a field 
of characteristic zero. Assume that T  =  /  for some r  2:1 and that the polynomial r  — 1 
factors into linear factors in F . Then T  is diagonalizable. □

The characteristic zero hypothesis is needed to carry through the last step of the proof 
of Theorem 4.7.14, where from the relation =  0 we want to conclude that w =  O.
The theorem is false in characteristic different from zero.

—Yvonne Verdier2

EXERCISES

Section 1 The Dimension Formula
1.1. Let A be a l  x m matrix and let B be an n x p  matrix. Prove that the rule M AMB 

defines a linear transformation from the space pm Xn of m Xn matrices to the space F lXp.
1.2. Let « ! , . • . ,  be elements of a vector space V. Prove that the map cp:F” --+ V defined

by cp(X) =  v-jxj +------ + v„x„ is a linear transformation.
1.3. Let A be an m X n  matrix. Use the dimension formula to prove that the space of solutions 

of the linear system A X  =  0 has dimension at least n — m.
1.4. Prove that every m x n matrix A of rank 1 has the form A =  Xyt, where X, Y are m - and 

n-dimensional column vectors. How uniquely determined are these vectors?
2I've received many emails asking about this rebus. Yvonne, an anthropologist, and her husband Jean-Louis, a 

mathematician. were close friends who died tragically in 1989. In their memory, l included them among the people 
quoted. The history of the valentine was one of Yvonne's many interests, and she sent this rebus as a valentine.
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1.5. (a) Let U and W be vector spaces over a field F. Show that the operations two 
(m, w) + (u', w') = (u +  u', w +  w') and c(u , w) = (cu, cw) on pairs of vectors 
make the product set U X W mto a vector space. It is called the product space.

(b) Let U and W be subspaces of a vector space V. Show that the map T: U xW  -+ V 
defined by T(u, w) = u +  w is a linear transformation.

(c) Express the dimension formula for T in terms of the dimensions of subspaces of V.

Section 2 The Matrix of a Linear Transformation
2.1. Let A and B be 2x2 matrices. Determine the matrix of the operator T :M MB on the 

space F 2x2 of 2x2 matrices, with respect to the basis (e^, ei2, e2\, e22)  of F2x2.
2.2. Let A be an n Xn matrix. and let V denote the space of n-dimensional row vectors. What 

is the matrix of the linear operator “right multiplication by A” with respect to the standard 
basis of V?

2.3-. Fmd all real 2x2 matrices that carry the line y = x  to the line y = 3x.
2.4. Prove Theorem 4.2 lO(b) using row and column operations.
2.5. 3Let A be an m Xn matrix of rank r, let I be a set of r row indices such that the

corresponding rows of A are independent, and let J  be a set of r column indices 
such that the corresponding columns of A are independent. Let M denote the rX r
submatrix of A obtained by taking rows from I  and columns from J . Prove that M is
invertible

Section 3 Linear Operators

3.1. Determine the dimensions of the kernel and the image of the linear operator T on the 
space Rn defined by T(Xi, ... , xn)  = (xi + xn, *2 + x n- \ ,  . . .  , x„ + x d 1.

3.2. (a) Let A = ^ be a real matrix, with c not zero. Show that using conjugation by
elementary matrices, one can eliminate the “a” entry.

(b) Which matrices with c =  0 are similar to a matrix in which the “a ” entry is zero?
3.3. Let T .V  -+ V be a linear operator on a vector space of dimension 2. Assume that T is not 

multiplication by a scalar. Prove that there is a vector tJ in V such that (v, T(v» is a basis 
of V, and describe thc matrix of T with respect to that basis.

3.4. Let B be a complex n Xn matrix. Prove or disprove: The linear operator T on the space of 
all n Xn matrices defined by T(A) = AB — BA is singular.

Section 4 EigenvectOrs

4.1. Let T be a linear operator on a vector space V, and let A be a scalar. The eigenspace V(A 
is the set of eigenvectors of T with eigenvalue A, together with O. Prove that V(A) is a 
T -invariant subspace.

4.2. (a) Let T be a linear operator on a finite-dimensional vector space V, such that T2 is the 
identity operator. Prove that for any vector v in V, v — Tv is either an eigenvector with 
eigenvalue -1, or the zero vector. With notation as in Exercise 4.1, prove that V is the 
direct sum of the eigenspaces V^1) and V ^1).

Suggested by Robert DeMarco
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(b) Generalize this method to prove that a linear operator T such that T4 =  /  decomposes 
a complex vector space into a sum of four eigenspaces.

4.3. Let T be a linear operator on a vector space V. Prove that if Wi and W2 are T-invariant 
subspaces of V, then Wi + W2 and Wi n W2 are T-invariant.

4.4. A 2 X 2 matrix A has an eigenvector Vi =  (1, 1)' with eigenvalue 2 and also an eigenvector 
V2 =  (1, 2 /  with eigenvalue 3. Determine A.

4.5. Find all invariant subspaces of the real linear operator whose matrix is

(a) 1  n
1 (b)

'1
2

3
4.6. Let P  be the real vector space of polynomials p(x) =  ao + ai +---- + a«x” of degree at

most n, and let D denote the derivative :lx, considered as a linear operator on P.

(a) Prove that D is a nilpotent operator, meaning that Dk = 0 for sufficiently large k.
(b) Find the matrix of D with respect to a convenient basis.
(c) Determine all D-invariant subspaces of P.

4.7. Let A be a real 2x2 matrix. The condition that a column vector X be an
eigenvector for left multiplication by A  is that A X  =  Y be a scalar multiple of X, which 
means that the slopes s =  X2/X1 and s '  = Y2/Y1 are equal.

(a) Find the equation in s that expresses this equality.
(b) Suppose that the entries of A are positive real numbers. Prove that there is an 

eigenvector in the first quadrant and also one in the second quadrant.

4.8. Let T be a linear operator on a finite-dimensional vector space for which every nonzero 
vector is an eigenvector. Prove that T is multiplication by a scalar.

Section 5 The Characteristic Polynomial

5.1. Compute the characteristic polynomials and the complex eigenvalues and eigenvec
tors of

(a) -2  2 
-2 3 (b) 1 i 

- /  1 ( c )
cosO 
sin 0

- sinO ] 
cos 0 J '

S.2. The characteristic polynomial of the matrix below is f3 — 41 — 1. Determine the missing 
entries.

0 1 2
1 1 0
1 * *

5.3. What complex numbers might be eigenvalues of a linear operator T such that
(a) Tr =  I, (b) r 2 -  5T +  6/  =  O?
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5.4. Find a recursive relation for the characteristic polynomial of the k X k  matrix

' 0 1 "
1 0 1 

1 • •

■ ■ 1 
1 0

and compute the polynomial for k :: 5.
5.5. Which real 2x 2 matrices have real eigenvalues? Prove that the eigenvalues are real if the 

off-diagonal entries have the same sign.
5.6. Let Vbe a vector space with basis (vo,. . . ,  Vn) and let ao, . . . ,  an be scalars. Define a linear

operator T on V by the rules T( vt) =  v,+i if i < n and T( Vn) =  aovo + a\ Vi +------+ an Vn.
Determine the matrix of T with respect to the given basis, and the characteristic polynomial 
of T.

5.7. Do A and A( have the same eigenvectors? the same eigenvalues?
5.8. Let A = (aij) be a 3x3 matrix. Prove that the coefficient of t in the characteristic 

polynomial is the sum of the symmetric 2 x 2 minors

an a i2 + det aii ai3 + det a22 a23
a2i a22 _ a3i a33 . _a32 a33 _

5.9. Consider the linear operator of left multiplication by an m Xm matrix A on the space 
fmxm of all m Xm  matrices. Determine the trace and the determinant of this operator.

5.1O. Let A and B be n X n matrices. Determine the trace and the determinant of the operator 
on the space F nXn defined by M AMB.

Section 6 Triangular and Diagonal Forms

6.1. Let A be an n Xn matrix whose characteristic polynomial factors into linear factors: 
p(t) =  (t — Ai )■ . • (t — An). Prove that traceA = Ai +  ■■■ + An, that detA =  Ai -A n .

6.2. Suppose that a complex nXn matrix A has distinct eigenvalues Ai, . . . ,  An, and let 
Vi , . . . ,  Vn be eigenvectors with these eigenvalues.

(a) Show that every eigenvector is a multiple of one of the vectors v*.
(b) Show how one can recover the matrix from the eigenvalues and eigenvectors.

6.3. Let T be a linear operator that has two linearly independent eigenvectors with the same 
eigenvalue A. Prove that A is a multiple root of the characteristic polynomial of T.

6.4. Let A 2 2 
1 2 . Find a matrix P such that p - lAP  is diagonal, and find a formula for the

matrix A30.
6.5. In each case, find a complex matrix P such that p- 1 AP is diagonal.

(a)
4  1 ]■

(b)
0 0 l ' r
1 0 0 , (c)
0 1 0

cos O -  sin O 
sin O cos O



Exercises 129

6.6. Suppose that A is diagonalizable. Can the diagonalization be done with a matrix P in the 
special linear group?

6.7. Prove that if A and B are n X n matrices and A is nonsingular, then AB is similar to BA.
6.8. A linear operator T  is nilpotent if some positive power 1'k is zero: Prove that T is nilpotent

if and only if there is a basis of V such that the matrix of T is upper triangular, with
diagonal entries zero.

6.9. Find all real 2x2 matrices such that A2 = I, and describe geometrically the way they 
operate by left multiplication on M.2.

T A 06.10. Let M be a matrix made up of two diagonal blocks: M = ^ ^
diagonalizable if and only if A and D are diagonalizable.

. Prove that M is

6.11. Let A be a 2x2 matrix with eigenvalue A.

(a) Show that unless itis zero, the vector (b, A — a )  isan eigenvector.
(b) Find a matrix P such that p- 1 AP is diagonal, assuming that b 0 and that A has distinct 

eigenvalues.

Section 7 Jordan Form

7.1. Determine the Jordan form of the matrix
1 1 
0 1 
0 1

7.2. Prove that A =

Jordan form.

1
-1

1

1 1
-l -1 
1 1

is an idempotent matrix, i.e., that A2 =  A, and find its

7.3. Let V be a complex vector space of dimension 5, and let T  be a linear operator on V 
whose characteristic polynomial is (/ — A)5. Suppose that the rank of the operator T — AI 
is2. What are the possible Jordan forms for 1'?

7.4. (a) Determine all possible Jordan forms for a matrix whose characteristic polynomial is
(f + 2)2( r - 5 )  5.

(b) What are the possible Jordan forms for a matrix whose characteristic polynomial is 
(/ +  2)2(/ — 5) , when space of eigenvectors with eigenvalue 2 is one-dimensional, and 
the space of eigenvectors with eigenvalue 5 is two-dimensional?

7.5. What is the Jordan form of a matrix A all of whose eigenvectors are multiples of a single 
vector?

7.6. Determine all invariant subspaces of a linear operator whose Jordan form consists of one 
block.

7.7. Is every complex square matrix A such that A2 = A diagonalizable?
7.8. Is every complex square matrix A similar to its transpose?
7.9. Find a 2 X 2 matrix with entries in that has a power equal to the identity and an 

eigenvalue in IF p, hut is not diagonalizable.
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Miscellaneous Problems
M.I. Let v = ( a i , . . . ,  an) be a real row vector. We may form the n!Xn matrix M whose rows 

are obtained by permuting the entries of v in all possible ways. The rows can be listed in 
an arbitrary order. Thus if n =  3, M might be

a\ a2 a3
a i a3 a2

a2 a-3 ai
a2 ai a3
a3 ai a 2
a3 a2 ai

Determine the possible ranks that such a matrix could have.
M.2. Let A be a complex n X n matrix with n distinct eigenvalues Ai, . . . ,  An. Assume that Aj 

is the largest eigenvalue, that is, that |Ai| >  |A,| for all i >  1.

(a) Prove that for most vectors X, the sequence X* =  Ai- kA kX  converges to an 
eigenvector Y with eigenvalue Aj, and describe precisely what the conditions on X  
are for this to be true.

(b) Prove the same thing without assuming that the eigenvalues Ax, ..., A„ are distinct.

to three-place accuracy, using aM.3. Compute the largest eigenvalue of the matrix
method based on Exercise M.2.

M.4. If X  =  (xj, X2, • • • ) is an infinite real row vector and A =  ( a , - j ) , 0  <  i ,  j  <  o o  is an infinite 
real matrix, one may or may not able to define the matrix product XA. For which A can 
one define right multiplication on the space ROO of all infinite row vectors (3.7.1)? on the 
space Z (3.7.2)?

*M.S. Let ({J: F n —*■ F m be left multiplication by an m X n matrix A.

(a) Prove that the following are equivalent:
• A has a right inverse, a matrix B such that AB  =  I,
• ({J is surjective,
• the rank of A  is m.

(b) Prove that the following are equivalent:
• A  has a left inverse, a matrix B such that BA =  I,
• ({J is injective,

• the rank of A is n.
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M.6. Without using the characteristic polynomial, prove that a linear operator on a vector space 
of dimension It can have at most It distinct eigenvalues.

*M.’ . (powers o f an operator) Let T be a linear operator on a vector space V. Let K,. and WI' 
denote the kernel and image, respectively, of Tr.

(8) Show that Kl c  K2 c  • • ■ and that Wi :: W2 :: • • •
(b) The following conditions might or might not hold for a particular value of r;

(1) Kr =  K"+i, (2) WI':: WI'+1, (3) WI' n Ki =  (0}, (4) Wi +  Kr =  V.
Find all implications among the conditions (1)-(4) when V is finite dimensional.

(c) Do the same thing when V is infinite dimensional.

M.8. Let T be a linear operator on a finite-dimensional complex vector space V.

(a) Let A be an eigenvalue of T, ahd let Va be the set of generalized eigenvectors, together 
With the Zero vector. Prove that V>. is a T-invariant subspace of V. (this subspace is 
called a generalized ei^Hspace.)

(b) Prove that it is the direct sum of its generalized eigenspaces.

Mi9. Let V be a finite-dimeftsiottal vector space. A linear operator T : it --+ V is called a
projection: if T2 =  T (not necessarily an “orthogonal projection”). Let K and W be the
kernel and image of a linear operator t .  Ptove

(il) t  is a projection orlto W if and only If the restriction of T to W is the identity map.
(b) If T is a projection, then it is the direct sum W EB K.
(c) The trace of a projection T is equal to its tank.

M.iOi Let A and B be I t  xn  and ”  x I t  teal thattices.

ta) Prove that if A is a ":onZettl eigenvalue tlf the m X Ht matrix A B then it is also ali 
eigenvalue of the n Xn matrix fiA. Show by example that this need not be true if 
A =0.

(b) Prove that / m -  AB  is invertible if and only if /„ — BA  is invertible.
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Applications of Linear Operators

By relieving the brain from all unnecessary work, 
a good notation sets it free to concentrate 

on more advanced problems.

—Alfred North Whitehead

5 .1  O R T H O G O N A L  M A T R IC E S  A N D  R O T A T IO N S

In this section, the field of scalars is the real number field.
We assume familiarity with the dot product of vectors in 1R2. The dot product of column 

vectors X  =  (xi, . . . ,  xn) l, Y = (yi, . . . ,  yn)1 in IRn is defined to be

(5.1.1) (X- Y) =  XiYi +-------+XnYn.

It is convenient to write the dot product as the matrix product of a row vector and a column 
vector:

(5.1.2) (X- Y) =  XlY.

For vectors in ]R2, one has the formula

(5.1.3) (X- Y) =  |X||Y| cos(9,

where 0 is the angle between the vectors. This formula follows from the law of cosines

(5.1.4). c2 = a 2 + b2 -  2ab cos 9

for the side lengths a, b, c of a triangle, where 0  is the angle between the sides a  and b. 
To derive (5.1.3), we apply the law of cosines to the triangle with vertices 0, X, Y. Its side 
lengths are |X|, |Y|, and |X — Y|, so the law of cosines can be written as

( ( X -  Y) . (X — Y» =  (X- X)  +  ( y .  Y) -2 |X ||Y | cosO

The left side expands to ( X X )  — 2(X . Y) +  (Y . Y), and formula (5.1.3) is obtained by 
comparing this with the right side. The formula is valid for vectors in IRn too, but it requires

132
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understanding the meaning of the angle, and we won’t take the time to go into that just now 
(see (8.5.2». .

The most important points for vectors in ]R2 and ]R3 are

• the square |X|2 of the length of a vector X is (X  • X) =  X (X, and
• a vector X is orthogonal to another vector Y, written X ..1. Y, if and only if

x (y  =  0.

We take these as the definitions of the length |X| of a vector and of orthogonality of 
vectors in ]Rn. Note that the length |X| is positive unless X  is the zero vector, because 
|X |2 =  X*X =  x 2 +---- +  x2 is a sum of squares.

Theorem 5.1.5 Pythagoras. If X  ..1. Y  and Z =  X  +  Y, then |Z |2 =  |X |2 +  I Y|2.

This is proved by expanding Z'Z. If X ..1. Y, then X(Y = Y(X =  0, so

ZlZ =  (X  + Y ) l(X  + Y )  =  X tX  + X tY + Y tX + Y tY = X lX + Y lY. □

We switch to our lowercase vector notation. If Vi , . • • , Vk are orthogonal vectors in 
and if w  = vi + -----+ Vh then Pythagoras’s theorem shows by induction that

Lemma 5.1.7 Any set (v i, . • . , Vk) of orthogonal nonzero vectors in is independent.

Proof Let w =  c  Vi +------ + Ck Vk be a linear combination, where not all Ci are zero, and let
Wi =  Ci Vi. Then w is the sum wi +------ + Wk of orthogonal vectors, not all of which are zero.
By Pythagoras, |w|2 =  |w d  +  . . .  +  |w*|2 >  0, so w#:O. □

• An orthonormal basis B =  (vi, . • • , vn) of is a basis of orthogonal unit vectors (vectors 
of length one). Another way to say this is that B is an orthonormal basis if

(5.1.8) O i • vj) = Sij,

where 8ij, the Kronecker delta, is the i,j-entry of the identity matrix, which is equal to 1 if 
i = j  and to 0 if i #: j.

Definition 5.1.9 A real n Xn  matrix A is orthogonal if A (A =  /, which is to say, A is invertible 
and its inverse is A(.

Lemma 5.1.10 A nn  X n matrix A is orthogonal if and only if its columns form an orthonormal 
basis of ]R” .

Proof Let A,- denote the ith column of A. Then A- is the ith row of A(. The i,j-en try  of A (A 
is A\Aj, so A =  /  if and only if A\Aj = Sij for all i and j. □

The next properties of orthogonal matrices are easy to verify:
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Proposition 5.1.11

(a) The product of orthogonal matrices is orthogonal, and the inverse of an orthogonal 
matrix, its transpose, is orthogonal. The orthogonal matrices form a subgroup 011 of 
G Ln, the orthogonal group.

(b) The determinant of an orthogonal matrix is ± 1. The orthogonal matrices with determi
nant 1 form a subgroup SOn of On of index 2, the special orthogonal group. □

Definition 5.1.12 An orthogonal operator T on ]R” is a linear operator that preserves the dot 
product: For every pair X, Y  of vectors,

(T X - TY) = (X  ■ Y).

Proposition 5.1.13 A linear operator T  on ]Rn is orthogonal if and only if it preserves lengths 
of vectors, or, if and only if for every vector X, (T X  ■ TX) =  (X ■ X).

Proof. Suppose that lengths are preserved, and let X and Y be arbitrary vectors in RI'I. 
Then

(T(X +  Y) . T(X + Y » =  ((X  +  Y) . (X +  Y».

The fact that (TX . TY) =  (X ■ Y) follows by expanding the two sides of this equality and 
cancelling. □

Proposition 5.1.14 A linear operator T on ]Rn is orthogonal if and only if its matrix A with 
respect to the standard basis is an orthogonal matrix.

Proof If A  is the matrix of T, then

(TX ■ TY) =  (AX)t(AY) = Xl(AlA)Y.

The operator is orthogonal if and only if the right side is equal to X1 y  for all X and Y. We 
can write this condition as Xt(AtA — J)Y =  O. The next lemma shows that this is true if and 
only if AlA — I =  0, and therefore A is orthogonal. □

Le^ma 5.1.15 Let M be an n x n matrix. If Xt MY = 0 for all column vectors X and Y, then 
M = O.

Proof The product e‘M ej evaluates to the i,j-entry of M. For instance,

[0 1 ] b 11 mi2l [ 0  l = m 21.J [ m 2i m22j  [0  J

If e. Mej =  0 for all i and j , then M = O. □

We now describe the orthogonal 2x2  matrices.

• A linear operator T on ]R2 is a reflection if it has orthogonal eigenvectors vi and V2 with 
eigenvalues 1 and -1, respectively.



Section 5.1 Orthogonal Matrices and Rotations 135

Because it fixes vi and changes the sign of the orthogonal vector V2, such an operator 
reflects the plane about the one-dimensional subspace spanned by V\ . Reflection about the 
ei-axis is given by the matrix

(5.1.16)

Theorem 5.1.17

(a) The orthogonal 2x2  matrices with determinant 1 are the matrices

(5.1.18) R = c - s 
s c

with c =  cos () and s =  sin (), for some angle (). The matrix R represents counterclockwise 
rotation of the plane ]R2 about the origin and through the angle ().

(b) The orthogonal 2 x  2 matrices A with determinant -1 are the matrices

(5.1.19) = RSo

with c and s as above. The matrix S reflects the plane about the one-dimensional 
subspace of ]R2 that makes an angle j() with the ei-axis.

Proof Say that

S

A =

is orthogonal. Then its columns are unit vectors (5.1.10), so the point (c, s)1 lies on the unit 
circle, and c =  cos () and s =  sin (), for some angle (). We inspect the product P = R‘A, where 
R is the matrix (5.1.18):

(5.1.20)

Since Rl and A are orthogonal, so is P. Lemma 5.1.10 tells us that the second column is a unit 
vector orthogonal to the first one. So

(5.1.21) 1 0
0 ±1

Working back, A =  RP, so A =  R if detA =  1 and A =  S =  RSo if detA = -1.
We’ve seen that R represents a rotation (4.2.2), but we must still identify the operator 

defined by the matrix S. The characteristic polynomial of S is (2 -  1, so its eigenvalues are
1 and -1. Let Xi and X2 be unit-length eigenvectors with these eigenvalues. Because S is 
orthogonal,
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It follows that (Xi • X2) =  O. The eigenvectors are orthogonal. The span of Xi will be the 
line of reflection. To determine this line, we write a unit vector X as (c', s ')l , with c' = cos a  
and s' =  sin a . Then

cc' +  ss' cos(0 — a )

s I - c ' sin(O — a)

When a  = \O, X  is an eigenvector with eigenvalue 1, a fixed vector. □

We describe the 3x3  rotation matrices next.

Definition 5.1.22 A rotation of 1R3 about the origin is a linear operator p  with these 
properties:

• p  fixes a unit vector u, called a pole of p, and
• p  rotates the two-dimensional subspace W orthogonal to u.

The axis o f rotation is the line .e spanned by u. We also call the identity operator a rotation, 
though its axis is indeterminate.

If multiplication by a 3 x  3 matrix R is a rotation of 1R3, R is called a rotation matrix.

(5.1.23) A Rotation of R3.

The sign of the angle of rotation depends on how the subspace W is oriented. We’ll orient 
W looking at it from the head of the arrow u. The angle 0 shown in the figure is positive. 
(This is the “right hand rule.”)

When u is the vector ei, the set (e2 , e3) will be a basis for W, and the matrix of p  will 
have the form

(5.1.24) M  =
1 0  0
0 c -s
0 s c

where the bottom right 2 x 2  minor is the rotation matrix (5.1.18).

• A rotation that is not the identity is described by the pair (u , 0), called a spin, that consists 
of a pole u and a nonzero angle of rotation O.

The rotation with spin (u, 0) may be denoted by P(u,e>. Every rotation p  different 
from the identity has two poles, the intersections of the axis of rotation .e with the unit sphere 
in 1R3. These are the unit-length eigenvectors of p  with eigenvalue 1. The choice of a pole
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u defines a direction on e, and a change of direction causes a change of sign in the angle 
of rotation. If (u, ()) is a spin of p, so is (-u , -()). Thus every rotation has two spins, and 
P(«,(}) =  P(-u,-(})-

Theorem 5.1.25 Euler’s Theorem. The 3X3 rotation matrices are the orthogonal 3x3  
matrices with determinant 1, the elements of the special orthogonal group SO 3.

Euler’s Theorem has a remarkable consequence, which follows from the fact that SO3 is a 
group. It is not obvious, either algebraically or geometrically.

Corollary 5.1.26 The composition of rotations about any two axes is a rotation about some 
other axis. □

Because their elements represent rotations, the groups SO2 and SO 3 are called the 
two- and three-dimensional rotation groups. Things become more complicated in dimension 
greater than 3. The 4 X 4 matrix

(5.1.27)

cos a  -  sin a  
sin a  cos a

cos fJ - sin fJ 
sin fJ cos fJ

is an element of S 0 4. Left multiplication by this matrix rotates the two-dimensional subspace 
spanned by (ei, ^2) through the angle a , and it rotates the subspace spanned by (¢3, ¢4) 
through the angle fJ.

Before beginning the proof of Euler’s Theorem, we note two more consequences:

Corollary 5.1.28 Let M be the matrix in SO3 that represents the rotation P(M,a ) with 
spin (u, a).

(a) The trace of M is 1 +  2 cos a .
(b) Let B be another element of SO3, and let u ' =  Bu. The conjugate M ' =  BMB1 represents 

the rotation P(M',a ) with spin (u' ,  a ) .

Proof, (a) We choose an orthonormal basis (vi, V2, V3) oflR3 such that vi =  u. The matrix 
of p  with respect to this new basis will have the form (5.1.24), and its trace will be 1 +  2 cos a . 
Since the trace doesn’t depend on the basis, the trace of M is 1 +  2 cos a  too.

(b) Since SO 3 is a group, M' is an element of SO3. Euler’s Theorem tells us that M'.is a 
rotation matrix. Moreover, u ' is a pole of this rotation: Since B is orthogonal, u ' =  B u has 
length 1, and

M 'u' =  BMB~l u' = BMu =  Bu =  u'.

Let a ' be the angle of rotation of M' about the pole u'. The traces of M and its conjugate 
M' are equal, so cos a  =  cos a '. This implies that a ' =  ± a . Euler’s Theorem tells us that
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the matrix B also represents a rotation, say with angle about some pole. Since B and M' 
depend continuously on f3, only one of the two values for a ' can occur. When =  0, 
B =  I, M  =  M, and a ' =  a . Therefore a ' =  a  for all f3. □

Lemma 5.1.29 A 3 x 3 orthogonal matrix M with determinant 1 has an eigenvalue
equal to 1.

Proof. To show that 1 is an eigenvalue, we show that the determinant of the matrix M -  I 
is zero. If B is an n Xn matrix, det (-B) =  ( - 1)ndetB . We are dealing with 3x3  matrices, so 
det (M -  I) =  -det (I -  M). Also, det (M -  I) f =  det (M -  I) and det M  = 1. Then

det (M — 1) =  det (M — I){ =  det M det (M — I )  =  det (M(Mf -  I)) =  det (I — M ).

The relation det (M -  I) =  det (I -  M) shows that det (M — I) =  0. □

Proof o f  Euler's Theorem. Suppose that M represents a rotation p  with spin (u, a ) . We
form an orthonormal basis B of V by appending to u an orthonormal basis of its orthogonal 
space W. The matrix M' of p  with respect to this basis will have the form (5.1.24), which 
is orthogonal and has determinant 1. Moreover, M =  PM 'p-1, where the matrix P is equal 
to [B] (3.5.13). Since its columns are orthonormal, [B] is orthogonal. Therefore M is also 
orthogonal, and its determinant is equal to 1.

Conversely, let M be an orthogonal matrix with determinant 1, and let T denote left 
multiplication by M. Let u be a unit-length eigenvector with eigenvalue 1, and let W be the 
two-dimensional space orthogonal to u. Since T is an orthogonal operator that fixes u, it 
sends W to itself. So W is a T-invariant subspace, and we can restrict the operator to W.

Since T is orthogonal, it preserves lengths (5.1.13), so its restriction to W is orthogonal 
too. Now W has dimension 2, and we know the orthogonal operators in dimension 2: they are 
the rotations and the reflections (5.1.17). The reflections are operators with determinant -1. 
I fan operator T acts on W as a reflection and fixes the orthogonal vector u, its determinant 
will be -1 too. Since this is not the case, T| w is a rotation. This verifies the second condition 
of Definition 5.1.22, and shows that T is a rotation. □

5.2 USING CONTINUITY

Various facts about complex matrices can be deduced by diagonalization, using reasoning 
based on continuity that we explain here.

A sequence Ak of n x n matrices converges to an n X n matrix A  if for every i and j , the 
i, j-entry of Ak converges to the i, j  entry of A. Similarly, a sequence p* (t), k  = 1 , 2 ,  . . .  , of 
polynomials of degree n with complex coefficients converges to a polynomial p(?) of degree 
n if for every j, the coefficient of 7  in Pk converges to the corresponding coefficient of p. We 
may indicate that a sequence S& of complex numbers, matrices, or polynomials converges to
S by writing Sk —> S.

Proposition 5.2.1 Continuity of Roots. Let Pk(t) be a sequence of monic polynomials of 
degree :: n, and let p{t) be another monic polynomial of degree n. Let a t j ,  . . . ,  a k,n and 
a i ,  . . .  an denote the roots of these polynomials.
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(a) If ak,v ^  a v for v =  1, . . . ,  n. then pk -+ p.
(b) Conversely, if pk ^  p, the roots a k. v of pk can be numbered in such a way that

ak,v -+ av for each v =  1 , . . . ,  n.

In part (b), the roots of each polynomial pk must be renumbered individually.

Proof. We note that pk(t) =  (t — ak,i) .. • (t — ak,n) and p (t) =  (t — a i)  . ■ • (t -  a n). Part 
(a) follows from the fact that the coefficients of p (t) are continuous functions -  polynomial 
functions -  of the roots, but (b) is less obvious.

Step 1: Let ak,v be a root of pk nearest to a i ,  i.e., such that |ak,v — a il is minimal. We 
renumber the roots of pk so that this root becomes a k ,i  Then

la l “  a k, l \n <  l (“ l —  a k.\ )  ' ' ■ ( “ 1 "  & k ,n )\ =  \ P k ( U l ) \ .

The right side converges to |p ( a i ) | =  O. Therefore the left side does too, and this shows that 
a*,i ^  a i .

Step 2: We divide, writing pk(t) =  (t — ak,i)qk(t) and p (t) =  (t — a i)q (t) . Then qk and
q are monic polynomials, and their roots are <*k,2, . . . .  ak,n and a 2, . . . ,  an,  respectively.
If we show that qk ^  q, then by induction on the degree n, we will be able to arrange the 
roots of qk so that they converge to the roots of q, and we will be done.

To show that qk -+ q, we carry the division out explicitly. To simplify notation, 
we drop the subscript 1 from ai .  Say that p (t) =  tn +  an_ \tn '~ 1 +  ■ ■. +  a \t  +  ao. that
q(t) =  ^ _l +  bn_2 tn ~ 2 + -----+ b \t  +  bo, and that the notation for Pk and qk is analogous.
The equation p (t) =  (t — a )q (t) implies that

bn- 2 = a  +  a n -l. 

bn-3 =  a Z + a  +  a n -2.

bo = a n-1 + a n- 2a n -i +-------+ a a 2 +  ai-

Since ak,i -+ a  and a ^ j -+ a;, it is true that &k,i -+ b,. □

Proposition 5.2.2 Let A be an n X n complex matrix.

(a) There is a sequence of matrices Ak that converges to A, and such that for all k the 
characteristic polynomial pk(t) of Ak has distinct roots.

(b) If a sequence Ak of matrices converges to A, the sequence Pk(t) of its characteristic 
polynomials converges to the characteristic polynomial p (t) of A.

(c) Let A; be the roots of the characteristic polynomial p. If Ak -+ A, the roots Ak,; of Pk 
can be numbered so that Ak,/ -+ A,- for each i.

Proof (a) Proposition 4.6.1 tells us that there is an invertible n Xn matrix P such that 
A  =  P-1AP is upper triangular. Its eigenvalues will be the diagonal entries of that matrix. 
We let A'k be a sequence of matrices that converges to A', whose off-diagonal entries are the
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same as those of A', and whose diagonal entries are distinct. Then A'k is upper triangular, and 
its characteristic polynomial has distinct roots. Let Ak =  PArkP~1. Since matrix multiplication 
is continuous, Ak --+ A. The characteristic polynomial of Ak is the same as that of A'k, so it 
has distinct roots.

Part ( b )  follows from ( a )  because the coefficients of the characteristic polynomial depend 
continuously on the matrix entries, and then ( c )  follows from Proposition 5.2.1. □

One can use continuity to prove the famous Cayley-Hamilton Theorem. We state the 
theorem in its matrix form.

T h e o r e m  S .2 .3  C a y l e y - H a m i l t o n  T h e o r e m .  Let p (t) = tn +  cn_ \tn~l +-+ C\t +  Co be the
characteristic polynomial of an n X n  complex matrix A. Then p(A) =  An +  Cn_iAn-1 + 
. .  +  CiA + Col is the zero matrix.

For example, the characteristic polynomial of the 2x2  matrix A, with entries a, b, c, d  
as usual, is t2 -  (a +  d )t +  (ad — bc) (4.5.12). The theorem asserts that

a b 
c d

2
-  (a +  d) a b 

c d

-ol+ '1  0 ' 
. °  1.

-

1 
. 1

o 
o

o 
o

 
1__

__
__

 
1

This is easy to verify.

Proofofthe Cayley-Hamilton Theorem. Step 1: The case that A is a diagonal matrix.
Let the diagonal entries be Ai , . . . ,  A„. The characteristic polynomial is

p(t) = (t - A i )  . . (  t -  An).

Here p(A ) is also a diagonal matrix, and its diagonal entries are p(A,). Since A; are the 
roots of p , p(A,) =  0 and p  (A) =  O.

Step 2: The case that the eigenvalues of A are distinct.
In this case, A is diagonalizable; say A' =  p- 1 AP is diagonal. Then the characteristic 

polynomial of A' is the same as the characteristic polynomial p (f)  of A, and moreover,

p (A ) = P p(A ')p -!

(see (4.6.14». By step 1, p(A ') = 0, so p(A) =  O.

Step 3: The general case.
We apply proposition 5.2.2. We let Ak be a sequence of matrices with distinct 

eigenvalues that converges to A. Let Pk be the characteristic polynomial of Ak. Since the 
sequence Pk converges to the characteristic polynomial p  of A, pk(Ak) --+ p  (A). Step 2 
tells us that Pk(Ak) =  0 for all k. Therefore p(A) =  O. □
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5.3 SYSTEMS OF DIFFERENTIAL EQUATIONS

We learn in calculus that the solutions of the differential equation

d x
(5.3.1)

d t
=  ax

are x(t) =  ceat, where c is an arbitrary real number. We review the proof because we want 
to use the argument again. First, ce*  does solve the equation. To show that every solution 
has this form, let x(t) be an arbitrary solution. We differentiate e~atx(i)  using the product 
rule:

(5.3.2)
dt

(e x(t ))  =; ( -ae  )x( t ) +  e at(ax(t))  =  0.

Thus e~afx (t)  is a constant c, and x(t) =  ceat.
To extend this solution to systems of constant coefficient differential equations, we use 

the following terminology. A vector-valued function or matrix-valued function is a vector or 
a matrix whose entries are functions of t:

ain(t)  

a mn if)

" X l ( t ) " a u  ( t )

(5.3.3) X ( t )  =

Xn(t) _
, A ( t )  =

a m l ( t )

The calculus operations of taking limits and differentiating are extended to vector
valued and matrix-valued functions by performing the operations on each entry separately. 
The derivative of a vector-valued or matrix-valued function is the function obtained by 
differentiating each entry:

(5.3.4)
d X
dt

~ x[ (t) '
dA

I

3

1

' ~dt =

- a m l W  • ■

where x / ( t )  is the derivative of Xi(t),  and so on. So q,. is defined if and only if each of the 
functions X ; ( t )  is differentiable. The derivative can also be described in matrix notation:

(5.3.5)
d X  ,. X (t + h) - X ( t )
—r- =  l i m -----------------:-------------- .
d t  h-+o h

Here X ( t  +  h) — X(t )  is computed by vector addition and the h in the denominator stands 
for scalar multiplication by h r1. The limit is obtained by evaluating the limit of each entry 
separately. So the entries of (5.3.5) are the derivatives xi (t). The analogous statement is true 
for matrix-valued functions.
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Many elementary properties of differentiation carry over to matrix-valued functions.
The product rule, whose proof is an exercise, is an example:

Lemma 5.3.6 Product Rule.
(a) Let A(t) and B(t) be differentiable matrix-valued functions of t, of suitable sizes so 

that their product is defined. Then the matrix product A (t)B(t) is differentiable, and its 
derivative is

d(AB) dA dB
—- = — B + A — . 

dt dt dt

(b) Let Ai, . . . ,  Ak be differentiable matrix-valued functions of t, of suitable sizes so that 
their product is defined. Then the matrix product A 1 — Ak is differentiable, and its 
derivative is

d  , . ^  ̂ / cl A s,
( :  • • • Ak) : A, i ! ^  )/1/+1 ■ ■ A^.

i==id t □

A system of homogeneous linear, first-order, constant-coefficient differential equations 
is a matrix equation of the form

(5.3.7)
d X
—  =  A X ,  
d f

where A is a constant n Xn matrix and X(t) is an n-dimensional vector-valued function. 
Writing out such a system, we obtain a system of n differential equations

(5.3.8)

dx  ] 
d t

dX n

d t

= a n  xi (t) +

=  a n l X ] ( t )  +

+ a in Xn(t)

+  Xn ( t ) .

T h e  X ; ( f )  a r e  u n k n o w n  f u n c t io n s ,  a n d  th e  s c a la r s  a ,,- are g iv e n . F o r  e x a m p le ,  if  

(5.3.9) A = 3 2 
1 4

(5.3.7) becomes a system of two equations in two unknowns:

dx[ 
dt 

dx 2 
dt

(5.3.10)
=  3xi +  2 x 2 

=  Xi + 4x2

The simplest systems are those in which A is a diagonal matrix with diagonal entries 
A;. Then equation (5.3.8) reads

(5.3.11) dx; , . ,d t  =  A iX i ( t ) ,  i = 1 , . . .  , n.
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Here the unknown functions Xi are not mixed up by the equations, so we can solve for each 
one separately:

(5.3.12) Xi — c;eA,-f

for some arbitrary constants Cj.
The observation that allows us to solve the differential equation (5.3.7) in many cases 

is this: If V is an eigenvector for A with eigenvalue X, i.e., if AV  =  XV, then

(5.3.13)

is a particular solution of (5.3.7). Here e^V  must be interpreted as the product of the 
variable scalar eXt and the constant vector V. Differentiation operates on the scalar function, 
fixing V, while multiplication by A operates on the vector V, fixing the scalar eXt. Thus 
frektV = XeKtV  and also A ektV = XektV. For example,

are eigenvectors of the matrix (5.3.9), with eigenvalue 5 and 2, respectively, and

(5.3.14) and 2 e2t
„2r

solve the system (5.3.10).
This observation allows us to solve (5.3.7) whenever the matrix A  has distinct real 

eigenvalues. In th at case every solution will be a linear combination of the special solutions
(5.3.13). To work this out, it is convenient to diagonalize.

Proposition 5.3.15 Let A be an n X n matrix, and let P be an invertible matrix such that 
A =  p- 1 AP is diagonal, with diagonal entries At, . . . ,  A„ .The general solution of the system 

=  AX is X  =  PX, where X  =  (q e ^ i ',  • • • , cne*"')* solves the equation ft- =  AX.

The coefficients Cj are arbitrary. They are often determined by assigning initial condi
tions -  the value of X  at some particular to.

Proof We multiply the equation ft- =  A X  by P: P ^  = PAX- =  APi'. But since P is 
constant, Pft- =  = !!j,. Thus djf =  AX. This reasoning can be reversed, soX solves
the equation with A if and only if X solves the equation with A. □

The matrix that diagonalizes the matrix (5.3.10) was computed before (4.6.8):

}dx

(5.3.16) A  = '  3 2 ' ' 1 2 ' , and A = ' 5
1 4_ 1 -1 2 _
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T h u s

( 5 .3 .1 7 ) x\
X2

PX = 1 2
1 -1

c\ e 
c j e

,5r 2 c2 e2t 
cje  -  C2 <?
c\e

In  o t h e r  w o r d s ,  e v e r y  s o lu t io n  i s  a  l in e a r  c o m b in a t io n  o f  t h e  t w o  b a s ic  s o l u t i o n s  ( 5 .3 .1 4 ) .

W e  n o w  c o n s id e r  t h e  c a s e  th a t  t h e  c o e f f i c ie n t  m a tr ix  A  h a s  d is t in c t  e i g e n v a l u e s ,  b u t  

th a t  t h e y  a r e  n o t  a ll  r e a l .  T o  c o p y  t h e  m e t h o d  u s e d  a b o v e ,  w e  fir st  c o n s id e r  d i f f e r e n t ia l  

e q u a t io n s  o f  t h e  f o r m  ( 5 .3 .1 ) ,  in  w h ic h  a  is  a  c o m p l e x  n u m b e r .  P r o p e r ly  in t e r p r e t e d ,  t h e  

s o l u t i o n s  o f  s u c h  a  d i f f e r e n t ia l  e q u a t io n  s t i l l  h a v e  t h e  f o r m  c e a t .  T h e  o n ly  t h in g  t o  r e m e m b e r  
is  th a t  e a t  w il l  n o w  b e  a  c o m p le x - v a lu e d  f u n c t io n  o f  t h e  r e a l  v a r ia b le  t.

T h e  d e f in i t io n  o f  th e  d e r iv a t iv e  o f  a  c o m p le x - v a lu e d  f u n c t io n  is  th e  s a m e  a s  f o r  r e a l 

v a lu e d  f u n c t io n s ,  p r o v id e d  th a t  t h e  l im it  ( 5 .3 .5 )  e x i s t s .  T h e r e  a r e  n o  n e w  f e a t u r e s .  W e  c a n  

w r i t e  a n y  s u c h  f u n c t io n  x(t )  in  t e r m s  o f  i t s  r e a l  a n d  im a g in a r y  p a r t s ,  w h i c h  w i l l  b e  r e a l - v a lu e d  

f u n c t io n s ,  s a y

( 5 .3 .1 8 ) x ( t )  =  p( t )  +  iq(t).

T h e n  x  is  d i f f e r e n t ia b le  i f  a n d  o n ly  i f  p  a n d  q  a r e  d i f f e r e n t ia b le ,  a n d  i f  t h e y  a r e , th e  d e r iv a t iv e  

o f  x  is  p '  +  iq'. T h is  f o l lo w s  d ir e c t ly  f r o m  th e  d e f in i t io n .  T h e  u s u a l  r u le s  f o r  d i f f e r e n t ia t io n ,  

s u c h  a s  th e  p r o d u c t  r u le ,  h o ld  f o r  c o m p le x - v a lu e d  f u n c t io n s .  T h e s e  r u le s  c a n  b e  p r o v e d  

e i t h e r  b y  a p p ly in g  t h e  c o r r e s p o n d in g  t h e o r e m  f o r  r e a l  f u n c t io n s  t o  p  a n d  q ,  o r  b y  c o p y in g  

th e  p r o o f  fo r  r e a l f u n c t io n s .
T h e  e x p o n e n t i a l  o f  a  c o m p l e x  n u m b e r  a =  r  +  si  is  d e f in e d  t o  b e

( 5 .3 .1 9 ) ea = er+st =  e r ( c o s s  +  i s i n s ) .

D i f f e r e n t ia t io n  o f  t h i s  f o r m u la  s h o w s  t h a t  d eat/ d t  =  aeaf. T h e r e f o r e  ceO-1 s o l v e s  t h e  

d i f f e r e n t ia l  e q u a t io n  ( 5 .3 .1 ) ,  a n d  t h e  p r o o f  g i v e n  a t  t h e  b e g in n in g  o f  t h e  s e c t i o n  s h o w s  th a t  

t h e s e  a r e  th e  o n ly  s o lu t io n s .
H a v i n g  e x t e n d e d  t h e  c a s e  o f  o n e  e q u a t i o n  t o  c o m p le x  c o e f f i c ie n t s ,  w e  c a n  u s e  d i a g o 

n a l i z a t io n  t o  s o lv e  a  s y s t e m  o f  e q u a t i o n s  ( 5 .3 .7 )  w h e n  A  is  a  c o m p l e x  m a tr ix  w i t h  d is t in c t  

e ig e n v a lu e s .

F o r  e x a m p l e ,  l e t  A . T h e  v e c t o r s  v i a n d  V2 a  r e  e ig e n v e c t o r s ,

w it h  e i g e n v a l u e s  1 +  i  a n d  1 -  i , r e s p e c t iv e ly .  L e t  B  d e n o t e  t h e  b a s is  ( v i ,  V2) .  T h e n  A  is  

d ia g o n a l iz e d  b y  t h e  m a tr ix  P =  [B ]:

(5.3.20)
. 1

P AP  = -  2
1 -i 

-i 1
■ 1 I " 1 i
-1 1 i 1

1 + i
1 — i

= A.
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T h e n X  = ■ Xl ■ 1C e( +

-X2 . C2e(l i)t . The solutions of (5.3.7) are

(5.3.21) ■ *l _  PX =
. *2 .

q e (l+l)( +  ic2 e(l l')t 
icie(l+;)t +  C2e(l~')f

where ci, C2 are arbitrary complex numbers. So every solution is a linear combination of the 
two basic solutions

(5.3.22) le
e (l +i) t 
.(1.+0/ and

(l-i)t
(1-/)/

However, these solutions aren’t very satisfactory, because we began with a system of 
differential equations with real coefficients, and the answer we obtained is complex. When 
the equation is real, we will want the real solutions. We note the following lemma:

Le^m a 5.3.23 Let A be a real n Xn  matrix, and let X(t) be a complex-valued solution of 
the differential equation ^  =  AX. The real and imaginary parts of X(t) solve the same 
equation. □

Now every solution of the original equation (5.3.7), whether real or complex, has the 
form (5.3.21) for some complex numbers c*. So the real solutions are among those we have 
found. To write them down explicitly, we may take the real and imaginary parts of the 
complex solutions.

The real and imaginary parts of the basic solutions (5.3.22) are determined using
(5.3.19). They are

(5.3.24) and

Every real solution is a real linear combination of these particular solutions.

5.4 THE MATRIX EXPONENTIAL
Systems of first-order linear, constant-coefficient differential equations can be solved for
mally, using the matrix exponential.

The exponential of an n X n real or complex matrix A is the matrix obtained by 
substituting A for x and I  for 1 into the Taylor’s series for e*, which is

(5.4.1)
2 3x x x

eX =  l  +  TT + -  +  -  +
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Thus by definition,

A A2 A3
(5A2) *-4 =  /  +  l! +  2! +  -  +

We will be interested mainly in the matrix valued function etA of the variable scalar t, 
so we substitute tA for A:

(5.4.3)
tA tA t2A 2

e / + i r + ^ r  +
;3/ t3

3! +

Theorem 5.4.4

(a) The series (5.4.2) converges absolutely and uniformly on bounded sets of complex 
matrices.

(b) is a differentiable function of t, and its derivative is the matrix product A etA.
(c) Let A and B be complex n X n matrices that commute: AB = BA. Then e l+ B =  e le B

In order not to break up the discussion, we have moved the proof of this theorem to the end 
of the section.

The hypothesis that A and B commute is essential for carrying the fundamental 
property e*+y =  e*eY over to matrices. Nevertheless, (c) is very useful.

Corollary 5.4.5 For any n Xn  complex matrix A, the exponential e l  is invertible, and its 
inverse is e~A.

Proof. Because A and -A commute, e le “A =  e l - a  =  e0 =  I. □

Since matrix multiplication is relatively complicated, it is often not easy to write down 
the entries of the matrix e l .  They won’t be obtained by exponentiating the entries of A unless 
A  is a diagonal matrix. If A is diagonal, with diagonal entries A 1, . . . ,  An, then inspection of 
the series shows that eA is also diagonal, and that its diagonal entries are eki.

The exponential is also fairly easy to compute for a triangular 2X2 matrix. For 
example, if '

A = 1 1
2

then

(5.4.6) '1  ' 1 "i r 1 '1  3 ' e *
_ 1_ +  1! 2 _ + 2! _ 4

.  ^2 .

It is a good exercise to calculate the missing entry * directly from the series.
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The exponential of eA can be determined whenever we know a matrix P such that
11. = P_1AP is diagonal. Using the rule P_1AkP =  (P_1AP)k (4.6.12) and the distributive law 
for matrix multiplication,

(5.4.7) P- V p  =  ( r t P )  +  +  + ■1! 2 !
= eA lAP = eA .

Suppose that A is diagonal, with diagonal entries A,. Then eA is also diagonal, and its 
diagonal entries are eA . in this case we can compute eA explicitly:

(5.4.8)

For example, if A =

eA =  PeAP-1.

'1 1 ' a nd P = '1  1 '
2 _ 1 . t hen 1' 1 AP =  A = So

l = 1 e ‘ 1 - 1 ' r 2 n
_ 1 e2 1

e e
eA

eA =  PeA P"

The next theorem relates the matrix exponential to differential equations:

Theorem 5.4.9 Let A be a real or complex n x  n matrix. The columns of the matrix eM form
a basis for the space of solutions of the differential equation ^  =  AX.

Proof. Theorem 5.4.4(b) shows that the columns of efA solve the differential equation. To 
show that every solution is a linear combination of the columns, we copy the proof given at 
the beginning of Section 5.3. Let X(t) be an arbitrary solution. We differentiate the matrix 
product eAAx (f)  using the product rule (5.3.6):

(5.4.10)
dt

( V MX (o ) =  (-AeAM) X (t)  +  e tA {A X (t)) .

Fortunately, A and e-M commute. This follows directly from the definition of the expo
nential. So the derivative is zero. Therefore X(t) is a constant column vector, say 
C =  (ci , • • . , cn) \  and X(t) =  efAC. This expresses X(t) as a linear combination of the 
columns of eM, with coefficients q . The expression is unique because is an invertible 
matrix. , □

Though the matrix exponential always solves the differential equation (5.3.7), it may 
not be easy to apply in a concrete situation because computation of the exponential can be 
difficult. But if A is diagonalizable, the exponential can be computed as in (5.4.8). We can 
use this method of evaluating eM to solve equation (5.3.7). Of course we will get the same 
solutions as we did before. Thus if A, P, and A are as in (5.3.16), then

JA PetAP 1 = 1 2
1 -1

„5t

*21
-1 -2
-1 1

(e5t + 2 e2t) 
(e5t — e2t)

(2 e5t - 
(2 eSt

- 2 e2t) 
+ e2t)

1
2
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The columns of the matrix on the right form a second basis for the space of solutions 
that was obtained in (5.3.17).

One can also use Jordan form to solve the differential equation. The solutions for 
an arbitrary k x k  Jordan block h  (4.7.5) can be determined by computing the matrix 
exponential. We write h  =  XI +  N, as in (4.7.12), where N is the k x k  Jordan block 1o with 
A =  O. Then Nk = 0, so

tN
g = I + l f  + + tk~lN k~x

X k-D T
Since N and AI commute,

JJ Xti xne = e e = e„At tN
1  + IT  +  ' "  +

rk-1Nk-1
(k -1)

/k-1)  

i ) T a

Thus if I  is the 3 X 3 block

then

The columns of this matrix form a basis for the space of solutions of the differential 
equation ^  =  J X.

We now go back to prove Theorem 5.4.4. The main facts about limits of series that we 
will use are given below, together with references to [Mattuck] and [Rudin]. Those authors 
consider only real valued functions, but the proofs carry over to complex valued functions 
because limits and derivatives of complex valued functions can be defined by working on the 
real and imaginary parts separately.

If r  and s are real numbers with r  <  s, the notation [r, s] stands for the interval 
r  < t < s ..

Theorem 5.4.11 ([Mattuck], Theorem 22.2B, [Rudin], Theorem 7.9). Let mk be a series of 
positive real numbers such that .E mk converges. If u(k)(t) are functions on an interval [r, s], 
and if |w(k) (t)| :: mk for all k and all t in the interval, then the series .E u (k)(t) converges 
uniformly on the interval. □

Theorem 5.4.12 ([Mattock], Theorem 11.5B, [Rudin], Theorem 7.17). Let u ®( t )  be a 
sequence of functions with continuous derivatives on an interval [r, s). Suppose that the 
series L  u(k)(t) converges to a function f ( t )  and also that the series of derivatives .E u/(k) (t) 
converges uniformly to a function g(t), on the interval. Then f  is differentiable on the 
interval, and its derivative is g. □
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P roo fo f Theorem 5.4.4(a). We denote the i,j-entry of a matrix A by (A )j here. So (AB)ij 
stands for the entry of the product matrix AB, and (Ak)tj for the entry of the kth power A k. 
With this notation, the i, j-entry of eA is the sum of the series

(5.4.13) (eA) ii =  (I)ii +
(A)ij , (A2)ij (A3)j

+ + +1! 2! 3!
To prove that the series for the exponential converges absolutely and uniformly, we need to 
show that the entries of the powers A* do not grow too quickly.

We denote by ||A || the maximum absolute value of the entries of a matrix A, the smallest 
real number such that

(5.4.14)

Its basic property is this:

I (A)ijl ||A|| for all i, j.

Lemma 5.4.15 Let A and B be complex n Xn matrices. Then ||AB| :: n|A|| ||B|, and for all
k >  0, ||Ak|| nk-i||A||k.

Proof. We estimate the size of the i, j-entry ofAB:
n n

| (AB)jj =  t (A ) iv (B )v j  t  I (A)ivll(B)Vjl nIIA|| ||B||.
v=l v=l

The second inequality follows by induction from the first one. □

We now estimate the exponential series: Let a  be a positive real number such that 
n||A|| :: a. The lemma tells us that |(Ak)jj :: ak (with one n to spare). So

(5.4.16)
1 1

(e A )ij I ( I ) i j l  +  |(A )ijl  +  2 \ ) ij +  3!2!
2 3a a2 a 3< 1 + — + — + — + .

-  1! 2! +  3! +

+

The ratio test shows that the last series converges (to e a of course). Theorem 5.4.11 shows 
that the series for eA converges absolutely and uniformly for all A with n IIA II :: a. □

Proofo f Theorem 5.4.4(b), (c). We use a trick to shorten the proofs. That is to begin by 
differentiating the series for etA+B, assuming that A and B are commuting n X n matrices. 
The derivative of rA +  B is A, and

(5.4. 17) e,tA+B =  1 +
(rA +  B) (rA + B)2

1! 2! +  ■

Using the product rule (5.3.6), we see that, for k >  0, the derivative of the term of degree k 
of this series is

d_ 
dt '

( < * + «  )  =  ( ^  B)i - , ^  {,A +  B)k -i) .
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Since AB = BA , we can pull the A in the middle out to the left:

(5.4.18) (  U k A (tA +  B ) t- '  =  A ('A . + B) t - 1
dt \  k! )  k! ( k - l ) !  ‘

This is the product of the matrix A and the term of degree k — 1 of the exponential series. 
So term-by-term differentiation of (5.4.17) yields the series for A etA+B.

To justify term-by-term differentiation, we apply Theorem 5.4.4(a). The theorem shows 
that for given A and B, the exponential series etA+B converges uniformly on any interval 
r  < t :: s. Moreover, the series of derivatives converges uniformly to A eM+B̂  gy Theorem 
5.4.12, the derivative of efA+£ can be computed term by term, so it is true that

dt
for any pair A, B of matrices that commute. Taking B = 0 proves Theorem 5.4.4(b).

- t A + B  =  A etA+B

Next, we copy the method used in the proof of Theorem 5.4.9. We differentiate the 
product e~tAetA+B, again assuming that A and B commute. As in (5.4.1O), we find that

± ( e-tAetA+B) =  (_Ae-tA) (etA+B) +  (e-tA) ^ a + b  ) =  0.

Therefore e~tAetA+B =  q where C is a constant matrix. Setting t =  0 shows that eB =  C. 
Setting B =  0 shows that e-tA =  (e'A)- 1. Then (etA)-ietA+B =  eB. Setting t =  1 shows that 
eA+B = eAeB  ̂This proves Theorem 5.4.4(c). □

We will use the remarkable properties of the matrix exponential again, in Chapter 9.

I have not thought it necessary to undertake the labour 
o fa  formal proof o f the theorem in the general case.

—Arthur Cayley1

EXERCISES

Section 1 Orthogonal Matrices and Rotations

1.1. Determine the matrices that represent the following rotations of JR3:
(a) angle 0, the axis e2, (b) angle 2n/3, axis contains the vector (1, 1, 1)t, (c) angle n /2 , 
axis contains the vector (1, 1, O)'.

1.2. What are the complex eigenvalues of the matrix A that represents a rotation of JR3 through 
the angle 0 about a pole u?

1.3. Is On isomorphic to the product group SOn X ( ± J}?
1.4. Describe geometrically the action of an orthogonal 3 x 3 matrix with determinant -1.

1 Arthur Cayley, one o f  the mathematicians for whom the Cayley-Hamilton Theorem  is  named, stated that
theorem for n Xn matrices in one of his papers, and then checked the 2 x 2  case (see (5 .2 .4» . H e closed  his
discussion of the theorem with the sentence quoted  here.
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1.5. Let A be a 3 x 3 orthogonal matrix with det A =  1, whose angle of rotation is different from 
O or 7r ,  and let M = A _ A t

( a )  Show that M has rank 2 , and that a nonzero vector X in the nullspace of M is an 
eigenvector of A with eigenvalue 1.

(b )  Find such an eigenvector explicitly in terms of the entries of the matrix A.

Section 2 Using Continuity

2.1. Use the Cayley-Hamilton Theorem to express A- 1 in terms of A, (det A )~1, and the 
coefficients of the characteristic polynomial. Verify your expression in the 2 X 2 case.

2.2. Let A  be m X m  and B be n X n complex matrices, and consider the linear operator T on 
the space Cm x” of all complex matrices defined by T(M) =  AMB.

(a) Show how to construct an eigenvector for T out of a pair of column vectors X, Y, where 
X  is an eigenvector for A and Y  is an eigenvector for Bl.

(b) Determine the eigenvalues of T in terms of those of A and B.
(c) Determine the trace of this operator.

2.3. Let A  be an n X n complex matrix.

(a) Consider the linear operator T defined on the space CnXn of all complex n Xn matrices 
by the rule T(M) = AM — MA. Prove that the rank of this operator is at most n2 — n.

(b) Determine the eigenvalues of T in terms of the eigenvalues A 1, . . .  , An of A.

2.4. Let A and B  be diagonalizable complex matrices. Prove that there is an invertible matrix P 
such that P“XAP and p - i  BP are both diagonal if and only if AB = BA.

Section 3 Systems of Differential Equations
3.1. Prove the product rule for differentiation of matrix-valued functions.
3.2. Let A (t) and B(t) be differentiable matrix-valued functions of t. Compute

(a )  (A(t)3), (b )  (A(t)-1), (c) (A (t)-i B(t»).

3.3. Solve the equation ^  =  A X  for the following matrices A:

(a) 2 1
1 2 . ( b ) (e)

' 1 2 3 ' ‘ 0 0 1 '
0 0 4 . ( d ) 1 0 0
0 0 - 1 0 1 0

3.4. Let A and B he constant matrices, with A invertible. Solve the inhomogeneous differential 

equation —— =  AX + B in terms of the solutions to the equation —— = AX.
dt

S e c t io n  4  T h e  M a tr ix  E x p o n e n t ia l  

4.1. Compute eA for the following matrices A:

dt

(0) a b
. ( b )

27ri 2 ni 
2 m ■<c> [ 2  1 ] '  ld) [ i  n

' 0

(e) 1 0
1 0
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4.2. Prove the formula etrace A = det (eA).
4.3. Let X beaneigenvector ofan n X n matrix A, with eigenvalue A.

i- l(a) Prove that ifA is invertible then X is an eigenvector for A , with eigenvalue A
(b) Prove that X is an eigenvector for eA , with eigenvalue eA

4.4. Let A and B be commuting matrices. To prove that eA+B =  eAeB, one can begin by 
expanding the two sides into double sums whose terms are multiples of A 1 Bj . Prove that 
the two double sums one obtains are the same.

dX4.5. Solve the differential equation —— =  AX when A is the given matrix:dt

(a) 2
1 2 ] ■

(b) 0 0 
1 0 ( )

1
1 1 

1 1
4.6. For an nXn matrix A, define sinA and cosA by using the Taylor’s series expansions for 

sin x and cosx.

(a) Prove that these series converge for all A.
(b) Prove that sin(tA) is a differentiable function of t and that sin(fA) =  A cos(fA).

4.7. Discuss the range ofvalidity ofthe following identities:

(a) cos2 A + sin2 A =  I,
(b) e'A =  cosA +  i sinA,
(c) sin(A +  B) =  sin A cos B + cosA sinB,
(d) e27tM =  I,

(e) ---------- =  eA(f) ~ , when A (f) is a differentiable matrix-valued function of f.dt dt

4.8. Let P, Bk, and B be n Xn matrices, with P invertible. Prove that if Bk converges to B, then 
1 ' 1 BkP converges to p-*BP.

Miscellaneous Problems
M.l. Determine the group On (1£) of orthogonal matrices with integer entries.
M.2. Prove the Cayley-Hamilton Theorem using Jordan form.
M.3. Let A be an n X n complex matrix. Prove that if trace Ak =  0 for all k > 0 , then A is

nilpotent.
M.4. Let A  be a complex n X n matrix all of whose eigenvalues have absolute value less than 1.

Prove that the series I  +  A + A2 +---- converges to (I  — A)_l .
M.5. The Fibonacci numbers 0, 1, 1, 2, 3, 5, 8, . . .  , are defined by the recursive relations 

f n = f n- i  +  /„ -2, with the initial conditions fo  =  0, f \  = 1. This recursive relation can be

written in matrix form as '0 1 ' fn - 2 fn - 1
1 1 . fn -1.
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(b) Suppose that a sequence an is defined by the relation an =  \{a n-1 + an- 2). Compute 
the limit of the sequence a n in terms of ao, ai.

M.6. (an integral operator) The space C of continuous functions f(u ) on the interval [0, 1] is one 
of many infinite-dimensional analogues of IR”, and continuous functions A(u,  v) on the 
square 0 < u, v <1  are infinite-dimensional analogues of matrices. The integral

is analogous to multiplication of a matrix and a vector. (To visualize this, rotate the unit 
square in the u, v-plane and the interval [0,1] by 90° in the clockwise direction.) The 
response of a bridge to a variable load could, with suitable assumptions, be represented 
by such an integral. For this, f  would represent the load along the bridge, and then A • f  
would compute the vertical deflection of the bridge caused by that load.

This problem treats the integral as a linear operator. For the function A = u v, 
determine the image of the operator explicitly. Determine its nonzero eigenvalues, and 
describe its kernel in terms of the vanishing of some integrals. Do the same for the function 
A = u2 + v2;

M.7. Let A be a 2x2 complex matrix with distinct eigenvalues, and let X be an indeterminate 
2x2 matrix. How many solutions to the matrix equation X 2 = A  can there be?

M.8. Find a geometric way to determine the axis of rotation for the composition of two three
dimensional rotations.
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S y m m e t r y

L'afgebre n'est qu'une geometrie ecrite; 
fa geometrie n'est qu'une afgebre figuree.

—Sophie Germain

Symmetry provides some of the most appealing applications of groups. Groups were 
invented to analyze symmetries of certain algebraic structures, field extensions (Chapter 16), 
and because symmetry is a common phenomenon, it is one of the two main ways in which 
group theory is applied. The other is through group representations, which are discussed in 
Chapter 10. The symmetries of plane figures, which we study in the first sections, provide a 
rich source of examples and a background for the general concept of a group operation that 
is introduced in Section 6.7.

We allow free use of geometric reasoning. Carrying the arguments back to the axioms 
of geometry will be left for another occasion.

6.1 SYMMETRY OF PLANE FIGURES
Symmetries of plane figures are usually classified into the types shown below:

(6.1.1) Bilateral Symmetry.

(6.1.2)

154

Rotational Symmetry.
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(6.1.3) Translational Symmetry.

Figures such as these are supposed to extend indefinitely in both directions. There is also a 
fourth type of symmetry, though its name, glide symmetry, may be less familiar:

(6.1.4) Glide Symmetry.

Figures such as the wallpaper pattern shown below may have two independent translational 
symmetries,

(6.1.5)

and other combinations of symmetries may occur. The star has bilateral as well as rotational 
symmetry. In the figure below, translational and rotational symmetry are combined:

(6.1.6)

Another example:

(6.1.7)
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A rigid motion of the plane is called an isometry, and if an isometry carries a subset 
F  of the plane to itself, it is called a symmetry of F. The set of all symmetries of F  forms a 
subgroup of the group of all isometries of the plane: If m and m' carry F  to F, then so does 
the composed map m m ', and so on. This is the group o f  symmetries of F.

Figure 6.1.3 has infinite cyclic groups of symmetry that are generated by the translation 
t that carries the figure one unit to the left.

G =  { . . . ,  t - 2, f 1, 1, t, ? ,  . . .  }.

Figure 6.1.7 has symmetries in addition to translations.

6.2 ISOMETRIES

The distance between points of is the length \u — v| of the vector u — v. An isometry of 
n-dimensional space Mn is a distance-preserving map f  from )R” to itself, a map such that, 
for all u and v in Kn,

(6.2.1) \f(u )  - f ( v ) |  =  |u -  v|.

An isometry will map a figure to a congruent figure.

Examples 6.2.2

(a) Orthogonal linear operators are isometries.

Because an orthogonal operator cp is linear, cp( u ) — cp(v) =  cp(u -  v), so |cp(u) — cp(v) | =  
Icp(u -  v)l, and because cp is orthogonal, it preserves dot products and therefore lengths, 
so |cp(u — v)| = \u — v|.

(b) Translation ta by a vector a, the map defined by ta(x) = x  +  a, is an isometry.

Translations are not linear operators because they don’t send 0 to 0, except of course 
for translation by the zero vector, which is the identity map.

(c) The composition of isometries is an isometry. □

Theorem 6.2.3 The following conditions on a map cp:Kn —> Kn are equivalent:
(a) cp is an isometry that fixes the origin: cp(O) =  0,
(b) cp preserves dot products: (cp(v) . cp(w) ) =  (v ■ w), for all v and w,
(c) cp is an orthogonal linear operator.

We have seen that (c) implies (a). The neat proof of the implication (b) => (c) that we
present next was found a few years ago by Sharon Hollander, when she was a student in an
MIT algebra class.

Lemma 6.2.4 Let x and y  be points of )Rn. If the three dot products (x ■ x), (x ■ y), and 
(y . y) are equal, then x =  y.
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Proof. S u p p o s e  th a t  ( x  • x )  =  ( x  ■ y )  =  ( y  ■ y ) .  T h e n

( ( x  -  y) ■ ( x  -  y )  )  =  ( x  ■ x )  -  2 ( x  ■ y )  +  ( y  . y )  =  O.

T h d e n g t h  o f  x  -  y  is  z e r o ,  a n d  t h e r e f o r e  x  =  y . □

Proof o f  Theorem 6.2.3, (b) => (c): L e t  q; b e  a  m a p  t h a t  p r e s e r v e s  d o t  p r o d u c t .  T h e n  it w i l l  

b e  o r t h o g o n a l ,  p r o v id e d  t h a t  it  is  a  l in e a r  o p e r a t o r  ( 5 .1 .1 2 ) .  T o  p r o v e  th a t  q; is  a  l in e a r  

o p e r a t o r ,  w e  m u s t  s h o w  th a t  q;(u +  v )  =  q;(u) +  q ; ( v )  a n d  t h a t  q ; ( c v )  =  c q ; ( v ) ,  f o r  a l l  u  a n d  

v  a n d  a l l  s c a la r s  c .

G i v e n  x  in  ]R” , w e ’ll  u s e  t h e  s y m b o l  x '  t o  s t a n d  f o r  q ; ( x ) .  W e  a l s o  in t r o d u c e  t h e  s y m b o l  
w  fo r  t h e  s u m , w r i t in g  w =  u + v. T h e n  t h e  r e la t io n  q ;(u  +  v )  =  q ; ( u )  +  q ; ( v )  th a t  is  t o  b e  

s h o w n  b e c o m e s  w ' =  u '  +  v '.

W e  s u b s t i t u t e  x  =  W  a n d  y  =  u '  +  v ' in to  L e m m a  6 .2 .4 .  T o  s h o w  t h a t  w ' =  u '  +  v ', it 

s u f f ic e s  t o  s h o w  th a t  th e  t h r e e  d o t  p r o d u c t s

( w ' . w ' ) ,  ( w ' ■ ( u '  +  v ' » ,  a n d  ( ( u '  +  v ')  • ( u '  +  v ' ) )

a r e  e q u a l .  W e  e x p a n d  t h e  s e c o n d  a n d  th ir d  d o t  p r o d u c t s .  I t  s u f f ic e s  t o  s h o w  t h a t

( w ' • w ') = ( w ' • u ' )  +  ( w ' • v') = ( u ' . u ' )  +  2 ( u '  ■ v') +  ( v' . v').

B y  h y p o t h e s i s ,  q; p r e s e r v e s  d o t  p r o d u c t s .  S o  w e  m a y  d r o p  th e  p r im e s :  ( w '  . w ') =  ( w  • w ) ,  

e t c .  T h e n  it  s u f f ic e s  t o  s h o w  th a t

( 6 .2 .5 )  ( w  • w )  =  ( w  • u )  +  ( w  • v )  =  ( u  • u )  +  2 ( u  • v )  +  ( v  • v ) .

N o w  w h e r e a s  w ' = u' +  v ' is  t o  b e  s h o w n ,  w  =  u  +  v  is  tr u e  b y  d e f in i t io n .  S o  w e  m a y  
s u b s t i t u t e  u  +  v  f o r  w .  T h e n  ( 6 .2 .5 )  b e c o m e s  t r u e .

T o  p r o v e  th a t  q J (c v )  =  c q ; ( v ) , w e  w r i t e  u  =  c v ,  a n d  w e  m u s t  s h o w  t h a t  u ' =  cv'. T h e  

p r o o f  is  a n a lo g o u s  t o  t h e  o n e  w e  h a v e  j u s t  g iv e n .  □

P roofo f Theorem 6.2.3, (a) => (b): L e t  q; b e  a n  i s o m e t r y  th a t f ix e s  th e  o r ig in .  W it h  t h e  
p r im e  n o t a t io n ,  t h e  d i s t a n c e - p r e s e r v in g  p r o p e r t y  o f  q; r e a d s

( 6 .2 .6 )  ( ( u '  -  v ' )  . ( u '  -  v ' »  =  « u  -  v )  • ( u  -  v ) ) ,

f o r  a ll u  a n d  v  in  ]R” . W e  s u b s t i t u t e  v  =  O. S in c e  0 ' =  0 , ( u '  . u ' )  =  ( u  . u ) .  S im i la r ly ,  

(V  ■ v ')  =  ( v  • v ) .  N o w  (b) f o l l o w s  w h e n  w e  e x p a n d  ( 6 .2 .6 )  a n d  c a n c e l  ( u  . u )  a n d  ( v  • v )  

f r o m  t h e  t w o  s i d e s  o f  t h e  e q u a t io n .  □

Corollary 6.2.7 E v e r y  i s o m e t r y  /  o f  is  th e  c o m p o s i t io n  o f  a n  o r t h o g o n a l  l in e a r  o p e r a t o r  

a n d  a  t r a n s la t io n .  M o r e  p r e c i s e ly ,  i f  /  is  a n  i s o m e t r y  a n d  i f  / ( 0 )  =  a, t h e n  /  =  ta<p, w h e r e  
ta is  a  t r a n s la t io n  a n d  q; is  a n  o r t h o g o n a l  l in e a r  o p e r a t o r .  T h is  e x p r e s s io n  f o r  /  is  u n iq u e .

Proof. L e t  /  b e  a n  i s o m e t r y ,  l e t  a = / ( 0 ) ,  a n d  l e t  q; =  t - a / .  T h e n  taq; =  / .  T h e  c o r o l la r y  

a m o u n t s  t o  t h e  a s s e r t io n  t h a t  qJ is  a n  o r t h o g o n a l  l in e a r  o p e r a t o r .  S in c e  qJ is  t h e  c o m p o s i t i o n
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of the isometries t-a and f ,  it is an isometry. Also, cp(O) =  t-af(O) =  t-a(a) =  0, so cp fixes 
the origin. Theorem 6.2.3 shows that cp is an orthogonal linear operator. The expression 
f  — tacp is unique because, since cp(O) =  0, we must have a =  f(O), and then cp =  t -a f .  □

To work with the expressions tacp for isometries, we need to determine the product 
(the composition) of two such expressions. We know that the composition cp1/1 of orthogonal 
operators is an orthogonal operator. The other rules are:

(6.2.8) tatb = ta+b and cpta = ta'CP, where a ' =  cp(a).

We verify the last relation: cpta(x) =  cp(x +  a) =  cp(x) +  cp(a) =  cp(x) +  a ' =  ta’cp(x).

Corollary 6.2.9 The set of all isometries of forms a group that we denote by M n , with 
composition of functions as its law of composition.

Proof. The composition of isometries is an isometry, and the inverse of an isometry is an 
isometry too, because orthogonal operators and translations are invertible, and if f  =  tacp, 
then =  cp-lt^l =  cp-lt_a. This is a composition of isometries. □

Note: It isn’t very easy to verify, directly from the definition, that an isometry is invertible. 

The Homomorphism Mn -+ On

There is an important map n : M n  -+ On, defined by dropping the translation part of an 
isometry f .  We write f  (uniquely) in the form f  =  tacp, and define n ( f )  =  cp.

Proposition 6.2.10 The map n  is a surjective homomorphism. Its kernel is the set T =  {tv} 
of translations, which is a normal subgroup of Mn.

Proof. It is obvious that n  is surjective, and once we show that n  is a homomorphism, it 
will be obvious that T is its kernel, hence that T is a normal subgroup. We must show that 
if f  and g are isometries, then n f g )  =  n (f ) n (g) . Say that f  =  tacp and g  =  tb 1/1, so that 
n ( f )  =  cp and n(g) =  1/1. Then cptb =  tycp, where b ' =  cp(b) and f g  =  tacptb1/1 =  ta+b'cp1/1. 
So n ( fg )  =  =  n ( j)n (g ) .  . □

Change of Coordinates

Let P  denote an n-dimensional space. The formula tacp for an isometry depends on our 
choice of coordinates, so let’s ask how the formula changes when coordinates are changed. 
We will allow changes by orthogonal matrices and also shifts of the origin by translations. In 
other words, we may chan ge coordinates by any isometry.

To analyze the effect of such a change, we begin with an isometry f ,  a point p  of P , and 
its image q =  f (p ) ,  without reference to coordinates. When we introduce our coordinate 
system, the space P  becomes identified with ]R”, and the points p  and q have coordinates, 
say x  =  (xi, . . . , Xn)f and y = (yj, . . . ,  yn)f. Also, the isometry f  will have a formula tacp 
in terms of the coordinates; let’s call that formula m. The equation q =  f ( p )  translates to
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y  = m (x) (=  tap(x)). We want to determine what happens to the coordinate vectors and to 
the formula, when we change coordinates. The analogous computation for change of basis 
in a linear operator gives the clue: m will be changed by conjugation.

Our change in coordinates will be given by some isometry, let’s denote it by "l (eta). 
Let the new coordinate vectors of p  and q be x  and y'. The new formula m ' for f  is the one 
such that m '(x ')  =  y .  We also have the formula "l(x') = x  analogous to the change of basis 
formula PX' = X  (3.5.11).

We substitute "l(x') =  x  and "l(y') =  y  into the equation m (x) = y, obtaining rn1](x ')  
= "l(y ), or "l_1m 1](x ')  =  y .  The new formula is the conjugate, as expected:

(6.2.11 ) m ' =

Corollary 6.2.12 The homomorphism n  : Mn -> On (6.2.10) does not change when the 
origin is shifted by a translation.

When the origin is shifted by a translation tv = "l, (6.2.11) reads m' =  t -vm tv. Since 
translations are in the kernel of n  and since n  is a homomorphism, n (m ') =  n(rn). □

Orientation

The determinant of an orthogonal operator p  on is ± 1. The operator is said to be 
orientation-preserving if its determinant is 1 and orientation-reversing if its determinant is 
-1. Similarly, an orientation-preserving (or orientation-reversing) isometry f  is one such 
that, when it is written in the form f  =  ta(p, the operator (p is orientation-preserving (or 
orientation-reversing). An isometry of the plane is orientation-reversing if it interchanges 
front and back of the plane, and orientation-preserving if it maps the front to the front.

The map

(6.2.13) a :M n -+ { ±  1}

that sends an orientation-preserving isometry to 1 and an orientation-reversing isometry to 
-1 is a group homomorphism.

6.3 ISOMETRIES OF THE PLANE
In this section we describe isometries of the plane, both algebraically and geometrically.

We denote the group of isometries of the plane by M. To compute in this group, we 
choose some special isometries as generators, and we obtain relations among them. The 
relations are somewhat analogous to those that define the symmetric group S3, but because 
M  is infinite, there are more of them.

We choose a coordinate system and use it to identify the plane P  with the space JR2. 
Then we choose as generators the translations, the rotations about the origin, and the re
flection about the ei-axis. We denote the rotation through the angle 0 by Pe, and the 
reflection about the ei-axis by r. These are linear operators whose matrices R and So were 
exhibited before (see (5.1.17) and (5.1.16».
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(6.3.1)

1. translation ta by a vector a: ta (x) =  x +  a  = I I +
L*2j

2. rotation pe by an angle e ab out the origin: pe(x) =  [

3. reflection r  about the ei-axis: r(x) =  [ j  - n  [ 2  ]■

:  
a2

cos e -  sin e 
sn  cos

’Xl"
.X2 ,

We haven’t listed all of the isometries. Rotations about a point other than the origin 
aren’t included, nor are reflections about other lines, or glides. However, every element of 
M  is a product of these isometries, so they generate the group.

T h e o r e m  6 .3 .2  Let m  be an isometry of the plane. Then m  =  tvpe , or else m = tvper, for 
a uniquely determined vector v and angle 9, possibly zero.

Proof Corollary 6.2.7 asserts that any isometry m is written uniquely in the form m =  tv({J 
where ({J is an orthogonal operator. And the orthogonal linear operators on R.2 are the 
rotations pe about the origin and the reflections about lines through the origin. The 
reflections have the form per (see (5.1.17». □

An isometry of the form tvPe preserves orientation while tvPer reverses orientation.
Computation in M  can be done with the symbols tv,pe, and r, using the following rules 

for composing them. The rules can be verified using Formulas 6.3.1 (see also (6.2.8».

where v' =  pe ( v), 
where v' =  r  (v) ,(6.3.3)

petv — 
rtv =  tv'T,

rpe =  p-er.
tvtw = tv+ w, PePn = P(}+T/, and r r  = 1.

The next theorem describes the isometries of the plane geometrically.

T h e o r e m  6 .3 .4  Every isometry of the plane has one of the following forms:
( a )  orientation-preserving isometries:

( i) translation: a map tv that sends p'V't p  +  v.
( i i )  rotation: rotation of the plane through a nonzero angle about some point.

( b )  orientation-reversing isometries:
( i )  reflection: a bilateral symmetry about a line e .

( ii) glide reflection (or glide for short): reflection about a line e ,  followed by translation 
by a nonzero vector parallel to e .

The proof of this remarkable theorem is below. One of its consequences is that the 
composition of rotations about two different points is a rotation about a third point, unless it
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is a translation. This isn’t obvious, but it follows from the theorem, because the composition 
preserves orientation.

Some compositions are easier to visualize. The composition of rotations through 
angles ex and fJ about the same point is a rotation about that point, through the angle 
ex +  fJ. The composition of translations by the vectors a and b is the translation by their 
sum a + b.

The composition of reflections about nonparallel lines i i ,  i 2 is a rotation about the 
intersection point p  =  i i  n  £2. This also follows from the theorem, because the composition 
is orientation-preserving, and it fixes p. The composition of reflections about parallel lines 
is a translation by a vector orthogonal to the lines.

Proof o f  Theorem (6.3.4). We consider orientation-preserving isometries first. Let f  be an 
isometry that preserves orientation but is not a translation. We must prove that f  is a 
rotation about some point. We choose coordinates to write the formula for f  as m =  taPe 
as in (6.3.3). Since m is not a translation, 0*0 .

Lemma 6.3.5 An isometry f  that has the form m =  tape, with 0 * 0 , is a rotation through 
the angle 0 about a point in the plane.

Proof To simplify notation, we denote Pe by p. To show that f  represents a rotation with 
angle 0 about some point p, we change coordinates by a translation tp. We hope to choose 
p  so that the new formula for the isometry f  becomes m ' =  p. If so, then f  will be rotation 
with angle 0 about the point p.

The rule for change of coordinates is tp (x') =  x, and therefore the new formula for f  is 
m' = r-p-mtp =  t-ptaptp  (6.2.11). We use the rules (6.3.3): ptp  =  tp/p, where p ' =  p (p ). 
Then if b =  - p  +  a  +  p ' =  a + p (p ) -  p, we will have m' — tbP. We wish to choose p  such 
that b =  0.

Let I denote the identity operator, and let c =  cosO and s = sinO. The matrix of the 
linear operator I — p  is

Its determinant is 2 -  2c =  2 — 2cosO. The determinant isn’t zero unless cosO =  1, and this 
happens only when 0 =  0. Since 0 * 0 , the equation (I -  p )p  =  a has a unique solution for 
p. The equation can be solved explicitly when needed. □

The point p  is the fixed point of the isometry taPe, and it can be found geometrically, 
as illustrated below. The line i  passes through the origin and is perpendicular to the vector
a. The sector with angle 0 is situated so as to be bisected by i, and the fixed point p  is 
determined by inserting the vector a into the sector, as shown.
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(6.3.7) The fixed point of the isometry taPo.

To complete theproof ofTheorem 6.3.4, we show that an orientation-reversing isometry 
m =  tapor is a glide or a reflection. To do this, we change coordinates. The isometry pgr 
is a reflection about a line 1o through the origin. We may as well rotate coordinates so that 
eo becomes the horizontal axis. In the new coordinate system, the reflection becomes our 
standard reflection r, and the translation ta remains a translation, though the coordinates of 
the vector a will have changed. Let’s use the same symbol a for this new vector. In the new 
coordinate system, the isometry becomes m = tar. It acts as

This isometry is the glide obtained by reflection about the line l  : {X2  = ^ 2}, followed by 
translation by the vector a i ei. If a i =  0, m is a reflection.

This completes the proof of Theorem 6.3.4. □

Corollary 6.3.8 The glide line of the isometry taPor is parallel to the line of reflection 
of po r. □

The isometries that fix the origin are the orthogonal linear operators, so when 
coordinates are chosen, the orthogonal group O2  becomes a subgroup of the group of 
isometries M. We may also consider the subgroup of M  of isometries that fix a point of the 
plane other than the origin. The relationship of this group with the orthogonal group is given 
in the next proposition.

Proposition 6.3.9 Assume that coordinates in the plane have been chosen, so that the ortho
gonal group O2  becomes the subgroup of M  of isometries that fix the origin. Then the group 
of isometries that fix a point p  of the plane is the conjugate subgroup tp 0 2 ^ 1 .

Proof. If an isometry m fixes p, then t~*mtp fixes the origin: fj^mtpO  =  t ; l m p  =  t~pl p  = o. 
Conversely, if m fixes 0 , then tpmt~pl fixes p. □
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One can visualize the rotation about a point p  this way: First translate by t- p to move p  to 
the origin, then rotate about the origin, then translate back to p.

We go back to the homomorphism rr : M  -» O2 that was defined in (6.2.10). The 
discussion above shows this:

Proposition 6.3.10 Let p  be a point of the plane, and let Po,p denote rotation through the 
angle () about p. Then rr(po,p) = Po. Similarly, if re is reflection about a line .e or a glide 
with glide line .e that is parallel to the x-axis, then rr(re) =  r. □

Points and Vectors
In most of this book, there is no convincing reason to distinguish a point p  of the plane 
P = M2 from the vector that goes from the origin 0 to p , which is often written as o p  in 
calculus books. However, when working with isometries, it is best to maintain the distinction. 
So we introduce another copy of the plane, we call it V, and we think of its elements as 
translation vectors. Translation by a vector v in V acts on a point p  of P  as tv( p ) =  p  +  v. 
It shifts every point of the plane by v.

Both V and P  are planes. The difference between them becomes apparent only when 
we change coordinates. Suppose that we shift coordinates in P by a translation: TJ =  tw. The 
rule for changing coordinates is TJ(p') =  p, or p ' +  w =  p. At the same time, an isometry 
m changes to m' = TJ- l mTJ = t- wmtw (6.2.11). If we apply this rule with m =  tV» then 
m' = t- wtvtw = tv. The points of P  get new coordinates, but the translation vectors are 
unchanged.

On the other hand, if we change coordinates by an orthogonal operator q;, then
■ q;(p ')  =  p , and if m =  tv, then m' = q;- 1tvq; =  tv', where v' =  q; -1 v. So q;v' =  v . The effect 

of change of coordinates by an orthogonal operator is the same on P  as on V.
The only difference between P  and V is that the origin in P  needn’t be fixed, whereas 

the zero vector is picked out as the origin in V.
Orthogonal operators act on V, but they don’t act on P  unless the origin is chosen.

6.4 FINITE GROUPS OF ORTHOGONAL OPERATORS ON THE PLANE

Theorem 6.4.1 Let G be a finite subgroup of the orthogonal group O2. There is an integer 
n such that G is one of the following groups:
(a) Cn': the cyclic group of order n generated by the rotation p#, where () =  2rr/n .
(b) Dn: the dihedral group of order 2 n generated by two elements: the rotation po, where 

() =  2rr/n , and a reflection r' about a line .e through the origin.

We will take a moment to describe the dihedral group Dn before proving the theorem. 
This group depends on the line of reflection, but if we choose coordinates so that .e 
becomes the horizontal axis, the group will contain our standard reflection r, the one whose 
matrix is

(6.4.2)
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Then if we also write p  for po, the 2n elements of the group will be the n powers p' of 
p  and the n products p' r. The rule for commuting p  and r  is

where c  =  cos 0, s  = sin 0, and °  =  21"(/n.
To conform with a more customary notation for groups, we denote the rotation P2 rr/n 

by x, and the reflection r  by y.

Proposition 6.4.3 The dihedral group Dn has order 2n. It is generated by two elements x 
and y that satisfy the relations

Using the first two relations (6.4.3), the third one can be rewritten in various ways. It is 
equivalent to

For n > 3 , the dihedral and symmetric groups are not isomorphic, because Dn has order 2n, 
while Sn has order n!.

When n 2:  3, the elements of the dihedral group Dn are the orthogonal operators that 
carry a regular n-sided polygon A to itself -  the group of symmetries of A. This is easy to 
see, and it follows from the theorem: A regular n-gon is carried to itself by the rotation by 
2Jr/n about its center, and also by some reflections. Theorem 6.4.1 identifies the group of all 
symmetries as Dn.

The dihedral groups D i, Dz are too small to be symmetry groups of an n-gon in the 
usual sense. D i is the group {1, r} of two elements. So it is a cyclic group, as is Cz. But 
the element r  of Di is a reflection, while the element different from the identity in Cz is the 
rotation with angle Jr. The group Dz contains the four elements {1, p, r, prJ, where p is 
the rotation with angle and p r  is the reflection about the vertical axis. This group 
is isomorphic to the Klein four group.

If we like, we can think of Di and Dz as groups of symmetry of the 1-gon and 2-gon:

x n = 1 , ;  =  1, y x  =  x 1 y.

The elements of Dn are

□

(6.4.4) x y x y  = 1, and also to yx  = x n 1y.

When n =  3, the relations are the same as for the symmetric group S3 (2.2.6).

Corollary 6.4.5 The dihedral group D 3 and the symmetric group S3 are isomorphic. □

i-gon. 2-gon.
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We begin the proof of Theorem 6.4.1 now. A subgroup .r of the additive group of 
real numbers is called discrete if there is a (small) positive real number e such that every 
nonzero element c of .r has absolute value 2:  e.

Lemma 6.4.6 Let .r be a discrete subgroup of lR.+ . Then either .r =  {O}, or .r is the set Za of 
integer multiples of a positive real number a.

Proof. This is very similar to the proof of Theorem 2.3.3, that a nonzero subgroup of Z+ has 
the form Z n.

If a and b are distinct elements of .r, then since .r is a group, a — b  is in .r, and 
|a — b| > e. Distinct elements of .r are separated by a distance at least e. Since only finitely 
many elements separated by e can fit into any bounded interval, a bounded interval contains 
finitely many elements of .r.

Suppose that .r *{O}. Then .r contains a nonzero element b, and since it is a group, r  
contains -b  as well. So it contains a positive element, say a'. We choose the smallest positive 
element a in .r. We can do this because we only need to choose the smallest element of the 
finite subset of .r in the interval 0 :: x :: a'.

We show that .r =  Za. Since a  is in .r and .r is a group, Za C .r. Let b be an element of 
r .  Then b =  ra for some real number r. We take out the integer part  of r, writing r = m  +  ro 
with m an integer and 0 :: ro < 1 . Since r  is a group, b' =  b -  ma is in r  and b' =  roa. Then 
0 :: b' <  a. Since a  is the smallest positive element in .r, b ' must be zero. So b =  ma, which 
is in Za. This shows that .r C Za, and therefore that .r =  Z a. □

Proof o f  Theorem (6.4.1). Let G be a finite subgroup of O2. We want to show that G is Cn 
or D n . We remember that the elements of O2 are the rotations pg and the reflections pgr.

Case 1: All elements of G are rotations.

We must prove that G is cyclic. Let .r be the set of real numbers ex. such that pa is in 
G. Then .r is a subgroup of the additive group lR.+, and it contains 2n. Since G is finite, .r is 
discrete. So .r has the form Zex.. Then G consists of the rotations through integer multiples 
of the angle ex.. Since 2n is in .r, it is an integer multiple of ex.. Therefore ex. =  2 n /n  for some 
integer n, and G = Cn.

Case 2: G contains a reflection.

We adjust our coordinates so that the standard reflection r  is in G. Let H  denote the 
subgroup consisting of the rotations that are elements of G. We apply what has been proved 
in Case 1 to conclude that H  is the cyclic group generated by pg, for some angle () =  2 n /n . 
Then the 2n products p@ and p^r, for 0 : :  k < n  -  1, are in G , so G contains the dihedral 
group Dn. We claim that G =  Dn, and to show this we take any element g  of G. Then g 
is either a rotation or a reflection. If g is a rotation, then by definition of H, g is in H. The 
elements of H  are also in Dn, so g is in Dn. If g is a reflection, we write it in the form par 
for some rotation pa. Since r  is in G, so is the product g r =  pa . Therefore pa is a power of 
Po, and again, g is in Dn. □
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Theorem 6.4.7 Fixed Point Theorem. Let G be a finite group of isometries of the plane. 
There is a point in the plane that is fixed by every element of G, a point p  such that g (p )  =  p  
for all g in G.

Proof This is a nice geometric argument. Let s be any point in the plane, and let S be the 
set of points that are the images of s under the various isometries in G. So each element s' 
of S has the form s' =  g(s) for some g in G. This set is called the orbit of s for the action 
of G. The element s is in the orbit because the identity element 1 is in G, and s =  l(s). A 
typical orbit for the case that G is the group of symmetries of a regular pentagon is depicted 
below, together with the fixed point p  of the operation.

Any element of G will permute the orbit S. In other words, if s' is in S and h is in G, 
then h(s') is in S: Say that s ' =  g(s), with g in G. Since G is a group, hg  is in G. Then 
hg(s) is in S and is equal to h(s').

*P

We list the elements of S arbitrarily, writing S =  {si, . . . ,  s„}. The fixed point we are 
looking for is the centroid, or center ofgravity of the orbit, defined as

where the right side is computed by vector addition, using an arbitrary coordinate system in 
the plane.

Lemma 6.4.9 Isometries carry centroids to centroids: Let S =  {s i , . . .  , s„} be a finite set of 
points of the plane, and let p  be its centroid, as defined by (6.4.8). Let m be an isometry. Let 
m (p ) =  p ' and m (s,) =  sf. Then p ' is the centroid of the set S' =  {s ,̂ . . . ,  s^}. □

The fact that the centroid of our set S is a fixed point follows. An element g of G permutes 
the orbit S. It sends S to S and therefore it sends p  to p. □

Proof o f  Lemma 6.4.9 This can be deduced by physical reasoning. It can be shown alge
braically too. To do so, it suffices to look separately at the cases m = ta and m =  cp, where 
cp is an orthogonal operator. Any isometry is obtained from such isometries by composition.
Case 1: m = ta is a translation. Then sf =  s, +  a  and p ' =  p  +  a. It is true that

p ' =  p  +  a =  ± (0 i +  a) +  • • . +  (sn +  a) ) =  ±(s[ +-----+  s'n).

Case 2: m = cp is a linear operator. Then

p' =  cp(p) =  CP(k(si +  .. • +  s„)) =  k(cp(si) +-----+  CP(Sn» =  k (s i + ------+ sn) . □
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By combining Theorems 6.4.1 and 6.4.7 one obtains a description of the symmetry 
groups of bounded figures in the plane.

Corollary 6.4.10 Let G be a finite subgroup of the group M  of isometries of the plane. 
If coordinates are chosen suitably, G becomes one of the groups Cn or Dn described in

6.5 DISCRETE GROUPS OF ISOMETRIES

In this section we discuss groups of symmetries ofunbounded figures such asthe one depicted 
in Figure 6.1.5. What I call the kaleidoscope principle can be used to construct a figure with 
a given group of symmetries. You have probably looked through a kaleidoscope. One sees 
a sector at the end of the tube, whose sides are bounded by two mirrors that run the length 
of the tube and are placed at an angle d, such as 6 =  rr/ 6. One also sees the reflection of the 
sector in each mirror, and then one sees the reflection of the reflection, and so on. There are 
usually some bits of colored glass in the sector, whose reflections form a pattern.

There is a group involved. In the plane at the end of the kaleidoscope tube, let i i  and 
£2 be the lines that bound the sector formed by the mirrors. The group is a dihedral group, 
generated by the reflections r,- about 1,. The product q r 2 of these reflections preserves 
orientation and fixes the point of intersection of the two lines, so it is a rotation. Its angle of 
rotation is ± 26.

One can use the same principle with any subgroup G of M. We won’t give precise 
reasoning to show this, but the method can be made precise. We start with a random figure 
R in the plane. Every element g of our group G will move R to a new position, call it gR. 
The figure F  is the union of all the figures gR. An element h ofthe group sends gR  to hgR,  
which is also a part of F , so it sends F  to itself. If R is sufficiently random, G will be the 
group of symmetries of F. As we know from the kaleidoscope, the figure F  is often very 
attractive. The result of applying this procedure when G is the group of symmetries of a 
regular pentagon is shown below.

Of course many different figures have the same group of symmetry. But it is interesting and 
instructive to describe the groups. We are going to present a rough classification, which will 
be refined in the exercises.

Some subgroups of M  are too wild to have a reasonable geometry. For instance, if the 
angle d at which the mirrors in a kaleidoscope are placed were not a rational multiple of 2rr,

Theorem 6.4.1. □
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there would be infinitely many distinct reflections of the sector. We need to rule this 
possibility out.

Definition 6.5.1 A group G of isometries of the plane P  is discrete if it does not contain 
arbitrarily small translations or rotations. More precisely, G is discrete if there is a positive 
real number e so that:
(i) if an element of G is the translation by a nonzero vector a, then the length of a  is at 

least e: |a| :: e, and
(ii) if an element of G is the rotation through a nonzero angle Q about some point of the 

plane, then the absolute value of Q is at least e: |Q| :: e.

Note: Since the translation vectors and the rotation angles form different sets, it might seem 
more appropriate to have separate lower bounds for them. However, in this definition we 
don’t care about the best bounds for the vectors and the angles, so we choose e small enough 
to take care of both at the same time. □

The translations and rotations are all of the orientation-preserving isometries (6.3.4), 
and the conditions apply to all of them. We don’t impose a condition on the orientation- 
reversing isometries. If m is a glide with nonzero glide vector v, then m2 is the translation 
t2 v. So a lower bound on the translation vectors determines a bound for the glide vectors too.

There are three main tools for analyzing a discrete group G:

(6.5.2) • the translation group L, a subgroup of the group V of translation vectors,

• the point group G , a subgroup of the orthogonal group O2,

• an operation of G on L.

The Translation Group

The translation group L of G is the set of vectors v such that the translation tv is in G.

(6.5.3) L = {v e V | tv e G}.

Since tvtw = tv+w and t”1 =  t-v, L is a subgroup of the additive group V+ ofall translation 
vectors. The bound e on translations in G bounds the lengths of the vectors in L:

(6.5.4) Every nonzero vector v in L has length Iv| :: e.

• A subgroup L of one of the additive groups V+ or ]Rn+ that satisfies condition (6.5.4) for 
some e >  0 is called a discrete subgroup. (This is the definition made before for ]R+.)

A subgroup L is discrete if and only if the distance between distinct vectors a  and b 
of L is at least e . This is true because the distance is the length of b — a, and b — a  is in L 
because L is a group. If (6.5.4) holds, then Ib -  a | 2:  e . □

Theorem 6.5.5 Every discrete subgroup L of V+ or of M2+ is one of the following:

(a) the zero group: L =  {O}.



(b) the set of integer multiples of a nonzero vector a :

L  =  Za = {ma | m e Z}, or

(c) the set of integer combinations of two linearly independent vectors a  and b:

L  =  Za +  Zb =  {ma + nb  | m ,n  e Z}.

Groups of the third type listed above are called lattices, and the generating set (a, b) i s called 
a lattice basis.
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(6.5.6) A Lattice

Lemma 6.5.7 Let L be a discrete subgroup of V+ or R2+.

(a) A bounded region of the plane contains only finitely many points of L.
(b) If L is not the trivial group, it contains a nonzero vector of minimal length.

Proof (a) Since the elements of L are separated by a distance at least €, a small square can 
contain at most one point of L. A region of the plane is bounded if it is contained in some 
large rectangle. We can cover any rectangle by finitely many small squares, each of which 
contains at most one point of L.

(b) We say that a vector v is a nonzero vector of minimal length of L if L contains no shorter 
nonzero vector. To show that such a vector exists, we use the hypothesis that L is not the 
trivial group. There is some nonzero vector a  in L. Then the disk of radius |a| about 
the origin is a bounded region that contains a  and finitely many other nonzero points of L. 
Some of those points will have minimal length. □

Given a basis B =  (u, w) of R2, we let n  (B) denote the parallelogram with vertices 
0, u, w, u +  w. It consists of the linear combinations ru +  sw  with 0 < r  :: 1 and 0 :: s :: 1. 
We also denote by n  '(B) the region obtained from n  (B) by deleting the two edges 
[u, u +  w] and [w, u +  w]. It consists of the linear combinations ru +  sw with 0 :: r  <  1 and 
O :: s < 1 .

Lemma 6.5.8 Let B =  (u, w) be a basis of R2 , and let L be the lattice of integer combinations 
of B. Every vector v in R2 can be written uniquely in the form v =  x +  Vo, with x in L and 
Vo in n '(B ).
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Proof. Since B is a basis, every vector is a linear combination ru +  s w , with real coefficieints 
r  and s. We take out their integer parts, writing r  =  m + ro and s  =  n + so. with m, n integers 
and 0 ro, So <  1. Then v = x  +  Vo, where x  =  m u +  nv  is in L and Vo =  rou + Sow is in 
n '(B ). There is just one way to do this. □

P roofo f Theorem 6.5.5 It is enough to consider a discrete subgroup L of M2+. The case that 
L is the zero group is included in the list. If L =t{0}, there are two possibilities:

Case 1: All vectors in L lie on a line .e through the origin.

Then L is a subgroup of the additive group of .e+, which is isomorphic to K+. Lemma 6.4.6 
shows that L has the form Za.

Case 2: The elements of L do not lie on a line.

In this case, L  contains independent vectors d  and b', and then B' =  (d , b ') is a basis of M2. 
We must show that there is a lattice basis for L.

We first consider the line .e spanned by d . The subgroup L n.e of is discrete, and a ' 
isn’t zero. So by what has been proved in Case 1, L has the form Za for some vector a. We 
adjust coordinates and rescale so that a becomes the vector (1, O)t

Next, we replace b ' =  (bj,  b';)1 by -b ' if necessary, so that b ;  becomes positive. We 
look for a vector b =  (bi, b2)f in L with b 2 positive, and otherwise as small as possible. A 
priori, we have infinitely many elements to inspect. However, since b ' is in L, we only need 
to inspect the elements b such that 0 <  b2 bj. Moreover, we may add a multiple of a to
b, so we may also assume that 0 < bi <  1. When this is done, b will be in a bounded region 
that contains finitely many elements of L. We look through this finite set to find the required 
element b, and we show that B =  (a, b) is a lattice basis for L.

Let L = Za  +  Zb. Then L  c  L. We must show that every element of L is in L , and 
according to Lemma 6.5.8, applied to the lattice L, it is enough to show that the only element 
of L in the region n '(B ) is the zero vector. Let c =  (ci, c2)r be a point of L in that region, 
so that 0 ci < 1  and 0 c2 <  b2. Since b2 was chosen minimal, c2 =  0, and c is on the line 
.e. Then c is an integer multiple of a, and since 0 < c  < 1 , c =  O. □

The Point Group

We turn now to the second tool for analyzing a discrete group of isometries. We choose 
coordinates, and go back to the homomorphism 7r:  M  -*■ 0 2 whose kernel is the group T  
of translations (6.3.10). When we restrict this homomorphism to a discrete subgroup G, we 
obtain a homomorphism

(6.5.9) 7T|g : G -» 0 2.

The point group G is the image of G in the orthogonal group 0 2.
It is important to _make a clear distinction between elements of the group G and 

those of its point grouE-G. So to avoid confusion, we will put bars over symbols when they 
represent elements of G .F or g in G,gwi l l  be an orthogonal operator.

By definition, a rotation Po is in G if G contains an element of the form ?aPo. and this 
is a rotation through the same angle () about some point of the plane (6.3.5). The inverse
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image in G ofan element p# of G consists of the elements of G that are rotations through 
the angle 9 about various points of the plane.

Similarly, let .e denote the line of reflection of p(}r. As we have noted before, its angle 
with the ei 1 axis is \0  (5.1.17). The point group G contains p(}r if there is an element taPor in
G, and taP(}r is a reflection or a glide reflection along a line parallel to .e (6.3.8). The inverse 
image of p(}r consists of all of the elements of G that are reflections or glides along lines 
parallel to I. To sum up:

• The point group G records the angles of rotation and the slopes of the glide lines and the 
lines of reflection, of elements of G.

Proposition 6.5.10 A discrete subgroup G of O2 is finite, and is therefore either cyclic or 
dihedral.

Proof. Since G contains no small rotations, the set r  of real numbers 9 such that is in G 
is a discrete subgroup of the additive group jR+ that contains 2n. Lemma 6.4.6 tells us that 
r  has the form Z$, where 9 =  2 n |n  for some integer n. At this point, the proof of Theorem 
6.4.1 carries over. □

The Crystallographic Restriction

If the translation group of a discrete group of isometries G is the trivial group, the restriction 
of n  to G will be injective. In this case G will be isomorphic to its point group G , and will 
be cyclic or dihedral. The next proposition is our third tool for analyzing infinite discrete 
groups. It relates the point group to the translation group.

Unless an origin is chosen, the orthogonal group O 2 doesn’t operate on the plane P. 
But it does operate on the space V of translation vectors.

Proposition 6.5.11 Let G be a discrete subgroup of M . Let a  be an element of its translation 
group L, and let g  be an element of its point group G. Then g(a) is in L.

We can restate this proposition by saying that the elements of G map L to  itself. So G is 
contained in the group of symmetries of L, when L is regarded as a figure in the plane V.

ProofofProposition 6.5.11 Let a  and g be elements of L and G, respectively, let g  be the 
image of g  in G, and let a ' =  g (a). We will show that ta' is the conjugate gtag-1. This will 
show that ta' is in G. and therefore that a ' is in L. We write g =  t ĉp. Then cp is in O2 and 
g  =  (jJ. So a ' =  (jJ(a). Using the formulas (6.2.8), we find:

gtag- 1 =  (tbcp)ta(cp-1t-b) =  tbta'cpcp^t-b =  ta' . □

Note: It is important to understand that the group G does not operate on its translation 
group L. Indeed, it makes no sense to ask whether G operates on L, because the elements 
of G are isometries of the plane P, while L is a subset of V. Unless an origin is fixed, P  is not 
the same as V. If we fix the origin in P, we can identify P  with V. Then the question makes 
sense. We may ask:Is there a point of P  so that with that point as the origin, the elements 
of G carry L to itself? Sometimes yes, sometimes no. That depends on the group. □
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The next theorem describes the point groups that can occur when the translation group 
L is not trivial.

Theorem 6.S.U Crystallographic Restriction. Let L be a discrete subgroup of V+ or ]R2+,
and let H  C O2 be a subgroup of the group of symmetries of L. Suppose that L is not the 
trivial group. Then
(a) every rotation in H  has order 1, 2, 3, 4, or 6, and
(b) H  is one of the groups Cn or D n, and n =  1,2, 3, 4, or 6.

In particular, rotations of order 5 are ruled out. There is no wallpaper pattern with five-fold 
rotational symmetry (“Quasi-periodic” patterns with five-fold symmetry do exist. See, for 
example, [Senechal].)

Proof o f the Crystallographic Restriction We prove (a). Part (b) follows from (a) and from 
Theorem 6.4.1. Let p  be a rotation in H  with angle 0, and let a be a nonzero vector in L 
of minimal length. Since H  operates on L, p (a) is also in L. Then b =  p (a) -  a is in L 
too, and since a has a minimal length, |b| :: |a|. Looking at the figure below, one sees that 
|b| <  |a| when 0 <  2n/6. So we must have 0 :: 2n/6. It follows that the group H  is discrete, 
hence finite, and that p  has order 6.

The case that 0 =  2n /5 can be ruled out too, because for that angle, the element b' =  
p2(a) +  a  is shorter than a:

0 a □

6.6 PLANE CRYSTALLOGRAPHIC GROUPS
We go back to our discrete group of isometries G C M .  We have seen that when L is the 
trivial group, G is cyclic or dihedral. The discrete groups G such that L is infinite cyclic
(6.5.5)(b) are the symmetry groups of frieze patterns such as those shown in (6.1.3), (6.1.4). 
We leave the classification of those groups as an exercise.

When L is a lattice, G is called a two-dimensional crystallographic group. These 
crystallographic groups are the symmetry groups of two-dimensionalcrystals such as graphite. 
We imagine a crystal to be infinitely large. Then the fact that the molecules are arranged 
regularly implies that they form an array having two independent translational symmetries. 
A wallpaper pattern also repeats itself in two different directions -  once along the strips of 
paper because the pattern is printed using a roller, and a second time because strips of paper 
are glued to the wall side by side. The crystallographic restriction limits the possibilities and
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allows one to classify crystallographic groups into 17 types. Representative patterns with the 
various types of symmetry are illustrated in Figure (6.6.2).

The point group G and the translation group L do not determine the group G 
completely. Things are complicated by the fact that a reflection in G needn’t be the image 
of a reflection in G. It may be represented in G only by glides, as in the brick pattern 
that is illustrated below. This pattern (my favorite) is relatively subtle because its group of 
symmetries doesn’t contain a reflection. It has rotational symmetries with angle Jr about 
the center of each brick. All of these rotations represent the same element p7r  of the 
point group G. There are no nontrivial rotational symmetries with angles other than 0 
and Jr. The pattern also has glide symmetry along the dashed line drawn in the figure, so 
G =  D 2  =  {1, P7r, r, p7rr).

One can determine the point group of a pattern fairly easily, in two steps: One looks 
first for rotational symmetries. They are usually relatively easy to find. A rotation pe in the 
point group G is represented by a rotation with the same angle in the group G of symmetries 
of the pattern. When the rotational symmetries have been found, one will know the integer 
n such that the point group is Cn or D„. Then to distinguish Dn from Cn, onejooks to see 
if the pattern has reflection or glide symmetry. If it does, G =  Dn, and if not, G — Cn.

Plane Crystallographic Groups with a Fourfold Rotation in the  Point Group

As an example of the methods used to classify discrete groups of isometries, we analyze 
groups whose point groups are C4 or D 4.

Let G be such a group, let p  denote the rotation with angle Jr/2 in G , and let L be the 
lattice of G, the set of vectors v such that tv is in G.

Lemma 6.6.2 The lattice L is square.

Proof. We choose a nonzero vector a  in L of minimal length. The point group operates on 
L, so p(a) =  b is in L and is orthogonal to a. We claim that (a, b) is a lattice basis for L.

Suppose not. Then according to Lemma 6.5.8, there will be a point of L in the region 
n '  consisting of the points ri a  +  r2 b with 0 < ri <  1. Such a point w will be at a distance less 
than |a| from one of the four vertices 0, a, b, a +  b of the square. Call that vertex v. Then 
v -  w is also in L, and |v -  w| <  |a|. This contradicts the choice of a. □

We choose coordinates and rescale so that a  and b become the standard basis vectors 
ei and e2. Then L becomes the lattice of vectors with integer coordinates, and IT' becomes 
the set of vectors (s, t)1 with 0 < s <  1 and 0 < t <  1. This determines coordinates in the 
plane P  up to a translation.



(6.6.2) Sample Patterns for the 17 Plane Crystallographic Groups.
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The orthogonal operators on V that send L to itself form the dihedral group D 4 
generated by the rotation_p through the^angle n /2  and the standard reflection r. Our 
assumption is that p  is in G. If r  is also in G, then G js  the dihedral group D 4. If not, G is 
the cyclic g roupC 4 . We describe the group G when G is C 4 first. Let g be an element of G 
whose image in G is the rotation p. Then g is a rotation through the angle n  /2 about some 
point p  in the plane. We translate coordinates in the plane P  so that the point p  becomes 
the origin. In this coordinate system, G contains the rotation p  =  prr/2 about the origin.

Proposition 6.6.3 Let G be a plane crystallographic group whose point group G  is the cyclic 
group C4. With coordinates chosen so that L is the lattice of points with integer coordinates, 
and so that p  =  Pn/2 is an element of G, the group G consists of the products tvp l, with v 
in L and 0 :: i < 4 : ^

Proof. Let G ' denote the set of elements of the form /^p' with v in L. We must show that 
G ' =  G. By definition of L, tv is in G, and also p  is in G. So t^p' is in G, and therefore G' 
is a subset of G.
_ To prove the opposite inclusion, let g  be any element of G. Since the point group
G is C4, every element of G preserves orientation. So g has the form g =  fMpa for some 
translation vector u and some angle a . The image of this element in the point group is pa , 
so a  is a multiple of n /2 , and prx. =  p' for some i. Since p is in G, g p -  =  is in G and u is 
in L. Therefore g is in G'. □

We now consider the case that the point group G is D 4.

Proposition 6.6.4 Let G be a plane crystallographic group whose point group G is the 
dihedral group D 4. Let coordinates be chosen so that L is the lattice of points with integer 
coordinates and so that p  =  prr/2 is an element of G. Also, let c denote the vector (^, | ) 1. 
There are two possibilities:
(a) The elements of G are the products fvCP where v is in L and cP is in D 4 ,

G = [tvp l \v e L }  U {tvp lr\v e L}, or

(b) the elements of G are products r̂ CP, with cp in D4. If cp is a rotation, then x is in L, and
if cp is a reflection, then x is in the coset c +  L:

Proof Let H  be the subset of orientation-preserving isometries in G. This is a subgroup 
of G whose lattice of translations is L, and which contains p. So its point group is C4. 
Proposition 6.6.3 tells us that H  consists of the elements t„p ', with v in L.

The point group also contains the reflection r. We choose an element g in G such that 
g  =  r. It will have the form g =  for some vector u, but we don’t know whether or not u 
is in L. Analyzing this case will require a bit of fiddling. Say that u =  (p . q )r.

We can multiply g on the left by a translation tv in G (i.e., v in L), to move u into the
region n '  of points with 0 : :  p , q <  1. Let’s suppose this has been done.
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We compute with g =  tur , using the formulas (6.3.3):

g 2 =  turtur =  tu+ru and (g p )2 =  ( tur p )2 =  tu+rpu.

These are elements of G, so u + ru = (2p , 0 ) \  and u + rpu  =  (p  — q, q -  p )1 are in the 
lattice L. They are vectors with integer coordinates. Since 0 : :  p , q <  1 and 2p  is an integer, 
p  is either 0 or | .  Since p  -  q is also an integer, q =  0 if p  =  0 and q =  2:  if p  =  .̂ So 
there are only two possibilities for u: Either u =  (0, 0 ) \ or u =  c =  ( j ,  j ) 1. In the first case, 
g = r, so G contains a reflection. This is case ( a )  of the proposition. The second possibility is 
case ( b ) .  □

6 . 7  A B S T R A C T  S Y M M E T R Y : G R O U P  O P E R A T IO N S

The concept of symmetry can be applied to things other than geometric figures. Complex 
conjugation (a + b i) (a - b i ), for instance, may be thought of as a symmetry of the complex
numbers. Since complex conjugation is compatible with addition and multiplication, it is 
called an automorphism of the field C. Geometrically, it is the bilateral symmetry of the 
complex plane about the real axis, but the statement that it is an automorphism refers to its 
algebraic structure. The field F  =  Q[.J2] whose elements are the real numbers of the form 
a+ b..ti, with a and b rational, also has an automorphism, one that sends a + b ..ti a -  b..ti. 
This isn’t a geometric symmetry. Another example of abstract “bilateral” symmetry is given 
by a cyclic group H  of order 3. It has an automorphism that interchanges the two elements 
different from the identity.

The set of automorphisms of an algebraic structure X, such as a group or a field, forms 
a group, the law of composition being composition of maps. Each automorphism should be 
thought of as a symmetry of X , in the sense that it is a permutation of the elements of X  that 
is compatible with its algebraic structure. But the structure in this case is algebraic instead of 
geometric.

So the words “automorphism” and “symmetry” are more or less synonymous, except 
that “automorphism” is used to describe a permutation of a set that preserves an algebraic 
structure, while “symmetry” often, though not always, refers to a permutation that preserves 
a geometric structure.

Both automorphisms and symmetries are special cases of the more general concept of 
a group operation. An operation of a group G on a set S is a rule for combining an element 
g of G and an element s of S to get another element of S. In other words, it is a map 
G x S —> S. For the moment we denote the result of applying this law to elements g and s 
by g*s. An operation is required to satisfy the following axioms:

E x a m p le  6 .7 .1

( a )  1;I:s =  s for all s in S. (Here 1 is the identity of G.)
( b )  associative law: (g g ') *s  =  g* (g' *s),  for all g and g'  in G and all s  in S.

We usually omit the asterisk, and write the operation multiplicatively, as g, s gs. With 
multiplicative notation, the axioms are Is =  s and (gg')s = g(g's).
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Examples of sets on which a group operates can be found manywhere,1 and most often, 
it will be clear that the axioms for an operation hold. The group M  of isometries of the plane 
operates on the set of points of the plane. It also operates on the set of lines in the plane and 
on the set of triangles in the plane. The symmetric group Sn operates on the set of indices 
{ l ,2, . . .  , n } .

The reason that such a law is called an operation is this: If we fix an element g of G 
but let s vary in S, then left multiplication by g (or operation o f  g) defines a map from S to 
itself. We denote this map, which de scribes the way the element g operates, by mg-.

(6.7.2) nig'.S -> S

is the map defined by ms (s) =  gs. It is a permutation of S. a bijective map, because it has 
the inverse function m g-\: multiplication by g_1.
• Given an operation of a group G on a set S, an element s of S  will be sent to various other 
elements by the group operation. We coll ect together those elements, obtaining a subset 
called the orbit Os of s:

(6.7.3) Os =  {s '  e S | s' =  gs for some g in G}.

When the group M  of isometries of the plane operates on the set S of triangles in the  
plane, the orbit O a  of a given triangle A is the set of all triangles congruent to A. Another 
orbit was introduced when we proved the existence of a fixed point for the operation of a 
finite group on the plane (6.4.7).

The orbits for a group action are equivalence classes for the equivalence relation

(6.7.4) s"-'s' if s' =  g s , for some g in G.

So if s s', that is, if s' =  g s  for some g in G, then the orbits of s and of s ' are the same. 
Since they are are equivalence classes:

(6.7.5) The orbits partition the set S.

The group operates independently on each orbit. For example, the set of triangles of 
the plane is partitioned into congruence classes, and an isometry permutes each congruence 
class separately.

If S  consists of just one orbit, the operation of G is called transitive. This means 
that every element of S is carried to every other one by some element of the group. The 
symmetric group Sn operates transitively on the set of indices { l ,  „  . ,  n}. The group M  of 
isometries of the plane operates transitively on the set of points of the plane, and it operates 
transitively on the set of lines. It does not operate transi tively on the set of triangles.
• The stabilizer of an element s of S is the set of group elements that leave s fixed. It is a 
subgroup of G that we often denote by G 5:

(6.7.6) Gs =  {g e G i gs =  s}.

1 While writing a book, the mathematician Masayoshi Nagata decided that the English language needed this 
word; then he actually found it in a dictionary.



178 Chapter 6 Symmetry

For instance, in the operation of the group M  on the set of points of the plane, the stabilizer 
of the origin is isomorphic to the group O2 of orthogonal operators. The stabilizer of the 
index n  for the operation of the symmetric group is isomorphic to the subgroup Sn - i 
of permutations of {I, . . . ,  n - l } .  Or, if S is the set of triangles in the plane, the stabilizer 
of a particular equilateral triangle A is its group of symmetries, a subgroup of M  that is 
isomorphic to the dihedral group D 3 .

Note. It is important to be clear about the following distinction: When we say that an isometry 
m stabilizes a triangle A, we don’t mean that m  fixes the points of A. The only isometry that 
fixes every point of a triangle is the identity. We mean that in permuting the set of triangles, 
m  carries A to itself. □

Just as the kernel K of a group homomorphism cp: G -*■ G  tells us when two elements 
x and y of G have the same image, namely, if x _ 1 y  is in K, the stabilizer Gs of an element s 
of S tells us when two elements x  and y of G act in the same way on s.

P r o p o s i t io n  6 .7 .7  Let S be a set on which a group G operates, let s be an element of S, and 
let H  be the stabilizer of s.
( a )  If a  and b  are elements of G, then as =  bs if and only if a~1b is in H , and this is true if 

and only if b is in the coset aH.
(b) Suppose that as =  s ' .  The stabilizer H ' of s' is a conjugate subgroup:

H ' =  aH a - 1  = {g e G \ g = a h a x for some h in H}.

Proof. (a )  a s = bs if and only if s =  aT^bs.

(b) If g is in aH a-i, say g =  aha - 1 with h in H , then gs' =  (aha~1)(as) =  ahs = as = s', 
so g stabilizes s'. This shows that aHaTx C H'. Since s =  a ^ s ',  we can reverse the roles 
of s and s', to conclude that a— H 'a  C H, which implies that H ' C a H a -1. Therefore 
H ' = aHa~i. □

Note: Part (b )  of the proposition explains a phenomenon that we have seen several times 
before: When as = s', a group element g fixes s if and only if a g a -1 fixes s'.

6.8 TH E O P E R A T IO N  O N  C O S E T S

Let H  be a subgroup of a group G. As we know, the left cosets aH  partition G. We often 
denote the set of left cosets of H  in G  by G  /  H, copying this from the notation used for 
quotient groups when the subgroup is normal (2.12.1), and we use the bracket notation [C] 
for a coset C, when it is considered as an element of the set G /  H.

The set of cosets G /  H  is not a group unless H  is a normal subgroup. However,

• The group G operates on G  /  H  in a natural way.

The operation is quite obvious: If g is an element of the group, and C  is a coset, then 
g[C] is defined to be the coset [gC], where gC  =  {gc | c e C). Thus if [C] =  [aH\, then 
g[C] =  [gaH]. The next proposition is elementary.



Section 6.8 The Operation on Cosets N 9

( a )  The operation of G on the set G /  H  ofcosets is transitive.
(b )  The stabilizer of the coset [H] is the subgroup H. □

Note the distinction once more: Multiplication by an element h of H  does not act trivially 
on the elements of the coset H , but it sends the coset [H] to itself.

Please work carefully through the next example. Let G be the symmetric group S3 
with its usual presentation, and let H  be the cyclic subgroup {l, y}. Its left cosets are

(6.8.2) C\ — H  = { \,y] , C 2 = x H  = {x, xy}, C3 =  x 2H  — {x2, x 2y]

(see (2.8.4)), and G operates on the set of cosets G /  H  =  {[Ci], [C2], [C3]}. The elements 
x  and y operate in the same way as on the set of indices {I, 2, 3}:

(6.8.3) mx #  (123) and #  (23).

For instance, yC 2 =  {yx, yxy} =  {x2y, x2} =  C3.
The next proposition, sometimes called the orbit-stabilizer theorem, shows how an 

arbitrary group operation can be described in terms of operations on cosets.

P r o p o s i t io n  6 .8 .4  Let S be a set on which a group G operates, and let s be an element 
of S. Let H  and Os be the stabilizer and orbit of s, respectively. There is a bijective map 
e : G /  H h  Os defined by [aH] 'V't as. This map is compatible with the operations of the 
group: e(g[C]) =  ge([C]) for every coset C and every element g in G.

For example, the dihedral group D 5 operates on the vertices of a regular pentagon. 
Let V denote the set of vertices, and let H  be the stabilizer of a particular vertex. There is 
a bijective map D 5/  H  -+ V. In the operation of the group M  of isometries of the plane P, 
the orbit of a point is the set of all points of P. The stabilizer of the origin is the group O2 of 
orthogonal operators, and there is a bijective map M /O 2 -+ P. Similarly, if H  denotes the 
stabilizer of a line and if .c denotes the set of all lines in the plane, there is a bijective map 
M /H  -+ .c.

P roofof Proposition (6.8.4). It is clear that the map e defined in the statement of the 
proposition will be compatible with the operation of the group, if it exists. Symbolically, e 
simply replaces H  by the symbol s. What is not so clear is that the rule [gH] 'V't gs defines a 
map at all. Since many symbols g H  represent the same coset, we must show that if a  and b 
are group elements, and if the cosets aH  and b H  are equal, then as  and bs are equal too. 
Suppose that a H  =  bH . Then a~Jb is in H  (2.8.5). Since H  is the stabilizer of s, cTl bs =  s, 
and therefore as =  bs. Our definition is legitimate, and reading this reasoning backward, 
we also see that e is an injective map. Since e carries [g H] to gs, which can be an arbitrary 
element of Os, e is surjective as well as injective. 0

Note: The reasoning that we made to define the map e occurs frequently. Suppose that a set 
S is presented as the set of equivalence classes of an equivalence relation on a set S, and let

Proposition 6.8.1 Let H  be a subgroup of a group G .
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rr: S  --+ S  b e  th e  m a p t h a t  s e n d s  a n  e l e m e n t  s  t o  its  e q u iv a le n c e  c la s s  s .  A  c o m m o n  w a y  to  

d e f in e  a  m a p  €  f r o m  S  t o  a n o th e r  s e t  T  is  th is: G i v e n  x  in  S ,  o n e  c h o o s e s  a n  e l e m e n t  s  in  S  

su c h  th a t  x  =  S , a n d  d e f in e s  e ( x )  in  t e r m s  o f  s. T h e n  o n e  m u s t  s h o w ,  as w e  d id  a b o v e ,  th a t  

th e  d e f in i t io n  d o e s n ’t d e p e n d  o n  t h e  c h o ic e  o f  t h e  e l e m e n t  s  w h o s e  e q u i v a l e n c e  c la s s  is  x, 
b u t  o n l y  o n  x .  T h is  p r o c e s s  is  r e f e r r e d  t o  a s  s h o w i n g  th a t  t h e  m a p  is  w e l l  defined. □

6 .9  T H E  C O U N T IN G  F O R M U L A

L e t  H  b e  a  s u b g r o u p  o f  a  f in i t e  g r o u p  G .  A s w e  k n o w ,  a ll  c o s e t s  o f  H  i n  G  h a v e  t h e  s a m e  

n u m b e r  o f  e l e m e n t s ,  a n d  w it h  t h e  n o t a t io n  G  /  H  f o r  t h e  s e t  o f  c o s e t s ,  t h e  o r d e r  |G  /  H |  is  

w h a t  is  c a l l e d  t h e  in d e x  [ G : H ]  o f  H  in  G .  T h e  C o u n t in g  F o r m u la  2 .8 .8  b e c o m e s

( 6 .9 .1 )  | G |  =  | H | | G / H | .

T h e r e  is  a  s im ila r  f o r m u la  fo r  a n  o r b it  o f  a n y  g r o u p  o p e r a t io n :

Proposition 6.9.2 Counting Formula. L e t  S  b e  a  f in i t e  s e t  o n  w h ic h  a  g r o u p  G  o p e r a t e s ,  a n d  

l e t  G ,  a n d  O s b e  t h e  s t a b i l i z e r  a n d  o r b it  o f  a n  e l e m e n t  s  o f  S .  T h e n

|G |  =  |G s I  |O s | ,  o r  

( o r d e r  o f  G )  =  ( o r d e r  o f  s t a b i l i z e r ) ( o r d e r  o f  o r b i t ) .

T h is  f o l lo w s  f r o m  ( 6 .9 .1 )  a n d  P r o p o s i t io n  ( 6 .8 .4 ) .  □

T h u s  th e  o r d e r  o f  th e  o r b it  is  e q u a l  t o  th e  i n d e x  o f  th e  s t a b i l iz e r ,

( 6 .9 .3 )  1 0 ,1  =  [ G : G , ] ,

a n d  i t  d iv id e s  t h e  o r d e r  o f  t h e  g r o u p . T h e r e  is  p n e  s u c h  f o r m u la  f o r  e v e r y  e l e m e n t  s  o f  S .

A n o t h e r  f o r m u la  u s e s  t h e  p a r t i t io n  o f  t h e  s e t  S  i n t o  o r b it s  t o  c o u n t  it s  e l e m e n t s .  W e  

n u m b e r  t h e  o r b i t s  th a t  m a k e  u p  S  a r b itr a r ily , a s  O 1, . . .  , O k  T h e n

F o r m u la s  6 .9 .2  a n d  6 .9 .4  h a v e  m a n y  a p p l ic a t io n s .

Examples 6.9.5 (a) T h e  g r o u p  G  o f  r o t a t io n a l  s y m m e t r ie s  o f  a  r e g u la r  d o d e c a h e d r o n  

o p e r a t e s  t r a n s i t iv e ly  o n  t h e  s e t  F  o f  it s  f a c e s .  T h e  s t a b i l i z e r  G  f  o f  a  p a r t ic u la r  f a c e  f  

i s  th e  g r o u p  o f  r o t a t io n s  b y  m u l t ip le s  o f  2 r r /5  a b o u t  th e  c e n t e r  o f  f ;  i t s  o r d e r  is  5. T h e  

d o d e c a h e d r o n  h a s  12 f a c e s .  F o r m u la  6 .9 .2  r e a d s  6 0  =  5  ■ 1 2 , s o  th e  o r d e r  o f  G  is  6 0 . O r , G  

o p e r a t e s  t r a n s i t iv e ly  o n  th e  se t  V  o f  v e r t ic e s .  T h e  s t a b i l i z e r  G y o f  a  v e r t e x  v  is  th e  g r o u p  o f  

o r d e r  3  o f  r o t a t io n s  b y  m u lt ip le s  o f  2 r r /3  a b o u t  th a t  v e r t e x .  A  d o d e c a h e d r o n  h a s  2 0  v e r t ic e s ,  
s o  6 0  =  3  . 2 0 ,  w h ic h  c h e c k s .  T h e r e  is  a  s im ila r  c o m p u t a t io n  f o r  e d g e s :  G  o p e r a t e s  t r a n s i t iv e ly  
o n  t h e  s e t  o f  e d g e s ,  a n d  t h e  s t a b i l i z e r  o f  a n  e d g e  e  c o n t a in s  t h e  id e n t i t y  a n d  a  r o t a t io n  b y  rr 

a b o u t  th e  c e n t e r  o f  e .  S o  | G e | =  2 .  S in c e  6 0  =  2 - 3 0 ,  a  d o d e c a h e d r o n  h a s  3 0  e d g e s .
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(b) We may also restrict an operation of a group G to a subgroup H. By restriction, an 
operation of G on a set S defines an operation of H  on S, and this operation leads to more 
numerical relations. The H-orbit of an element s will be contained in the G-orbit of s, so a 
single G-orbit will be partitioned into H-orbits.

For example, let F  be the set of 12 faces of the dodecahedron, and let H  be the 
stabilizer of a particular face j ,  a cyclic group of order 5. The order of any H-orbit is 
either 1 or 5. So when we partition the set F  of 12 faces into H-orbits, we must find two 
orbits of order 1. We do: H  fixes j  and it fixes the face opposite to j .  The remaining faces 
make two orbits of order 5. Formula 6.9.4 for the operation of the group H  on the set 
of faces is 12 =  1 + 1 + 5 + 5. Or, let K  denote the stabilizer of a vertex, a cyclic group 
of order 3. We may also partition the set F  into K-orbits. In this case Formula 6.9.4 is 
12 =  3 +  3 +  3 +  3. □

6 . 1 0  O P E R A T IO N S  O N  S U B S E T S

Suppose that a group G operates on a set S. If U is a subset of S of order r,

(6.10.1) gU  =  {gu I u e U )

is another subset of order r. This allows us to define an operation of G  on the set of subsets 
of order r  of S. The axioms for an operation are verified easily.

For instance, let O be the octahedral group of 24 rotations of a cube, and let F  
be the set of six faces of the cube. Then O also operates on the subsets of F  of order 
two, that is, on unordered pairs of faces. There are 15 pairs, and they form two orbits: 
F  =  {pairs o f  opposite faces} U {pairs o f adjacent faces}. These orbits have orders 3 and 12, 
respectively.

The stabilizer of a subset U is the set of group elements g such that [gU] =  [U], which 
is to say, gU =  U. The stabilizer of a pair of opposite faces has order 8.

Note this point once more: The stabilizer of U consists of the group elements such that 
gU =  U. This means that g permutes the elements within U, that whenever u is in U, gu is 
also in U.

6 .1 1  P E R M U T A T IO N  R E P R E S E N T A T IO N S

In this section we analyze the various ways in which a group G can operate on a set S.
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• A  permutation representation of a group G is a homomorphism from the group to a 
symmetric group: .

(6.11.1) (p:G -+ Sn.

Proposition 6.11.2 Let G be a group. There is a bijective correspondence between operations 
of G on the set S =  {l . . .  , n} and permutation representations G -+ Sn'

operations of G 
on S

Proof This is very simple, though it can be confusing when one sees it for the first time. If 
we are given an operation of G on S, we define a permutation representation by setting 
<p(g) =  mg, multiplication by g (6.7.2). The associative property g (hi) =  (gh)i shows that

m g(m h i) =  g(hi) =  (gh ) i =  mgh i.

Hence is a homomorphism. Conversely, if is a permutation representation, the same 
formula defines an operation of G on S. □

For example, the operation of the dihedral group Dn on the vertices (vi, . . .  , Vn) of a 
regular n-gon defines a homomorphism <p:Dn -+ Sn.

Proposition 6.11.2 has nothing to do with the fact that it works with a set of indices. If 
Perm(S) is the group of permutations of an arbitrary set S, we also call a homomorphism 
<p: G -+ Perm(S) a permutation representation of G.

Corollary 6.11.3 Let Perm(S) denote the group of permutations of a set S, and let G be a 
group. There is a bijective correspondence between operations of G on S and permutation 
representations <p: G -+ Perm(S):

operations 
of G on S

A permutation representation G -+ Perm(S) needn’t be injective. If it happens to be 
injective, one says that the corresponding operation is faithful. To be faithful, an operation 
must have the property that mg, multiplication by g, is not the identity map unless g =  1:

(6.11.4) An operation is faithful if it has this property:
The only element g of G such that gs =  s for every s in S is the identity.

The operation of the group of isometries M  on the set S of equilateral triangles in the plane 
is faithful, because the only isometry that carries every equilateral triangle to itself is the 
identity.

homomorphisms
G -+ Perm(S) □

permutation
representations
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P e r m u t a t io n  r e p r e s e n t a t io n s  <p:G - +  P e r m ( S )  a r e  r a r e ly  s u r j e c t iv e  b e c a u s e  th e  o r d e r  

o f  P e r m ( S )  t e n d s  t o  b e  v e r y  la r g e .  B u t  o n e  c a s e  is  g iv e n  in  t h e  n e x t  e x a m p le .

Example 6.11.5 T h e  g r o u p  G L 2 (lB'2)  o f  in v e r t ib le  m a tr ic e s  w it h  m o d  2  c o e f f i c ie n t s  is  

i s o m o r p h ic  t o  t h e  s y m m e tr ic  g r o u p  S 3.
W e  d e n o t e  t h e  f ie ld  lF2 b y  F  a n d  t h e  g r o u p  G L 2(lF2)  b y  G. T h e  s p a c e  F 2 o f  c o lu m n  

v e c t o r s  c o n s i s t s  o f  f o u r  v e c to r s :

'0' V '0' ' 1 '
_0_ , = 0 , <?2 = _1_ , e\ + e2 = _1_

The group G  operates on the set of three nonzero vectors S =  {ei, e2, ei +  ^2), and this 
gives us a permutation representation <p: G  -+ S3. The identity is the only matrix that fixes 
both ei and e2, so the operation of G  on S is faithful, and is injective. The columns of an 
invertible matrix must be an ordered pair of distinct elements of S. There are six such pairs, 
so |G | =  6. Since S3 also has order six cp is an isomorphism. □

6 . 1 2  FINITE S U B G R O U P S  O F  T H E  R O T A T IO N  G R O U P

In this section, we apply the Counting Formula to classify the finite subgroups of SO3, the 
group of rotations of ]R3. As happens with finite groups of isometries of the plane, all of them 
are symmetry groups of familiar figures.

Theorem 6.U.1 A finite subgroup of SO 3 is one of the following groups:

Ck- the cyclic group of rotations by multiples of 2n /k  about a line, with k  arbitrary;
Dfc: the dihedral group of symmetries of a regular k-gon, with k  arbitrary;

T: the tetrahedral group of 12 rotational symmetries of a tetrahedron;
O: the octahedral group of 24 rotational symmetries of a cube or an octahedron;
I: the icosahedral group of 60 rotational symmetries of a dodecahedron or an icosahedron.

Note: The dihedral groups are usually presented as groups of symmetry of a regular polygon 
in the plane, where reflections reverse orientation. However, a reflection of a plane can be 
achieved by a rotation through the angle n  in three-dimensional space, and in this way the 
symmetries of a regular polygon can be realized as rotations of K3. The dihedral group 
can be generated by a rotation x with angle 2n /n  about the ei-axis and a rotation y  with
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angle rr about the e2-axis. With c =  cos 2rr/n and s =  sin2rr/n , the matrices that represent 
these rotations are
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'1  ' "-1 '
(6.12.2) x  = c -s , and >’ = 1

s c -1

Let G be a finite subgroup of SO 3, of order N > 1 . We’ll call a pole of an element
g *-1 of G a pole of the group. Any rotation of ]R3 except the identity has two poles -  the
intersections of the axis of rotation with the unit sphere §2. So a pole of G is a point on the 
2-sphere that is fixed by a group element g different from 1.

Example 6.U.3 The group T of rotational symmetries of a tetrahedron A has order 12. Its 
poles are the points of §2 that lie above the centers of the faces, the vertices, and the centers 
of the edges. Since A has four faces, four vertices, and six edges, there are 14 poles.

\poles\ =  14 = 1faces] +  | vertices | + \edges\

Each of the 11 elements g *-1 of T has two spins -  two pairs (g, p), where p  is a pole of g. 
So there are 22 spins altogether. The stabilizer of a face has order 3. Its two elements 1 
share a pole above the center of a face. Similarly, there are two elements with a pole above 
a vertex, and one element with a pole above the center of an edge.

|spins| =  22 =  2 \faces\ +  2 | vertices | + \e d g e s |

□

Let P  denote the set of all poles of a finite subgroup G. We will get information about the 
group by counting these poles. As the example shows, the count can be confusing.

Lemma 6.12.4 The set P  of poles of G is a union of G-orbits. So G operates on P.

Proof Let p  be a pole, say the pole of an element g 1 in G, let h be another element of G, 
and let q =  h p . We have to show that q is a pole, meaning that q is fixed by some element 
g' of G other than the identity. The required element is h g h -1  ̂This element is not equal to 
1 because g*- 1, and h g h _1q = hgp  =  h p  = q. □

The stabilizer G p of a pole p  is the group of all of the rotations about p  that are in G. 
It is a cyclic group, generated by the rotation of smallest positive angle 0. We’ll denote its 
order by rp. Then 0 =  2rr/rp.
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Since p  is a pole, the stabilizer G p contains an element besides 1, so rp > 1. The set of 
elements of G  with pole p  is the stabilizer G  p, with the identity element omitted. So there 
are rp — 1 group elements that have p  as pole. Every group element g except one has two 
poles. Since |G | =  N, there are 2N -  2 spins. This gives us the relation

(6.12.5) I ( r p  — 1) =  2(N - 1 ) .
peP

We collect terms to simplify the left side of this equation: Let np  denote the order of the 
orbit Op of p. By the Counting Formula (6.9.2),

(6.12.6) rpn p = N.

Iftwo poles p  and p ' are in the same orbit, their orbits are equal, so n p =  n pi, and therefore 
rp  =  r p . We label the various orbits arbitrarily, say as O \, O2 , . . .  Ok, and we let n j =  n p 
and ri = rp for p  in Oj, so that n,r; =  N. Since the orbit Oj contains n  elements, there are 
H terms equal to rj -  1 on the left side of (6.12.5). We collect those terms together. This 
gives us the equation

k
I : n ,  (n  - 1) =  2N -  2 .
i=-i

We divide both sides by N to get a famous formula:

(6.12.7) l  ( l - ; r  ) = 2 - !  •

This may not look like a promising tool, but in fact it tells us a great deal. The right side is 
between 1 and 2, while each term on the left is at least It follows that there can be at most 
three orbits.

The rest of the classification is made by listing the possibilities:

One orbit: 1 -  *  =  2 — ^ . This is impossible, because 1 -  *  <  1, while 2 — ^  2: 1.

Two orbits-. (1 -  * )  +  (1 — = 2 -  -|, t hat is, *  +  ±  = ^ .

Because r; divides N, this equation holds only when r i =  r2  =  N, and then ni =  n 2  =  1. 
There are two poles p i and P2, both fixed by every element of the group. So G  is the cyclic 
group C,v of rotations whose axis of rotation is the line l  through p \  and P2 .

Three orbits (1 -  1.) + (1 -  1.) + (1 — 1.) =  2 -  1. . .

This is the most interesting case. Since ^  is positive, the formula implies that

1 1 1(6.12.8) — +  — +  — >  1.
ri r2 r

We arrange the r (- in increasing order. Then ri =  2: If all rj were at least 3, the left side 
would be 1.
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Case 1 \r\ = r2  = 2. The third order r3 =  k can be arbitrary, and N  = 2k:

'  =  2, 2, k; ni = k, k, 2; N = 2k.

There is one pair of poles {p, p'} making the orbit O3. Half of the elements of G fix p, and 
the other half interchange p  and p '. So the elements of G are rotations about the line .e 
through p  and p ', or else they are rotations by rr about a line perpendicular to .e. The group 
G is the group of rotations fixing a regular k-gon A, the dihedral group Dfc. The polygon A 
lies in the plane perpendicular to .e, and the vertices and the centers of faces of A correspond 
to the remaining poles. The bilateral symmetries of A in K2 have become rotations through 
the angle rr in K3.

Case 2  r\ = 2 and 2 <  r2 n .  The equation 1/2 +  1/4 +  1/4 =  1 rules out the possibility 
that r2 :: 4. Therefore r2 = 3. Then the equation 1/2 +  1/3 +  1/6 =  1 rules out 0  :: 6. Only 
three possibilities remain:

(6.12.9)

(i) r,- =  2, 3, 3; m  = 6,4,4;  N =  12.
The poles in the orbit O3 are the vertices of a regular tetrahedron, and G is the 
tetrahedral group T of its 12 rotational symmetries.

(ii) ri =  2, 3, 4; ni =  12, 8, 6; N  = 24.
The poles in the orbit O3 are the vertices of a regular octahedron, and G is the 
octahedral group O of its 24 rotational symmetries.

(iii) ri =  2, 3, 5; ni =  30, 20, 12; N = 60.
The poles in the orbit O3 are the vertices of a regular icosahedron, and G is the 
icosahedral group I  of its 60 rotational symmetries.

In each case, the integers ni are the numbers of edges, faces, and vertices, respectively.
Intuitively, the poles in an orbit should be the vertices of a regular polyhedron because 

they must be evenly spaced on the sphere. However, this isn’t quite correct, because the 
centers of the edges of a cube, for example, form an orbit, but they do not span a regular 
polyhedron. The figure they span is called a truncated polyhedron.

We’ll verify the assertion of (iii). Let V be the orbit 03 of order twelve. We want to 
show that the poles in this orbit are the vertices of a regular icosahedron. Let p  be one of 
the poles in V. Thinking of p  as the north pole of the unit sphere gives us an equator and 
a south pole. Let H  be the stabilizer of p. Since r3 =  5, this is a cyclic group, generated by 
a rotation x about p  with angle 2 rr/5. When we decompose V into H-orbits, we must get 
at least two H-orbits of order 1. These are the north and south poles. The ten other poles 
making up V form two H-orbits of order 5. We write them as {#q, . . . ,  q4} and {q'0, . . . ,  q^}, 
where q (- =  x'qQ and qi =  x lq'Q. By symmetry between the north and south poles, one of 
these H-orbits is in the northern hemisphere and one is in the southern hemisphere, or else 
both are on the equator. Let’s say that the orbit {qd is in the northern hemisphere or on the 
equator.
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Let |x, y| denote the spherical distance between points x and y on the unit sphere. We 
note that d  =  |p , qi \ is independent of i =  0, . . .  , 4, because there is an element of H  that 
carries qo q,, while fixing p. Similarly, d ' =  Ip, qi l is independent of i. So as p ' ranges over 
the orbit V the distance Ip, p 'l takes on only four values 0, d, d ' and n. The values d  and d' 
are taken on five times each, and 0 and n  are taken on once. Since G operates transitively 
on V, we will obtain the same four values when p  is replaced by any other pole in V.

We note that d  :: n /2  while d ' :: n /2 . Because there are five poles in the orbit {q,}, 
the spherical distance |q,-, q !+il is less than n /2 , so it is equal to d, and d <  n /2 . Therefore 
that orbit isn’t on the equator. The three poles p, q,, q,+i form an equilateral triangle. There 
are five congruent equilateral triangles meeting at p, and therefore five congruent triangles 
meet at each pole. They form the faces of an icosahedron.

Note: There are just five regular polyhedra. This can be proved by counting the number of 
ways that one can begin to build one by bringing congruent regular polygons together at a 
vertex. One can assemble three, four, or five equilateral triangles, three squares, or three 
regular pentagons. (Six triangles, four squares, or three hexagons glue together into flat 
surfaces.) So there are just five possibilities. But this analysis omits the interesting question 
of existence. Does an icosahedron exist? Of course, we can build one out of cardboard. But 
when we do, the triangles never fit together precisely, and we take it on faith that this is due 
to our imprecision. If we drew the analogous conclusion about the circle of fifths in music, 
we’d be wrong: the circle of fifths almost closes up, but not quite. The best way to be sure 
that the icosahedron exists may be to write down the coordinates of its vertices and check 
the distances. This is Exercise 12.7. □

Our discussion of the isometries of the plane has analogues for the group of isometries 
of three-space. One can define the notion of a crystallographic group, a discrete subgroup 
whose translation group is a three-dimensional lattice. The crystallographic groups are anal
ogous to two-dimensional lattice groups, and crystals form examples of three-dimensional 
configurations having such groups as symmetry. It can be shown that there are 230 types of 
crystallographic groups, analogous to the 17 lattice groups (6.6.2). This is too long a list to 
be useful,.so crystals have been classified more crudely into seven crystal systems. For more 
about this, and for a discussion of the 32 crystallographic point groups, look in a book on 
crystallography, such as [Schwarzenbach].

Un bon heritage vaut mieux que Ie plus joli probleme 
de geometrie, parce qu'il tient lieu de methode 
generale, et sert a resoudre bien des problemes.

—Gottfried Wilhelm Leibnitz2

21 learned this quote from V .l. Arnold. I’HOpital had written to Leibniz, apologizing for a long silence, and 
saying that he had been  in the country taking care o f an inheritance. In his reply, Leibniz told him not to worry, and 
continued with the sentence quoted.
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E X E R C ISE S

Section 1 Symmetry of Plane Figures

1.1. Determine all symmetries of Figures 6.1.4, 6.1.6, and 6.1.7.

Section 3 Isometries of the Plane
3.1. Verify the rules (6.3.3).
3.2. Let m be an orientation-reversing isometry. Prove algebraically that m2 is a translation.
3.3. Prove that a linear operator on ]R2 is a reflection if and only if its eigenvalues are 1 and -1, 

and the eigenvectors with these eigenvalues are orthogonal.
3.4. Prove that a conjugate of a glide reflection in M is a glide reflection, and that the glide 

vectors have the same length.
3.5. Write formulas for the isometries (6.3.1) in terms of a complex variable z =  x + iy.
3.6. (a) Let s be the rotation of the plane with angle rr/2 about the point (1, 1)'. Write the

formula for s as a product taPe.
(b) Let s denote reflection of the plane about the vertical axis x =  1. Find an isometry g 

such that grg-1 =  s, and write s in the form taper.

Section 4 Finite Groups of Orthogonal Operators on tbe Plane

4.1. Write the product x2yx~1 y~!x3y3 in the form x' yj in the dihedral group Dn.
4.2. (a) List all subgroups of the dihedral group D4 , and decide which ones are normal.

(b) List the proper normal subgroups N  of the dihedral group D 15, and identify the 
quotient groups D 15 /  N.

(c) List the subgroups of Dg that do not contain x3.
4.3. (a) Compute the left cosets of the subgroup H  =  {l, xS} in the dihedral group Dio.

(b) Prove that H  is normal and that D io/H  is isomorphic to D5.
( c )  Is Dio isomorphic to D5 x H?

Section 5 Discrete Groups of Isometries
5.1. Let i i  and £2 be lines through the origin in JR. 2 that intersect in an angle rr/n, and let r< be 

the reflection about £,-. Prove that ri and r2 generate a dihedral group Dn.
5.2. What is the crystallographic restriction for a discrete group of isometries whose translation 

group L has the form Za with a -=1 = O?
5.3. How many sublattices of index 3 are contained in a lattice L in ]R2?
5.4. Let (a, b) be a lattice basis of a lattice L in ]R2. Prove that every other lattice basis has the 

form (a', b') =  (a, b)P, where P  is a 2x2 integer matrix with determinant ± 1.
5.5. Prove that the group of symmetries of the frieze pattern is isomorphic to the

direct product C2 X Coo of a cyclic group of order 2 and an infinite cyclic group.

5.6. Let G be the group of symmetries of the frieze pattern L, H L, H L, H L, r 1 . Determine 
the point group G of G, and the index in G of its subgroup of translations.
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5.7. Let N  denote the group of isometries of a line JR.1. Classify discrete subgroups of N, 
identifying those that differ in the choice of origin and unit length on the line.

*5.8. Let N ' be the group of isometries of an infinite ribbon

R : :  {(x, y) | - i  < y  < 1}.

It can be viewed as a subgroup of the group M. The following elements are in N'\

ta-(x, y) -+ (x +  a, y) 
s  (x, y) -+ (-x, y) 
r: (x, y) -+ (x, -y) 
p: (x, y) - + (-x, -y).

(a) State and prove analogues of (6.3.3) for these isometries.
(b) A frieze pattern is a pattern on the ribbon that is periodic and whose group of 

symmetries is discrete. Classify the corresponding symmetry groups, identifying those 
that differ in the choice of origin and unit length on the ribbon. Begin by making some 
patterns with different symmetries. Make a careful case analysis when proving your 
results.

5.9. Let G be a discrete subgroup of M whose translation group is not trivial. Prove that
there is a point po in the plane that is not fixed by any element of G except the
identity.

5.10. Let f  and g be rotations of the plane about distinct points, with arbitrary nonzero
angles of rotation () and ¢. Prove that the group generated by f  and g con tains a
translation.

5.11. If S and S ' are subsets of JR.” with S C S', then S is dense in S' if for every element s' of S', 
there are elements of S arbitrarily near to s'.

(a) Prove that a subgroup r  of lR.+ is either dense in JR., or else discrete.
(b) Prove that the subgroup of R+ generated by 1 and ..fi is dense in lR+.
(c) Let H  be a subgroup of the group G of angles. Prove that H  is either a cyclic subgroup 

of G or else it is dense in G.

5.12. Classify discrete subgroups of the additive group K3+.

Section 6 Plane Crystallographic Groups .

6.1. (a) Determine the point group G for each of the patterns depicted in Figure (6.6.2).
(b) For which of the patterns can coordinates be chosen so that the group G operates on 

the lattice L?
6.2. Let G be the group of symmetries of an equilateral triangular lattice L. Determine the 

index in G of the subgroup of translations in G.
6.3. With each of the patterns shown, determine the point group and find a pattern with the 

same type of symmetry in Table 6.6.2.
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*6.4. Classify plane crystallographic groups with point group Di =  {I, r}.
6.5. ( a )  Prove that if the point group of a two-dimensional crystallographic group G is Cg or 

D 6, the translation group L is an equilateral triangular lattice.
(b )  Classify those groups.

*6.6. Prove that symmetry groups of the figures in Figure 6.6.2 exhaust the possibilities.

S e c t io n  7  A b s tr a c t  S y m m e tr y :  G r o u p  O p e r a t io n s

7 .1 . Let G = D4 be the dihedral group of symmetries of the square.

( a )  What is the stabilizer of a vertex? of an edge?
(b )  G operates on the set of two elements consisting of the diagonal lines. What is the 

stabilizer of a diagonal?

7 .2 . The group M  of isometries of the plane operates on the set of lines in the plane. Determine 
the stabilizer of a line.

7 .3 . The symmetric group S3 operates on two sets U and V of order 3. Decompose the product 
set Ux  V into orbits for the “diagonal action” g(u, v) =  (gu, gv), when

( a )  the operations on U and V are transitive,
( b )  the operation on U is transitive, the orbits for the operation on V are {vi} and {V2 , V3}.

7.4. In each of the figures in Exercise 6.3, find the points that have nontrivial stabilizers, and 
identify the stabilizers.

7 .5 . Let G be the group of symmetries of a cube, including the orientation-reversing symmetries. 
Describe the elements of G geometrically.
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7.6. Let G be the group of symmetries of an equilateral triangular prism P, including the 
orientation-reversing symmetries. Determine the stabilizer of one of the rectangular faces 
of P  and the order of the group.

7.7. Let G =  G Ln(R) operate on the set V =  Rn by left multiplication.

( a )  Describe the decomposition of V into orbits for this operation.
( b )  What is the stabilizer of ei?

7 .8 . Decompose the set C2 x2 of 2X2 complex matrices into orbits for the following operations
of G L 2 (C): (a )  left multiplication, (b )  conjugation.

7.9. (a )  Let S be the set Rm Xn of real m Xn matrices, and let G =  G L m (R) x GL„(R). Prove
that the rule (P, Q) *A =  PAQ~l define an operation of G on S.

(b )  Describe the decomposition of S into G-orbits.
( c )  Assume that m n. What is the stabilizer of the matrix [/ | OJ?

1 0 
0 0 under conjugation in the7.10. (a) Describe the orbit and the stabilizer of the matrix

general linear group G Ln (R).
(b ) Interpreting the matrix in G L2 (lFs) , find the order of the orbit.

7.11. Prove that the only subgroup of order 12 of the symmetric group S4 is the alternating 
group A4.

S e c t io n  8 T h e  O p e r a t io n  o n  C o s e ts

8 .1 . Does the rule P * A = PAP1 define an operation of G Ln on the set of n Xn matrices?
8 .2 . What is the stabilizer of the coset [aH] for the operation of G on G /  H?
8 .3 . Exhibit the bijective map (6.8.4) explicitly, when G is the dihedral group D 4 and S is the 

set of vertices of a square.
8 .4 . Let H  be the stabilizer of the index 1 for the operation of the symmetric group G = Sn 

on the set of indices { I ,  . . . ,  n }. Describe the left cosets of H  in G and the map (6.8.4) in 
this case.

S e c t io n  9  T h e  C o u n t in g  F o r m u la

9 .1 . Use the counting formula to determine the orders of the groups of rotational symmetries 
of a cube and of a tetrahedron.

9.2. Let G be the group of rotational symmetries of a cube, let Gv, G e, G f  be the stabilizers 
of a vertex v, an edge e, and a face f  of the cube, and let V, E, F  be the sets of vertices, 
edges, and faces, respectively. Determine the formulas that represent the decomposition 
of each of the three sets into orbits for each of the subgroups.

9.3. Determine the order of the group of symmetries of a dodecahedron, when orientation- 
reversing symmetries such as reflections in planes are allowed.

9.4. Identify the group T' of all symmetries of a regular tetrahedron, including orientation- 
reversing symmetries.
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9.5. Let F  be a section of an I-beam, which one can think of as the product set of the letter
I and the unit interval. Identify its group of symmetries, orientation-reversing symmetries 
included.

9.6. Identify the group of symmetries of a baseball, taking the seam (but not the stitching) into 
account and allowing orientation-reversing symmetries.

Section 10 Operations on Subsets

10.1. Determine the orders of the orbits for left multiplication on the set of subsets of order 3 of 
D3.

10.2. Let S be a finite set on which a group G operates transitively. and let U be a subset of S. 
Prove that the subsets gU cover S evenly, that is. that even clement of S is in the same 
number of sets gU.

10.3. Consider the operation of left multiplication by G on the set of its subsets. Let U be a 
subset such that the sets gU partition G. Let H he the unique subset in this orbit that 
contains 1. Prove that H  is a subgroup of G.

Section 11 Permutation Representations
11.1. Describe all ways in which S3 can operate on a set of four elements.
11.2. Describe all ways in which the tetrahedral group T  can operate on a set of two elements.
11.3. Let S be a set on which a group G operates, and let H  be the subset of elements g such 

that gs =  s for all s in S. Prove that H  is a normal subgroup of G.
11.4. Let G be the dihedral group D 4 of symmetries of a square. Is the action of G on the 

vertices a faithful action? on the diagonals?
11.5. A group G operates faithfully on a set S of five elements, and there are two orbits, one of 

order 3 and one of order 2. What are the possible groups?
Hint: Map G to a product of symmetric groups.

11.6. Let F  =  F3. There are four one-dimensional subspaces of the space of column vectors 
F 2. List them. Left multiplication by an invertible matrix permutes these subspaces. Prove 
that this operation defines a homomorphism cp: G L 2(F) -+ S4. Determine the kernel and 
image of this homomorphism.

11.7. For each of the following groups, find the smallest integer n such that the group has a 
faithful operation on a set of order n: (a) D4, (b) D6, (c) the quaternion group H.

11.8. Find a bijective correspondence between the multiplicative group F* and the set of 
automorphisms of a cyclic group of order p.

11.9. Three sheets of rectangular paper Sl , S2, S3 are made into a stack. Let G be the group of 
all symmetries of this configuration, including symmetries of the individual sheets as well 
as permutations of the set of sheets. Determine the order of G, and the kernel of the map 
G -+ S3 defined by the permutations of the set {Si, S2, S3}.

Section 12 Finite Subgroups of the Rotation Group

12.1. Explain why the groups of symmetries of the dodecahedron and the icosahedron are 
isomorphic.
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12.2. Describe the orbits of poles for the group of rotations of an octahedron.
12.3. Let O be the group of rotations of a cube, and let S be the set of four diagonal lines 

connecting opposite vertices. De termi ne the stabilizer of one of the d iagonals.
12.4. Let G = 0  be the group of rotations of a cuhe, and let lJ  be the subgroup carrying one of 

the two inscribed tetrahedra to itself (see Exercise 3.4). Prove th at H  = T.
12.5. Prove that the icosahedrai group has a subgroup of order 10.
12.6. Determine all subgroups of (a) the tetrahedral group, (b) the icosahedral group.
12.7. The 12 points ( ± 1, ± a, 0) f, (0, ± 1. ± a ) \  ( ± a, 0, ±  1)1 form the vertices of a regular 

icosahedron if a  >  1 is chosen suitably. Verify this. and determine a.
*12.8. Prove the crystallographic restriction for three-dimensional crystallographic groups: 

A rotatiopal symmetry of a crvstal has order 2. 3, 4. or 6.

Miscellaneous Problems
*M.L Let G be a two-dimensional crystallographic group such that no element g =1=  1 fixes any 

point of the plane. Prove that G  is generated by two translations, or else by one translation 
and one glide.

M .2, (a) Prove that the set Aut G of automorphisms of a group G forms a group, the law of 
composition being composition of functions.

(b )  Prove that the map cp: G --) Aut G defined by g  ^  (conjugation by g) is a homo
morphism , and determine its kernel.

(c) The automorphisms that are obtained as conjugation by a group element are called 
inner automorphisms. Prove that the set of inner automorphisms, the image of cp, is a 
normal subgroup of the group Aut G.

M.3. Determine the groups of automorphisms (see Exercise M.2) of the group
(a) C4 . (b) Cg , (c) C2 X C 2 , (d )  D4 , (e) the quaternion group H.

*M.4. With coordinates Xi, . . . , x„ in Rn as usual, the set of points defined by the in
equalities -1 :: Xi :: +1, for i =  1, . . .  ,n , is an n-dimensional hypercube Cn. The 
1-dimensional hypercube is a line segment and the 2-dimensional hypercube is a square. 
The 4-dimensional hypercube has eight face cubes, the 3-dimensional cubes defined by 
{Xi =  1) and by {x, =  -1J, for i = 1, 2, 3,4, and it has 16 vertices ( ±  1, ±  1, ±  1, ± 1).

Let Gn denote the subgroup of the orthogonal group On of elements that send the 
hypercube to itself, the group of symmetries of Cn, including the orientation-reversing sym
metries. Permutations of the coordinates and sign changes are among the 
elements of Gn.

(a) Use the counting formula and induction to determine the order of the group G „.
(b) Describe Gn explicitly, and identify the stabilizer of the vertex (1, . . . ,  1). Check your 

answer by showi ng that G2 is isomorphic to the dihedral group D4.

*M.5. (a) Find a way to determine the area of one of the hippo heads that make up the first 
patte rn in Figure 6.6.2. Do the same for one of the fieurs-de-lys in the pattern at the 
bottom of the figure.

( b )  A fundamental domain D  for a plane crystallograp hic group is a bounded region of the 
plane such that the images gD, g  in G, cover the plane exactly once, without overlap.
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F in d  tw o  n o n c o n g r u e n t  fu n d a m e n ta l  d o m a in s  fo r  g r o u p  o f  s y m m e tr ie s  o f  t h e  h ip p o  
p a tte r n . D o  t h e  s a m e  fo r  t h e  f le u r -d e - ly s  p a tte r n .

(c) P r o v e  th a t  i f  D  a n d  D '  a r e  fu n d a m e n ta l  d o m a in s  f o r  t h e  s a m e  p a tte r n , t h e n  D  c a n  b e  
c u t  in t o  f in ite ly  m a n y  p ie c e s  a n d  r e a s s e m b le d  to  f o r m  D '.

(d) F in d  a  fo r m u la  r e la t in g  t h e  a r e a  o f  a  fu n d a m e n ta l  d o m a in  t o  t h e  o r d e r  o f  t h e  p o in t  
g r o u p  o f  th e  p a t t e r n .

*M.6. L e t  G  b e  a  d is c r e te  su b g r o u p  o f  M . C h o o s e  a  p o in t  p  in  th e  p la n e  w h o s e  s ta b l i l iz e r  in  G  
is  tr iv ia l, an d  le t  S  b e  th e  o r b it  o f  p . F o r  e v e r y  p o in t  q  o f  S  o th e r  th a n  p ,  le t  1q b e  th e  l in e  
th a t  is  th e  p e r p e n d ic u la r  b i s e c to r  o f  t h e  l in e  s e g m e n t  [ p ,  q ] ,  a n d  le t  H q  b e  t h e  h a l f  p la n e  
th a t  is  b o u n d e d  b y  1q a n d  th a t  c o n ta in s  p .  P r o v e  th a t  D  =  |Q  H q  is  a  fu n d a m e n ta l  d o m a in  
f o r  G  ( s e e  E x e r c i s e  M .5 ) .

*M.7. L e t  G  b e  a  f in ite  g r o u p  o p e r a t in g  o n  a  f in ite  s e t  S . F o r  e a c h  e le m e n t  g  o f  G ,  l e t  Sg d e n o t e  
t h e  s u b s e t  o f  e l e m e n t s  o f  S  f ix e d  b y  g  : Sg =  { s  E S | gs =  s } ,  a n d  le t  G s  b e  t h e  s ta b i l iz e r  
o f  s .

(a) W e  m a y  im a g in e  a  t r u e - f a l s e  t a b le  fo r  t h e  a s s e r t io n  th a t  gs  =  s ,  s a y  w i t h r o w s  in d e x e d  
b y  e le m e n t s  o f  G  a n d  c o lu m n s  in d e x e d  b y  e l e m e n t s  o f  S . G o n s tr u c t  su c h  a  t a b le  fo r  
t h e  a c t io n  o f  t h e  d ih e d r a l g r o u p  D 3  o n  t h e  v e r t ic e s  o f  a  t r ia n g le .

(b) P r o v e  t h e  fo r m u la  LseS  IG sl =  LgeG  ISg |.

(c) P r o v e  Burnside’s Formula'. |G |  . ( n u m b e r  o f  o r b it s )  =  L 8Eg IS g |.

M.8. T h e r e  a r e  7 0  =  (®) w a y s to  c o lo r  t h e  e d g e s  o f  a n  o c ta g o n , w ith  fo u r  b la c k  a n d  fo u r  w h ite .  
T h e  g r o u p  D s  o p e r a t e s  o n  th is  s e t  o f  7 0 , a n d  th e  o r b it s  r e p r e s e n t  e q u iv a le n t  c o lo r in g s . U s e  
B u r n s id e ’s F o r m u la  ( s e e  E x e r c is e  M .7 )  to  c o u n t  t h e  n u m b e r  o f  e q u iv a le n c e  c la s s e s .
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More Group Theory

The more to do or to prove, the easier the doing or the proof.

—James Joseph Sylvester

We discuss three topics in this chapter: conjugation, the most important group operation, 
the Sylow Theorems, which describe subgroups of prime power order in a finite group, and 
generators and relations for a group.

7 .1  C A Y L E Y 'S  T H E O R E M

Every group G operates on itself in several ways, left multiplication being one of them:

(7.1.1) G X G  ^  Gg ,x  ..,.gx.

This is a transitive operation -  there is just one orbit. The stabilizer of any element is the 
trivial subgroup < 1 >, so the operation is faithful, and the permutation representation

(7 1 2) G -+ Perm(G)
g m g -  left multiplication by g

defined by this operation is injective (see Section 6.11).

Theorem 7.1.3 Cayley’s Theorem. Every finite group is isomorphic to a subgroup of a 
permutation group. A group of order n is isomorphic to a subgroup of the symmetric 
group Sn.

Proof Since the operation by left multiplication is faithful, G is isomorphic to its image in 
Perm(G). If G has order n, Perm(G) is isomorphic to Sn. □

Cayley’s Theorem is interesting, but it is difficult to use because the order of Sn is 
usually too large in comparison with n.

7 .2  T H E  C L A S S  E Q U A T IO N

Conjugation, the operation of G on itself defined by

(7.2.1) (g, x)..,. gxg -1 .

195
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is more subtle and more important than left multiplication. Obviously, we shouldn’t use 
multiplicative notation for this operation. We’ll verify the associative law (6.7.1) for the 
operation, using g*x as a temporary notation for the conjugate gx g -1:

(gh) * x =  (gh )x (gh )-1 =  ghxh~ 1 g~ 1 =  g(h * x )g~1 = g * (h * x).

Having checked the axiom, we return to the usual notation gxg~1 .
• The stabilizer of an element x of G for the operation of conjugation is called the centralizer 
of x. It is often denoted by Z(x):

(7.2.2) Z(x) =  {g e G | gxg - 1 =  x} =  {g e G | gx =  xg}.

The centralizer of x is the set of elements that commute with x.

• The orbit of x  for conjugation is called the conjugacy class of x, and is often denoted by 
C(x). It consists of all of the conjugates gxg"1:

(7.2.3) C(x) =  {x' e G  | x' =  gxg- 1 for some g in G}.

The counting formula (6.9.2) tells us that

(7.2.4) |G | =  |Z(x)|- |C(x)|
| G \ =  \centralizer\-\conj. class\

The center Z  of a group G was defined in Chapter 2. It is the set of elements that 
commute with every element of the group: Z  = {z e G | zy — yz  for all y  in G}.

Proposition 7.2.5
(a) The centralizer Z(x) of an element x of G contains x, and it contains the center Z.
(b) An element x of G  is in the center if and only if its centralizer Z(x) is the whole group

G, and this happens if and only if the conjugacy class C(x) consists of the element x 
alone. O

Since the conjugacy classes are orbits for a group operation, they partition the group. 
This fact gives us the c/ass equation of a finite group:

(7.2.6) 1G| =  L  IC1-
conjugacy
classes C -

If we number the conjugacy classes, writing them as Ci, . .• ,  Ck, the class equation reads

(7.2.7) |G | =  |C i| +  --. +  |C*|.

The conjugacy class of the identity element 1 consists of that element alone. It seems natural 
to list that class first, so that |C i I =  1. The other occurences of 1 on the right side of the class 
equation correspond to the elements of the center Z  of G. Note also that each term on the 
right sipe divides the left side, because it is the order of an orbit.

2 8) The numbers on the right side of the class equation divide the
( ' ' '  order of the group, and at least one of them is equal to 1.
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This is a strong restriction on the combinations of integers that may occur in such an 
equation.

The symmetric group S3 has order 6. With our usual notation, the element x has order
3. Its centralizer Z (x) contains x, so its order is 3 or 6. Since y x  = x 2 y, x  is not in the center 
of the group, and |Z (x)| =  3. It follows that Z  (x) =  <x>, and the counting formula (7.2.4) 
shows that the conjugacy class C(x) has order 2. Similar reasoning shows that the conjugacy 
class C(y) of the element y  has order 3. The class equation of the symmetric group S3 is

(7.2.9) 6 =  1 + 2  +  3.

As we see, the counting formula helps to determine the class equation. One can 
determine the order of a conjugacy class directly, or one can compute the order of its 
centralizer. The centralizer, being a subgroup, has more structure, and computing its order is 
often the better way . We will see a case in which it is easier to determine the conjugacy classes 
in the next section, but let’s look at another case in which one should use the centralizer.

Let G be the special linear group SL2OF3) of matrices of determinant 1 with entries 
in the field lF3. The order of this group is 24 (see Exercise 4.4). To start computing the 
class equation by listing the elements of G would be incredibly boring. It is better to begin 
by computing the centralizers of a few matrices A. This is done by solving the equation 
PA = AP, for the matrix P. It is easier to use this equation, rather than P A P 1 =  A. For 
instance, let

' - 1 ' and P = a b
1 c d

The equation PA =  AP imposes the conditions b =  -c  and a  =  d, and then the equation 
detP  =  1 becomes a 2 + c2 =  1. This equation has four solutions in F3: a =  ± 1, c =  0 and 
a  =  0, c =  ± 1. So |Z(A)| =  4 and |C(A)| =  6. This gives us a start for the class equation:
24 =  1 +  6 +---- . To finish the computation, one needs to compute centralizers of a few more
matrices. Since conjugate elements have the same characteristic polynomial, one can begin 
by choosing elements with different characteristic polynomials.

The class equation of SL2(lF3) is

(7.2.10) 24 =  1 +  1 +  4 +  4 +  4 +  4 +  6.

7.3 p-GROUPS
The class equation has several applications to groups whose orders are positive powers of a 
prime p. They are called p-groups.

Proposition 7.3.1 The center of a p-group is not the trivial group.

Proof Say that |G | =  p e with e :: 1. Every term on the right side of the class equation 
divides p e, so it is a power of p  too, possibly p O =  1. The positive powers of p  are divisible 
by p. If the class Ci of the identity made the only contribution of 1 to the right side, the 
equation would read

p e =  1 +  ^  (multiples o fp ) .

This is impossible, so there must be more 1 ’s on the right. The center is not trivial. □
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A similar argument can be used to prove the following theorem for operations of 
p-groups. We’ll leave its proof as an exercise.

Theorem 7.3.2 Fixed Point Theorem. Let G be a p-group, and let S be a finite set on which 
G operates. If the order of S is not divisible by p, there is a fixed point for the operation of 
G on S -  an element s whose stabilizer is the whole group. □

Proposition 7.3.3 Every group of order p 2 is abelian.

Proof Let G be a group of order p 2. According to the previous proposition, its center Z  is 
not the trivial group. So the order of Z  must be p  or p 2. If the order of Z  is p 2, then Z  =  G, 
and G is abelian as the proposition asserts. Suppose that the order of Z  is p , and let x be an 
element of G that is not in Z. The centralizer Z(x) contains x as well as Z, so it is strictly 
larger than Z. Since |Z (x)| divides |G |, it must be equal to p 2, and therefore Z (x) =  G. 
This means that x commutes with every element of G , so it is in the center after all, which is 
a contradiction. Therefore the center cannot have order p. □

Corollary 7.3.4 A group of order p 2 is either cyclic, or the product of two cyclic groups of 
order p.

Proof Let G be a group of order p 2. If G contains an element of order p 2, it is cyclic. If 
not, every element of G different from 1 has order p. We choose elements x and y of order 
p  such that y  is not in the subgroup <x>. Proposition 2.11.4 shows that G is isomorphic to 
the product <x>X<y>. □

The number of isomorphism classes of groups of order p e increases rapidly with e. 
There are five isomorphism classes of groups of order eight, 14 isomorphism classes of groups 
of order 16, and 51 isomorphism classes of groups of order 32.

7.4 THE CLASS EQUATION OF THE ICOSAHEDRAL GROUP

In this section we use the conjugacy classes in the icosahedral group I  -  the group of 
rotational symmetries of a dodecahedron, to study this interesting group. You may want to 
refer to a model of a dodecahedron or to an illustration while thinking about this.

Let () =  2rr/3. The icosahedral group contains the rotation by () about a vertex v. This 
rotation has spin (v, ()), so we denote it by P(v,(}>- The 20 vertices form an I-orbit orbit, and 
if u' is another vertex, then P(v,(}) and /0(v',(}) are conjugate elements of I. This follows from 
Corollary 5.1.28(b). The vertices form an orbit of order 20, so all of the rotations P(v,(}) are 
conjugate. They are distinct, because the only spin that defines the same rotation as (v, ()) is 
(-v, -()) and -()*(). So these rotations form a conjugacy class of order 20.

Next, I  contains rotations with angle 2rr/5 about the center of a face, and the 12 faces 
form an orbit. Reasoning as above, we find a conjugacy class of order 12. Similarly, the 
rotations with angle 4rr/5 form a conjugacy class of order 12.

Finally, I  contains a rotation with angle rr about the center of an edge. There are 30 
edges, which gives us 30 spins (e, rr). But rr =  -rr. If e is the center of an edge, so is -e, and 
the spins (e, rr) and (-e, -rr) represent the same rotation. This conjugacy class contains only 
15 distinct rotations.
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The class equation of the icosahedral group is

(7.4.1) 60 =  1 +  2 0 +  12 +  12 + 15.

Note: Calling (v, ()) and (e, 7l ')  spins isn’t accurate, because v and e can’t both have unit 
length. But this is obviously not an important point.

S i m p l e  G r o u p s

A group G is simple if it is not the trivial group and if it contains no proper normal 
subgroup -  no normal subgroup other than < 1 > and G. (This use of the word simple does 
not mean “uncomplicated.” Its meaning here is roughly “not compound.”) Cyclic groups of
prime order contain no proper subgroup at all; they are therefore simple groups. All other
groups except the trivial group contain proper subgroups, though not necessarily proper 
normal subgroups.

The proof of the following lemma is straightforward.

L e m m a  7 .4 .2  Let N  be a normal subgroup of a group G.

( a )  If N  contains an element x, then it contains the conjugacy class C(x) of x.
( b )  N  is a union of conjugacy classes.
( c )  The order of N  is the sum of the orders of the conjugacy classes that it contains. □

We now use the class equation to prove the following theorem.

T h e o r e m  7 .4 .3  The icosahedral group I  is a simple group.

Proof. The order of a proper normal subgroup of the icosahedral group is a proper divisor 
of 60, and according to the lemma, it is also the sum of some of the terms on the right side of 
the class equation (7.4.1), including the term 1, which is the order of the conjugacy class of 
the identity element. There is no integer that satisfies both of those requirements, and this 
proves the theorem. □

The property of being simple can be useful because one may run across normal 
subgroups, as the next theorem illustrates.

T h e o r e m  7 .4 .4  The icosahedral group is isomorphic to the alternating group A5. Therefore 
A5 is a simple group.

Proof To describe this isomorphism, we need to find a set S of five elements on which I  
operates. This is rather subtle, but the five cubes that can be inscribed into a dodecahedron, 
one of which is shown below, form such a set.

The icosahedral group operates on this set of five cubes, and this operation defines 
a homomorphism q;: I  -*■ S5, the associated permutation representation. We show that q; 
defines an isomorphism from I  to the alternating group A5. To do this, we use the fact that
I  is a simple group, but the only information that we need about the operation is that it isn’t 
trivial.
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(7.4.5) One of the Cubes Inscribed in a Dodecahedron.

The kernel of cp is a normal subgroup of I. Since I is a simple group, the kernel is 
either the trivial group < 1 > or the whole group /. If the kernel were the whole group. 
the operation of I  on the set of five cubes would be the trivial operation, which it is not. 
Therefore ker cp =  < 1 >. This shows that cp is injective. ft defines an isomorphism from I to 
its image in Ss.

Next, we compose the homomorphism cp with the sign homomorphism ct: Ss —> { ± 1 
obtaining a homomorphism cxcp: I  —► {± 1}. If this homomorphism were surjective. its kernel 
would be a proper normal subgroup of I. This is not the case because I  is simple. Therefore 
the restriction is the trivial homomorphism, which means that the image of cp is contained 
in the kernel of a, the alternating group A5. Both I  and As both have order 60, and cp is 
injective. So the image of cp, which is isomorphic to I, is A 5. □

7.5 CONJUGATION IN THE SYMMETRIC GROUP
The least confusing way to describe conjugation in the symmetric group is to think of 
relabeling the indices. If the given indices are 1, 2, 3, 4, 5, and if we relabel them as
a, b, c, d, e, respectively, the permutation p  = (134) (25) is changed to (acd ) (be).

To write a formula for this procedure, we let cp : I  -> L denote the relabeling map 
that goes from the set I  of indices to the set L of letters: cp(l) =  a, cp (2) =  b, etc. Then the 
relabeled permutation is cp 0 p  0 cp-1. This is explained as follows:

First map letters to indices using cp-1.
Next, permute the indices by p.
Finally, map indices back to letters using cp.

We can use a permutation q of the indices to relabel in the same way. The result, the 
conjugate p ' = qpq~x, will be a new permutation of the same set of indices. For example, if 
we use q =  (1452) to relabel, we will get

qpq  1 =  (1452) o(134) (25) o(2541) =  (435) (12) =  p '.

There are two things to notice. First, the relabeling will p roduce a permutation whose 
cycles have the same lengths as the origina l one. Second, by choosing the permutation q
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suitably, we can obtain any other permutation that has cycles of those same lengths. If we 
write one permutation above the other, ordered so that the cycles correspond, we can use 
the result as a table to define q. For example, to obtain p  =  (435) (12) as a conjugate of 
the permutation p  = (134) (25), as we did above, we could write

(134) (25)
(435) (12)-

The relabeling permutation q is obtained by reading this table down: 1 4 ,  etc.
Because a cycle can start from any of its indices, there will most often be several 

permutations q that yield the same conjugate.
The next proposition sums up the discussion.

P r o p o s i t io n  7.5.1 Two permutations p  and p ' are conjugate elements of the symmetric 
group if and only if their cycle decompositions have the same orders. □

We use Proposition 7.5.1 to determine the class equation of the symmetric group S4 . 
The cycle decomposition of a permutation gives us a partition of the set {1, 2, 3, 4}. The
orders of the subsets making a partition of four can be

1, 1, 1, 1; 2 ,1 , 1; 2,2;  3, 1; or 4.

The permutations with cycles of these orders are the identity, the transpositions, the products
of (disjoint) transpositions, the 3-cycles, and the 4-cycles, respectively.

There are six transpositions, three products of transpositions, eight 3-cycles, and six 
4-cycles. The proposition tells us that each of these sets forms one conjugacy class, so the 
class equation of S4 is

(7.5.2) 24 =  1 +  3 +  6 +  6 +  8.

A similar computation shows that the class equation of the symmetric group S5 is

(7.5.3) 120 =  1 + 10 +  15 +  20 + 20 +  30 + 24.

We saw in the previous section (7.4.4) that the alternating group A5 is a simple group 
because it is isomorphic to the icosahedral group I, which is simple. We now prove that most 
alternating groups are simple.

T h e o r e m  7.5.4 For every n :: 5, the alternating group An is a simple group.

To complete the picture we note that A2 is the trivial group, A3 is cyclic of order three, and 
that A4 is not simple. The group of order four that consists of the identity and the three 
products of transpositions (12) ( 3  4 ) ,  (13) (2 4), (14)(23) is a normal subgroup of S4 and 
of A4 (see (2.5.13)(b)).

L e m m a  7.5.5
( a )  For n :: 3, the alternating group A n is generated by 3-cycles.
( b )  For n :: 5, the 3-cycles form a single conjugacy class in the alternating group A„.
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Proof (a) This is analogous to the method of row reduction. Say that an even permutation 
p , not the identity, fixes m of the indices. We show that if we multiply p  on the left by a 
suitable 3-cycle q, the product qp  will fix at least m +  1 indices. Induction on m will complete 
the proof.

If p  is not the identity, it will contain either a k-cycle with k :: 3, or a product 
of two 2-cycles. It does not matter how we number the indices, so we may suppose that 
p  =  (123 ■ k ) . ■ ■ or p  =  (12)(34) • •. Let q =  (321). The product qp  fixes the index 1 as 
well as all indices fixed by p.
(b) Suppose that n :: 5, and let q =  (123). According to Proposition 7.5.1, the 3-cycles 
are conjugate in the symmetric group Sn. So if q' is another 3-cycle, there is a permutation 
p  such that p q p - 1 =  q'. If p  is an even permutation, then q and q' are conjugate in A n. 
Suppose that p  is odd. The transposition r  =  (45) is in Sn because n :: 5, and rq r - 1 =  q. 
Then p r  is even, and (p r )q (p r ) - 1 =  q'. □

Proof We now proceed to the proof of the Theorem. Let N  be a nontrivial normal subgroup 
of the alternating group An with n :: 5. We must show that N  is the whole group An. It 
suffices to show that N  contains a 3-cycle. If so, then (7.5.5)(b) will show that N  contains 
every three-cycle, and (7.5.5)(a) will show that N  =  An.

We are given that N  is a normal subgroup and that it contains a permutation x different 
from the identity. Three operations are allowed: We may multiply, invert, and conjugate. 
For example, if g is any element of An, then g x g -  and x-1 are in N  too. So is their product, 
the commutator gxg_1x~i. And since g can be arbitrary, these commutators give us many 
elements that must be in N.

Our first step is to note that a suitable power of x will have prime order, say order
i. We may replace x by this power, so we may assume that x has order i. Then the cycle 
decomposition of x will consist of i-cycles and 1-cycles.

Unfortunately, the rest of the proof requires looking separately at several cases. In each 
of the cases, we compute a commutator gxg-1 x -i, hoping to be led to a 3-cycle. Appropriate 
elements can be found by experiment.
Case 1: x has order i  :: 5.

How the indices are numbered is irrelevant, so we may suppose that x contains the i-cycle 
(12345 • ,e), say x =  (12345  . ■ ,e)y, where y  is a permutation of the remaining indices. Let 
g =  (432). Then

first do this
g x g - V i  =  [(432)] o [(12345 . 1)y] o [(234)] o [y -l (1 . -54321)] =  (245).

The commutator is a 3-cycle.

Case 2: x has order 3.

There is nothing to prove if x is a 3-cycle. If not, then x contains at least two 3-cycles, say 
x =  (123)(456)y. Let g =  (432). Then gxg-ix -1 =  (15243). The commutator has order 
5. We go back to Case 1.

Case 3a: x has order 2 and it contains a I-cycle.
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Since it is an even permutation, x must contain at least two 2-cycles, say x = (12)(34) (5)y. 
Let g =  (531). Then gxg-1[ _1 =  (15243 ). The commutator has order 5, and we go back 
to Case 1 again.

Case 3b: x  has order .e =  2, and contains no 1-cycles.

Since n :: 5, x  contains more than two 2-cycles. Say x =  (12)(34)(56)y. Let g = (531). 
Then gxg~1x ~ 1 — (153)(246). The commutator has order 3 and we go back to Case 2.

These are the possibilities for an even permutation of prime order, so the proof of the 
theorem is complete. □

7 .6  N O R M A L IZ E R S

We consider the orbit of a subgroup H  of a group G for the operation of conjugation by G. 
The orbit of [H] is the set of conjugate subgroups [gH g-1], with g in G. The stabilizer of 
[H] for this operation is called the normalizer of H , and is denoted by N(H):

(7.6.1) N (H ) =  {g e G  | gH g- 1 =  H }.

The Counting Formula reads

(7.6.2) |G | =  |N (H )| . (number of conjugate subgroups).

The number of conjugate subgroups is equal to the index [G : N(H)].

Proposition 7.6.3 Let H  be a subgroup of a group G, and let N  be the normalizer of H .

(a) H  is a normal subgroup of N.
(b) H  is a normal subgroup of G if and only if N  =  G.
(c) |H | divides |N | and |N | divides |G |. □

For example, let H  be the cyclic subgroup of order two of the symmetric group S5 that 
is generated by the element p  =  (12)(34). The conjugacy class C (p) contains the 15 pairs
of disjoint transpositions, each of which generates a conjugate subgroup of H . The counting
formula shows that the normalizer N (H ) has order eight: 120 =  8 • 15.

7 .7  T H E  S Y L O W  T H E O R E M S

The Sylow Theorems describe the subgroups of prime power order of an arbitrary finite 
group. They are named after the Norwegian mathematician Ludwig Sylow, who discovered 
them in the 19th century.

Let G be a group of order n, and let p  be a prime integer that divides n. Let p e denote 
the largest power of p  that divides n, so that

(7.7.1) n =  p em,

where m is an integer not divisible by p. Subgroups H  of G of order p e are called Sylow 
p-subgroups of G. A Sylow p-subgroup is a p-group whose index in the group isn’t divisible 
by p.
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T h e o r e m  7 .7 .2  F ir s t  S y lo w  T h e o r e m .  A finite group whose order is divisible by a prime p  
contains a Sylow p-subgroup.

Proofs of the Sylow Theorems are at the end of the section.

C o r o l la r y  7 .7 .3  A finite group whose order is divisible by a prime p  contains an element of 
order p.

Proof Let G be such a group, and let H  be a Sylow p-subgroup of G. Then H  contains an 
element x  different from 1. The order of x  divides the order of H , so it is a positive power 
of p, say p k. Then x pk 1 has order p. □

This corollary isn’t obvious. We already know that the order of any element divides the 
order of the group, but we might imagine a group of order 6, for example, made up of the 
identity 1 and fi ve elements of order 2. No such group exists. A group of order 6 must contain 
an element of order 3 and an element of order 2.

The remaining Sylow Theorems give additional information about the Sylow sub
groups.

T h e o r e m  7 .7 .4  S e c o n d  S y lo w  T h e o r e m .  Let G be a finite group whose order is divisible by 
a prime p.
( a )  The Sylow p-subgroups of G are conjugate subgroups.
(b) Every subgroup of G that is a p-group is contained in a Sylow p-subgroup.

A conjugate subgroup of a Sylow p-subgroup will be a Sylow p-subgroup too.

C o r o l la r y  7 .7 .5  A group G has just one Sylow p-subgroup H  if and only if that subgroup is 
normal. □

T h e o r e m  7 .7 .6  T h ir d  S y lo w  T h e o r e m .  Let G be a finite group whose order n is divisible 
by a prime p. Say that n =  p em, where p  does not divide m, and let s denote the number 
of Sylow p-subgroups. Then s divides m and s is congruent to 1 modulo p: s =  kp  +  1 for 
some integer k  > 0.

Before proving the Sylow theorems, we will use them to classify groups of orders 6,15, 
and 21. These examples show the power of the theorems, but the classification of groups of 
order n is not easy when n has many factors. There are just too many possibilities.

P r o p o s i t io n  7 .7 .7

(a )  Every group of order 15 is cyclic.
(b) There are two isomorphism classes of groups of order 6, the class of the cyclic group C6 

and the class of the symmetric group S3.
( c )  There are two isomorphism classes of groups of order 21: the class of the cyclic group 

C 21, and the class of a group G generated by two elements x  and y that satisfy the 
relations X  =  1, y3 =  1, yx =  x2y.
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Proof. (a) Let G be a group of order 15. According to the Third Sylow Theorem, the number 
of its Sylow 3-subgroups divides 5 and is congruent 1 modulo 3. The only such integer is 1. 
Therefore there is one Sylow 3-subgroup, say H , and it is a normal subgroup. For similar 
reasons, there is just one Sylow 5-subgroup, say K, and it is normal. The subgroup H  is cyclic 
of order 3, and K is cyclic of order 5. The intersection H  n K is the trivial group. Proposition 
2.11.4(d) tells us that G is isomorphic to the product group H x  K. So all groups of order 15 
are isomorphic.to the product C 3 X C5 of cyclic groups and to each other. The cyclic group 
C 15 is one such group, so all groups of order 15 are cyclic.
(b) Let G be a group of order 6. The First Sylow Theorem tells us that G contains a Sylow 
3-subgroup H , a cyclic group of order 3, and a Sylow 2-subgroup K, cyclic of order 2. 
The Third Sylow Theorem tells us that the number of Sylow 3-subgroups divides 2 and is 
congruent 1 modulo 3. The only such integer is 1 So there is one Sylow 3-subgroup H, 
and it .is a normal subgroup. The same theorem also tells us that the number of Sylow 
two-subgroups divides 3 and is congruent 1 modulo 2. That number is either 1 or 3.

Case 1: Both H  and K are normal subgroups.
As in the previous example, G is isomorphic to the product group H  X K, which is 

abelian. All abelian groups of order 6 are cyclic.

Case2: G contains 3 Sylow 2-subgroups, say K i, K2, K 3.
The group G operates by conjugation on the set S =  {[Ki], [K2], [K3]} of order 

three, and this gives us a homomorphism cp: G -+ S3 from G to the symmetric group, the 
associated permutation representation (6.11.2). The Second Sylow Theorem tells us that 
the operation on S is transitive, so the stabilizer in G of the element [K(], which is the 
normalizer N (K j), has order 2. It is equal to Kj. Since Ki n K 2 =  {l}, the identity is the 
only element of G that fixes all elements of S. The operation is faithful, and the permutation 
representation cp is injective. Since G and S3 have the same order, cp is an isomorphism.

(c) Let G be a group of order 21. The Third Sylow Theorem shows that the Sylow 7-subgroup 
K must be normal, and that the number of Sylow 3-subgroups is 1 or 7. Let x be a generator 
for K, and let y be a generator for one of the Sylow 3-subgroups H. Then x7 =  1 and =  1, 
so H  n K  = {1}, and therefore the product map H  x K  -+ G is injective (2.11.4)(a). Since 
G has order 21, the product map is bijective. The elements of G are the products Xly j  with
0 :5 i <  7 and 0 :5 j  <  3.

Since K  is a normal subgroup, y x y - 1  is an element of K, a power of x, say x ' , with i in 
the range 1 <  7. So the elements x and y satisfy the relations

These relations are enough to determine the multiplication table for the group. However, 
the relation y3 =  1 restricts the possible exponents i, because it implies that T x y -3 =  x:

3 - 3  2 i -2 i2 — i3x =  y  x y  = y  x y  =  yx y 1 =  x  •

Therefore i3 =  1 modulo 7. This tells us that i must be 1,2, or 4.
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The exponent i =  3, for instance, would imply x =  x ^  =  x6 =  x~L Then x2 =  1 and 
also x7 =  1, from which it follows that x =  1. The group defined by the relations (7.7.8) with
1 =  3 is a cyclic group of order 3, generated by y.

Case 1: yxy_l =  x. Then x commutes with y. Both H  and K are normal subgroups. As 
before, G is isomorphic to a direct product of cyclic groups of orders 3 and 7, and is a cyclic 
group.

Case 2: yxy_1 =  x2. As noted above, the multiplication table is determined. But we still 
have to show that this group actually exists. This comes down to showing that the relations 
don’t cause the group to collapse, as happens when i =  3. We’ll learn a systematic method 
for doing this, the Todd-Coxeter Algorithm, in Section 7.11. Another way is to exhibit the 
group explicitly, for example as a group of matrices. Some experimentation is required to do 
this.

Since the group we are looking for is supposed to contain an element of order 7, it is 
natural to try to find suitable matrices with entries modulo 7. At least we can write down a
2 x 2 matrix with entries in F7 that has order 7, namely the matrix x below. Then y can be 
found by trial and error. The matrices

' 1  1 ' '2  '
_ 1 , and y  =

_ 1

with entries in F7 satisfy the relations x7 =  1, y3 =  1, yx =  x2y, and they generate a group 
of order 21.

Case J: yxy- 1 =  x4. Then 1 x y ~2 =  x2. We note that y2 is also an element of order 3. So we 
may replace y by y2, which is another generator for H. The result is that the exponent 4 is 
replaced by 2, which puts us back in the previous case.

Thus there are two isomorphism classes of groups of order 21, as claimed. □

We use two lemmas in the proof of the first Sylow Theorem.

Lemma 7.7.9 Let U be a subset of a group G. The order of the stabilizer Stab([U]) of [U] 
for the operation of left multiplication by G on the set of its subsets divides both of the 
orders |U| and |G|.

Proof. If H  is a subgroup of G , the H-orbit of an element u of G for left multiplication by 
H  is the right coset Hu. Let H  be the stabilizer of [U]. Then multiplication by H  permutes 
the elements of U, so U is partitioned into H-orbits, which are right cosets. Each coset has 
order | H |, so | H | divides | U | Because H  is a subgroup, | H| divides | G |. □

Lemma 7.7.10 Let n be an integer of the form p ern, where e >  0 and p  does not divide m.
The number N ofsubsets of order in a set of order n is not divisible by p.

Proof. The number N is the binomial coefficient

(  n )  =  n (n -  1) . . .  (n -  k) ■ ■. (n -  p e +  1)
\ P 7  _  pe(pe _  1) ■.. (pe -  k) . . . 1 '
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The reason that N #  0 modulo p  is that every time p  divides a term (n — k) in the numerator 
of N, it also divides the term (p e — k) of the denominator the same number of times: 
If we write k in the form k =  p '£ , where p  does not divide e, then i <  e. Therefore 
(m — k) =  (p e — k) and (n -  k) =  (p em  -  k) are both divisible by p ! but not by p i+l . □

Proof o f  the First Sylow Theorem. Let S be the set of all subsets of G of order p e. One of 
the subsets is a Sylow subgroup, but instead of finding it directly we look at the operation of 
left multiplication by G on S. We will show that one of the subsets [U] of order p e has a 
stabilizer of order p e. That stabilizer will be the subgroup we are looking for.

We decompose S into orbits for the operation of left multiplication, obtaining an 
equation of the form

N =  |S| =  L  101.
orbits O

According to Lemma 7.7.10, p  doesn’t divide N. So at least one orbit has an order that isn’t 
divisible by p , say the orbit O[u] of the subset [U]. Let H  be the stabilizer of [U]. Lemma
7.7.9 tells us that the order of H  divides the order of U, which is p e. So |H | is a power of p. 
We have |H | • \O[u\\ =  |G | =  p em,  and \0[u]\ isn’t divisible by p. Therefore \0[U]\ =  m 
and I H\ =  p e. So H  is a Sylow p-subgroup. □

Proof o f  the Second Sylow Theorem. Suppose that we are given a p-subgroup K and a 
Sylow p-subgroup H. We will show that some conjugate subgroup H ' of H  contains K, 
which will prove ( b ) .  If K is also a Sylow p-subgroup, it will be equal to the conjugate 
subgroup H ', so ( a )  will be proved as well.

We choose a set C on which the group G operates, with these properties: p  does not 
divide the order \C\, the operation is transitive, and C contains an element c whose stabilizer 
is H. The set of left cosets of H  in G has these properties, so such a set exists. (We prefer 
not to clutter up the notation by explicit reference to cosets.)

We restrict the operation of G on C to the p-group K. Since p  doesn’t divide \C\, there 
is a fixed point c' for the operation of K. This is the Fixed Point Theorem 7.3.2. Since the 
operation of G is transitive, c' =  gc for some g in G. The stabilizer of c' is the conjugate 
subgroup gH g- 1 of H  (6.7.7), and since K fixes c', the stabilizer contains K. □

Proof o f  the Third Sylow Theorem. We write \G\ =  p em  as before. Let s denote the number 
of Sylow p-subgroups. The Second Sylow Theorem tells us that the operation of G on the 
set S of Sylow p-subgroups is transitive. The stabilizer of a particular Sylow p-subgroup [H] 
is the normalizer N  =  N (R ) of H. The counting formula tells us that the order of S, which 
is s, is equal to the index [G : N]. Since N  contains H  (7.6.3) and since [G: H] is equal to m, 
s divides m.

Next, we decompose the set S into orbits for the operation of conjugation by H . The 
H-orbit of [H] has order 1. Since H  is a p-group, the order of any H-orbit is a power of p. 
To show that s =  1 modulo p , we show that no element of S except [H] is fixed by H.

Suppose that H ' is a p-Sylow subgroup and that conjugation by H  fixes [H']. Then H  
is contained in the normalizer N ' of H ', so both H  and H ' are Sylow p-subgroups of N '. The 
second Sylow theorem tells us that the p-Sylow subgroups of N ' are conjugate subgroups of 
N '. But H ' is a normal subgroup of N ' (7.6.3)(a). Therefore H ' =  H. □
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7 .8  G R O U P S  OF O R D E R  1 2

We use the Sylow Theorems to classify groups of order 12. This theorem serves to illustrate 
the fact that classifying groups becomes complicated when the order has several factors.

Theorem 7.8.1 There are five isomorphism classes of groups of order 12. They are 
represented by:

• the product of cyclic groups C4 X C3,
• the product of cyclic groups C2 X C2 X C 3,
• the alternating group A4,
• the dihedral group Dg,
• the group generated by elements x and y, with relations X4 =  1, y3 =  1, x y  =  y2x.

All but the last of these groups should be familiar. The product group C 4 X C3 is isomorphic 
to C12, and C2 X C2 X C3 is isomorphic to C2 X C6 (see Proposition 2.11.3).

Proof Let G be a group of order 12, let H  be a Sylow 2-subgroup of G , which has order 4, 
and let K  be a Sylow 3-subgroup of order 3. It follows from the Third Sylow Theorem that 
the number of Sylow 2-subgroups is either 1 or 3, and that the number of Sylow 3-subgroups 
is 1 or 4. Also, H  is a group of order 4 and is therefore either a cyclic group C 4 or the Klein 
four group C2 X C2 (Proposition 2.11.5). Of course K is cyclic.

Though this is not necessary for the proof, begin by showing that at least one of the 
two subgroups, H  or K, is normal. If K  is not normal, there will be four Sylow 3-subgroups 
conjugate to K, say K i, . . . ,  K4, with Ki =  K. These groups have prime order, so the 
intersection of any two of them is the trivial group < 1 >. Then there are only three elements 
of G that are not in any of the groups Kj. This fact is shown schematically below.

A Sylow 2-subgroup H  has order 4, and H  n  K, =  <1>. Therefore H  consists of the three 
elements not in any of the groups Kj, together with 1. This describes H  for us and shows 
that there is only one Sylow 2-subgroup. Thus H  is normal.

Next, we note that H  n K  =  <1 >, so the product map H  X K  -► G is a bijective map 
of sets (2.11.4). Every element of G has a unique expression as a product hk, with h in H  
and k in K.
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Case 1: H  and K are both normal.
Then G is isomorphic to the product group H  X K (2.11.4). Since there are two 

possibilities for H  and one for K, there are two possibilities for G:

These are the abelian groups of order 12.

Case 2: K  is not normal.
There are four conjugate Sylow 3-subgroups, K i, . . . ,  K4, and G operates by con

jugation on this set of four. This operation determines a permutation representation, a 
homomorphism cp: G - -S 4 to the symmetric group. We’ll show that cp maps G isomorphi- 
cally to the alternating group A4.

The normalizer Ni of Kj contains Kj, and the counting formula shows that |N,-| =  3. 
Therefore Ni =  Ki. Since the only element in common to the subgroups Ki is the identity, 
only the identity stabilizes all of these subgroups. Thus the operation of G is faithful, cp is 
injective, and G is isomorphic to its image in S4 .

Since G has four subgroups of order 3, it contains eight elements of order 3. Their 
images are the 3-cycles in S4, which generate A4 (7.5.5). So the image of G contains A4. 
Since G and A4 have the same order, the image is equal to A4.

Case 3: K  is normal, but H  is not.
Then H  operates by conjugation on K =  {l, y, y2}. Since H  is not normal, it contains 

an element x that doesn’t commute with y, and then x y x - 1 =  y2.

Case 3a: K  is normal, H  is not normal, and H  is a cyclic group.
The element x generates H , so G  is generated by elements x and y, with the relations

(7.8.2) x4 =  1 , y3 =  1 , x y  =  y2x.

These relations determine the multiplication table of G, so there is at most one isomorphism 
class of such groups. But we must show that these relations don’t collapse the group further, 
and as with groups of order 21 (see 7.7.8), it is simplest to represent the group by matrices. 
We’ll use complex matrices here. Let w be the complex cube root of unity e2n:'/3. The 
complex matrices

(7.8.3)

satisfy the three relations, and they generate a group of order 12.

Case 3b: K  is normal, H  is not normal, and H  «  C 2 X C2.
The stabilizer of y for the operation of H  by conjugation on the set {y, y2} has order 2. 

So H  contains an element z *  1 such that z y =  yz  and also an element x such that x y =  y2 x. 
Since H  is abelian, xz  = zx.  Then G is generated by three elements x, y. z, with relations

x 2  =  1, y3 =  1, z2  =  1, yz =  zy, xz =  zx, xy =  y2x.
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These relations determine the multiplication table of the group, so there is at most one 
isomorphism class of such groups. The dihedral group D 6 isn’t one of the four groups 
described before, so it must be this one. Therefore G is isomorphic to D 6. □

7 .9  T H E  FREE G R O U P

We have seen that one can compute in the symmetric group S3 using the usual generators x 
and y, together with the relations x3 =  1, y2 =  1, and yx  = x 2 y. In the rest of the chapter, 
we study generators and relations in other groups.

We first consider groups with generators that satisfy no relations other than ones (such 
as the associative law) that are implied by the group axioms. A set of group elements that 
satisfy no relations except those implied by the axioms is called free, and a group that has a 
free set of generators is called a free group.

To describe free groups, we start with an arbitrary set, say S =  {a, b, c, . . . } . We call its 
elements “ symbols,” and we define a word to be a finite string of symbols, in which repetition 
is allowed. For instance a, aa , ba, and aab a  are words. Two words can be composed by 
juxtaposition, that is, placing them side by side:

a a , ba aaba.

This is an associative law of composition on the set W of words. We include the “empty 
word” in W as an identity element, and we use the symbol 1 to denote it. Then the set 
W becomes what is called the free semigroup on the set S. It isn’t a group because it lacks 
inverses, and adding inverses complicates things a little.

Let S' be the set that consists of symbols a  and a - 1 for every a  in S:

(7.9.1) S' =  { a , a - 1 , b , b~1 , c, c-1 , . . . }  ,

and let W' be the semigroup of words made using the symbols in S'. If a word looks like

■ ■ • xx-1 or x-1 x .. ■

for some x in S, we may agree to cancel the two symbols x and x- 1 to reduce the length of 
the word. A word is called reduced if no such cancellation can be made. Starting with any 
word w in W', we can perform a finite sequence of cancellations and must eventually get a 
reduced word w o, possibly the empty word 1. We call wo a reduced form  of w.

There may be more than one way to proceed with cancellation. For instance, starting 
with w =  a b b ^ c ^ c b , we can proceed in two ways:

q ,^ f 1c“1cQ abb~i { 1 ̂ b
i  i

abf  1̂
i

ab  ab

The same reduced word is obtained at the end, though the symbols come from different 
places in the original word. (The ones that remain at the end have been underlined.) This is 
always true.

Proposition 7.9.2 There is only one reduced form of a given word w.



Section 7.9 The Free Group 211

Proof We use induction on the length of w. If w is reduced, there is nothing to show. If not, 
there must be some pair of symbols that can be cancelled, say the underlined pair

w =  ■ ■ ■ xx-1 • ■ • .

(Let’s allow x  to denote any element of S', with the understanding that if x  =  a— then 
A-"1 =  a.) If we show that we can obtain every reduced form of w by cancelling the pair xxT1 
first, the proposition will follow by induction, because the word . ■ • •• is shorter.

Let Wo be a reduced form of w. It is obtained from w by some sequence of cancellations. 
The first case is that our pair xx~1 is cancelled at some step in this sequence. If so, we may 
as well cancel first. So this case is sett led. On the other hand, since Wo is reduced, the 
pair xx~i can not remain in w o- At least one of the two symbols must be cancelled at some 
time. If the pair itself is not cancelled, the first cancellation involving the pair must look like

Notice that the word obtained by this cancellation is the same as the one obtained by 
cancelling the pair xx~'[. So at this stage we may cancel the original pair instead. Then we 
are back in the first case, so the proposition is proved. □

We call two words w and w' in W' equivalent, and we write w w', if they have the 
same reduced form. This is an equi valence relation.

P r o p o s i t io n  7.9.3 Products of equivalent words are equivalent: If w w' and v v', then 
wv w'v'.

Proof. To obtain the reduced word equivalent to the product wv, we may first cancel as 
much as possible in w and in v, to reduce w to wo and v to Vo. Then wv is reduced to WoVo. 
Now we continue, cancelling in WoVo until the word is reduced. If w w' and v ~  v', the 
same process, when applied to w'v', passes through WoVo too, so it leads to the same re
duced word. □

It follows from this proposition that e quivalence classes of words can be multiplied:

P r o p o s i t io n  7.9.4 The set of equivalence classes of words in W' is a group, with the law 
of compositi on induced from multiplication juxtaposition) in W'.

P roof The facts that multiplication is associative and that the class of the empty word 1 is 
an identity follow from the corresponding facts in W' (see Lemma 2.12.8). We must check 
that all elements of are invertible. But clearly, if w is the product x y  • •• z of elements of 
S', then the class of z-1 • •■ y~lx ~ 1 inverts the class of w. □

The group of equivalence classes of words in S' is called the free group on the set 
S. An element of corresponds to exactly one reduced word in W'. To multiply reduced 
words, combine and cancel: (abc_1)(cb) a b c ^ c b  =  abb.

Power notation may be used: aaab~xb~  ̂ =  a3 b~2 ^

Note: The free group on a set S =  {a} of one element is simply an infinite cyclic group. In 
contrast, the free group on a set of two or more elements is quite complicated.
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7 . 1 0  G E N E R A T O R S  A N D  R E L A T IO N S

Having described free groups, we now consider the more common case, that a set of 
generators of a group is not free -  that there are some nontrivial relations among them.

Definition 7.10.1 A relation R among elements x i, • . . , xn of a group G is a word r  in the 
free group on the set {Xi, • . . , xn} that evaluates to 1 in G. We will write such a relation 
either as r, or for emphasis, as r  =  1.

For example, the dihedral group D n of symmetries of a regular n-sided polygon is 
generated by the rotation x with angle 27r / n  and a reflection y, and these generators satisfy 
relations that were listed in (6.4.3):

(7.10.2) xn =  1, i  =  1, xyxy =  1.

(The last relation is often written as yx =  x- 1 y, but it is best to write every relation in the 
form r  =  1 here.)

One can use these relations to write the elements of D n in the form x' y i  with 0 :: i <  n 
and 0 :: j  <  2, and then one can compute the multiplication table for the group. So 
the relations determine the group. They are therefore called defining relations. When the 
relations are more complicated, it can be difficult to determine the elements of the group 
and the multiplication table explicitly, but, using the free group and the next lemma, we 
will define the concept of a group generated by a given set of elements, with a given set of 
relations.

Lemma 7.10.3 Let R be a subset of a group G. There exists a unique smallest normal 
subgroup N  of G that contains R, called the normal subgroup generated by R. If a normal 
subgroup of G contains R, it contains N. The elements of N  can be described in either of 
the following ways:
(a) An element of G is in N  if it can be obtained from the elements of R using a finite 

sequence of the operations of multiplication, inversion, and conjugation.
(b) Let R ' be the set consisting of elements r  and r  1 with r  in R. An element of G is in N  

if it can be written as a product yi • • • yr of some arbitrary length, where each yv is a 
conjugate of an element of R'.

Proof Let N  denote the set of elements obtained by a sequence of the operations mentioned 
in (a). A nonempty subset is a normal subgroup if and only if it is closed under those 
operations. Since N  is closed under those operations, it is a normal subgroup. Moreover, 
any normal subgroup that contains R must contain N. So the smallest normal subgroup 
containing R exists, and is equal to N. Similar reasoning identifies N  as the subset described 
in (b). □

As usual, we must take care of the empty set. We say that the empty set generates the trivial 
subgroup {1}.

Definition 7.10.4 Let.1' bethe free grouponaset S =  {xi, . . .  , xn},andlet R = {ri, . . . ,  r&} 
be a set of elements of .1'. The group generated by S, with relations ri =  1, . . .  , r* =  1, is 
the quotient group 9 =  .1 '/R , where R  is the normal subgroup of .1' generated by R.
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The group 9 will often be denoted by

(7.10.5) < x i , . . . ,  xn I r i ,  . . . ,  rky.

Thus the dihedral group Dn is isomorphic to the group

(7.10.6) < x , Y | xn, 1 ,  xyxy>.

E x a m p l e  7 .1 0 .7  In the tetrahedral group T of rotational symmetries of a regular tetrahedron, 
let x  and y denote rotations by 2rr/3 about the center of a face and about a vertex, and let z 
denote rotation by rr about the center of an edge, as shown below. With vertices numbered 
as in the figure, x acts on the vertices as the permutation ( 2 3 4 ) ,  y acts as ( 1 2 3 ) ,  and z acts 
as ( 1 3 ) ( 2 4 ) .  Computing the product of these permutations shows that xyz acts trivially on 
the vertices. Since the only isometry that fixes all vertices is the identity, xyz =  1.

y

So the following relations hold in the tetrahedral group:

(7.10.9) x3 =  1 , y3 =  1 , z2 =  1 , xyz =  1. □

Two questions arise:

1 . Is this a set of defining relations for T? In other words, is the group

(7.10.10) < .x ,y ,z \x 3 , y i , z 2 ,xyz'>  

isomorphic to T?
It is easy to verify that the rotations x, y, z generate T, but it isn’t particularly easy 

to work with the relations. It is confusing enough to list the 12 elements of the group 
as products of the generators without repetition. We show in the next section that the 
answer to our question is yes, but we don’t do that by writing the elements of the group 

. explicitly.

2 . How can one compute in a group 9 =  <xi, . . . ,  Xn I ri,  . . . ,  r^> that is presented by 
generators and relations?

Because computation in the free group F  is easy, the only problem is to decide when an 
element w of the free group represents the identity element of g, i.e., when w is an element 
of the subgroup n .  This is the word problem for g. If we can solve the word problem, then
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because the relation wi =  W2 is equivalent to w^1 W2 =  1, we will be able to decide when 
two elements of the free group represent equal elements of Q. This will enable us to compute.

The word problem can be solved in any finite group, but not in every group. However, 
we won’t discuss this point, because some work is required to give a precise meaning to 
the statement that the word problem can or cannot be solved. If you are interested, see 
[Stillwell].

The next example shows that computation in R  can become complicated, even in a 
relatively simple case.

E x a m p le  7 .1 0 .1 1  The element w = yxyx is equal to 1 in the group T. Let’s verify that w 
is in the normal subgroup R  generated by the four relations (7.10.9). We use what you will 
recognize as a standard method: reducing w to the identity by the allowed operations.

The relations that we will use are z2 and xyz, and we’ll denote them by p  and q, 
respectively. First, let Wj =  y- 1 wy =  xyxy. Because R  is a normal subgroup, wi is in R  if 
and only if w is. Next, let W2 =  q ^ w i =  xy. Since q is in R, W2 is in R  if and only if w\ 
is. Continuing, w3 =  zw 2 z~l = xyz-1, W4 =  q~] W3 =  z~j Z-1, p w 4 =  1. Solving back, 
w =  yqz- l q p -1zy- 1 is in R. Thus w =  1 in the group (7.10.10). □

We return to the group Q defined by generators and relations. As with any quotient 
group, we have a canonical homomorphism

: F  - +  F / R  =  Q

that sends a word w to the coset w  =  [wR], and the kernel of is R  (2.12.2). To keep 
track of the group in which we are working, it might seem safer to denote the images in Q of 
elements of F  by putting bars over the letters. However, this isn’t customary. When working 
in Q, one simply remembers that elements wi and W2 of the free group are equal in Q if the 
cosets w jR  and W2R are equal, or if w ^ w 2 is in R.

Since the defining relations r,- are in R, n  =  1 is true in Q. If we write r, out as words, 
then because is a homomorphism, the corresponding product in Q will be equal to 1 (see 
Corollary 2.12.3). For instance, xyz =  1 is true in the group <x, y, z I x3, y3, z2, xyz).

We go back once more to the example of the tetrahedral group and to the first question. 
How is the group <x, y, z I x3, y3, z2, xyz> related to T? A partial explanation is based on 
the mapping properties of free groups and of quotient groups. Both of these properties are 
intuitive. Their proofs are simple enough that we leave them as exercises.

P r o p o s i t io n  7 . 1 0 . U  M a p p in g  P r o p e r t y  o f  t h e  F r e e  G r o u p .  Let F  be the free group on a set 
S = {a, b, . . .}, and let G be a group. Any map of sets f :  S -+ G extends in a unique way 
to a group homomorphism cp:F —► G. If we denote the image f(x )  of an element x of S 
by :!, then cp sends a word in S' =  {a, a - 1 , b, b -1, . . .} to the corresponding product of the 
elements {a, a -1, 12., 12. - 1 . . .  } in G. □

This property reflects the fact that the elements of S satisfy no relations in F  except those 
implied by the group axioms. It is the reason for the adjective “free.”

P r o p o s i t io n  7 .1 0 .1 3  M a p p in g  P r o p e r t y  o f  Q u o t i e n t  G r o u p s .  Let cp : G ' —> G be a group 
homomorphism with kernel K, and let N  be a normal subgroup of G ' that is contained in K.
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Let G =  G  |  N ,  and let r r :  G  -+ G  be the canonical map a  a. The rule q.;(a) =  cp(a)
defines a homomorphism q.;: G -+ G, and q.; 0 rr =  cp.

G '------------>- G

i  7
G ' □

This mapping property generalizes the First Isomorphism Theorem. The hypothesis that N  

be contained in the kernel K is, of course, essential.
The next corollary uses notation introduced previously: S =  {xi, . . .  , x n} is a subset 

of a  group G, R = (ri, . . . ,  r^} is a set of relations among the elements of S of G , F  

is the free group on S, and R  is the normal subgroup of F  generated by R. Finally, 
g =  <xi,  . . . ,  Xn| r i . . . ,  rk y =  F / R .

C o r o l la r y  7 .1 0 .1 4

( i)  There is a canonical homomorphism 1/f:g -+ G that sends x, ""x,.
(ii) 1/J is surjective if and only if the set S generates G.

(iii) 1/f is injective if and only if every relation among the elements of S is in R.

Proof. We will prove (i), and omit the verification of (ii) and ( i i i ) .  The mapping property of 
the free group gives us a homomorphism cp: F  -+ G with cp(x,) =  x,. Since the relations 
n  evaluate to 1 in G, R  is contained in the kernel K of cp. Since the kernel is a normal 
subgroup, R  is also contained in K. Then the mapping property of quotient groups gives us 
a  map q.;:g -+ G. This is the map 1/f:

F  ---------- *> G

71

g □  

If the map described in the corollary is bijective, one says that R  forms a complete 
set o f  relations among the generators S. To decide whether this is true requires knowing 
more about G. Going back to the tetrahedral group, the corollary gives us a homomorphism 
1/f: g -+ T, where g =  (x , y, z I x3, y3, z2, x y z >. It is surjective because x, y, z generate T. 
And we saw in Example 7.10.11 that the relation yxyx, which holds among the elements 
of T, is in the normal subgroup R  generated by the set {x3, y3, z 2, xyz}. Is every relation 
among x, y, z in R? If not, we’d want to add some more relations to our list. It may seem 
disappointing not to have the answer to this question yet, but we will see in the next section 
that is indeed bijective.

Recapitulating, when we speak of a group defined by generators S and relations R, we 
mean the quotient group g =  F |R ,  where F  is the free group on S and R  is the normal 
subgroup of F  generated by R. Any set of relations will define a group. The larger R is, the 
larger R  becomes, and the more collapsing takes place in the homomorphism rr: F  -+ g. 
The extreme case is R  =  F , in which case g is the trivial group. All relations become true in
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the trivial group. Problems arise because computation in F  /'R may be difficult. But because 
generators and relations allow efficient computation in many cases, they are a useful tool.

7 .1 1  T H E  T O D D -C O X E T E R  A L G O R IT H M

The Todd-Coxeter Algorithm, which is described in this section, is an amazing method for 
determining the operation of a finite group G on the set of cosets of a subgroup H.

In order to compute, both G and H  must be given explicitly. So we consider a group

(7.11.1) G =  <xi, . . . ,  x m I ri,  . . . , rk >

presented by generators and relations, as in the previous section.
We also assume that the subgroup H  of G is given explicitly, by a set of words

(7.11.2) [hl , . . . , h s]

in the free group F , whose images in G generate H.
The algorithm proceeds by constructing some tables that become easier to read when 

one works with right cosets Hg. The group G operates by right multiplication on the set of 
right cosets, and this changes the order of composition of operations. A product gh acts by 
right multiplication as “ first multiply by g, then by h ”. Similarly, when we want permutations 
to operate on the right, we must read a product this way:

first do this then this
(234) o (123) =  (12)(34).

The following rules suffice to determine the operation of G on the right cosets:

Rules 7.11.3

1. The operation of each generator is a permutation.
2. The relations operate trivially: they fix every coset.
3. The generators of H  fix the coset [H].
4. The operation is transitive.

The first rule follows from the fact that group elements are invertible, and the second one 
reflects the fact that the relations represent the identity element of G. Rules 3 and 4 are 
special properties of the operation on cosets.

When applying these rules, the cosets are usually denoted by indices 1, 2, 3, . . . ,  with 1 
standing for the coset [H]. At the start, one doesn’t know how many indices will be needed; 
new ones are added as necessary.

We begin with a simple example, in which we replace y 3 by Y. in the relations (7.10.9).

Example 7.11.4 Let G be the group <x, y, z  I x 3, y2, z2, x y z >, and let H  be the cyclic 
subgroup <z> generated by z. First, Rule 3 tells us that z sends 1 to itself, 1 -+ 1 . This 
exhausts the information in Rule 3, so Rules 1 and 2 take over. Rule 4 will only appear 
implicitly.

Nothing we have done up to now tells us what x  does to the index 1. In such a case, 
the procedure is simply to assign a new index, 1 -+ 2. (Since 1 stands for the coset [H], the
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i n d e x  2  s t a n d s  f o r  [ H x ] ,  b u t  i t  i s  b e s t  t o  ig n o r e  t h is . )  C o n t in u in g ,  w e  d o n ’t k n o w  w h e r e  x
X

s e n d s  th e  i n d e x  2 , s o  w e  a s s ig n  a  th ir d  in d e x ,  2  --+ 3 . T h e n  1  --+ 3 .

W h a t  w e  h a v e  s o  f a r  is  a  partial operation, m e a n in g  th a t  t h e  o p e r a t io n s  o f  s o m e  

g e n e r a t o r s  o n  s o m e  in d ic e s  h a v e  b e e n  a s s ig n e d . I t  is  h e lp f u l  t o  k e e p  tr a c k  o f  t h e  p a r t ia l  

o p e r a t i o n  a s  o n e  g o e s  a lo n g .  T h e  p a r t ia l  o p e r a t io n  t h a t  w e  h a v e  s o  fa r  is

z =  ( 1 )  ■. . a n d  x  =  ( 1 2 3  • . • .

T h e r e  i s  n o  c lo s in g  p a r e n t h e s i s  f o r  t h e  p a r t ia l  o p e r a t io n  o f  x  b e c a u s e  w e  h a v e n ’t d e t e r m in e d  

t h e  in d e x  t o  w h i c h  x  s e n d s  3 .

R u l e  2  n o w  c o m e s  i n t o  p la y .  I t  t e l l s  u s  t h a t  b e c a u s e  x 3 is  a  r e la t io n ,  i t  f i x e s  e v e r y  in d e x .  

S i n c e  x 2 s e n d s  1  t o  3 , x  m u s t  s e n d  3  b a c k  t o  1 . I t  is  c u s t o m a r y  t o  s u m  th is  in f o r m a t io n  u p  in  

a  t a b le  t h a t  e x h ib i t s  t h e  o p e r a t io n  o f  x  o n  t h e  in d ic e s :

x  x  x

1 2  3  1

T h e  r e la t io n  x x x  a p p e a r s  o n  t o p ,  a n d  R u le  2 is  r e f le c t e d  in  th e  fa c t  t h a t  th e  s a m e  in d e >  1  

a p p e a r s  a t  b o t h  e n d s .  W e  h a v e  n o w  d e t e r m in e d  th e  p a r t ia l  o p e r a t io n

x  =  ( 1 2 3 )  • • •  ,

e x c e p t  th a t  w e  d o n ’t y e t  k n o w  w h e t h e r  o r  n o t  th e  in d ic e s  1 ,  2 , 3  r e p r e s e n t  d is t in c t  c o s e t s .  
N e x t ,  w e  a s k  fo r  t h e  o p e r a t io n  o f  y  o n  t h e  i n d e x  1 . A g a in ,  w e  d o n ’t k n o w  it ,  s o  w e

a s s ig n  a  n e w  in d e x :  1  --+ 4 . R u l e  2 a p p l ie s  a g a in . S in c e  y 2 is  a  r e la t io n ,  y  m u s t  s e n d  4  b a c k  to  

1 . T h is  is  e x h ib i t e d  in  t h e  t a b le

y  y

1 4  1 ’
so y  =  ( 1 4 )  ■

F o r  r e v ie w ,  w e  h a v e  n o w  d e t e r m in e d  th e  e n t r i e s  in  th e  t a b le  b e lo w .  T h e  fo u r  d e f in in g  

r e la t io n s  a p p e a r  o n  to p .

x x x y  y y
1 2  3 1 1  4 1 1 1 1 1 2 1

T h e  m is s in g  e n t r y  in  th e  t a b le  f o r  x y z  is  1. T h is  f o l lo w s  f r o m  th e  fa c t  t h a t  z  a c ts  a s  a
y

p e r m u t a t io n  t h a t  f ix e s  th e  i n d e x  1. E n t e r in g  1  in to  th e  t a b le ,  w e  s e e  t h a t  2  --+ 1 . B u t  w e  a l s o
y

h a v e  4  --+ 1 . T h e r e f o r e  4  =  2 . W e  r e p l a c e  4  b y  2  a n d  c o n t i n u e  c o n s t r u c t in g  a  t a b le .

T h e  e n t r i e s  b e l o w  h a v e  b e e n  d e t e r m in e d :

x x x

i
2
3

2
3

1

3  1

1 2 
2  3

y  y
1 2  1
2 1 2
3  3

z z
1
2
3

x y z
1
2
3 2

T h e  th ird  r o w  o f  th e  t a b le  f o r  xyz  s h o w s  th a t  2  --+ 3 , a n d  t h is  d e t e r m in e s  th e  r e s t  o f  t h e  

t a b le .  T h e r e  a r e  t h r e e  in d ic e s ,  a n d  t h e  c o m p l e t e  o p e r a t io n  is

x  =  (1 2 3 ), y  =  (12 ), z  =  (23).

z x zz

1 1
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At the end of the section, we will show that this is indeed the permutation representation 
defined by the operation of G on the cosets of H . □

What such a table tells us depends on the particular case. It will always tell us the 
number of cosets, the index [G : H], which will be equal to the number of distinct indices:
3 in our example. It may also tell us something about the order of the generators. In our 
example, we are given the relation z 2 =  1, so the order of z  must be 1 or 2. But z acts on 
indices as the transposition ( 2 3 ) ,  and this tells us that we can’t have z  =  1. So the order of z 
is 2, and |H | =  2. The counting formula |G| =  |H |[G  : H] shows that G has order 2 3 =  6. 
The three permutations shown above generate the symmetric group S3, so the permutation 
representation G -+ S3 defined by this operation is an isomorphism.

If one takes for H  the trivial subgroup {l}, the cosets correspond bijectively to the 
group elements, and the permutation representation determines G completely. The cost of 
doing this is that there will be many indices. In other cases, the permutation representation 
may not suffice to determine the order of G.

We’ll compute two more examples.

E x a m p le  7.11.5 We show that the relations (7.10.9) form a complete set of relations for 
the tetrahedral group. The verification is simplified a little if one uses the relation x y z  = 1 
to eliminate the generator z. Since z 2 =  1, that relation implies that x y  = z~l = z. The 
remaining elements x, y suffice to generate T. So we substitute z — x y  into z2, and replace 
the relation z2 by xyxy. The relations become

(7.11. 6) x3 =  1 , 1  =  1, xyxy =  1.

These relations among x  and y  are equivalent to the relations (7.10.9) among x, y, and z, so 
they hold in T.

Let G denote the group (x , y | x3, y3, xyxy>. Corollary (7.10.14) gives us a homo
morphism l/f:G -+ T. To show that (7.11.6) are defining relations for T, we show that l/f is 
bijective. Since x and y generate T, l/f is surjective. So it suffices to show that the order of G 
is equal to the order of T, which is 12.

We choose the subgroup H  =  < x >. This subgroup has order 1 or 3 because x3 is one of 
the relations. If we show that H  has order 3 and that the index of H  in G is 4, it will follow 
that G has order 12, and we will be done. Here is the resulting table. To fill it in, work from 
both ends of the relations.

x x x  y  y  y  . x  y  x  y
1 1 1 1  1 2 3 1  1 1 2 3 1

2 3 4 2  2 3 1 2  2 3 1 1 2

3 4 2 3  3 1 2 3  3 4 4 2 3

4  2  3  4  4  4  4  4  4  2  3  4  4

T h e  p e r m u t a t io n  r e p r e s e n t a t io n  is

( 7 .1 1 .7 )  x  = ( 2 3 4 ) ,  y  = ( 1 2 3 ) .

Since there are four indices, the index of H  is 4. Also, x does have order 3, not 1, because 
the permutation associated to x has order 3. The order of G is 12, as predicted.
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Incidentally, we see that T  is isomorphic to the alternating group A4, because the 
permutations (7.11.7) generate that group. □

Example 7.11.8 We modify the relations (7.10.9) slightly, to illustrate how “bad” relations 
may coll apse the group. Let G be the group <x, y |x 3, y3, yxyxy>. and let H  be the 
subgroup < y >. H ere is a start for a table:

x x  x y  y  y  y x y x y
“ l  2 3 1  ~ i i  1 1  1  1 2 3 1 1

2 2 2  2 2 3 1 1 2 2

In the table for yxyxy, the first three entries in the first row are determined by working from
-y

the left, and the last three by working from the right. That row shows that 2 --+ 3. The second
row is determined by working from the left, and it shows that 2 --+ 2. So 2 =  3. Looking 
at th e table for xxx, we see that then 2 =  1. There is just one index left, so one coset, and 
consequently H  =  G. The group G is generated by y. It is a cyclic group of order 3; □

Warning. Care is essential when constructing such a table. Any mistake will cause the 
operation to collapse.

In our examples, we took for H  the subgroup generated by one of the generators of
G. If H  is generated by a word h, one can introduce a new generator u and the new relation 
u~xh =  1 (i.e., u =  h). Then G (7.11.1) is isomorphic to the group

and H  becomes the subgroup gen era ted by u. If H  has several generators, we do this for 
each of them.

We now address the questi on of why the proce dure we have described determines the 
operation on cosets. A formal proof of this fact is not possible without first defining the 
algorithm formally, and we have not done this. We will discuss the question informally. (See 
[Todd-Coxeter] for a more complete discussion.) We describe the procedure this way: At a 
given stage of the computation, we will have some set I of indices, and a partial operation on
I, the operation of some generators on some indices, will have been determined. A partial 
operation need not be consistent with R ules 1, 2. and 3, but it should be transitive; that is, 
all indices should be in the “partial orbit” of 1. This is where Rule 4 comes in. It tells us not 
to introduce any indices that we don’t need. In the starting position, I is the set {I} of one 
element, and no operations have been assigned.

At any stage there are two possible steps: .

(7.11.9) (i) We may equate two indices i and j if the the rules tell us that they are equal, or
(ii) we may choose a generator x and an index i such that ix has not been determined, and 
define ix =  j, where j is a new index.

We never eq uate indices unless their equality is implied by the rules.
We stop the process when an operation has been determined that is consistent with 

the rules. There are two questions to ask: First, will this procedure terminate? Second, if it



t e r m in a t e s ,  is  th e  o p e r a t io n  th e  r ig h t  o n e ?  T h e  a n s w e r  t o  b o t h  q u e s t io n s  is  y e s .  It c a n  b e  

s h o w n  th a t  th e  p r o c e s s  d o e s  t e r m in a t e ,  p r o v id e d  t h a t  th e  g r o u p  G  i s f in i t e ,  a n d  t h a t  p r e f e r e n c e  

is  g iv e n  t o  s t e p s  o f  t y p e  ( i ) .  W e  w i l l  n o t  p r o v e  th is . M o r e  im p o r ta n t  fo r  a p p l ic a t io n s  is  t h e  

f a c t  th a t ,  i f  t h e  p r o c e s s  t e r m in a t e s ,  t h e  r e s u l t in g  p e r m u t a t io n  r e p r e s e n t a t io n  is  t h e  r ig h t  o n e .

Theorem 7.11.10 S u p p o s e  th a t  a  f in i t e  n u m b e r  o f  r e p e t i t i o n s  o f  s t e p s  ( i )  a n d  ( i i )  y i e ld s  a  

c o n s i s t e n t  t a b le  c o m p a t ib l e  w ith  th e  r u le s  ( 7 .1 1 .3 ) .  T h e n  th e  t a b le  d e f in e s  a  p e r m u t a t io n  

r e p r e s e n t a t io n  th a t ,  b y  s u i t a b le  n u m b e r in g ,  is  t h e  r e p r e s e n t a t io n  o n  t h e  r ig h t  c o s e t s  o f  H  in  G.

Proof. S a y  th a t  t h e  g r o u p  is  G  =  < X i ,  . . . ,  x n | r i ,  • . . , r^ > , a n d  l e t  1* d e n o t e  t h e  f in a l  s e t  o f  

in d ic e s .  F o r  e a c h  g e n e r a t o r  X i, t h e  t a b le  d e t e r m in e s  a  p e r m u t a t io n  o f  t h e  i n d ic e s ,  a n d  t h e  

r e la t io n s  o p e r a t e  t r iv ia lly .  C o r o l la r y  7 .1 0 .1 4  g iv e s  u s  a  h o m o m o r p h i s m  f r o m  G  t o  t h e  g r o u p  
o f  p e r m u t a t io n s  o f  1*, a n d  t h e r e f o r e  a n  o p e r a t io n ,  o n  t h e  r ig h t ,  o f  G  o n  1* ( s e e  P r o p o s i t io n  

6 .1 1 .2 ) .  P r o v id e d  t h a t  w e  h a v e  f o l lo w e d  t h e  r u le s ,  t h e  t a b le  w i l l  s h o w  t h a t  t h e  o p e r a t io n  o f  

G  is  t r a n s i t iv e ,  a n d  th a t  t h e  s u b g r o u p  H  f ix e s  t h e  in d e x  1.
L e t  C d e n o t e  th e  s e t  o f  r ig h t  c o s e t s  o f  H. W e  p r o v e  t h e  p r o p o s i t i o n  b y  d e f in in g  a 

b i j e c t iv e  m a p  <p* : 1* -»• C f r o m  1* t o  C th a t  is  c o m p a t ib l e  w ith  th e  o p e r a t io n s  o f  th e  g r o u p  o n  

t h e  t w o  s e t s .  W e  d e f in e  <p* in d u c t iv e ly ,  b y  d e f in in g  a t  e a c h  s t a g e  a  m a p  : I -*■ C f r o m  th e  

s e t  o f  in d ic e s  d e t e r m in e d  a t  t h a t  s t a g e  t o  C, c o m p a t i b l e  w it h  t h e  p a r t ia l  o p e r a t i o n  o n  I th a t  
h a s  b e e n  d e t e r m in e d .  T o  s ta r t ,  <po: {1} C s e n d s  1 — [H]. S u p p o s e  t h a t  <p: I -*■ C h a s  b e e n  

d e f in e d ,  a n d  l e t  I ' b e  t h e  r e s u l t  o f  a p p ly in g  o n e  o f  t h e  s t e p s  ( 7 .1 1 .9 )  t o  I.
In  c a s e  o f  s t e p  ( i i ) ,  t h e r e  is  n o  d if f ic u lty  in  e x t e n d i n g  t o  a  m a p  : I' C. S a y  th a t  

<p(i) is  t h e  c o s e t  [Hg], a n d  th a t  t h e  o p e r a t io n  o f  a  g e n e r a t o r  x  o n  i h a s  b e e n  d e f in e d  t o  b e  

a  n e w  in d e x , s a y  ix =  j. T h e n  w e  d e f in e  <p'(j) =  [Hgx], a n d  w e  d e f in e  <p'(k) =  <p(k) fo r  a ll  

o t h e r  in d ic e s .

N e x t ,  s u p p o s e  t h a t  w e  u s e  s t e p  ( i )  t o  e q u a t e  t h e  in d ic e s  i a n d  j, s o  t h a t  I is  c o l l a p s e d  t o  
fo r m  t h e  n e w  in d e x  s e t  I'. T h e  n e x t  l e m m a  a l lo w s  u s  t o  d e f in e  t h e  m a p  cp': I' -*■ C.

Lemma 7.11.11 S u p p o s e  t h a t  a  m a p  cp:I -*■ C is  g iv e n ,  c o m p a t ib l e  w i t h  a  p a r t ia l  o p e r a t io n  o n

I. L e t  i a n d  j  b e  in d ic e s  in  I, a n d  s u p p o s e  th a t  o n e  o f  t h e  r u le s  f o r c e s  i =  j. T h e n  <p(i) =  <p(j).

Proof  T h is  i s  t r u e  b e c a u s e ,  a s w e  h a v e  r e m a r k e d  b e f o r e ,  t h e  o p e r a t io n  o n  c o s e t s  d o e s  s a t i s f y  

t h e  r u le s .  □

T h e  s u r j e c t iv i ty  o f  th e  m a p  cp f o l lo w s  f r o m  th e  fa c t  th a t  th e  o p e r a t io n  o f  th e  g r o u p  o n  

th e  s e t  C o f  r ig h t  c o s e t s  is  t r a n s i t iv e .  A s  w e  n o w  v e r i f y ,  th e  in j e c t iv i t y  f o l lo w s  f r o m  th e  f a c t s  
th a t  t h e  s t a b i l i z e r  o f  t h e  c o s e t  [ H ]  is  t h e  s u b g r o u p  H ,  a n d  th a t  t h e  s t a b i l i z e r  o f  t h e  in d e x  1 
c o n t a in s  H . L e t  i a n d  j b e  in d ic e s .  S in c e  th e  o p e r a t io n  o n  1* is  t r a n s i t iv e ,  i =  l a  f o r  s o m e  

g r o u p  e l e m e n t  a ,  a n d  t h e n  cp (i)  =  c p ( l ) a  =  [Ha]. S im ila r ly ,  i f  j =  Ib, t h e n  <p(j) =  [Hb]. 
S u p p o s e  t h a t  <p(i) =  <p(j), i . e . ,  th a t  H a  =  Hb. T h e n  H  =  Hba-1, s o  b a -1 is  a n  e l e m e n t  o f

H. S in c e  H  s t a b i l i z e s  th e  in d e x  1, 1 =  I b a -  a n d  i =  l a  =  Ib  =  j. □

The method of postulating what we want has many advantages; 
they are the same as the advantages of theft over honest toil.
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— Bertrand Russell



Exercises 221

E X E R C ISE S

Section 1 Cayley’s Theorem

1.1. Does the rule g * x  =  xg-1 define an operation of G on G?
1.2. Let H  be a subgroup of a group G. Describe the orbits for the operation of H  on G by 

left multiplication.

Section 2 The Class Equation

2.1. Determine the centralizer and the order of the conjugacy class of

(a) the matrix I"1 l l  ■ 
.  i j 1

in G L 2(lF3), (b) the matrix l  2 j  i n G L 2(F 5) .

2.2. A group oforder 21 contains a conjugacy class C(x) oforder 3. What is the order o fx  in 
the group?

2.3. A group G of order 12 contains a conjugacy class of order 4. Prove that the center of G 
is trivial.

2.4. Let G be a group, and let cp be the nth power map: cp(x) =  xn. What can be said about 
how cp acts on conjugacy classes?

,where x, y e lR and x  > O. Determine2.5. Let G be the group of matrices of the form 

the conjugacy classes in G, and sketch them in the (x, y)-plane.
2.6. Determine the conjugacy classes in the group M of isometries of the plane.
2.7. Rule out as many as you can, as class equations for a group of order 10:

1 + 1 + 1 + 2 + 5, 1 +  2 +  2 + 5, 1 + 2 + 3 + 4, 1 + 1 + 2 + 2 + 2 + 2.
2.8. Determine the possible class equations of nonabelian groups of order (a) 8, (b) 21.
2.9. Determine the class equation for the following groups: (a) the quaternion group, (b) D 4 ,

(c) Ds, (d) the subgroup of G L2 (F3) of invertible upper triangular matrices.
2.10. (a) Let A be an element of SO3 that represents a rotation with angle tt. Describe the

centralizer of A  geometrically.
(b) Determine the centralizer of the reflection r  about the ei-axis in the group M  of 

isometries of the plane.
2.11. Determine the centralizer in G L3 (lR) of each matrix:

'1 '1 '1 1 '1 1 ■ 1 "
2 1 1 1 1 , 1

r 3 1 2 1 1 1

*2.12. Determine all finite groups that contain at most three conjugacy classes.
2.13. Let N  be a normal subgroup of a group G. Suppose that |N| =  5 and that | GI is an odd 

integer. Prove that N  is contained in the center of G.
2.14. The class equation of a group G is 1 + 4 + 5 + 5 + 5.

(a) Does G have a subgroup of order 5? Ifso, is it a normal subgroup?
(b) Does G have a subgroup of order 4? If so, is it a normal subgroup?
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2.15. Verify the class equation (7.2.10) of SL2(F3).
2.16. Let cp: G -> G' be a surjective group homomorphism, let C denote the conjugacy class of 

an element x of G, and let C  denote the conjugacy class in G ' of its image cp(x). Prove 
that cp maps C surjectively to C', and that |C'| divides |C|.

2.17. Use the class equation to show that a group of order pq, with p  and q prime, contains an 
element of order p.

2.18. Which pairs of matrices

(b) SL„(K)?

Section 3 p-Groups

3.1. Prove the Fixed Point Theorem (7.3.2).
3.2. Let Z be the center of a group G. Prove that if G /  Z is a cyclic group, then G is abelian, 

and therefore G = Z.
3.3. A nonabelian group G  has order p3, where p  is prime.

(a) What are the possible orders of the center Z?
(b) Let x  be an element of G that isn’t in Z. What is the order of its centralizer Z(x)?
(c) What are the possible class equations for G?

3.4. Classify groups of order 8.

Section 4 The Class Equation ofthe Icosahedral Group

4.1. The icosahedral group operates on the set of five inscribed cubes in the dodecahedron. 
Determine the stabilizer of one of the cubes.

4.2. Is A5 the only proper normal subgroup of S5?
4.3. What is the centralizer of an element of order 2 of the icosahedral group l?
4.4. (a) Determine the class equation of the tetrahedral group T.

(b) Prove that T has a normal subgroup of order 4, and no subgroup of order 6.
4.5. (a) Determine the class equation of the octahedral group O.

(b) This group contains two proper normal subgroups. Find them, show that they are
normal, and show that there are no others.

4.6. (a) Prove that the tetrahedral group T is isomorphic to the alternating group A4, and
that the octahedral group O is isomorphic to the symmetric group S4 .
Hint: Find sets of four elements on which the groups operate.

(b) Two tetrahedra can be inscribed into a cube C, each one using half the vertices. 
Relate this to the inclusion A4 C S4.

4.7. Let G be a group of order n that operates nontrivially on a set of order r. Prove that if 
n >  r!, then G has a proper normal subgroup.

4.8. (a) Suppose that the centralizer Z(x) of a group element x has order 4. What can be
said about the center of the group?

(b) Suppose that the conjugacy class C(y) of an element y has order 4. What can be said 
about the center of the group?

1 ■0 I1

t
1 d

1 ’ d

I

are conjugate elements of (a ) G  L n ( R ) ,
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4.9. Let x be an element of a group G, not the identity, whose centralizer Z (x) has order pq, 
where p  and q are primes. Prove that Z(x) is abelian.

Section 5 Conjugation in the Symmetric Group

5.1. ( a )  Prove that the transpositions (12), (23), . . . ,  (n -  1, n) generate the symmetric
group Sn.

( b )  How many transpositions are needed to write the cycle (123- ■ ■ n)?
(c) Prove that the cycles (12 • ■ • n) and (12) generate the symmetric group Sn.

5.2. What is the centralizer of the element (12) in Ss?
5.3. Determine the orders of the elements of the symmetric group S7.
5.4. Describe the centralizer Z(O") of the pel'Ilutation cr =  (15 3)(246) in the symmetric 

group S7, and compute the orders of Z(O") and of C(O").
5.5. Let p  and q be permutations. Prove that the products pq and qp  have cycles of equal 

sizes.
5.6. Find all subgroups of S4 of order 4, and decide which ones are normal.
5.7. Prove that An is the only subgroup of Sn of index 2.
5.8. 1 Determine the integers n such that there is a surjective homomorphism from the 

symmetric group Sn to Sn-i.
5.9. Let q be a 3-cycle in Sn. How many even permutations p  are there such that pqp -1 =  q?

5.10. Verify formulas (7.5.2) and (7.5.3) for the class equations of S4 and S5, and determine 
the centralizer of a representative element in each conjugacy class.

5.11. (a) Let C be the conjugacy class of an even permutation p  in Sn. Show that C is either
a conjugacy class in An, or else the union of two conjugacy classes in An of equal 
order. Explain how to decide which case occurs in terms of the centralizer of p .

( b )  Determine the class equations of A4 and A5.
(c) One may also decompose the conjugacy classes of permutations of odd order into 

An -orbits. Describe this decomposition.
5.12. Determine the class equations of Sg and Ag.

Section 6 Normalizers
6.1. Prove that the subgroup B of invertible upper triangular matrices in G Ln (R) is conjugate 

to the subgroup L of invertible lower triangular matrices.
6.2. Let B be the subgroup of G =  G Ln (C) of invertible upper triangular matrices, and 

let U C  B  be the set of upper triangular matrices with diagonal entries 1. Prove that 
B = N(U) and that B = N(B).

*6.3. Let P denote the subgroup of G Ln (JR) consisting of the permutation matrices. Determine 
the normalizer N(P).

6.4. Let H  be a normal subgroup of prime order p  in a finite group G. Suppose that p  
is the smallest prime that divides the order of G. Prove that H  is in the 
center Z(G).

1 Suggested b y  Ivan Borsenko.
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6.5. Let p  be a prime integer and let G be a p-group. Let H  be a proper subgroup of G. 
Prove that the normalizer N (H )  of H  is strictly larger than H, and that H  is contained 
in a normal subgroup of index p.

*6.6. Let H  be a proper subgroup of a finite group G. Prove:

(a) The group G is not the union of the conjugate subgroups of H.
(b) There is a conjugacy class C that is disjoint from H.

Section 7 The Sylow Theorems

7.1. Let n =  p em, as in (4.5.1), and let N  be the number of subsets of order pe in a set of 
order n. Determine the congruence class of N modulo p.

7.2. Let Gi C G2 be groups whose orders are divisible by p, and let H i be a Sylow p-subgroup 
of Gi. Prove that there is a Sylow p-subgroup H 2 of G2 such that Hi =  H2 n Gi.

7.3. How many elements of order 5 might be contained in a group of order 20?
7.4. (a) Prove that no simple group has order pq, where p  and q are prime.

(b) Prove that no simple group has order p 2 q, where p  and q are prime.
7.5. Find Sylow 2-subgroups of the following groups: (a) Dio, (b) T, (c) O , (d )  I .

7.6. Exhibit a subgroup of the symmetric group S7 that is a nonabelian group of order 21.
7.7. Let n = pm  be aninteger that isdivisible exactly once by p, and let G be a group of order 

n. Let H  be a Sylow p-subgroup of G, and let S be the set of all Sylow p-subgroups. 
Explain how S decomposes into H-orbits.

* 7 .8 . Compute the order of G Ln (IF'p). Find a Sylow p-subgroup of G Ln ( F p ) ,  and determine 
the number of Sylow p-subgroups.

7.9. Classify groups of order (a) 33, (b) 18, (c) 20, ( d )  30.
7.10. Prove that the only simple groups of order <60 are the groups of prime order.

Section 8 The Groups of Order 12

8 .1 . Which of the groups of order 12 described in Theorem 7.8.1 is isomorphic to S3 X C2?
8 .2 . (a) Determine the smallest integer n such that the symmetric group S„ contains a

subgroup isomorphic to the group (7.8.2).
(b) Find a subgroup of SL2(lFs) that is isomorphic to that group.

8 .3 . Determine the class equations of the groups of order 12.
8.4. Prove that a group of order n =  2p, where p  is prime, is either cyclic or dihedral.
8 .5. Let G be a nonabelian group of order 28 whose sylow 2 subgroups are cyclic.

(a) Determine the numbers of sylow 2 - subgroups and of sylow 7 - subgroups.
(b) Prove that there is at most one isomorphism class of such groups.
(c) Determine the numbers of elements of each order, and the class equation of G.
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(a) Prove that G  is generated by two elements x and y, with the relations x11 =  1,
y5 = 1, yxy- 1 = x r, for some r, 1 r  <  II.

(b) Decide which values of r are possible.
(c) Prove that there are two isomorphism classes of groups of order 55.

Section 9 The Free Group

9.1. Let F  be the free group on {x, y}. Prove that the three elements u =  x2, v  =  y ,  and
Z = x y  generate a subgroup isomorphic to the free group on u, v, and z.

9.2. We may define a closed word in S ' to be the oriented loop obtained by joining the ends 
of a word. Re ading counterclockwise,

c a— 
b b

a b
a c

b b d

is a closed word. Establish a bijective correspondence between reduced closed words and 
conjugacy classes in the free group.

Section 10 Generators and Relations
10.1. Prove the mapping properties of free groups and of quotient groups.
10.2. Let q;: G -+ G' be a surjective group homomorphism. Let S be a subset of G whose 

image q;(S) generates G', and let T  be a set of generators of kerq;. Prove that S U T 
generates G.

10.3. Can every finite group G be presented hy a finite set of generators and a finite set of 
relations?

10.4. The group G = <x, y; xyx- 1y-1 > is called a free abelian group. Prove a mapping 
property of this group: If u and v are elements of an abelian group A, there is a unique 
homomorphism (f):G -+ A such that (f)(x) = u , (f)(y) = v.

10.5. Prove that the group generated by x, y, z  with the single relation yx yz-2 = 1 is actually 
a free group.

10.6. A subgroup H  of a group G is characteristic if it is carried to itself by all automorphisms 
of G.
(a) Prove that every characteristic subgroup is normal, and that the center Z is a 

characteristic subgroup.
(b) Determine the normal subgroups and the characteristic subgroup s of the quaternion 

group.

1 0 .7 . The commutator subgroup C of a group G is the smallest subgroup that contains all 
commutators. Prove that the commutator subgroup is a characteristic subgroup (see 
Exercise 10.6), and that G /C  is an abelian group.

8.6. Le t G  be a group of order 55.
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10.8. Determine the commutator subgroups (Exercise 10.7) of the following groups:
(a) SO 2 , (b) O2, (c) the group M of isometries of the plane, (d) Sn, (d) SO3.

10.9. Let G denote the group of 3 X 3 upper triangular matrices with diagonal entries equal to 1 
and with entries in the field IFp. For each prime p, determine the center, the commutator 
subgroup (Exercise 10.6), and the orders of the elements of G.

10.10. Let F  be the free group on x, y  and let R be the smallest normal subgroup containing 
the commutator x y x ^ y - 1 .

(a) Show that x 2 y2x - 2 y~2 is in R.
(b) Prove that R is the commutator subgroup (Exercise 10.7) of F.

Section 11 The Todd-Coxeter Algorithm

11.1. Complete the proof that the group given in Example 7.11.8 is cyclic of order 3.
11.2. Use the Todd-Coxeter algorithm to show that the group defined by the relations (7.8.2) 

has order 12 and that the group defined by the relations (7.7.8) has order 21.
11.3. Use the Todd-Coxeter Algorithm to analyze the group generated by two elements x, y, 

with the following relations. Determine the order of the group and identify the group if 
you can:
(a) x2 =  y2 = 1, xyx = yxy, (b) x3 =  y3 = l , xyx = yxy,
(c) x4 = y2 = 1, xyx =  yxy, (d) x4 = y4 =  x2y2 =  1,
(e) x3 =  1, y2 =  1, yxyxy = 1, (C) x3 = y3 =  yxyxy =  1,
(g) x4 = 1, y3 =  1, xy =  y2x, (h) x7 = 1, y3 =  1, yx =  x2y,
(i) x ^ y x  =  y-*, y -1xy = x~x, (j) y3 =  1, x2yxy = 1.

11.4. How is normality of a subgroup H of G reflected in the table that displays the operation 
on cosets?

11.5. Let G be the group generated by elements x, y, with relations x4 =  1, y3 =  1, x2 =  yxy. 
Prove that this group is trivial in two ways: using the Todd-Coxeter Algorithm, and 
working directly with the relations.

1L6. A triangle group G p<?r is a group <x, y, z I xP, y9, zr , x y z ), where p  :: q :: r are positive 
integers. In each case, prove that the triangle group is isomorphic to the group listed.

(a) the dihedral group Dn, when p, q, r =  2, 2, n,
(b) the octahedral group, when p, q, r =  2, 3,4,
(c) the icosahedral group, when p, q, r =  2, 3, 5.

11.7. Let A denote an equilateral triangle, and let a, b, c denote the reflections of the plane 
about the three sides of A. Let x =  ab, y =  be, z == ea. Prove that x, y, z generate a 
triangle group (Exercise 11.6).

11.5. (a) Prove that the group G generated by elements x, y, z with relations x2 =  y3 = z5 =
1, x yz =  1 has order 60.

(b) Let H be the subgroup generated by x and zyz-1. Determine the permutation 
representation of G on G /  H, and identify H.

(c) Prove that G is isomorphic to the alternating group As-
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(d) Let K be the subgroup of G generated by x and yxz. Determine the permutation 
representation of G on G |  K, and identify K.

Miscellaneous Problems
M .I. Classify groups that are generated by two elements x  and y of order 2.

Hint: It will be convenient to make use of the element z =  xy.
M.2. With the presentation (6.4.3), determine the double cosets (see Exercise M.9) H gH  of 

the subgroup H  =  {1, y} in the dihedral group Dn. Show that each double coset has 
either two or four elements.

*M.3. (a) Suppose that a group G operates transitively on a set S, and that H  is the stabilizer 
of an element So of S. Consider the operation of G on S X S defined by g(Sl, sz) = 
(gsl, gsz). Establish a bijective correspondence between double cosets of H  in G 
and G-orbits in S X S.

(b) Work out the correspondence explicitly for the case that G is the dihedral group Ds 
and S is the set of vertices of a pentagon.

(c) Work it out for the cas.e that G =  T and that S is the set of edges of a tetrahedron.
*M.4. Let H  and K be subgroups of a group G, with H  C K. Suppose that H  is normal in K, 

and that K is normal in G. Is H  normal in G?
M.S. Let H  and N be subgroups ofa group G, and assume that N  is a  normal subgroup.

(a) Determine the kernels of the restrictions of the canonical homomorphism 7r :  G -+ 
G |N  to the subgroups H  and HN.

(b) Applying First Isomorphism Theorem to these restrictions, prove the Second Iso
morphism Theorem: H |( H  n AO is isomorphic to (HAO |N .

M.6. Let H  and N be normal subgroups of a group G such that H  : :  N. Let H  =  H | N  and 
G = G |N .

(a) Prove that H  is a normal subgroup of G.
(b) Use the composed homomorphism G -+ G -+ G / H  to prove the 

Third Isomorphism Theorem: G | H  is isomorphic to G |  H.

M.7. 2 Let p i, pz be permutations of the set S =  {I, 2, ..., n}, and let Uj be the subset of S  of 
indices that are not fixed by pj. Prove:

(a) If Ui n  U2 =  0 , the commutator pxpzp " 1 p i  is the identity.
(b) If Ui n  U2 contains exactly one element, the commutator p lp2 P j1 p 2J is a three-cycle.

*M.8. Let H  be a subgroup of a group G. Prove that the number of left cosets is equal to the 
number of right cosets also when G is an infinite group.

M.9. Let x be an element, not the identity, of a group of odd order. Prove that the elements x 
and x- 1 are not conjugate.

S u g g e s te d  by B ened ic t G ross.
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M.10. Let G be a finite group that operates transitively on a set S of order :: 2. Show that G
contains an element g that doesn’t fix any element of S.

M .ll. Determine the conjugacy classes of elements order 2 in G L 2 (Z).
*M.12. (class equation o f  SL2) Many, though not all, conjugacy classes in SL 2 (F) contain

- rmatrices of the form A = 1

(a) Determine the centralizers in SL 2 (IFs) of the matrices A, for a = 0 ,1 ,2 , 3,4.
(b) Determine the class equation of SL 2 (IFs).
(c) How many solutions ofan equation of the form x2 + axy + T  =  1 in IFp might there 

be? To analyze this, one can begin by setting y =  Ax  + 1. For most values of A there 
will be two solutions, one of which is x  = 0, y  =  1.

(d) Determine the class equation of SL 2 (IF p).
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Bilinear Forms

I presume that to the uninitiated 
the formulae will appear cold and cheerless.

—Benjamin Pierce

8 .1  B IL IN E A R  F O R M S

The dot product (X • Y) =  X 1 Y = x iy i +  ■ ■ • +  x„y„ on ]Rn was discussed in Chapter 5. 
It is symmetric: (Y • X) =  (X • Y), and positive definite: (X • X ) > 0  for every X * 0 . We 
examine several analogues of dot product in this chapter. The most important ones are 
symmetric forms and Hermitian forms. All vector spaces in this chapter are assumed to be 
finite-dimensional.

Let V be a real vector space. A bilinear form  on V is a real-valued function of two 
vector variables -  a map V x V-+ R. Given a pair v, w of vectors, the form returns a real 
number that will usually be denoted by (v, w). A  bilinear form is required to be linear in 
each variable:

(8.1.1) (rvi. wi) = r ( v i .  w i ) and (vi +  v2. wi) =  (vi, wi) +  (t>2, wi)
(Vi , rwi ) = r ( v i ,  w]) and (V], wi +  w2) =  (Vi, w i ) +  (Vi, w2)

for all v,' and Wi in V and all real numbers r. Another way to say this is that the form is 
compatible with linear combinations in each variable:

(8.1.2) (L:XiVi, w) =  L:Xi(Vi, w)
(v  L:Wj  yj) = L:{v, Wj )yj

for all vectors v  and w , and all real numbers Xi and y,-. (It is often convenient to bring 
scalars in the second variable out to the right side.)

The form on defined by

(8.1.3) ( X , Y ) = X tAY,

where A  is an n X n matrix, is an example of a bilinear form. The dot product is the case 
A  =  I, and when one is working with real column vectors, one always assumes that the form 
is dot product unless a different form has been specified.

229
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I f  a  b a s i s  B  =  ( v i ,  . . . ,  v „ )  o f  V  is  g iv e n ,  a  b i l in e a r  f o r m  ( , ) c a n  b e  r e la t e d  t o  a  f o r m  

o f  t h e  t y p e  ( 8 .1 .3 )  b y  t h e  matrix of the form. T h is  m a tr ix  is  s im p ly  A  =  (aij),  w h e r e

( 8 .1 .4 )  aij =  (vi, Vj).

P r o p o s i t io n  8 .1 .5  L e t  ( , ) b e  a  b i l in e a r  f o r m  o n  a  v e c t o r  s p a c e  V ,  le t  B =  ( v i ,  . . . ,  v n )  b e  a  

b a s is  o f  V , a n d  le t  A b e  th e  m a tr ix  o f  th e  f o r m  w ith  r e s p e c t  t o  t h a t  b a s is .  I f  X  a n d  Y  a r e  t h e  

c o o r d in a t e  v e c t o r s  o f  t h e  v e c t o r s  v  a n d ' w , r e s p e c t iv e ly ,  t h e n

( v ,  w )  =  X (A Y .

Proof. I f  V = B X  a n d  w  =  B Y , t h e n

( v ,  w )  =  v iXi, vj y j ) =  Y ,  X i ( v i ,  vj)y j = Y  Xiaijyj =  X (A Y .  0
i j  i j  «,y

A  b i l in e a r  f o r m  is  symmetric i f  (v, w ) =  ( w ,  v )  f o r  a ll v  a n d  w  in  V ,  a n d  skew- 
symmetric i f  ( v ,  w )  =  - ( w ,  v )  f o r  a ll  v  a n d  w  in  V . W h e n  w e  r e f e r  t o  a  s y m m e t r ic  f o r m , w e  

m e a n  a  b i l in e a r  s y m m e t r ic  f o r m , a n d  s im ila r ly ,  r e f e r e n c e  t o  a  s k e w - s y m m e t r i c  f o r m  im p l ie s  

b i l in e a r i ty .

L e m m a  8 .1 .6

( a )  L e t  A  b e  a n  n X n m a tr ix . T h e  f o r m  X (A  Y  is  s y m m e tr ic :  X lA Y  =  Y lA X  f o r  a l l  X  a n d  Y , 
i f  a n d  o n ly  i f  t h e  m a tr ix  A  is  s y m m e tr ic :  A * =  A .

(b) A  b i l in e a r  f o r m  ( , ) i s  s y m m e tr ic  i f  a n d  o n ly  i f  i t s  m a tr ix  w i t h  r e s p e c t  t o  a n  a r b itr a r y  

b a s is  is  a  s y m m e tr ic  m a tr ix .

T h e  a n a lo g o u s  s t a t e m e n t s  a r e  tr u e  w h e n  t h e  w o r d  symmetric is  r e p la c e d  b y  skew-symmetric.

Proof. ( a )  A s s u m e  th a t  A  =  ( a (j )  is  a  s y m m e tr ic  m a tr ix . T h in k in g  o f  X lA Y  a s  a  1 x  1 m a tr ix ,  
it  is  e q u a l  t o  i t s  t r a n s p o s e .  T h e n  X lA Y  =  (X tA Y )t = Y ' A ' X  =  Y lA X .  T h u s  t h e  f o r m  is  

s y m m e t r ic .  T o  d e r iv e  t h e  o t h e r  im p l ic a t io n ,  w e  n o t e  th a t  e^Aej  =  aij, w h i l e  e j A e i  =  aji. In  

o r d e r  fo r  t h e  f o r m  to  b e  s y m m e tr ic ,  w e  m u s t  h a v e  aij =  aji.

(b) T h is  f o l lo w s  f r o m  (a )  b e c a u s e  (v, w ) =  X (A  Y. □

T h e  e f fe c t  o f  a  c h a n g e  o f  b a s i s  o n  th e  m a tr ix  o f  a  f o r m  is  d e t e r m in e d  in  th e  u s u a l  w a y .

P r o p o s i t io n  8 .1 .7  L e t  ( , ) b e  a  b i l in e a r  f o r m  o n  a  r e a l  v e c t o r  s p a c e  V , a n d  l e t  A  a n d  A ' b e  
t h e  m a tr ic e s  o f  t h e  f o r m  w it h  r e s p e c t  t o  t w o  b a s e s  B  a n d  B '. I f  P  is  t h e  m a tr ix  o f  c h a n g e  o f  

b a s is ,  s o  th a t  B' =  B P ,  t h e n

Proof. L e t  X  a n d  X ’ b e  t h e  c o o r d in a t e  v e c t o r s  o f  a  v e c t o r  v  w i t h  r e s p e c t  t o  t h e  b a s e s  B  a n d  

B '. T h e n  v  =  B X  =  B 'X ' ,  a n d  P X '  =  X .  W ith  a n a l o g o u s  n o t a t io n ,  w  =  B Y  =  B 'Y ' ,

(u , w )  =  X lAY = ( P X ' ) t A ( P Y ' )  =  X'l (PtA P)Y'.

T h is  id e n t i f i e s  P‘AP a s  th e  m a tr ix  o f  th e  f o r m  w it h  r e s p e c t  t o  th e  b a s is  B ' .  ‘ □
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C o r o l la r y  8.1.8 Let A be the matrix of a bilinear form with respect to a basis. The matrices 
that represent the same form with respect to different bases are the matrices P lAP, where P 
can be any invertible matrix. □

Note. There is an important observation to be made here. When a basis is given, both linear 
operators and bilinear forms are described by matrices. It may be tempting to think that 
the theories of linear operators and of bilinear forms are equivalent in some way. They are 
not equivalent. When one makes a change of basis, the matrix of the bilinear form X lA  Y 
changes to PlAP, while the matrix of the linear operator Y = A X  changes to 1 ' 1AP. The 
matrices obtained with respect to the new basis will most often be different. □

8 . 2  S Y M M E T R IC  F O R M S

Let V be a real vector space. A symmetric form on V is positive definite if (v, v) >  0 for all 
nonzero vectors v, and positive semi-definite if (v, v) :: 0 for all nonzero vectors v. Negative 
definite and negative semidefinite forms are defined analogously. Dot product is a symmetric, 
positive definite form on ]Rn.

A symmetric form that is not positive definite is called indefinite. The Lorentz form

(8.2.1 ) (X, Y) =  X1Y1 + X2 Y2  +  X3Y3 -  X4Y4

is an indefinite symmetric form on “space-time” ]R4, where x4 is the “ time” coordinate, and 
the speed of light is normalized to 1. Its matrix with respect to the standard basis of ]R4 is

(8 .2 .2 )

-1

As an introduction to the study of symmetric forms, we ask what happens to dot 
product when we change coordinates. The effect of the change of basis from the standard 
basis E to a new basis B' is given by Proposition 8.1.7. If B' =  EP, the matrix [ of dot product 
changes to A  = PlIP = ptp, or in terms of the form, if PX ' =  X  and PY' =  Y, then

(8.2.3) XlY =  X 'tA 'Y ', where A' =  P  P .

If the change of basis is orthogonal, then PlP is the identity matrix, and (X  ■ Y) =  (X' . Y'). 
But under a general change of basis, the formula for dot product changes as indicated.

This raises a question: Which of the bilinear forms X(A Y are equivalent to dot product, 
in the sense that they represent dot product with respect to some basis of ]Rn? Formula
(8.2.3) gives a theoretical answer:

Corollary 8.2.4 The matrices A that represent a form (X, Y) =  X (AY equivalent to dot 
product are those that can be written as a product Pl P, for some invertible matrix P. □

This answer won’t be satisfactory until we can decide which matrices A can be writ
ten as such a product. One condition that A must satisfy is very simple: It must be
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symmetric, because P(P is always a symmetric matrix. Another condition comes from the 
fact that dot product is positive definite.

In analogy with the terminology for symmetric forms, a symmetric real matrix A is 
called positive definite if X lAX >  0 for all nonzero column vectors X. If the form X(AY is 
equivalent to dot product, the matrix A  will be positive definite.

The two conditions, symmetry and positive definiteness, characterize matrices that 
represent dot product.

T h e o r e m  8 .2 .5  The following properties of a real n X n matrix A are equivalent:

(i) The form XlAY represents dot product, with respect to some basis of ]R.n.
(ii) There is an invertible matrix P such that A =  PlP.

(iii) The matrix A is symmetric and positive definite.

We have seen that (i) and (ii) are equivalent (Corollary 8.2.4) and that (i) implies (iii). 
We will prove that (iii) implies (i) in Section 8.4 (see (8.4.18)).

8 . 3  H E R M IT IA N  F O R M S

The most useful way to extend the concept of symmetric forms to complex vector spaces is 
to Hermitian forms. A Hermitian form  on a complex vector space V is a map V X V -+ C, 
denoted by (v, w), that is conjugate linear in the first variable, linear in the second variable, 
and Hermitian symmetric:

(8.3.1) (cVb wi) = c ( v j ,  w i) and (vi +  V2 , W\) = (vi, W\) + (V2 , wi)
(vi, cwi) =  c(V}, wi) and (vi, W1 +  W2) =  (vi, wi) +  (vi, W2)

(Wt ,Vl) =  (Vl,Wi)

for all Vi and w  in V, and all complex numbers c, where the overline denotes complex 
conjugation. As with bilinear forms (8.1.2), this condition can be expressed in terms of linear 
combinations in the variables:

(8.3.2) (LxjVj, w) =  LX,.(V;, w )

(v, L w j Yj) =  L ( v, Wj)Yj
for any vectors Vi and Wj and any complex numbers Xi and yj. Because of Hermitian 
symmetry, (v, v) =  (v, v), and therefore (v, v) is a real number, for all vectors v.

The standard Hermitian form  on C” is the form

(8.3.3) (X, Y) =  X*Y =  X1Y1 + . . . +  X„Y„,

where the notationX* stands for the conjugate transpose (Xi, . . .  , x n) of X  =  (x i, . . . . , x„) f. 
When working with C” , one always assumes that the form is the standard Hermitian form, 
unless another form has been specified.

The reason that the complication caused by complex conjugation is introduced is that 
(X, X) becomes a positive real number for every nonzero complex vector X. If we use
the bijective correspondence of complex n-dimensional vectors with real 2n-dimensional
vectors, by
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(8.3.4) ( x i , . . . ,  x ny (ai, b\,  . . . ,  an, bn) ,

where Xv =  av +  bvi, then x v =  av -  bvi and

(X, X) =  Xixi + ---- + xnxn = a \  +  b i +------ +  a2n +  b£.

Thus (X, X) is the square length of the corresponding real vector, a positive real number.
For arbitrary vectors X and Y, the symmetry property of dot product is replaced by

Hermitian symmetry: (Y, X) =  (X, Y). Bear in mind that when X,* Y, (X, Y) is likely to 
be a complex number, whereas dot product of the corresponding real vectors would be 
real. Though elements of Cn correspond bijectively to elements of M2n, as above, these two 
vector spaces aren’t equivalent, because scalar multiplication by a complex number isn’t 
defined on

The adjoint A  * of a complex matrix A =  (aij) is the complex conjugate of the transpose 
matrix A 1, a notation that was used above for column vectors. So the i, j  entry of A* is aji.

"i 1 i .• 1 * T i  o l

For example, '1  1 +  i
* ‘ 1 2 '

2 i 1 — i - i

Here are some rules for computing with adjoint matrices:

(8.3.5) (cA)* =  CA*, (A +  B)* =  A* +  B*, (AB)* =  B*A*, A** =  A.

A square matrix A is Hermitian (or self-adjoint) if

(8.3.6) A* =  A.

The entries of a Hermitian matrix A  satisfy the relation aji = aij. Its diagonal entries are 
real and the entries below the diagonal are the complex conjugates of those above it:

(8.3.7)

For example,

n aij
A =

- aij rn _

r i  e

2
- i is a Hermitian matrix. A  real matrix is  Hermitian if and only if it is

symmetric.
The matrix of a Hermitian form with respect to a basis B =  (uj, . . .  , Vn) is defined as 

for bilinear forms. It is A =  (aij), where aij =  (Vi, Vj).The matrix of the standard Hermitian 
form on Cn is the identity matrix.

P r o p o s i t io n  8 .3 .8  Let A be the matrix of a Hermitian form ( , ) on a complex vector space 
V, with respect to a basis B. If X and Y are the coordinate vectors of the vectors v  

and w, respectively, then (v, w) =  X*AY and A is a Hermitian matrix. Conversely, if A 
is a Hermitian matrix, then the form on Cn defined by (X, Y) =  X*A Y is a Hermitian 
form.

The proof is analogous to that of Proposition 8.1.5. □
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Recall that if the form is Hermitian, (v, v) is a real number. A Hermitian form is 
positive definite if (v, v) is positive for every nonzero vector v, and a Hermitian matrix 
is positive definite if X*AX is positive for every nonzero complex column vector X. A 
Hermitian form is positive definite if and only if its matrix with respect to an arbitrary basis 
is positive definite.

The rule for a change of basis B' =  BP in the matrix of a Hermitian form is determined, 
as usual, by substituting PX' = X  and PY' = Y:

X*AY  =  (PX')*A(PY') =  X'*(P*AP) Y'.

The matrix of the form with respect to the new basis is

(8.3.9) A' =  P*AP.

Corollary 8.3.10
(a) Let A be the matrix of a Hermitian form with respect to a basis. The matrices that 

represent the same form with respect to diffe rent bases are those of the form A' =  P*AP, 
where P can be any invertible complex matrix.

(b) A change of basis B' =  EP in Cn changes the standard Hermitian form X* Y to X'*A'Y',
where A' =  P* P. □

The next theorem gives the first of the many special properti es of Hermitian mat rice s.

Theorem 8.3.11 The eigenvalues, the trace, and the determinant of a Hermitian matrix A 
are real numbers.

Proof Since the trace and determinant can be ex pressed in terms of the eigenvalues, it 
suffices to show that the eigenvalues of a Hermitian matrix A are real. Let X be an eigen vector 
of A with eigenvalue 'A. Then

X*AX =  X*(AX) =  X*('AX) =  'AX*X.

We note that ('AX)* =  IX*. Since A* =  A,

x *a x  =  (x *a )x  =  (x *a *)x  =  (a x )*x  =  ('AX)*X =  'Ax*x.

So 'AX*X =  IX*X. Since X*X is a positive real number, it is not zero. Therefore 'A =  I ,  
which means that 'A is real. □

Please go over this proof carefully. It is simple, but so tricky that it seems hard to trust. Here 
is a startling corollary:

Corollary 8.3.12 The eigenvalues of a real symmetric matrix are re al numbers.

Proof When a real symmetric matrix is regarded as a complex matrix, it is Hermitian, so 
the corol l ary follows from the theorem. □

This corollary would be difficult to prove without going over to complex matrices, though it 
can be checked directly for a real symme tric 2 x 2 matrix.
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A  matrix P  such that

(8.3.13) P*P = /, (ior P*

is called a unitary matrix. A matrix P is unitary if and only if its columns Pi, . . . ,  Pn are 
orthonormal with respect to the standard Hermitian form, i.e., if and only if P*iPi =  1 and

The unitary matrices form a subgroup of the complex general linear group called the 
unitary group. It is denoted by Un:

We have seen that a change of basis in jRn preserves dot product if and only if the 
change of basis matrix is orthogonal 5.1.14. Similarly, a change of basis in C” preserves 
the standard Hermitian form X* Y if and only if the change of basis matrix is unitary. (see
(8.3.10)(b)).

8 . 4  O R T H O G O N A L IT Y

In this section we describe, at the same time, symmetric (bilinear) forms on a real vector 
space and Hermitian forms on a complex vector space. Throughout the section, we assume 
that we are given either a finite-dimensional real vector space V with a symmetric form, 
or a finite-dimensional complex vector space V with a Hermitian form. We won’t assume 
that the given form is positive definite. Reference to a symmetric form indicates that V is a 
real vector space, while reference to a Hermitian form indicates that V is a complex vector 
space. Though everything we do applies to both cases, it may be best for you to think of a 
symmetric form on a real vector space when reading this for the first time.

In order to include Hermitian forms, bars will have to be put over some symbols. Since 
complex conjugation is the identity operation on the real numbers, we can ignore bars when 
considering symmetric forms. Also, the adjoint of a real matrix is equal to its transpose. 
When a matrix A is real, A * is the transpose of A.

We assume given a symmetric or Hermitian form on a finite-dimensional vector space 
V. The basic concept used to study the form is orthogonality .

• Two vectors v and w are orthogonal (written v.l.w) if

This extends the definition given before when the form is dot product. Note that v.l.w if and 
only if w.l.v.

What orthogonality of real vectors means geometrically depends on the form and also 
on a basis. One peculiar thing is that, when the form is indefinite, a nonzero vector v may 
be self-orthogonal: (v, v) =  O. Rather than trying to understand the geometric meaning of 
orthogonality for each symmetric form, it is best to work algebraically with the definition of 
orthogonality, (v, w) =  0, and let it go at that.

p iP j =  0 when i =1=  j. For example, the matrix -̂ =l  1 - / -½ , . is unitary.
v 2 1 l

(8.3.14) Un = {P  I P*P =  /}.

(v, w) =  0 .
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If W is a subspace of V, we may restrict the form on V to W, which means simply that 
we take the same form but look at it only when the vectors are in W. It is obvious that if the 
form on V is symmetric, Hermitian, or positive definite, then its restriction to W will have 
the same property.

• The orthogonal space to a subspace W of V, often denoted by W..L, is the subspace of 
vectors v that are orthogonal to every vector in W, or symbolically, such that v i. W:

(8.4.1) W..L =  {v E V  I (v, w) = 0 for all w  in W } .

• An orthogonal basis B =  ( v i , . „  , vn) of V is a basis whose vectors are mutually 
orthogonal: (Vj, Vj) = 0 for all indices i and j  with i *  j. The matrix of the form with respect 
to an orthogonal basis will be a diagonal matrix, and the form will be nondegenerate (see 
below) if and only if the diagonal entries (Vj, Vj) of the matrix are nonzero (see (8.4.4)(b)).

• A null vector v in V is a vector orthogonal to every vector in V, and the nullspace N  of 
the form is the set of null vectors. The nullspace can be described as the orthogonal space to 
the whole space V:

N  = {v | vi. V} =  V..L.

• The form on V is nondegenerate if its nullspace is the zero space {0}. This means that 
for every nonzero vector v, there is a vector v' such that (v, v') * 0. A form that isn’t 
nondegenerate is degenerate. The most interesting forms are nondegenerate.

• The form on V is nondegenerate on a subspace W if its restriction to W is a nondegenerate 
form, which means that for every nonzero vector w  in W, there is a vector w ', also in W, 
such that (w, w ') *0 . A form may be degenerate on a subspace, though it is nondegenerate 
on the whole space, and vice versa.

Lemma 8.4.2 The form is nondegenerate on W if and only if W n  W..L =  {0}. □

There is an important criterion for equality of vectors in terms of a nondegenerate
form.

Proposition 8.4.3 Let ( , ) be a nondegenerate symmetric or Hermitian form on V, and let 
v and V  be vectors in V. If (v, w) = (v', w)  for all vectors w  in V, then v =  v'.

Proof. If (v, w) =  (v', w),  then v — v' is orthogonal to w.  If this is true for all w  in V, then 
v -  v' is a null vector, and because the form is nondegenerate, v — v' =  0. □

Proposition 8.4.4 Let ( , ) be a symmetric form on a real vector space or a Hermitian form 
on a complex vector space, and let A be its matrix with respect to a basis.

(a) A vector v is a null vector if and only if its coordinate vector Y solves the homogeneous 
equation A Y = O.

(b) The form is nondegenerate if and only if the matrix A  is invertible.

Proof. Via the basis, the form corresponds to the form X*A Y, so we may as well work with 
that form. If Y is a vector such that A Y = 0, then X*A Y  =  0 for all X, which means that Y
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is orthogonal to every vector, i.e., it is a null vector. Conversely, if AY,*O, then A Y  has a 
nonzero coordinate. The matrix product e*A Y  picks out the ith coordinate of A Y. So one of 
those products is not zero, and therefore Y is not a null vector. This proves ( a ) .  Because A is 
invertible if and only if the equation A Y =  0 has no nontrivial solution, ( b )  follows. □

T h e o r e m  8 .4 .5  Let ( , ) be a symmetric form on a real vector space V or a Hermitian form 
on a complex vector space V, and let W be a subspace of V.

( a )  The form is nondegenerate on W if and only if V is the direct sum W ED W-L.
( b )  If the form is nondegenerate on V and on W, then it is nondegenerate on W-L.

When a vector space V is a direct sum Wj ED . . .  ED Wk and W, is orthogonal to Wj for
i ,* j, V  is said to be the orthogonal sum of the subspaces. The theorem asserts that if the 
form is nondegenerate on W, then V is the orthogonal sum of W and W-L.

Proof o f Theorem 8.4.5. (a )  The conditions for a direct sum are W n  W-L =  {0} and
V =  W + W-L (3.6.6)(c). The first condition simply restates the hypothesis that the form 
be nondegenerate on the subspace. So if V is the direct sum, the form is nondegenerate. 
We must show that if the form is nondegenerate on W, then every vector v in V can be 
expressed as a sum v =  w  +  u, with w in W and u in W-L.

We extend a basis ( w i , . . . ,  Wk) of W to a basis B =  ( w i , . . . ,  Wk; vi, . . . ,  vn-k) of 
V, and we write the matrix of the form with respect to this basis in block form

(8.4.6) M — A B 
C D

where A is the upper left k  x  k  submatrix.
The entries of the block A are (w , ,  wj) for i, j  =  1, . . . , k, so A is the matrix of the 

form restricted to W. Since the form is nondegenerate on W, A is invertible. The entries of 
the block B are (w , ,  Vj) for i =  1, . . . , k  and j  =  1, . . . , n — k. If we can choose the vectors 
V i, . . . ,  u „ _ k  so that B  becomes zero, those vectors will be orthogonal to the basis of W, 
so they will be in the orthogonal space W-L. Then since B is a basis of V, it will follow that
V =  W +  W-L, which is what we want to show.

To achieve B  =  0, we change basis using a matrix with a block form

(8.4.7) P = I Q
o I

where the block Q remains to be determined. The new basis B' =  BP will have the form 
(w i, . . . ,  Wk; vj, . . . ,  v^_k). The basis of W will not change. The matrix of the form with 
respect to the new basis will be

(8.4.8) M  = P* MP

We don’t need to compute the other entries. When we set Q =  -A 1 B, the upper right block 
of M' becomes zero, as desired.
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(b) Suppose that the form is nondegenerate on V and on W. (a) shows that V =  W E9 WJ.. 
If we choose a basis for V by appending bases for W and W1., the matrix of the form on V 
will be a diagonal block matrix, where the blocks are the matrices of the form restricted to 
W and to WJ.. The matrix of the form on V is invertible (8.4.4), so the blocks are invertible. 
It follows that the form is non degenerate on WJ.. □

Lemma 8.4.9 If a symmetric or Hermitian form is not identically zero, there is a vector v in
V such that (v, v) *0.

Proof If the form is not identically zero, there will be vectors x and y such that (x, y) is not 
zero. If the form is Hermitian, we replace y by cy where c is a nonzero complex number, to 
make (x, y) real and still not zero. Then (y, x) =  (x, y). We expand:

(x +  y, x +  y) =  (x, x) + 2(x, y) +  (y, y).

Since the term 2(x, y) isn’t zero, at least one of the three other terms in the equation isn’t 
zero. □

Theorem 8.4.10 Let ( . ) be a symmetric form on a real vector space V or a Hermitian form 
on a complex vector space V. There exists an orthogonal basis for V.

Proof Case 1: The form is identically zero. Then every basis is orthogonal.

Case 2: The form is not identically zero. By induction on dimension, we may assume that 
there is an orthogonal basis for the restriction of the form to any proper subspace of V. 
We apply Lemma 8.4.9 and choose a vector vi with (vi, vi) * 0  as the first vector in our 
basis. Let W be the span of (vi). The matrix of the form restricted to W is the 1 x 1 matrix 
whose entry is (vj, vj). It is an invertible matrix, so the form is nondegenerate on W. By 
Theorem 8.4.5, V =  W E9 WJ.. By our induction assumption, WJ. has an orthogonal basis, 
say (v2, . . . ,  vn). Then (vi, v2, . . .  , vn) will be an orthogonal basis of V. □

O r t h o g o n a l  P r o j e c t i o n

Suppose that our given form is nondegenerate on a subspace W. Theorem 8.4.5 tells us that
V is the direct sum W E9 WJ.. Every vector v in V can be written uniquely in the form 
v =  w +  m,  with w in W and u in WJ.. The orthogonal projection from V to W is the map 
:r: V -+ W defined by :r( v) =  w. The decomposition v =  w + m is compatible with sums of 
vectors and with scalar multiplication, so n  is a linear transformation.

The orthogonal projection is the unique linear transformation from V to W such that 
:r(w) =  w if w is in W and :r(u) =  0 if m is in WJ..

Note: If the form is degenerate on a subspace W, the orthogonal projection to W doesn’t 
exist. The reason is that W n WJ. will contain a nonzero element x, and it will be impossible 
to have both 7r(x) =  x and :r(x) =  0. □

The next theorem provides a very important formula for orthogonal projection.
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Theorem 8.4.11 Projection Formula. Let ( , ) be a symmetric form on a real vector space V 
or a Hermitian form on a complex vector space V, and let W be a subspace of V on which 
the form is nondegenerate. If (w i, • • . , Wk) is an orthogonal basis for W, the orthogonal 
projection n :  V -+ W  is given by the formula n(v) = w \C{ +  . +  WkCk, where

(Wi, v)
(Wi, Wi)

Proof. Because the form is nondegenerate on W and its matrix with respect to an orthogonal 
basis is diagonal. (w,-, w,) *  O. The formula makes sense. Given a vector v, let w denote the 
vector WiCi +  . • . +  WkCk, with c, as above. This is an element of W, so if we show that 
v — w = u is in W.l, it will follow that n (v )  = w, as the theorem asserts. To show that u is 
in W.l, we show that (Wi, w) =  0 for i = 1, . . .  , k. We remember that (Wi, Wj) = 0 if i *  j. 
Then

(Wi, u) =  (Wi, v) -  (Wi, w) =  (Wi, v) -  ((Wi, W\)C\ +  • . •  +  (Wi, Wk)Ck)
= (wi, v) -  (Wi, Wi)Ci = O. ° -

Warning: This projection formula is not correct unless the basis is orthogonal.

Example 8.4.12 Let V be the space JR.3 of column vectors, and let (v, w) denote the dot 
product form. Let W be the subspace spanned by the vector wi whose coordinate vector is 
(1,1, l ) '.  Let ( x i ,  X2 , x3) f be the coordinate vector of a vector v. Then (w i,  v) = xi  + X 2+ X 3. 

The projection formula reads n (v )  = w \ c , where c = (x\ +  X2  +  ^3 ) / 3 . □

If a form is nondegenerate on the whole space V, the orthogonal projection from V to
V will be the identity map. The projection formula is interesting in this case too, because it 
can be used to compute the coordinates of a vector v with respect to an orthogonal basis.

Corollary 8.4.13 Let ( , ) be a nondegenerate symmetric form on a real vector space V 
or a nondegenerate Hermitian form on a complex vector space V, let (vi, . . . ,  vn) be an 
orthogonal basis for V, and let v be any vector. Then v = v i e  +-----+  vnCn, where

Ci =
(Vi, v)

□(Vi, Vi)

E^umple 8.4.14 Let B =  (vi, v2, V3 ) be the orthogonal basis of R3 whose coordinate vectors 
are

1
1 
1

1 1
-1 1
0 -2

Let v be a vector with coordinate vector (xi, X2, x 3 )‘. Then v = V\C\ + V2 C2  + V3 C3 and

Cl =  (Xi + X2 +  X3) /3 , C2 = (Xi - X 2) /2 , C3 =  (Xl +  X2 -  2x3) / 6 .
Next, we consider scaling of the vectors that make up an orthogonal basis.

□



240 Chapter 8  Bilinear Forms

Corollary 8.4.15 Let ( , ) be a symmetric form on a real vector space V or a Hermitian form 
on a complex vector space V.

(a) There is an orthogonal basis B = (vi, . . . ,  vn) for V with the property that for each i, 
(Vi, Vi) is equal to 1, - 1, or O.

(b) Matrix form: If A is a real symmetric n X n matrix, there is an invertible real matrix P 
such that PlAP is a diagonal matrix, each of whose diagonal entries is 1, -1, or O. If A 
is a complex Hermitian n X n matrix, there is an invertible complex matrix P such that 
P*AP is a diagonal matrix, each of whose diagonal entries is 1, -1, or O.

Proof. (a) Let (vi, . . . ,  vn) be an orthogonal basis. If v is a vector, then for any nonzero 
real number c, (cv, cv) = 2 ( v ,  v), and c2  can be any positive real number. So if we multiply 
Vi by a scalar, we can adjust the real number (Vi, Vi) by an arbitrary positive real number. 
This proves (a). Part (b) follows in the usual way, by applying (a) to the form X*AY. □

If we arrange an orthogonal basis that has been scaled suitably, the matrix of the form 
will have a block decomposition

(8.4.16)

where p , m, and z are the numbers of l ’s, - l ’s, and O’s on the diagonal, and p  +  m  +  z = n. 
The form is nondegenerate if and only if z =  O.

If the form is nondegenerate, the pair of integers (p, m) is called the signature of the 
form. Sylvester's Law (see Exercise 4.21) asserts that the signature does not depend on the 
choice of the orthogonal basis.

The notation Ip,m is often used to denote the diagonal matrix

(8.4.17) Ip,m = I
- / »

With this notation, the matrix (8.2.2) that represents the Lorentz form is / 31.
The form is positive definite if and only if m and z are both zero. Then the normalized 

basis has the property that (v,-, v,) =  1 for each i, and (v,, Vj) =  0 when i,* j. This is called 
an orthonormal basis, in agreement with the terminology introduced before, for bases of Rn
(5.1.8). An orthonormal basis B refers the form back to dot product on Rn or to the standard 
Hermitian form on cn .T hat is, if v =  BX and w  =  BY, then (v, w) =  X*Y. An orthonormal 
basis exists if and only if the form is positive definite.

Note: If B is an orthonormal basis for a subspace W of V, the projection from V to W  is 
given by the formula n (v )  = W\c\ +  . . .  w kck, where c, =  (w,, v). The projection formula is 
simpler because the denominators ( w ,, w,) in (8.4.11) are equal to 1. However, normalizing 
the vectors requires extracting a square root, and because of this, it is sometimes preferable 
to work with an orthogonal basis without normalizing. □

The proof of the remaining implication (iii) 
discussion:

(i) of Theorem 8.2.5 follows from this



Section 8.5 Euclidean Spaces and Hermitian Spaces 241

Corollary 8.4.18 If a real matrix A is symmetric and positive definite, then the form X lA Y 
represents dot product with respect to some basis of IRn .

When a positive definite symmetric or Hermitian form is given, the projection formula 
provides an inductive method, called the Gram-Schmidtprocedure, to produce an orthonor
mal basis, starting with an arbitrary basis ( v j ,  . . . ,  Vn). The procedure is as follows: Let Vk 
denote the space spanned by the basis vectors ( v i ,  . . . ,  vk). Suppose that, for some k :: n, 
we have found an orthonormal basis ( w i ,  . . . ,  w ^ - i )  for Vk-i. Let n  denote the orthogonal 
projection from V to Vk_i. Then n(vk) =  w jC j  + . . .  +  Wk-iCk-i, where c ,  =  ( w ,  Vk), 
and Wk =  Vk -  n(vk) is orthogonal to Vfc-i- When we normalize (Wk, Wk) to 1, the set 
( w i ,  . . . ,  Wk) will be an orthonormal basis for Vk. □

The last topic of this section is a criterion for a symmetric forin to be positive definite 
in terms of its matrix with respect to an arbitrary basis. Let A =  (aij) be the matrix of a 
symmetric form with respect to a basis B =  ( v j ,  . . .  , Vn) of V, and let Ak denote the k X k 
minor made up of the matrix entries a j  with i, j  : :  k:

Ai =  [a ii ] , A2 = ai 1 a i2 
a2i a n . . ,  An =  A.

Theorem 8.4.19 The form and the matrix are positive definite if and only if det Ak >  0 for 
k =  l ,  . . .  ,n .
We leave the proof as an exercise. □

For example, the matrix A =  

both positive.

2  1 

1 1
is positive definite, because det [2] and detA are

8.5 EUCLIDEAN SPACES AND HERMITIAN SPACES
When we work in IRn, we may wish to change the basis. But if our problem involves dot 
products -  if length or orthogonality of vectors is involved -  a change to an arbitrary 
new basis may be undesirable, because it will not preserve length and orthogonality. It 
is best to restrict oneself to orthonormal bases, so that dot products are preserved. The 
concept of a Euclidean space provides us with a framework in which to do this. A real 
vector space together with a positive definite symmetric form is called a Euclidean space, 
and a complex vector space together with a positive definite Hermitian form is called a 
Hermitian space.

The space IRn, with dot product, is the standard Euclidean space. An orthonormal 
basis for any Euclidean space will refer the space back to the standard Euclidean space. 
Similarly, the standard Hermitian form (X, Y) =  X* Y makes Cn into the standard Hermitian 
space, and an orthonormal basis for any Hermitian space will refer the form back to the 
standard Hermitian space. The only significant difference between an arbitrary Euclidean 
or Hermitian space and the standard Euclidean or Hermitian space is that no orthonormal 
basis is preferred. Nevertheless, when working in such spaces we always use orthonormal 
bases, though none have been picked out for us. A change of orthonormal bases will be 
given by a matrix that is orthogonal or unitary, according to the case.
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C o r o l la r y  8.5.1 L e t  V  b e  a  E u c l id e a n  o r  a  H e r m it ia n  s p a c e ,  w i t h  p o s i t i v e  d e f in i t e  f o r m  

( , ) , a n d  le t  W  b e  a  s u b s p a c e  o f  V . T h e  f o r m  is  n o n d e g e n e r a t e  o n  W , a n d  t h e r e f o r e

V  =  W  ED W J ..

Proof I f  w  is  a  n o n z e r o  v e c t o r  in  W , th e n  ( w ,  w) is  a  p o s i t i v e  r e a l  n u m b e r .  It is  n o t  z e r o ,  
a n d  t h e r e f o r e  w  is  n o t  a  n u l l  v e c t o r  in  V  o r  in  W . T h e  n u l l s p a c e s  a r e  z e r o .  □

W h a t  w e  h a v e  l e a r n e d  a b o u t  s y m m e tr ic  f o r m s  a l lo w s  u s  to  in t e r p r e t  th e  l e n g t h  o f  a  

v e c t o r  a n d  th e  a n g le  b e t w e e n  t w o  v e c t o r s  v  a n d  w  in  a  E u c l id e a n  s p a c e  V . L e t ’s  se t  a s id e  t h e  

s p e c i a l  c a s e  th a t  t h e s e  v e c t o r s  a r e  d e p e n d e n t ,  a n d  a s s u m e  t h a t  t h e y  s p a n  a  t w o - d im e n s io n a l  

s u b s p a c e  W . W h e n  w e  r e s tr ic t  t h e  f o r m , W  b e c o m e s  a  E u c l i d e a n  s p a c e  o f  d i m e n s i o n  2. 
S o  W  h a s  a n  o r t h o n o r m a l  b a s is  ( w i ,  W2 ), a n d  v ia  th is  b a s is ,  t h e  v e c t o r s  v  a n d  w  w i l l  

h a v e  c o o r d in a t e  v e c t o r s  in  ]R2 . W e ’ll  d e n o t e  t h e s e  t w o - d im e n s io n a l  c o o r d in a t e  v e c t o r s  b y  

lo w e r c a s e  l e t t e r s  x  a n d  y .  T h e y  a r e n ’t t h e  c o o r d in a t e  v e c t o r s  th a t  w e  w o u ld  o b t a in  u s in g  a n  

o r t h o n o r m a l  b a s is  f o r  t h e  w h o le  s p a c e  V , b u t  w e  w i l l  h a v e  ( v ,  w )  =  x ly, a n d  th is  a l lo w s  u s  

t o  in t e r p r e t  g e o m e t r i c  p r o p e r t i e s  o f  t h e  f o r m  in  t e r m s  o f  d o t  p r o d u c t  in  ]R2 .
T h e  length |v |  o f  a  v e c t o r  v  is  d e f in e d  b y  t h e  f o r m u la  | v | 2 =  ( v ,  v ) .  I f  x  is  th e  c o o r d in a t e  

v e c t o r  o f  v  in  ]R2 , t h e n  | v | 2 =  x ‘x. T h e  law a/cosines ( x  • y) =  | x | | y |  c o s O  in  ]R2 b e c o m e s

( 8 .5 .2 )  ( v ,  w )  =  | v | l w |  c o s O ,

w h e r e  0  is  th e  a n g le  b e t w e e n  x  a n d  y. S in c e  th is  f o r m u la  e x p r e s s e s  c o s  0  in  t e r m s  o f  th e  f o r m ,  

it  d e f in e s  th e  u n o r ie n t e d  angle 0 b e t w e e n  v e c t o r s  v  a n d  w . B u t  t h e  a m b ig u it y  o f  s ig n  in  th e  

a n g le  th a t  a r is e s  b e c a u s e  c o s  0  =  c o s  ( - 0 )  c a n ’t b e  e l im in a t e d .  W h e n  o n e  v i e w s  a  p la n e  in  

]R3 f r o m  it s  f r o n t  a n d  it s  b a c k ,  t h e  a n g le s  o n e  s e e s  d i f f e r  b y  s ig n .

8 . 6  T H E  SP E C T R A L  T H E O R E M

I n  t h is  s e c t i o n ,  w e  a n a ly z e  c e r t a in  l in e a r  o p e r a t o r s  o n  a  H e r m i t ia n  s p a c e .

L e t  T :  V  - +  V  b e  a  l in e a r  o p e r a t o r  o n  a  H e r m i t ia n  s p a c e  V ,  a n d  l e t  A  b e  t h e  m a tr ix  o f  

T  w it h  r e s p e c t  t o  a n  o r t h o n o r m a l  b a s is  B . T h e  adjoint operator T * : V  - +  V  is  th e  o p e r a t o r  

w h o s e  m a tr ix  w it h  r e s p e c t  t o  t h e  s a m e  b a s is  is  t h e  a d jo in t  m a tr ix  A * .

I f  w e  c h a n g e  t o  a  n e w  o r t h o n o r m a l  b a s is  B ' ,  t h e  b a s e c h a n g e  m a tr ix  P  w i l l  b e  u n ita r y ,  
a n d  t h e  n e w  m a tr ix  o f  T  w i l l  h a v e  t h e  f o r m  A '  =  P*AP = p - xAP. I ts  a d jo in t  w i l l  b e  

A ’* =  P * A  * P .  T h is  is  t h e  m a tr ix  o f  T *  w it h  r e s p e c t  t o  t h e  n e w  b a s is . S o  t h e  d e f in i t i o n  o f  T *  

m a k e s  s e n s e :  I t  is  i n d e p e n d e n t  o f  t h e  o r t h o n o r m a l  b a s is .
T h e  r u le s  ( 8 .3 .5 )  f o r  c o m p u t in g  w ith  a d jo in t  m a t r ic e s  c a r r y  o v e r  to  a d jo in t  o p e r a t o r s :

( 8 .6 .1 )  (T +  U)* = T* + U * , (TU)* =  U*T*, T** =  T.

A  normal m a tr ix  is  a  c o m p le x  m a tr ix  A  th a t  c o m m u t e s  w it h  i t s  a d jo in t :  A*A =  AA*. 
I n  i t s e l f ,  t h is  i s n ’t a  p a r t ic u la r ly  im p o r t a n t  c la s s  o f  m a tr ic e s ,  b u t  is  t h e  n a tu r a l  c la s s  f o r  w h ic h  

t o  s t a t e  t h e  S p e c t r a l  T h e o r e m  th a t  w e  p r o v e  in  th is  s e c t io n ,  a n d  it  in c lu d e s  t w o  im p o r t a n t  
c la s s e s :  H e r m i t ia n  m a t r ic e s  (A *  =  A ) a n d  u n ita r y  m a t r ic e s  (A *  =  A - 1) .

L e m m a  8.6.2 L e t  A  b e  a  c o m p le x  n  x  n  m a tr ix  a n d  l e t  P b e  a n  n  X n  u n ita r y  m a tr ix . I f  A  is  

n o r m a l ,  H e r m i t ia n ,  o r  u n ita r y ,  s o  i s  P* AP. □

A  l in e a r  o p e r a t o r  T  o n  a  H e r m i t ia n  s p a c e  is  c a l le d  normal, Hermitian, o r  unitary 
i f  its  m a tr ix  w ith  r e s p e c t  t o  a n  o r t h o n o r m a l  b a s i s  h a s  th e  s a m e  p r o p e r t y .  S o  T  is  n o r m a l
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if T*T =  1T*, Hermitian if T* =  T, and unitary if T*T =  /. A Hermitian operator is 
sometimes called a self-adjoint operator, but we won’t use that terminology.

The next proposition interprets these conditions in terms of the form.

Proposition 8.6.3 Let T be a linear operator on a Hermitian space V, and let T* be the 
adjoint operator.
(a) For all v and w in V, (Tv, w) =  (v, T*w) and (v, Tw) =  (T*v, w)
(b) T is normal if and only if, for all v and w in V, (Tv, Tw) =  (T*v, T*w).
(c) T is Hermitian if and only if, for all v and w in V, (Tv, w) =  (v, Tw).
(d) T is unitary if and only if, for all v and w in V, (Tv, Tw) =  (v, w).

Proof, (a) Let A be the matrix of the operator T with respect to an orthonormal basis B. 
With v =  BX and w =  BY as usual, (Tv, w) =  (AX)*Y = X*A*Y and (v, T*w) =  X*A*Y. 
Therefore (Tv, w) =  (v, T*w). The proof of the other formula of (a) is similar.

(b) We substitute T*v for v into the first equation of (a): (1T*v, w) =  (T*v, T*w). Similarly, 
substituting Tv for v into the second equation of (a): (Tv, Tw) =  (T*Tv, w). So if T is 
normal, then (Tv, Tw) =  (T*v, T*w). The converse follows by applying Proposition 8.4.3 
to the two vectors T* Tv and 1T* v. The proofs of (c) and (d) are similar. □

Let T be a linear operator on a Hermitian space V. As before, a subspace W of V is 
T-invariant if TW  C W. A linear operator T will restrict to a linear operator on a T-invariant 
subspace, and if T is normal, Hermitian, or unitary, the restricted operator will have the 
same property. This follows from Proposition 8.6.3.

Proposition 8.6.4 Let T be a linear operator on a Hermitian space V and let W be a subspace 
of V. If W is T-invariant, then the orthogonal space W.L is T*-invariant. If W is T*-invariant 
then W.L is T-invariant.

Proof Suppose that W is T-invariant. To show that W.L is T*-invariant, we must show that 
if u is in W.L, then T*u is also in W.L, which by definition of W.L means that (w, T*u) =  0 
for all w in W. By Proposition 8.6.3, (w, T*u) =  (Tw, u). Since W is T-invariant, Tw is in 
W. Then since u is in W.L, (Tw, u) =  O. So (w, T*u) =  0, as required. Since T** =  T, one 
obtains the second assertion by interchanging the roles of T and T*. □

The next theorem is the main place that we use the hypothesis that the form given on
V be positive definite.

Theorem 8.6.5 Let T be a normal operator on a Hermitian space V, and let v be an 
eigenvector of T with eigenvalue A. Then v is also an eigenvector of T*, with eigenvalue A.

Proof Case 1: A =  O. Then Tv =  0, and we must show that T*v =  O. Since the form is 
positive definite, it suffices to show that (T*v, T*v) =  O. By Proposition 8.6.3, (T*v, T*v) =  
(Tv, Tv) =  (0,0) =  O.
Case 2: A is arbitrary. Let S denote the linear operator T — AI. Then v is an eigenvector for 
S with eigenvalue zero: Sv =  O. Moreover, S* = T* — A/. You can check that S is a normal
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operator. By Case 1, v is an eigenvector for S* with eigenvalue 0: S*v =  T*v -  Av =  O. This 
shows that v is an eigenvector of T* with eigenvalue I .  □

Theorem 8.6.6 Spectral Theorem for Normal Operators

(a) Let T be a normal operator on a Hermitian space V. There is an orthonormal basis of
V consisting of eigenvectors for T.

(b) Matrix form: Let A be a normal matrix. There is a unitary matrix P  such that P*A P  is 
diagonal.

Proof (a) We choose an eigenvector vj for T, and normalize its length to 1. Theorem 8.6.5 
tells us that vi is also an eigenvector for T*. Therefore the one-dimensional subspace W 
spanned by vi is T*-invariant. By Proposition 8.6.4, W.l is T-invariant. We also know that
V =  W $  W.l. The restriction of T to any invariant subspace, including W .l, is a normal 
operator. By induction on dimension, we may assume that W.l has an orthonormal basis of 
eigenvectors, say (v2, . . . , vn). Adding vi to this set yields an orthonormal basis of V of 
eigenvectors for T.

(b) This is proved from (a) in the usual way. We regard A  as the matrix of the normal 
operator of multiplication by A on Cn. By (a) there is an orthonormal basis B consisting of 
eigenvectors. The matrix P of change of basis from E to B is unitary, and the matrix of the 
operator with respect to the new basis, which is P*AP, is diagonal. □

The next corollaries are obtained by applying the Spectral Theorem to the two most 
important types of normal matrices.

Corollary 8.6.7 Spectral Theorem for Hermitian Operators.

(a) Let T be a Hermitian operator on a Hermitian space V.

(i) There is an orthonormal basis of V consisting of eigenvectors of T.
(ii) The eigenvalues of T are real numbers.

(b) Matrix form: Let A be a Hermitian matrix.

(i) There is a unitary matrix P  such that P* A P  is a real diagonal matrix.
(ii) The eigenvalues of A are real numbers.

Proof Part (b)(ii) has been proved before (Theorem 8.3.11) and (a) (i) follows from the 
Spectral Theorem for normal operators. The other assertions are variants. □

Corollary 8.6.8 Spectral Theorem for Unitary Matrices.
(a) Let A be a unitary matrix. There is a unitary matrix P such that P*AP is diagonal.
(b) Every conjugacy class in the unitary group Un contains a diagonal matrix. □

To diagonalize a Hermitian matrix M, one can proceed by determining its eigen
vectors. If the eigenvalues are distinct, the corresponding eigenvectors will be orthogonal, 
and one can normalize their lengths to 1. This follows from the Spectral Theorem. For
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2 i 
- i  2

3
1

example, Vi' =  [ ] and v; =  [ j  ] are eigenvectors of the Hermitian matrix M

with eigenvalues 3 and 1, respectively. We normalize their lengths to 1 by the factor 1 /./2 ,
1 ^

obtaining the unitary matrix P =  ^  . . . Then P* MP ■

However, the Spectral Theorem asserts that a Hermitian matrix can be diagonalized even 
when its eigenvalues aren’t distinct. For instance, the only 2 X 2 Hermitian matrix whose 
characteristic polynomial has a double root A is AI.

What we have proved for Hermitian matrices has analogues for real symmetric 
matrices. A symmetric operator T  on a Euclidean space V is a linear operator whose matrix 
with respect to an orthonormal basis is symmetric. Similarly, an orthogonal operator T  on a 
Euclidean space V is a linear operator whose matrix with respect to an orthonormal basis is 
orthogonal.

Proposition 8.6.9 Let T be a linear operator on a Euclidean space V .

(a) T is symmetric if and only if, for all v  and w in V, (Tv, w) =  (v, Tw).
(b) T is orthogonal if and only if, for all v and w  in V, (Tv, Tw) =  (v, w).  □

Theorem 8.6.10 Spectral Theorem for Symmetric Operators.
(a) Let T be a symmetric operator on a Euclidean space V.

(i) There is an orthonormal basis of V consisting of eigenvectors of T.
(ii) The eigenvalues of T are real numbers.

(b) Matrix form: Let A be a real symmetric matrix.

(i) There is an orthogonal matrix P  such that P  A P  is a real diagonal matrix.
(ii) The eigenvalues of A are real numbers.

Proof  We have noted (b)(ii) before (Corollary 8.3.12), and (a)(ii) follows. Knowing this, 
the proof of (a)(i) follows the pattern of the proof of Theorem 8.6.6. □

The Spectral Theorem is a powerful tool. When faced with a Hermitian operator or a 
Hermitian matrix, it should be an automatic response to apply that theorem.

8 . 7  C O N IC S  A N D  Q U A D R IC S

Ellipses, hyperbolas, and parabolas are called conics. They are loci in ]R2 defined by quadratic 
equations f  =  0, where

(8.7.1) f ( x \ , x2) =  a \\x \  +  2an x ix 2 +  <222*2 +  ^ 1^1 + b2x2 +  c,

and the coefficients a j ,  b i, and c are real numbers. (The reason that the coefficient of X1X2 
is written as 2a i2 will be explained presently.) If the locus f  =  0 of a quadratic equation is 
not a conic, we call it a degenerate conic. A degenerate conic can be a pair of lines, a single 
line, a point, or empty, depending on the equation. To emphasize that a particular locus is
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not degenerate, we may sometimes refer to it as a nondegenerate conic. The term quadric is 
used to designate an analogous locus in three or more dimensions.

We propose to describe the orbits of the conics under the action of the group of 
isometries of the plane. Two nondegenerate conics are in the same orbit if and only if they 
are congruent geometric figures.

The quadratic part of the polynomial f ( x i , X2 ) is called a quadratic form:

(8.7.2) q ( x i ,x 2) = a n x \  +  2a\2 x \x 2 + <222*2-

A quadratic form in any number of variables is a polynomial, each of whose terms has 
degree 2 in the variables. It is convenient to express the quadratic form q in matrix notation. 
To do this, we introduce the symmetric matrix

(8.7.3) A =  [ ai1 ai2
v ’ |_a i2 a 22 _

Then if X  =  (xi, x^)1, the quadratic form can be written as q (x i, X2) =  X'AX. We put 
the coefficient 2 into Formulas 8.7.1 and 8.7.2 in order to avoid some coefficients |  in this 
matrix. If we also introduce the 1 x 2 matrix B =  [bi b{], the equation f  =  0 can be written 
compactly in matrix notation as

(8.7.4) XlAX +  BX +  c =  0.

Theorem 8.7.5 Every nondegenerate conic is congruent to one of the following loci, where 
the coefficients aii and a22 are positive:

Ellipse: a \\x \  +  a 2 2 X2 -1  = 0 ,

Hyperbola: anx^ — a 2 2 x \  —1 =  0,

Parabola: a \\x \ —X2  =  0.

The coefficients a ii  and a2 2  are determined by the congruence class of the conic, except that 
they can be interchanged in the equation of an ellipse.

Proof  We simplify the equation (8.7.4) in two steps, first applying an orthogonal transfor
mation to diagonalize the matrix A and then applying a translation to eliminate the linear 
terms and the constant term when possible.

The Spectral Theorem for symmetric operators (8.6.10) asserts that there is a 2 X 2 
orthogonal matrix P such that f lAP is diagonal. We make the change of variable PX' =  X, 
and substitute into (8.7.4):

(8.7.6) X a 'X ' +  B'X' +  c =  O

where A' =  f lAP and B' =  BP. With this orthogonal change of variable, the quadratic form 
becomes diagonal, that is, the coefficient of x'jX^ is zero. We drop the primes. When the 
quadratic form is diagonal, f  has the form

f(x i ,  X2) =  a iix f +  a2 2 x \  + b\X\ +  £2X2 +  c.



Section 8.7 Conics and Quadrics 247

To continue, we eliminate bi by “completing squares,” with the substitutions

(8.7.7) Xi =  - A ) .

This substitution corresponds to a translation of coordinates. Dropping primes again, f  
becomes

( 8 .7 .8 ) f i x !, X2 ) =  a n x f  + a n x \  +  c =  0,

where the constant term c has changed. The new constant can be computed when needed. 
W h e n  it  is  z e r o ,  t h e  l o c u s  i s  d e g e n e r a t e .  A s s u m in g  t h a t  c , *  0 , w e  c a n  m u l t ip ly  f  b y  a  s c a la r  

to change c to -1. If aii are both negative, the locus is empty, hence degenerate. So at least 
one of the coefficients is.positive, and we may assume that an  >  O. Then we are left with the 
equations of the ellipses and the hyperbolas in the statement of the theorem.

The parabola arises because the substitution made to eliminate the linear coefficient 
bi requires a ,i to be nonzero. Since the equation /  is supposed to be quadratic, these 
coefficients aren’t both zero, and we may assume a n  O. If a 22 =  0 but b2 0, we eliminate 
h i  a n d  u s e  t h e  s u b s t i t u t io n

(8.7.9) X2 =  x ;  -  c / b 2

to eliminate the constant term. Adjusting /  by a scalar factor and eliminating degenerate 
cases leaves us with the equation of the parabola. □

Example 8.7.10 Let /  be the quadratic polynomial x \  +  2x 1x2 — x |  +  2xi +  2X2 — 1. Then 

A =  [ j  _ j ,  B =  [2 2 ] , and c =  -1.

The eigenvalues of A are ± ../2. Setting a =  ../2 — 1 and b =  ../2 +  1, t he vectors

T ' ~l"
= a , v2 = b

are eigenvectors with eigenvalues . . / 2  and - . . / 2 ,  respectively. They are orthogonal, and when 
we normalize their lengths to 1, they will form an orthonormal basis B such that [B]_l A [B] 
is diagonal. Unfortunately, the square length of Vi is 4 — 2../2. To normalize its length to 1, 
we must divide by \/4 -  2../2. It is unpleasant to continue this computation by hand.

If a quadratic equation f i x  1, X2) =  0 is given, we can determine the type of conic that 
it represents most simply by allowing arbitrary changes of basis, not necessarily orthogonal 
on es. A nonorthogonal change will distort an ellipse but it will not change an ellipse into a 
hyperbola, a parabola, or a degenerate conic. If we wish only to identify the type of conic, 
arbitrary changes of basis are permissible.

We proceed as in (8.7.6), but with a nonorthogonal change of basis:
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Dropping primes, the new equation becomes x2 -  2x\ +  2xi -  1 =  0, and completing the 
square yields x \  — 2x\ — 2 =  0, a hyperbola. So the original locus is a hyperbola too.

By the way, the matrix A is positive or negative definite in the equation of an ellipse 
and indefinite in the equation of a hyperbola. The matrix A shown above is indefinite. We 
could have seen right away that the locus we have just inspected was either a hyperbola or a 
degenerate conic. □

The method used to describe conics can be applied to classify quadrics in any dimension. 
The general quadratic equation has the form f  = 0, where

(8.7.11) f ( x i, . . . , xn) =  L  auxf +  L  2aijXiXj +  L  b x i  +  c.
i

Let matrices A and B be defined by

KJ

A -

a  11

a\n

a  In

bn

Then

(8.7.12) f ( x  i, . . . ,  x n) =  X U *  + BX + c.

The associated quadratic form is

According tothe Spectral Theorem for symmetric operators, the matrix A  can be diagonalized 
by an orthogonal transformation P. When A is diagonal, the linear terms and the constant 
term may be eliminated, so far as possible, as above. Here is the classification in three 
variables:

Theorem 8.7.14 The congruence classes of nondegenerate quadrics in R3 are represented 
by the following loci, in which au are positive real numbers:

Ellipsoids: a iix i + a 22x2 + a33x3 - 1 =  0,
One-sheeted hyperboloids: a iix i +  a22x | 1 a 3 3 X UJK

J

- 1 =  0,
Two-sheeted hyperboloids: a n x i -  a22*2 -  a33X  ̂■- 1 =  0,

Elliptic paraboloids: a iix i +  a 22x | - x3 =  0,
Hyperbolic paraboloids: a iix 2 -- a22*2 - X3 =  0. □

A word is in order about the case that B and c are zero in the quadratic polynomial 
/ ( x i ,  X2, X3) (8.7.12), i.e, that f  is equal to its quadratic form q (8.7.13). The locus {q =  0}
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is considered degenerate, but is interesting. Let’s call it Q. Since all of the terms aijX,Xj that 
appear in q have degree 2,

for any real number A. Consequently, if a point X =t= O lies on Q, i.e., if q(X) =  0, then 
q(AX) =  0 too, so AX lies on Q for every real number A. Therefore Q 
through the origin, a double cone.

For example, suppose that q is the diagonal quadratic form

a iix f +  a 22x2 - X 3 ,

where an are positive. When we intersect the locus Q with the plane X3 
ellipse a iix i  +  a n x \  =  1 in the remaining variables. In this case Q is 
through the origin and the points of this ellipse.

Q

(8.7.16) Hyperboloids Near to a Cone.

Notice that q(x)  is positive in the exterior of the double cone, and negative in its interior. 
(The value of q(x) changes sign only when one crosses Q.) S o  for any r  >  0, the locus 
anXj  +  ar2 x \  — X3 — r  =  0 lies in the exterior of the double cone. It is a one-sheeted 
hyperboloid, while the locus a i \x \  +  a 2 i x \  — x  ̂ +  r  =  0 lies in the interior, and is a 
two-sheeted hyperboloid.

Similar reasoning can be applied to any homogeneous polynomial g (x i, . . . ,  x n), any 
polynomial in which all of the terms have the same degree d. If g is homogeneous of degree 
d, g(Ax) =  Adg(x), and because of this, the locus {g =  0} will also be a union of lines 
through the origin.

8 . 8  S K E W -S Y M M E T R IC  F O R M S

The description of skew-symmetric bilinear forms is the same for any field of scalars, so in 
this section we allow vector spaces over an arbitrary field F. However, as usual, it may be 
best to think of real vector spaces when going through this for the first time.

is a union of lines

=  1, we obtain an 
the union of lines
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A bilinear form ( , ) on a vector space V is skew-symmetric if it has either one of the 
following equivalent properties:

(8.8.1) (v, v) =  0 for all v in V, or

(8.8.2) (u, v) =  -(v, u) for all u and v in V.

To be more precise, these conditions are equivalent whenever the field of scalars has 
characteristic different from 2. If F  has characteristic 2, the first condition (8.8.1) is the 
correct one. The fact that (8.8.1) implies (8.8.2) is proved by expanding (u +  v, u +  v):

(u +  v, u +  v) =  (u, u) +  (u, v) +  (v, u) +  (v, v),

and using the fact that (u, u) =  (v, v) =  (u +  v, u +  v) =  O. Conversely, if the second 
condition holds, then setting u =  v gives us (v, v) =  -(v , v), hence 2 (v, v) =  0, and it follows 
that (v, v) =  0, unless 2 =  0.

A bilinear form ( , ) is skew-symmetric if and only if its matrix A with respect to an 
arbitrary basis is a skew-symmetric matrix, meaning that a,-,- =  - a j  and a,-,- =  0, for all i and
j. Except in characteristic 2, the condition a,-(- =  0 follows from a
* =  j .

The determinant form (X, Y) on R2, the form defined by

j aij when one sets

(8.8.3) (X, Y) =  det x i y  i 
X2 Y2 J

xiY2 - X 2y i ,

is a simple example of a skew-symmetric form. Linearity and skew symmetry in the columns 
are familiar properties of the determinant. The matrix of the determinant form (8.8.3) with 
respect to the standard basis of R2 is

(8.8.4)

We will see in Theorem 8.8.7 below that every nondegenerate skew-symmetric form looks 
very much like this one.

Skew-symmetric forms also come up when one counts intersections of paths on a 
surface. To obtain a count that doesn’t change when the paths are deformed, one can adopt 
the rule used for traffic flow: A vehicle that enters an intersection from the right has the 
right of way. If two paths X and Y on the surface intersect at a point p , we define the 
intersection number (X, Y) p at p  as follows: If X enters the intersection to the right of 
Y, then (X, Y)p =  1, and if X enters to the left of Y, then (X, Y)p = -1 . Then in either 
case, (X, Y) p =  -(Y, X) p. The total intersection number (X, Y) is obtained by adding these 
contributions for all intersection points. In this way the contributions arising when X crosses
Y and then turns back to cross again cancel. This is how topologists define a product in 
“homology. ”
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y

3

(8.8.5) Oriented Intersections (X, Y).

Many of the definitions given in Section 8.4 can be used also with skew-symmetric 
forms. In particular, two vectors v and w are orthogonal if (v, w) =  O. It is true once more 
that v..Lw if and only if w..Lv, but there is a difference: When the form is skew-symmetric, 
every vector v is self-orthogonal: v..Lv. And since all vectors are self-orthogonal, there can 
be no orthogonal bases.

As is true for symmetric forms, a skew-symmetric form is nondegenerate if and only if 
its matrix with respect to an arbitrary basis is nonsingular. The proof of the next theorem is 
the same as for Theorem 8.4.5.

Theorem 8.8.6 Let ( , ) be a skew-symmetric form on a vector space V, and let W be a 
subspace of V on which the form is nondegenerate. Then V is the orthogonal sum W E9 W1-. 
If the form is nondegenerate on V and on W, it is nondegenerate on W1- too. □

Theorem 8.8.7
(a) Let V be a vector space of positive dimension m over a field F, and let ( , ) be a 

nondegenerate skew-symmetric form on V. The dimension of V is even, and V has a 
basis B such that the matrix So of the form with respect to that basis is made up of 
diagonal blocks, where all blocks are equal to the 2 X 2 matrix S shown above (8.8.4):

(b) Matrix form: Let A be an invertible skew-symmetric m X m matrix. There is an invertible 
matrix P such that f lAP =  So is as above.

Proof  (a) Since the form is nondegenerate, we may choose nonzero vectors Vi and V2  such 
that (Vi, V2) =  c is not zero. We adjust V2  by a scalar factor to make c =  1. Since (vi, v2):1= 0 
but (vj, vi) =  0, these vectors are independent. Let W be the two-dimensional subspace with 
basis (v i, V2 ). The matrix of the form restricted to W is h.  Since this matrix is invertible, the 
form is nondegenerate on W, so V is the direct sum W E9 W1-, and the form is nondegenerate 
on W1-. By induction, we may assume that there is a basis (V3 , . • • , vn) for W1- such that 
the matrix of the form on this subspace has the form (8.8.7). Then (v j ,  V2 , V3 , • • • , vn) is the 
required basis for V. □

So =
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C o r o l la r y  8.8.8 If A is an invertible m Xm skew-symmetric matrix, then m is an even integer.
□

Let ( , ) be a nondegenerate skew-symmetric form on a vector space of dimension 2n. 
We rearrange the basis referred to in Theorem 8.8.7 as ( v i ,  V3 , . • . , V2n - i ;  V2, V4, - - , V2 n). 
The matrix will be changed into a block matrix made up of n X n blocks

(8.8.9)

8 . 9  S U M M A R Y

We collect some of the terms that we have used together here. They are used for a symmetric 
or a skew-symmetric form on a real vector space and also for a Hermitian form on a complex 
vector space.

o r t h o g o n a l  v e c t o r s :  Twovectors v and w are orthogonal (written v..lw) if (v, w) =  O.

o r t h o g o n a l  s p a c e  t o  a  s u b s p a c e :  The orthogonal space to a subspace W of V is the set 
of vectors v that are orthogonal to every vector in W:

W..l = j v e V I (v, W ) = oj .

n u l l  v e c to r :  A null vector is a vector that is orthogonal to every vector in V. 

n u l ls p a c e :  The nullspace N  of the given form is the set of null vectors:

N  = j v  | (v, V) =  o j  .

n o n d e g e n e r a t e  fo r m :  The form is nondegenerate if its nullspace is the zero space {O}. This 
means that for every nonzero vector v, there is a vector v ' such that (v, v ') O.

n o n d e g e n e r a c y  o n  a  s u b s p a c e :  The form is nondegenerate on a subspace W  if its restriction 
to W is a nondegenerate form, or if W n  W..l =  (O}. If the form is nondegenerate on a 
subspace W , then V = W  ffi W ..l.

o r t h o g o n a l  b a s is :  A basis B =  (vi, . . .  , vn) of V is orthogonal if the vectors are mutually 
orthogonal, that is, if (v,-, Vj) = 0 for all indices i and j  with i"* j. The matrix of the form 
with respect to an orthogonal basis is a diagonal matrix. Orthogonal bases exist for any 
symmetric or Hermitian form, but not for a skew-symmetric form.

o r t h o n o r m a l  b a s is :  A basis B =  (vi, . . • , v„) is orthonormal if (v , vj )  = 0 for i j  and 
( V,, v , )  = 1. An orthonormal basis for a symmetric or Hermitian form exists if and only if 
the form is positive definite.

o r t h o g o n a l  p r o j e c t io n :  If a symmetric or Hermitian form is nondegenerate on a subspace 
W, the orthogonal projection to W is the unique linear transformation 7l ':  V -+ W  such that: 

( v) =  v if v is in W , and 7l '(v )  = 0 if v is in the orthogonal space W ..l.
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If the form is nondegenerate on a subspace W and if (w j , . . . ,  wk) is an orthogonal 
basis for W, the orthogonal projection is given by the formula 1l '(v )  =  w ici +  . . .  w ^c^, 
where

(Wi, v)
Ci =  -----------.

1 (Wi, Wi)
S p e c t r a l  T h e o r e m :

• If A is normal, there is a unitary matrix P such that P*AP is diagonal.
i

• If A is Hermitian, there is a unitary matrix P such that P*AP is a real diagonal matrix.
• In the unitary group Un, every matrix is conjugate to a diagonal matrix.
• If A  is a real symmetric matrix, there is an orthogonal matrix P such that P*AP is diagonal.

The table below compares various concepts used for real and for complex vector 
spaces.

R e a l  V e c t o r  S p a c e s C o m p le x  V e c t o r  S p a c e s

symmetric
(v, w) =  (w, v)

f o r m s

Hermitian
(v, w) =  (w, v)

m a tr ic e s

symmetric 
A1 =  A

orthogonal 
AlA =  1

Hermitian
A* =  A
unitary 

A*A =  I
normal

A*A = AA*

o p e r a t o r s

symmetric
(Tv, w) =  (v, Tw)

orthogonal
(v, w) =  (Tv, Tw)

Hermitian
(Tv, w) =  (v, Tw)

unitary
(v, w) =  (Tv, Tw)

normal
(Tv, Tw) = (T*v, T*w)

arbitrary
(v, Tw) = (T*v, w)

In helping geometry, modern algebra is helping itself above all.

—Oscar Zariski
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S e c t io n  1 R e a l  B i l in e a r  F o r m s

E X E R C ISE S

1.1. Show that a bilinear form ( , ) on a real vector space V is a sum of a symmetric form and 
a skew-symmetric form.

Section 2 Symmetric Forms

2.1. Prove that the maximal entries of a positive definite, symmetric, real matrix are on the 
diagonal.

2.2. Let A and A' be symmetric matrices related by A' =  PlAP, where P is invertible. Is it 
true that the ranks of A and of A' are equal?

Section 3 Hermitian Forms
3.1. Is a complex n x  n matrix A such that X*AX is real for all X  Hermitian?
3.2. Let ( , ) be a positive definite Hermitian form on a complex vector space V , and let { , } 

and [ , ] be its real and imaginary parts, the real-valued forms defined by

(v, w) = {v, w} +  [v, w]i.

Prove that when V is made into a real vector space by restricting scalars to JR, { , } is a 
positive definite symmetric form, and [ , ] is a skew-symmetric form.

3.3. The set of n X n Hermitian matrices forms a real vector space. Find a basis for this space.
3.4. Prove that if A is an invertible matrix, then A *A is Hermitian and positive definite.
3.5. Let A and B be positive definite Hermitian matrices. Decide which of the following 

matrices are necessarily positive definite Hermitian: A2, A-1, AB, A + B.
3.6. Use the characteristic polynomial to prove that the eigenvalues of a 2 X 2 Hermitian 

matrix A are real.

S e c t io n  4  O r th o g o n a lity

4 .1 . What is the inverse of a matrix whose columns are orthogonal?
4.2. Let ( , ) be a bilinear form on a real vector space V, and let v be a vector such that 

(v, v) *0 . What is the formula for orthogonal projection to the space W =  v-.l orthogonal 
to v?

4 .3 . Let A be a real m X n matrix. Prove that B =  AlA is positive semidefinite, i.e., that 
XiBX :: 0 for all X, and that A and B have the same rank.

4.4. Make a sketch showing the positions of some orthogonal vectors in JR2, when the form is
(X, Y) =  xiyi -  X2Y2.

4 .5 . Findan orthogonal

(a) (b )

basis for th
'1 o r
0 2 1
1 i  i_

X l = £ a , -

leform on Rn whose mamx is

4.6. Extend the vector Xi =  i(1 , -1 , 1, 1 )  to an orthonormal basis for ]
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4.7. Apply the Gram-Schmidt procedure to the basis (1, 1,0)1 (1 ,0 ,1)1, (0, 1, 1)1 of]R3.

4.8. Let A 2  1 
1 1

. Find an orthonormal basis for ]R2 with respect to the form XIAY.

4.9. Find an orthonormal basis for the vector space P of all real polynomials of degree at most
2, with the symmetric form defined by

( 1 ,  g ) =  J i  f(x)g(x)dx.

4.10. Let V denote the vector space of real n X n matrices. Prove that (A, B) =  trace(Al B) 
defines a positive definite bilinear form on V, and find an orthonormal basis for this form.

4.11. Let Wi, W2 be subspaces of a vector space V with a symmetric bilinear form. Prove
(a) (Wi + W2 ).L = w t  n  w £, (b) W C W H , ( c )  If Wi C  W2 , then WJ. : )  W f.

4.12. Let V =  ]R2X2 be the vector space of real 2  X 2 matrices.

(a) Determine the matrix of the bilinear form (A, B) =  trace(AB) on V with respect to 
the standard basis {eij}.

(b) Determine the signature of this form.
( c )  Find an orthogonal basis for this form.
(d )  Determine the signature of the form trace AB on the space ]RnXn of real n Xn matrices.

*4.13. (a) Decide whether or not the rule (A, B) =  trace(A*B) defines a Hermitian form on 
the space (CnXn of1 complex matrices, and if so, determine its signature.

(b) Answer the same question for the form defined by (A, B) =  trace(AB).
4.14. The matrix form of Theorem 8.4.10 asserts that if A is a real symmetric matrix, there 

exists an invertible matrix P such that PlAP is diagonal. Prove this by row and column 
operations.

4.15. Let W  be the subspace of ]R3 spanned by the vectors (1,1, 0)' and (0, I ,  1)‘. Determine 
the orthogonal projection of the vector (1, 0, 0)* to W.

4.16. Let V be the real vector space of 3 X 3 matrices with the bilinear form {A, B) =  trace A'B, 
and let W be the subspace of skew-symmetric matrices. Compute the orthogonal projec
tion to W with respect to this form, of the matrix

1 2 0 '

0 0 1 
1 3 0

4 .1 7 . Use the method of (3.5.13) to compute the coordinate vector of the vector (xi, X2 , x3)f 
with respect to the basis B described in Example 8.4.14, and compare your answer with 
the projection formula.

4.18. Find the matrix of a projection rr:]R3 - +  ]R2 such that the image of the standard bases of 
]R3 forms an equilateral triangle and rr(ei) points in the direction of the x-axis.

4.19. Let W  be a two-dimensional subspace of ]R3 , and consider the orthogonal projection rr of
onto W. Let (a/, b,)1 be the coordinate vector of rr(e,), with respect to a chosen or

thonormal basis of W .Prove that (ai, a2, a3) and (bi, b2 , b3) are orthogonal unit vectors.
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4.20. Prove the criterion for positive definiteness given in Theorem 8.4.19. Does the criterion 
carry over to Hermitian matrices?

4.21. Prove Sylvester’s Law (see 8.4.17).
Hint: Begin by showing that if Wi and W2 are subspaces of V and if the form is positive 
definite on Wi and negative semi-definite on W2, then Wi and W2 are independent.

Section 5 Euclidean Spaces and Hermitian Spaces

5.1. Let V be a Euclidean space.
(a) Prove the Schwarz inequality |(v, w)| :: |v||w|.
(b) Prove the parallelogram law |v +  w |2 +  |v — w|z =  2|u|2 + 2|w|z.
(c) Prove that if |v| = |w|, then (v +  w)l.(v — w).

5.2. Let W be a subspace of a Euclidean space V. Prove that W = Wi-i-.
*5.3. Let w e ]R” be a vector of length 1, and let U denote the orthogonal space wi-. The 

reflection rw about U is defined as follows: We write a vector v in the form v =  cw +  u, 
where u e U. Then r^(v) =  -cw  +  u.

(a) Prove that the matrix P =  I — 2ww( is orthogonal.
(b) Prove that multiplication by P  is a reflection about the orthogonal space U.
(c) Let u, v be vectors of equal length in ]R”. Determine a vector w such that Pu = v.

5.4. Let T be a linear operator on V =  ]R” whose matrix A is a real symmetric matrix.

(a) Prove that V is the orthogonal sum V =  (ker 1) ffi (im 1).
(b) Prove that T is an orthogonal projection onto im T if and only if, inaddition tobeing 

symmetric, A2 =  A.

5.5. Let P  be a unitary matrix, and let X i and X 2 be eigenvectors for P , with distinct
eigenvalues Ai and A2. Prove that Xi and X2 are orthogonal with respect to the standard
Hermitian form on C”.

5.6. What complex numbers might occur as eigenvalues of a unitary matrix?

Section 6 The Spectral Theorem

6.1. Prove Proposition 8.6.3(c), (d).
6.2. Let T be a symmetric operator on a Euclidean space. Using Proposition 8.6.9, prove that

if v is a vector and if T2v = 0, then Tv = O.
6.3. What does the Spectral Theorem tell us about a real 3 X 3 matrix that is both symmetric 

and orthogonal?
6.4. What can be said about a matrix A such that A *A is diagonal?
6.5. Prove that if A is a real skew-symmetric matrix, then i A  is a Hermitian matrix. What 

does the Spectral Theorem tell us about a real skew-symmetric matrix?
6.6. Prove that an invertible matrix A is normal if and only if A *A-J is unitary.
6.7. Let P  be a real matrix that is normal and has real eigenvalues. Prove that P  is

symmetric.
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6.8. Let V be the space of differentiable complex-valued functions on the unit circle in the 
complex plane, and for f ,  g e V, define

/•2j t _________

( j, g) = 1  f(O)g(O)dO.
Jo

(a) Show that this form is Hermitian and positive definite.
(b) Let W be the subspace of V of functions f(e'(}), where f  is a polynomial of degree 

:: n. Find an orthonormal basis for W.
(c) Show that T  = i  10 is a Hermitian operator on V, and determine its eigenvalues 

on W.

6.9.

6.10.

6.11.

, and determine an0 1 Determine the signature of the form on K2 whose matrix is ^
orthogonal matrix P such that P‘AP is diagonal. *-
Prove that if T is a Hermitian operator on a Hermitian space V, the rule {v, w} = (v, Tw) 
defines a second Hermitian form on V.
Prove that eigenvectors associated to distinct eigenvalues of a Hermitian matrix A are 
orthogonal.

1 i 
i \6.12. Find a unitary matrix P so that P*AP is diagonal, when A =

6.13. 5. Find a real orthogonal matrix P so that F'AP is diagonal, when A is the 
matrix

(a)
' 1  2 '  

2 1_

'  1 1 1 ' "1 0 1 ~

, (b ) 1 1 1 , (c) 0 1 0
1 1 1 1 0 0

6.14.

6.15. 

*6.16. 

*6.17.

6.18.

6.19.

Prove that a real symmetric matrix A is positive definite if and only if its eigenvalues are 
positive.
Prove that for any square matrix A, kerA =  (imA *)1., and that if A is normal, 
kerA =  (imA)1..
Let f  =  e2̂ '/” , and let A be the n  X  n  matrix whose entries are ajk = f jk /-..;n. Prove that 
A is unitary,
LetA, B be Hermitian matrices that commute. Prove that there is a unitary matrix P such 
that P* AP and P*BP are both diagonal.
Use the Spectral Theorem to prove that a positive definite real symmetric n  X  n  matrix A 
has the form A = P(P for some P.
Prove that the cyclic shift operator

0 1
0 1

1
is unitary, and determine its diagonalization.
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6.20. Prove that the circulant, the matrix below, is normal.

Co Ci •• • Cn
cn C0 ■ ■' cn -1

Cl C2 •• • Co

6.21. What conditions on the eigenvalues of a normal matrix A imply that A  is Hermitian? 
That A  is unitary?

6.22. Prove the Spectral Theorem for symmetric operators.

Section 7 Conics and Quadrics

7.1. Determine the type of the quadric x 2 + 4xy + 2xz  + Z2 + 3x + z  — 6 =  O.
7.2. Suppose that the quadratic equation (8 .7 .1 )  represents an ellipse. Instead of diagonalizing 

the form and then making a translation to reduce to the standard type, we could make 
the translation first. How can one determine the required translation?

7.3. Give a necessary and sufficient condition, in terms of the coefficients of its equation, for 
a conic to be a circle.

7.4. Describe the degenerate quadrics geometrically.

Section 8 Skew-Symmetric Forms

8.1. Let A be an invertible, real, skew-symmetric matrix. Prove that A2 is symmetric and 
negative definite.

8.2. Let W  be a subspace on which a real skew-symmetric form is nondegenerate. Find a 
formula for the orthogonal projection n: V -*■ W.

8.3. Let S be a real skew-symmetric matrix. Prove that I+S is invertible, and that (I-S ) (I+S) - 1 
is orthogonal.

*8.4. Let A be a real skew-symmetric matrix.
(a) Prove that detA :: O.
(b) Prove that if A has integer entries, then det A is the square of an integer.

M is c e l la n e o u s  P r o b le m s

M.l. According to Sylvester’s Law, every 2x2 real symmetric matrix is congruent to exactly one 
of six standard types. List them. If we consider the operation of G L2 on 2 X 2 matrices by 
p  * A =  PAP1, then Sylvester’s Law asserts that the symmetric matrices form six orbits. 
We may view the symmetric matrices as points in JR3, letting (x, y, z) correspond to the

;  ^ . Describe the decomposition of JR3 into orbits geometrically, and make a
clear drawing depicting it.
Hint: If you don’t get a beautiful result, you haven’t understood the configuration.

M.2. Describe the symmetry of the matrices AB + BA and AB — BA in the following cases.
(a ) A, B symmetric, (b ) A, B Hermitian, (c )  A, B skew-symmetric,
( d )  A symmetric, B skew-symmetric.

matrix
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M.3. With each of the following types of matrices, describe the possible determinants and 
eigenvalues.
(a) real orthogonal, (b) unitary, (c) Hermitian, (d) real symmetric, negative 
definite, (e) real skew-symmetric.

I  E*M.4. Let E be an m X n complex matrix. Prove that the matrix -E I is invertible.

M.S. The vector crossproduct is xX y  =  (^2^3-^ 3^2, X3Y1-X1Y3, X\y2-X2 y \Y . Let v be a fixed 
vector in M3, and let T  be the linear operator T(x) =  (x X v) X v.

(a) Show that this operator is symmetric. You may use general properties of the scalar 
triple product det [x|y|z] =  (x X y )  ■ z, but not the matrix of the operator.

(b) Compute the matrix.

M.6. (a) What is wrong with the following argument? Let P be a real orthogonal matrix.
Let X be a (possibly complex) eigenvector of P, with eigenvalue A. Then X lPlX  =  
(PX)tX  =  AX‘X. On the other hand, XlPlX = X 'C ^ X )  =  A - ^ X .  Therefore 
A =  A-1, and so A =  ± 1.

(b) State and prove a correct theorem based on the error in this argument.
*M.7. Let A be a real m X n matrix. Prove that there are orthogonal matrices P in Om, and Q. 

in On such that PAQ is diagonal, with non-negative diagonal entries.
M.8. (a) Show that if A is a nonsingular complex matrix, there is a positive definite Hermitian 

matrix B such that B 2 = A *A, and that B is uniquely determined by A.
(b) Let A be a nonsingular matrix, and let B be a positive definite Hermitian matrix such 

that B2 =  A*A. Show that A B - is unitary.
(c) Prove the Polar decomposition: Every nonsingular matrix A is a product A =  UP, 

where P is positive definite Hermitian and U is unitary.
(d )  Prove that the Polar decomposition is unique.
( e )  What does this say about the operation of left multiplication by the unitary group Un 

on the group G Ln ?
*M.9. Let V be a Euclidean space of dimension n, and let S =  (vi, . . . ,  Vk) be a set of vectors

in V. A positive combination of S is a linear combination P\V\ +------+ PkVk in which all
coefficients p , are positive. The subspace U = {v|(v, w) =  0} of V  of vectors orthogonal
to a vector w is called a hyperplane. A hyperplane divides the space V into two half 
spaces {v|(v, w) > 0} and {v| (v, w) OJ.

(a) Prove that the following are equivalent:
• S is not contained in any half space.
• For every nonzero vector w in V, (v/, w) < 0 for some i =  1, . . . ,  k.

(b) Let S' be the set obtained by deleting Vk from S. Prove that if S is not contained in a 
half space, then S' spans V.

(c) Prove that the following conditions are equivalent:

(i) S is not contained in a half space.
(ii) Every vector in V is a positive combination of S.
(iii) S spans V  and 0 is a positive combination of S.
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Hint: To show that (i) implies (ii) or (iii), I recommend projecting to the space U 
orthogonal to vk. That will allow you to use induction.

M.1O. The row and column indices in the n Xn Fourier matrix A run from 0 to n — 1, and the i, j  
entry is I;jj, with I; =  e21f '/ n. This matrix solves the following interpolation problem: Given
complex numbers bo, ... , bn_i,find a complex polynomial f( t)  =  co+cit+------+ cn_itn~l
such that / (  =  by.

(a) Explain how the matrix solves the problem.
(b) Prove that A is symmetric and normal, and compute A 2.

* (c )  Determine the eigenvalues of A.

M .ll. Let A be a real n x n matrix. Prove that A defines an orthogonal projection to its image 
W if and only if A2 =  A = AfA.

M.12. Let A be a real n X n orthogonal matrix.

(a) Let X be a complex eigenvector of A with complex eigenvalue A. Prove that X 'X  =  0.
Write the eigenvector as X  =  R + Si where R and S are real vectors. Show that
the space W  spanned by R and S is A-invariant, and describe the restriction of the
operator A to W.

( b )  Prove that there is a real orthogonal matrix P such that ptAP is a block diagonal 
matrix made up of 1 x 1 and 2 X 2 blocks, and describe those blocks.

M.13. Let V = Kn, and let (X, Y) = X ‘AY, where A is a symmetric matrix. Let W be the 
subspace of V spanned by the columns of an n X r matrix M of rank r, and let n  : V W  
denote the orthogonal projection of V to W with respect to the form ( , ) .  One can 
compute rr in the form rr(X) =  MY by setting up and solving a suitable system of linear 
equations for Y. Determine the matrix of rr explicitly in terms of A and M. Check your 
result in the case that r =  1 and ( , ) is dot product. What hypotheses on A and M are 
necessary?

M.14. What is the maximal number of vectors v, in lR” such that (V j' Vj) < 0 for all i j?

M.1S. LThis problem is about the space V of real polynomials in the variables x and y. If f  is 
a polynomial, a f  will denote the operator J (  ^ ) ,  and af(g) will denote the result of 
applying this operator to a polynomial g.

(a) The rule ( j, g) =  d f(g)o defines a bilinear form on V, the subscript 0 denoting 
evaluation of a polynomial at the origin. Prove that this form is symmetric and 
positive definite, and that the monomials x' yj  form an orthogonal basis of V (not an 
orthonormal basis).

(b) We also have the operator of multiplication by f ,  which we write as m f. So 
m f(g ) =  /g^ Prove that a f  and m f  are adjoint operators.

( c ) When J  =  x 2 + y2, the operator a f  is the Laplacian, which is often written as 
A. A polynomial h is harmonic if A h  = O. Let H  denote the space of harmonic 
polynomials. Identify the space H.l. orthogonal to H  with respect to the given form.

■ISuggested by Serge L ang



C H A P T E R  9

L i n e a r  G r o u p s

In these days the angel of topology and the devil of abstract algebra 
fight for the soul o f every individual discipline of mathematics.

—Hermann Weyl1

9 .1  TH E C L A S S IC A L  G R O U P S

S u b g r o u p s  o f  t h e  g e n e r a l  l in e a r  g r o u p  G  L n a r e  c a l l e d  linear groups, o r  matrix groups. T h e  

m o s t  im p o r ta n t  o n e s  a r e  t h e  s p e c ia l  l in e a r ,  o r t h o g o n a l ,  u n ita r y , a n d  s y m p le c t ic  g r o u p s  -  th e  

c la s s ic a l  g r o u p s .  S o m e  o f  t h e m  w i l l  b e  fa m il ia r ,  b u t  l e t ’s  r e v i e w  t h e  d e f in i t io n s .

T h e  r e a l  special linear group S L n  is  t h e  g r o u p  o f  r e a l  m a tr ic e s  w it h  d e t e r m in a n t  1:

A  c h a n g e  o f  b a s is  b y  a n  o r t h o g o n a l  m a tr ix  p r e s e r v e s  th e  d o t  p r o d u c t  X lY  o n  lR,” . 

T h e  unitary group U n  is  th e  g r o u p  o f  c o m p le x  m a tr ic e s  P  su c h  t h a t  P* = P~l :

A  c h a n g e  o f  b a s is  b y  a  u n ita r y  m a tr ix  p r e s e r v e s  th e  s t a n d a r d  H e r m it ia n '  p r o d u c t  X* Y  

o n  C n .

T h e  symplectic group is  th e  g r o u p  o f  r e a l  m a tr ic e s  th a t  p r e s e r v e  th e  s k e w - s y m m e t r i c  

f o r m  X'SY  o n  lR,2” , w h e r e

( 9 .1 .1 ) S L n  =  {P e G L n ( lR )  | d e t  P  =  1 } .

T h e  orthogonal group O n  is  t h e  g r o u p  o f  r e a l  m a tr ic e s  P  s u c h  th a t  P l =  P *:

( 9 .1 .2 ) O n  = {p  E G L n (R) I PlP =  I}.

( 9 .1 .3 ) Un =  { P  E GLn(C) I P *P =  f}.

( 9 .1 .4 ) SPZn =  { p  e  G L 2„ ( 1 )  I P*SP = 5 } .

1 This quote is taken from Morris K line’s book Mathematical Thought from  Ancient to Modern Times.
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There are analogues of the orthogonal group for indefinite forms. The Lorentz group 
is the group of real matrices that preserve the Lorentz form (8.2.2)

(9.1.5) 03,1 =  {P € G L „ | Pl/3,lP  =  / 3,i}-

The linear operators represented by these matrices are called Lorentz transformations. An 
analogous group Op,m can be defined for any signature p, m.

The word special is added to indicate the subgroup of matrices with determinant 1:

Special orthogonal group SOn: real orthogonal matrices with determinant 1,
Special unitary group SUn: unitary matrices with determinant 1.

Though this is not obvious from the definition, symplectic matrices have determinant 1, so 
the two uses of the letter S do not conflict.

Many of these groups have complex analogues, defined by the same relations. But 
except in Section 9.8, G L n, SLn, On, and SP2n stand for the real groups in this chapter. 
Note that the complex orthogonal group is not the same as the unitary group. The defining 
properties of these two groups are PtP = I  and P*P =  I, respectively.

We plan to describe geometric properties of the classical groups, viewing them as 
subsets of the spaces of matrices. The word “homeomorphism” from topology will come 
up. A homeomorphism cp: X - »  Y is a continuous bijective map whose inverse function 
is also continuous [Munkres, p. 105]. Homeomorphic sets are topologically equivalent. It 
is important not to confuse the words “homomorphism” and “homeomorphism,” though, 
unfortunately, their only difference is that “homeomorphism” has one more letter.

The geometry of a few linear groups will be familiar. The unit circle,

x 2o +  x^ =  1 ,

for instance, has several incarnations as a group, all isomorphic. Writing (xo, x i) =  
(cos O, sin O) identifies the circle as the additive group of angles. Or, thinking of it as 
the unit circle in the complex plane by elO it becomes a multiplicative group, the group of 
unitary 1 X 1 matrices:

(9.1.6) U\ = { p e C x \ p p  = 1}.

The unit circle can also be embedded into by the map

(9.1.7) (cose, sin O)-cos 0 -  sin e 
sin 0  cos 0

It is isomorphic to the special orthogonal group SO2, the group of rotations of the plane. 
These are three descriptions of what is essentially the same group, the circle group.

The dimension of a linear group G is, roughly speaking, the number of degrees of 
freedom of a matrix in G. The circle group has dimension 1. The group SL2 has dimension
3, because the equation det P = 1 eliminates one degree of freedom from the four matrix 
entries. We discuss dimension more carefully in Section 9.7, but we want to describe some 
of the low-dimensional groups first. The smallest dimension in which really interesting 
nonabelian groups appear is 3, and the most important ones are SU2, SO 3, and SL2. We 
examine the special unitary group SU2 and the rotation group SO3 in S e c t i o n s  9.3 a n d  9 .4 .
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By analogy with the unit sphere in R3, the locus

{x§ + x \  +-hx2 =  I}

in R"+! is called the n-dimensional unit sphere, or the n-sphere, for short. We’ll denote it by 
§n. Thus the unit sphere in R3 is the 2-sphere §2, and the unit circle in R2 is the 1-sphere S1. 
A space that is homeomorphic to a sphere may sometimes be called a sphere too.

We review stereographic projection from the 2-sphere to the plane, because it can be 
used to give topological descriptions of the sphere that have analogues in other dimensions. 
We think of the xo-axis as the vertical axis in ( x q ,  x i , X2)-space R3. The north pole on the 
sphere is the point p  =  (1, 0, 0). We also identify the locus {xo =  0} with a plane that we 
call V, and we label the coordinates in V as vi, V2. The point (vi, V2) of V corresponds to 
(0, vi, v2) in R3.

Stereographic projection n :§2 ->• V is defined as follows: To obtain the image n (x ) of 
a point x  on the sphere, one constructs the line f. that passes through p  and x. The projection 
n (x) is the intersection of f. with V. The projection is bijective at all points of §2 except the 
north pole, which is “sent to infinity.”

9.2 INTERLUDE: SPHERES

(9.2.1) Stereographic Projection.

One way to construct the sphere topologically is as the union of the plane V and a single 
point, the north pole. The inverse function to n  does this. It shrinks the plane a lot near 
infinity, because a small circle about p  on the sphere corresponds to a large circle in the plane.

Stereographic projection is the identity map on the equator. It maps the southern 
hemisphere bijectively to the unit disk {v2 + v2 :: I} in V, and the northern hemisphere to 
the exterior {v̂  +  v2 :: 1} of the disk, except that the north pole is missing from the exterior. 
On the other hand, stereographic projection from the south pole would map the northern 
hemisphere to the disk. Both hemispheres correspond bijectively to disks. This provides a 
second way to build the sphere topologically, as the union of two unit disks glued together 
along their boundaries. The disks need to be stretched, like blowing up a balloon, to make 
the actual sphere.

To determine the formula for stereographic projection, we write the line through p  
and x in the parametric form q(t) =  p  + t(x — p) =  (1 +  t(xo — 1), tx  1, tx2). The point q(t) 
is in the plane V when t =  • So

(9.2.2) n ( x )  =  ( v i ,  V2)  =  ( .  7— V  )
\ 1 - x q  1 -  x o )
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S t e r e o g r a p h ic  p r o j e c t io n  n  f r o m  th e  n - s p h e r e  t o  n - s p a c e  is  d e f in e d  in  e x a c t ly  t h e  

s a m e  w a y . T h e  north pole  o n  th e  n - s p h e r e  is  t h e  p o in t  p  =  ( 1 , 0 ,  . . . ,  0 ) ,  a n d  w e  id e n t i f y  

t h e  lo c u s  {x o  =  0} in  JR” + !  w it h  a n  n - s p a c e  V . A  p o in t  ( v i ,  . . . , v n )  o f  V  c o r r e s p o n d s  to  
( 0 ,  v i ,  . . . ,  v n )  in  M” + 1 . T h e  im a g e  7T( x )  o f  a  p o in t  x  o n  th e  s p h e r e  is  th e  i n t e r s e c t i o n  o f  th e  

l i n e  -e t h r o u g h  t h e  n o r t h  p o l e  p  a n d  x  w it h  V . A s  b e f o r e ,  t h e  n o r t h  p o l e  p  is  s e n t  t o  in f in i t y ,  

a n d  7T is  b i j e c t iv e  a t  a ll  p o in t s  o f  § n e x c e p t  p .  T h e  f o r m u la  f o r  7T is

T h is  p r o j e c t io n  m a p s  t h e  lo w e r  h e m is p h e r e  {xo  : :  0 }  b i j e c t iv e ly  t o  t h e  n - d i m e n s i o n a l  

unit ball in  V , t h e  l o c u s  {v^  +  . +  1 } , w h i l e  p r o j e c t io n  f r o m  t h e  s o u t h  p o l e  m a p s  th e

u p p e r  h e m is p h e r e  {x o  2:  0 }  t o  t h e  u n it  b a ll . S o ,  a s  is  t r u e  f o r  t h e  2 - s p h e r e ,  t h e  n - s p h e r e  c a n  

b e  c o n s t r u c t e d  t o p o lo g ic a l ly  in  t w o  w a y s :  a s  t h e  u n io n  o f  a n  n - s p a c e  V  a n d  a  s in g le  p o in t  

p ,  o r  a s  t h e  u n io n  o f  t w o  c o p ie s  o f  t h e  n - d i m e n s i o n a l  u n it  b a l l ,  g lu e d  t o g e t h e r  a lo n g  t h e ir  

b o u n d a r ie s ,  w h ic h  a r e  ( n  — 1 ) - s p h e r e s ,  a n d  s t r e t c h e d  a p p r o p r ia te ly .

W e  a r e  p a r t ic u la r ly  in t e r e s t e d  in  t h e  t h r e e - d im e n s io n a l  s p h e r e  § 3 , a n d  i t  is  w o r t h  m a k in g  

s o m e  e f f o r t  t o  b e c o m e  a c q u a in t e d  w ith  th is  lo c u s .  T o p o lo g ic a l ly ,  § 3 c a n  b e  c o n s t r u c t e d  e i t h e r  

a s  t h e  u n io n  o f  3 - s p a c e  V  a n d  a  s in g le  p o in t  p ,  o r  a s  t h e  u n i o n  o f  t w o  c o p i e s  o f  t h e  u n it  

b a l l  { v i  +  u 2 + v j  : :  1} in  JR3 , g lu e d  t o g e t h e r  a lo n g  t h e ir  b o u n d a r ie s  ( w h ic h  a r e  o r d in a r y  

2 - s p h e r e s )  a n d  s t r e t c h e d .  N e i t h e r  c o n s t r u c t io n  c a n  b e  m a d e  in  t h r e e - d im e n s io n a l  s p a c e .
W e  c a n  t h in k  o f  V  a s  t h e  s p a c e  in  w h ic h  w e  l iv e .  T h e n  v ia  s t e r e o g r a p h ic  p r o j e c t io n ,  

t h e  l o w e r  h e m is p h e r e  o f  t h e  3 - s p h e r e  § 3 c o r r e s p o n d s  t o  t h e  u n it  b a l l  in  s p a c e .  T r a d i t io n a l ly ,  

i t  is  d e p ic t e d  a s  t h e  terrestrial sphere, t h e  E a r th .  T h e  u p p e r  h e m is p h e r e  c o r r e s p o n d s  t o  th e  

e x t e r io r  o f  t h e  E a r th ,  t h e  sk y .
O n  t h e  o t h e r  h a n d , t h e  u p p e r  h e m is p h e r e  c a n  b e  m a d e  t o  c o r r e s p o n d  t o  t h e  u n i t  b a l l  

v ia  p r o j e c t io n  f r o m  t h e  s o u t h  p o le .  W h e n  th in k in g  o f  it  th is  w a y ,  it  is  d e p i c t e d  t r a d i t io n a l ly  a s  

t h e  celestial sphere. ( T h e  p h r a s e s  “ t e r r e s t ia l  b a l l”  a n d  “ c e l e s t ia l  b a l l ”  w o u l d  f it  m a t h e m a t i c a l  
t e r m in o l o g y  b e t t e r ,  b u t  t h e y  w o u l d n ’t b e  t r a d i t io n a l . )

(9.2.4) A  Model of the Celestial Sphere.
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To understand this requires some thought. When the upper hemisphere is represented 
as the celestial sphere, the center of the ball corresponds to the north pole of §3, and to 
infinity in our space V. While looking at a celestial globe from its exterior, you must imagine 
that you are standing on the Earth, looking out at the sky. It is a common mistake to think 
of the Earth as the center of the celestial sphere.

Latitudes and Longitudes on the  3-Sphere

The curves of constant latitude on the globe, the 2:sphere {x5 +  x \  + x2 =  1}, are the 
horizontal circles Xo =  c, with -1 <  c < 1, and the curves of constant longitude are the 
vertical great circles through the poles. The longitude curves can be described as intersections 
of the 2-sphere with the two-dimensional subspaces of ]R3 that contain the pole (1, 0, 0).

When we go to the 3-sphere {x̂  +  x^ +  x \  +  x 2 = 1}, the dimension increases, and one 
has to make some decisions about what the analogues should be. We use analogues that will 
have algebraic significance for the group SU2 that we study in the next section.

As analogues of latitude curves on the 3-sphere, we take the “horizontal” surfaces, 
the surfaces on which the xo-coordinate is constant. We call these loci latitudes. They are 
two-dimensional spheres, embedded into ]R4 by

(9.2.5) xo = c, x 2 +  x \  +  x \  =  (1 — c2) , with -1 <  c <  1.

The particular latitude defined by Xo = 0 is the intersection of the 3-sphere with the 
horizontal space V. It is the unit 2-sphere {v\  +  v2 + v3 = 1} in V. We call this latitude the 
equator, and we denote it by E.

Next, as analogues of the longitude curves, we take the great circles through the north 
pole (1, 0, 0, 0). They are the intersections of the 3-sphere with two-dimensional subspaces 
W  o f  ]R4 that contain the pole. The intersection L  = W  n  §3 will be the unit circle in W , and 
we call L a longitude. If we choose an orthonormal basis (p ,  v)  for the space W , the first 
vector being the north pole, the longitude will have the parametrization

(9.2.6) L : l(O) =  cosO p  +  sinOv .

This is elementary, but we verify it below.
Thus, while the latitudes on §3 are 2-spheres, the longitudes are 1-spheres.

Lemma 9.2.7 Let (p , v)  be an orthonormal basis for a subspace W  of ]R4 , the first vector
being the north pole p, and let L be the longitude of unit vectors in W .

(a) L meets the equator E in two points. If v is one of those points, the other one is -v.
(b) L has the parametrization (9.2.6). If q is a point of L, then replacing v  by -v  if necessary, 

one can express q in the form 1 (0) with 0 in the interval 0  :: 0 :: Jr, and then this 
representation of a point of L  is unique for all 0=1=0, Jr.

( c )  Except for the two poles, every point of the sphere §3 lies on a unique longitude.

Proof. We omit the proof of (a).

(b) This is seen by computing the length of a vector a p  + bv of W:

lap  +  bv |2 =  a 2(p  ■ p) +  2 a b (p  • v) +  b2(v  . v) =  a 2 +  b2 ^
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S o  a p  +  b v  is  a  u n it  v e c t o r  i f  a n d  o n ly  i f  th e  p o i n t  ( a . b )  l i e s  o n  th e  u n i t  c i r c le ,  in  w h ic h  c a s e  

a =  c o s  () a n d  b  =  s in  () f o r  s o m e  ().

(c) L e t  x  b e  a  u n it  v e c t o r  in  ]R4 , n o t  o n  t h e  v e r t ic a l  a x is .  T h e n  th e  s e t  ( p ,  x )  is  i n d e p e n d e n t ,  

a n d  t h e r e f o r e  s p a n s  a  t w o - d im e n s io n a l  s u b s p a c e  W  c o n t a in in g  p.  S o  x  l i e s  in  j u s t  o n e  s u c h  

s u b s p a c e ,  a n d  in  j u s t  o n e  lo n g i t u d e .  □

9 .3  T H E  S P E C IA L  U N IT A R Y  G R O U P  S U 2

T h e  e l e m e n t s  o f  SU2  a r e  c o m p l e x  2  x  2 m a tr ic e s  o f  th e  f o r m

(9.3.1)

L e t ’s v e r i f y  th is .  L e t  P  ■

a b
-b  a , w i t h  aa +  bb =  1.

b  e  a n  e l e m e n t  o f  SU 2 , w it h  a,  b ,  u ,  v  i n  C . T h e  e q u a t io n s

1 '1t h a t  d e f in e  SU 2  a r e  P *  =  1' 1 a n d  d e t P  =  1. W h e n  d e t P  =  1 , t h e  e q u a t i o n  P  
b e c o m e s

" “ ‘  -ba  u 
b v

=  p* =  P ~ L = v
-u

T h e r e f o r e  v  =  a, u =  - b ,  a n d  t h e n  d e t P  =  aa  +  bb  =  1 . □

W r it in g  a =  Xo +  X\i  a n d  b  =  X2 +  X 3i d e f in e s  a  b i j e c t iv e  c o r r e s p o n d e n c e  o f  S U 2 w i t h  

t h e  u n it  3 - s p h e r e  { x §  +  x 2 +  x 2 +  x §  =  1} in  R 4 .

( 9 .3 .2 )
P =

SU 2

X o  +  Xl*'  X 2 + X 3 Z  

-X 2 +  X3* Xo — X\i (xo, Xi, X2, x 3)

T h is  g iv e s  u s  t w o  n o t a t io n s  fo r  a n  e l e m e n t  o f  S U 2. W e  u s e  t h e  m a tr ix  n o t a t i o n  a s  m u c h  a s  

p o s s i b le ,  b e c a u s e  it  is  b e s t  f o r  c o m p u t a t io n  in  t h e  g r o u p ,  b u t  l e n g t h  a n d  o r t h o g o n a l i t y  r e f e r  

t o  d o t  p r o d u c t  in  ]R4 . -

Note: T h e  fa c t  th a t  th e  3 - s p h e r e  h a s  a  g r o u p  s t r u c t u r e  is  r e m a r k a b le .  T h e r e  is  n o  w a y  t o  

m a k e  t h e  2 - s p h e r e  i n t o  a  g r o u p . A  f a m o u s  t h e o r e m  o f  t o p o l o g y  a s s e r t s  th a t  t h e  o n ly  s p h e r e s  

o n  w h ic h  o n e  c a n  d e f in e  c o n t in u o u s  g r o u p  la w s  a r e  t h e  1 - s p h e r e  a n d  t h e  3 - s p h e r e .  □

In  m a tr ix  n o t a t io n ,  t h e  n o r t h  p o le  eo =  ( 1 ,  0 , 0 ,  0 )  o n  th e  s p h e r e  is  t h e  i d e n t i t y  m a tr ix  I .  
T h e  o t h e r  s t a n d a r d  b a s i s  v e c t o r s  a r e  t h e  m a tr ic e s  th a t  d e f i n e  t h e  q u a t e r n io n  g r o u p  ( 2 .4 .5 ) .  

W e  l is t  t h e m  a g a in  f o r  r e f e r e n c e :

( 9 .3 .3 ) 1 =
' i 0' ' 0 1 ' '0 i '

0 - i _ , j  = -1 0
’ k  = i 0 <— > ei, e 2 , £ 3̂

T h e s e  m a t r ic e s  s a t i s f y  r e la t io n s  s u c h  a s  ij  =  k  th a t  w e r e  d i s p la y e d  in  ( 2 .4 .6 ) .  T h e  r e a l  v e c t o r  

s p a c e  w i t h  b a s i s  ( / ,  i ,  j ,  k )  is  c a l l e d  t h e  quaternion algebra. S o  S U 2 c a n  b e  t h o u g h t  o f  a s  t h e  

s e t  o f  u n it  v e c t o r s  in  t h e  q u a t e r n io n  a lg e b r a .
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Lemma 9.3.4 Except for the two special matrices ±1, the eigenvalues of P (9.3.2) are 
complex conjugate numbers of absolute value 1.

Proof. The characteristic polynomial of P is t2 -  2xot +  1, and its discriminant D is 4x§ — 4. 
When (xo, Xi, X2, X3) is on the unit sphere, Xo is in the interval -1 ::5 xo ::5 1, and D ::5 O. (In 
fact, the eigenvalues of any unitary matrix have absolute value 1.) □

We now describe the algebraic structures on SU2 that correspond to the latitudes and 
longitudes on §3 that were defined in the previous section.

Proposition 9.3.5 The latitudes in SU2 are conjugacy classes. For a given c in the interval 
-1 <  c <  1, the latitude {xo =  c} consists of the matrices P in SU2 such that trace P = 2c. 
The remaining conjugacy classes are {I} and {-I}. They make up the center of SU2.

The proposition follows from the next lemma.

Lemma 9.3.6 Let P be an element of SU2 with eigenvalues A and I .  There is an element Q 
in SU2 such that Q* PQ is the diagonal matrix A  with diagonal entries A and I . Therefore all 
elements of SU 2  with the same eigenvalues, or with the same trace, are conjugate.

Proof. One can base a proof of the lemma on the Spectral Theorem for unitary operators, 
or verify it directly as follows: Let X =  (u, v )  be an eigenvector of P of length 1, with 
eigenvalue A, and let Y =  (-ii, w)*. You will be able to check that Y  is an eigenvector of P

u ~vwith eigenvalue I ,  that the matrix Q = is in SU2, and that PQ = QA. □

The equator E of SU2 is the latitude defined by the equation trace P = 0 (or xo =  0). 
A point on the equator has the form

(9.3.7) A = xi i X2 +  X3i
-X2 + X3J -XiI =  Xii +  X2J  +  X3 k .

Notice that the matrix A is skew-Hermitian: A* = -A , and that its trace is zero. We haven’t 
run across skew-Hermitian matrices before, but they are closely related to Hermitian 
matrices: a matrix A  is skew-Hermitian if and only if iA is Hermitian.

The 2 X 2 skew-Hermitian matrices with trace zero form a real vector space of 
dimension 3 that we denote by V, in agreement with the notation used in the previous 
section. The space V is the orthogonal space to I. It has the basis (i, j, k), and E is the unit 
2-sphere in V.

Proposition 9.3.8 The following conditions on an element A  of SU2 are equivalent:

• A  is on the equator, i.e., traceA =  0,
• the eigenvalues of A  are i and -i,
• A 2 = -I.

Proof. The equivalence of the first two statements follows by inspection of the characteristic 
polynomial t2 — (traceA)t +  1. For the third statement, we note that -J is the only matrix



in SU 2  with an eigenvalue -1. If A is an eigenvalue of A, then A2 is an eigenvalue of A2. So 
A =  ± i if and only if A2 has eigenvalues -1, i n which case A2 =  -I. □

Next, we consider the longitudes of SU 2 , the intersections of SU 2  with two-dimensional 
subspaces of ]R4 that contain the pole I. We use matrix notation.

Proposition 9.3.9 Let W be a two-dimensional subspace of ]R4 that contains /, and let L be 
the longitude of unit vectors in W.

(a) L meets the equator IE in two points. If A is one of them, the other one is -A. Moreover, 
(I, A) is an orthonormal basis of W.

(b) The elements of L can be written in the form Pg = (cos 0)1 +  (sin 0)A, with A on IE 
and 0 < 0  < 27l'. When P *  ± /, A and 0 can be chosen with 0 <  0 <  7l ',  and then the 
expression for P is unique.

(c) Every element of SU2 except ± 11 ies on a unique longitude. The elements ± 1 1 ie on 
every longitude.

(d) The longitudes are conjugate subgroups of SU2.

Proof When one translates to matrix notation, the first three assertions become Lemma
9.2.7. To prove (d), we first verify that a longitude L is a subgroup. Let c, s and c ', s' denote 
the cosine and sine of the angles a  and a ',  respectively, and let fJ =  a  +  a '.  Then because 
A2 =  - /,  the addition formulas for cosine and sine show that

(cl +  sA) (c 'l +  s'A) =  (cc' -  ss')I +  (cs' +  sC)A = (cos fJ)I +  (sin fJ)A.

So L is closed under multiplication. It is also closed under inversion.
Finally, we verify that the longitudes are conjugate. Say that L is the longitude 

Pg = c l +  sA, as above. Proposition 9.3.5 tells us that A is conjugate to i, say i =  QAQ*. 
Then QPgQ* = cQIQ* +  sQAQ* = c l  +  si. So L is conjugate to the longitude c l  +  si. □

Examples 9.3.10
• The longitude c l +  si, with c =  cos 0 and s =  sin 0, is the group of diagonal matrices 

in SU2. We denote this longitude by T. Its elements have the form
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■ 1 ' i - eiO -
c 1 +  s -1 = e-id

• The longitude c l  +  sj is the group of real matrices in SU2, the rotation group SO 2 . 
The matrix c l +  si represents rotation of the plane through the angle -0.

We haven’t run across the the longitude c l  +  sk before. □

The figure below was made by Bill Schelter. It shows a projection of the 3-sphere SU2 
onto the unit disc in the plane. The elliptical disc shown is the image of the equator. Just 
as the orthogonal projection of a circle from 1R3 to JR2 is an ellipse, the projection of the
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2-sphere E from ]R4 to JR. 3 is an ellipsoid, and the further projection of this ellipsoid to the 
plane maps it onto an elliptical disc. Every point in the interior of the disc is the image of 
two points of E.

(9.3.11) Some Latitudes and Longitudes in SU2.

9 .4  T H E  R O T A T IO N  G R O U P  SO3
Since the equator E of SU2  is a conjugacy class, the group operates on it by conjugation. 
We will show that conjugation by an element P of SU 2 , an operation that we denote by yp, 
rotates this sphere. This will allow us to describe the three-dimensional rotation group SO 3 

in terms of the special unitary group SU2.
The poles of a nontrivial rotation of E are its fixed points, the intersections of E with 

the axis of rotation (5.1.22). If A is on E, (A, a )  will denote the spin that rotates E with angle 
a  about the pole A. The two spins (A, a )  and (-A, -a )  represent the same rotation.

T h e o r e m  9 .4 .1

(a) The rule P yp defines a surjective homomorphism y : SU 2  -*■ SO 3 , the spin homo
morphism. Its kernel is the center { ± /} of SU2.

(b )  Suppose that P =  cos OI +  sin OA, with 0 <  0 <  and with A on E. Then yp rotates E 
about the pole A, through the angle 20. So yp is represented by the spin (A, 20).

The homomorphism y described by this theorem is called the orthogonal representation of 
SU2. It sends a matrix P in SU2, a complex 2 X  2  matrix, to a mysterious real 3  X  3  rotation 
matrix, the matrix of yp. The theorem tells us that every element of SU2 except ± J can 
be described as a nontrivial rotation together with a choice of spin. Because of this, SU 2  is 
often called the spin group.

We discuss the geometry of the map y  before proving the theorem. If P is a point of 
SU2, the point -P  is its antipodal point. Since y  is surjective and since its kernel is the center
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Z  =  {± /}, SO 3 is isomorphic to the quotient group SU2/  Z ,  whose elements are pairs of 
antipodal points, the cosets { ± P} of Z .  Because y  is two-to-one, SU2 is called a double 
covering of SO3.

The homomorphism J.L : SO2 —> SO 2  of the 1 -sphere to itself defined by p g  P 20 
is another, closely related, example of a double covering. Every fibre of J.L consists of two 
rotations, p g  and p g + 1T.

The orthogonal representation helps to describe the topological structure of the 
rotation group. Since elements of SO3 correspond to pairs of antipodal points of SU 2 , we 
can obtain SO3 topologically by identifying antipodal points on the 3-sphere. The space 
obtained in this way is called (real) projective 3-space, and is denoted by P3.

(9.4.2) SO 3 is homeomorphic to projective 3-space p3.

Points of P3 are in bijective correspondence with one-dimensional subspaces of ]R4. Every 
one-dimensional subspace meets the unit 3-sphere in a pair of antipodal points.

The projective space P3 is much harder to visualize than the sphere §3. However, it is 
easy to describe projective 1-space P1, the set obtained by identifying antipodal points of 
the unit circle S1. If we wrap S1 around so that it becomes the lefthand figure of (9.4.3), the 
figure on the right will be P1. Topologically, P1 is a circle too.

(9.4.3) A Double Covering of the 1-Sphere.

We’ll describe P1 again, in a way that one can attempt to extend to higher dimensional 
projective spaces. Except for the two points on the horizontal axis, every pair of antipodal 
points of the unit circle contains just one point in the lower semicircle. So to obtain P1, we 
simply identify a point pair with a single point in the lower semicircle. But the endpoints of 
the semicircle, the two points on the horizontal axis, must still be identified. So we glue the 
endpoints together, obtaining a circle as before.

In principle, the same method can be used to describe P2. Except for points on the 
equator of the 2-sphere, a pair of antipodal points contains just one point in the lower 
hemisphere. So we can form P2 from the lower hemisphere by identifying opposite points of 
the equator. Let’s imagine that we start making this identification by gluing a short segment 
of the equator to the opposite segment. Unfortunately, when we orient the equator to keep 

. track, we see that the opposite segment gets the opposite orientation. So when we glue the 
two segments together, we have to insert a twist. This gives us, topologically, a Mobius band, 
and P2 contains this Mobius band. It is not an orientable surface.

Then to visualize P3, we would take the lower hemisphere in §3 and identify antipodal 
points of its equator E. Or, we could take the terrestial ball and identify antipodal points of 
its boundary, the surface of the Earth. This is quite confusing. □
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W e  b e g in  t h e  p r o o f  o f  T h e o r e m  9 .4 .1  n o w . W e  r e c a l l  th a t  t h e  e q u a t o r  IE i s  t h e  u n it  

2 - s p h e r e  in  t h e  t h r e e - d im e n s io n a l  s p a c e  V  o f  t r a c e  z e r o ,  s k e w - H e r m i t ia n  m a t r ic e s  ( 9 .3 .7 ) .  

C o n j u g a t io n  b y  a n  e l e m e n t  P  o f  S U 2  p r e s e r v e s  b o t h  t h e  tr a c e  a n d  t h e  s k e w - H e r m i t ia n  

p r o p e r t y ,  s o  t h is  c o n j u g a t io n ,  w h ic h  w e  a r e  d e n o t in g  b y  y p , o p e r a t e s  o n  t h e  w h o l e  s p a c e  V .  

T h e  m a in  p o in t  is  t o  s h o w  t h a t  y p  is  a  r o t a t io n .  T h is  is  d o n e  in  L e m m a  9.4.5 b e lo w .
L e t  ( U ,  V ) d e n o t e  t h e  f o r m  o n  V  th a t  is  c a r r ie d  o v e r  f r o m  d o t  p r o d u c t  o n  1R3 . 

T h e  b a s is  o f  V  t h a t  c o r r e s p o n d s  to  th e  s ta n d a r d  b a s i s  o f  ]R3 is  ( i ,  j ,  k )  (9.3.3). W e  w r it e  

U = « i i  +  ui.j +  U 3 k  a n d  u s e  a n a lo g o u s  n o t a t io n  f o r  V . T h e n

( U ,  V )  =  M i U l  +  U 2 V2 +  U3V3 .

L e m m a  9 .4 .4  W it h  n o t a t io n  a s  a b o v e ,  ( U ,  V) =  -  j  t r a c e ( U V ) .

Proof. W e  c o m p u t e  t h e  p r o d u c t  U V  u s in g  th e  q u a t e r n io n  r e la t io n s  (2.4.6):

U V  =  ( u i i  +  uij +  w 3k ) ( v i i  +  v i.j  +  V3k )

=  - ( u l y l  +  u 2 v 2 +  U 3 v 3)  I  +  U x V,

w h e r e  U  X V  is  th e  v e c t o r  c r o s s  p r o d u c t

UX  V  =  (W2 V3 -  U 3 V2 ) i + ( U3 V1  -  W iV3) j  +  (W1V2 -  U 2 V i) k .

T h e n  b e c a u s e  t r a c e  I  =  2 , a n d  b e c a u s e  i, j ,  k  h a v e  t r a c e  z e r o ,

t r a c e ( t / V) =  -2(u\Vi +  u2v2 +  U3 V3 ) =  ~2(U, V). o

L e m m a  9 .4 .5  T h e  o p e r a t o r  y p  is  a  r o t a t io n  o f  IE a n d  o f  V .

Proof. F o r  r e v ie w ,  y p  is  t h e  o p e r a t o r  d e f in e d  b y  y p U  =  P U P * .  T h e  s a f e s t  w a y  t o  p r o v e  th a t  

t h is  o p e r a t o r  is  a  r o t a t i o n  m a y  b e  t o  c o m p u t e  it s  m a tr ix .  B u t  t h e  m a tr ix  is  t o o  c o m p l ic a t e d  t o  

g iv e  m u c h  in s ig h t .  I t  is  n ic e r  t o  d e s c r ib e  y  in d ir e c t ly .  W e  w i l l  s h o w  t h a t  y p  is  a n  o r t h o g o n a l  
l in e a r  o p e r a t o r  w it h  d e t e r m in a n t  1. E u l e r ’s  T h e o r e m  5 .1 .2 5  w i l l  t e l l  u s  t h a t  it  is  a  r o t a t io n .

T o  s h o w  th a t  y p  is  a  l in e a r  o p e r a t o r ,  w e  m u s t  s h o w  th a t  f o r  a l l  U  a n d  V  in  V  a n d  

a ll  r e a l  n u m b e r s  r ,  y p ( U  +  V )  =  y p U  +  y p V  a n d  y p ( r U )  =  r ( y p U ) .  W e  o m i t  t h is  r o u t in e  

v e r i f ic a t io n .  T o  p r o v e  th a t  y p  is  o r t h o g o n a l ,  w e  v e r i f y  t h e  c r i t e r io n  ( 8 .6 .9 )  f o r  o r t h o g o n a l i t y ,  
w h ic h  is

( 9 .4 .6 )  ( y p U ,  y p V )  =  ( U ,  V ) .

T h is  f o l lo w s  f r o m  th e  p r e v io u s  l e m m a , b e c a u s e  t r a c e  is  p r e s e r v e d  b y  c o n j u g a t io n .

( y p U ,  y p V )  =  - !  t r a c e ( ( y p U ) ( y p V ) )  =  - \ t r a c e ( P U P * P V P * )

=  - i  t r a c e ( P U V P * )  =  - \  t r a c e ( U V )  =  ( U ,  V ) .

F in a l ly ,  t o  s h o w  th a t  th e  d e t e r m in a n t  o f  y p  is  1 , w e  r e c a l l  t h a t  th e  d e t e r m in a n t  o f  a n y  

o r t h o g o n a l  m a tr ix  is  ±  1. S in c e  S U 2 is  a  s p h e r e ,  it  is  p a th  c o n n e c t e d ,  a n d  s in c e  t h e  
d e t e r m in a n t  is  a  c o n t i n u o u s  f u n c t io n ,  o n ly  o n e  o f  t h e  t w o  v a lu e s  ±  1 c a n  b e  t a k e n  o n  b y  
d e t  y p .  W h e n  P  =  I, y p  is  t h e  id e n t i t y  o p e r a t o r ,  w h ic h  h a s  d e t e r m in a n t  1. S o  d e t  y p  =  1 fo r  

e v e r y  P. □
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We now prove part (a) of the theorem. Because yp is a rotation, y  maps SU2 to SO 3.
The verification that y  is a homomorphism is simple: ypyg =  ypQ because

yp ( Yq U)  = P(QUQ*)P* =  (PQ)U(PQ)* =  ypQU.

We show next that the kernel of y  is ± I. If P is in the kernel, conjugation by P fixes 
every element of E, which means that P commutes with every such element. Any element of 
SU2 can be written in the form Q =  cI + sB  with B in E. Then P commutes with Q too. So P 
is in the center { ± I} of SU2. The fact that y  is surjective will follow, once we identify 2() as 
the angle of rotation, because every angle a  has the form 2(), with 0 :: () :: Jr.

Let P be an element of SU2, written in the form P = cos ()I +  sin ()A with A in E . It is 
true that y p A  =  A , so A  is a pole of yp. Let a  denote the angle of rotation of y p  about the 
pole A. To identify this angle, we show first that it is enough to identify the angle for a single 
matrix P in a conjugacy class.

Say that P' =  QPQ*(= yq P ) is a conjugate, where Q is another element of SU2. Then
P' =  cos ()/ +  sin ()A', where A' =  yqA =  QAQ*. The angle () has not changed.

Next, we apply Corollary 5.1.28, which asserts that if M and N are elements of SO3, and 
if M is a rotation with angle a  about the pole X, then the conjugate M' =  NMN- 1 is a rotation 
with the same angle a  about the pole NX. Since y is a homomorphism, yp' =  YqYpY1- 
Since Yp is a rotation with angle a  about A, yp' is a rotation with angle a  about A' =  yqA. 
The angle a  hasn’t changed either.

This being so, we make the computation for the matrix P =  cos ()I +  sin a i ,  which is the 
diagonal matrix with diagonal entries efJ a nd e-ifJ We apply yp to j:

-iO  ~\ f e 2i9
(9.4.7) y ,j =  PjP- =  [e'IJe-IJ] [ -  1 ] [* ""  f J  =  [ _e-2.»

=  cos 2() j +  sin 2() k.

The set (j, k) is an orthonormal basis of the orthogonal space W to i, and the equation above 
shows that yp rotates the vector j through the angle 2() in W. The angle of rotation is 2(), as 
predicted. This completes the proof of Theorem (9.4.1). □

9.5 ONE-PARAMETER GROUPS

In Chapter 5, we used the matrix-valued function

tA tA t2 A2 t 3A3
(9 ) =  I  +  -  + - -  +  - -  +  . . .

to describe solutions of the differential equation ^  =  AX. The same function describes the 
one-parameter groups in the general linear group -  the differentiable homomorphisms from 
the additive group lR.+ of real numbers to G Ln -

Theorem 9.5.2
(a) Let A be an arbitrary real or complex matrix, and let G Ln denote G Ln(lR.) or G Ln (C). 

The map cp:R+ —> G Ln defined by cp(t) =  eM is a group homomorphism.
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(b) C o n v e r s e ly ,  l e t  < p :R +  - +  G  L n b e  a  d i f f e r e n t ia b le  m a p  th a t  is  a  h o m o m o r p h i s m ,  a n d  l e t  
A  d e n o t e  i t s  d e r iv a t iv e  ( 0 )  a t  t h e  o r ig in .  T h e n  <p(t) =  etA f o r  a l l  t.

Proof. F o r  a n y  r e a l  n u m b e r s  r  a n d  s ,  t h e  m a tr ic e s  rA  a n d  s A  c o m m u t e .  S o  ( s e e  ( 5 . 4 . 4 »

(9.5.3)

T h is  s h o w s  th a t  e tA is  a  h o m o m o r p h i s m .  C o n v e r s e ly ,  l e t  <p:lR+ - +  G L n b e  a  d i f f e r e n t ia b le  

h o m o m o r p h i s m .  T h e n  <p(!J,.t +  t )  =  < p (A t)< p (t)  a n d  <p(t) =  <p(O )<p(t), s o  w e  c a n  f a c t o r  <p(t) 

o u t  o f  th e  d i f f e r e n c e  q u o t ie n t :

(9.5.4)
q;(!J,.t +  t )  -  <P(t) <p(!J,.t) — <p(0)

A t A t
<p(t) .

T a k in g  th e  l im it  a s  A t  - +  0 , w e  s e e  t h a t  <p'(t) =  <p'(O)<p(t) =  A < p (t) . T h e r e f o r e  <p(t) is  a  

m a t r ix - v a lu e d  f u n c t io n  th a t  s o lv e s  t h e  d i f f e r e n t ia l  e q u a t io n

(9.5.5)
d t

=  A<p.

T h e  f u n c t io n  e M  is  a n o t h e r  s o lu t io n ,  a n d  w h e n  t  =  0 , b o t h  s o lu t io n s  t a k e  th e  v a lu e  I. 
T h e r e f o r e  <p(t) =  e tA ( s e e  ( 5 . 4 . 9 » .  □

Examples 9.5.6
(a) L e t A  b e  t h e  2 x 2  m a tr ix  u n it  e i 2. T h e n  A 2 =  O. A l l  b u t  t w o  t e r m s  o f  t h e  s e r ie s  e x p a n s io n  

f o r  t h e  e x p o n e n t i a l  a r e  z e r o ,  a n d  e tA  =  i  +  e ^ t .

I f  A th e n

(b) T h e  u s u a l  p a r a m e t r iz a t io n  o f  S O 2 is  a  o n e - p a r a m e t e r  g r o u p .

I f  A  = , t h e n  e tA =
co s t  -  s in  t 

s in  t  c o s  t

(c) T h e  u s u a l  p a r a m e t r iz a t io n  o f  th e  u n it  c ir c le  in  th e  c o m p le x  p l a n e  is a  o n e - p a r a m e t e r  

g r o u p  in  U i .

I f  a  is  a  n o n z e r o  r e a l  n u m b e r  a n d  a  =  a i ,  th e n  e f“  =  [c o s  a t  +  i  s in  a t ] .  □

I f  ex is  a  n o n r e a l  c o m p l e x  n u m b e r  o f  a b s o lu t e  v a lu e  1 , th e  im a g e  o f  e to  in  C x  w il l  b e  a
lo g a r i t h m ic  s p ir a l .  I f  a  is  a  n o n z e r o  r e a l  n u m b e r ,  th e  im a g e  o f  e ta is  th e  p o s i t i v e  r e a l  a x is ,  

a n d  i f  a  =  0  t h e  im a g e  c o n s i s t s  o f  t h e  p o in t  1 a lo n e .

I f  w e  a r e  g iv e n  a  s u b g r o u p  H  o f  G Ln,  w e  m a y  a l s o  a s k  f o r  o n e - p a r a m e t e r  g r o u p s
in  H ,  m e a n in g  o n e - p a r a m e t e r  g r o u p s  w h o s e  im a g e s  a r e  in  H ,  o r  d i f f e r e n t ia b le  h o m o 
m o r p h i s m s  : - +  H .  I t  t u r n s  o u t  th a t  l in e a r  g r o u p s  o f  p o s i t i v e  d i m e n s i o n  a lw a y s
h a v e  o n e - p a r a m e t e r  g r o u p s ,  a n d  t h e y  a r e  u s u a l ly  n o t  h a r d  t o  d e t e r m in e  f o r  a  p a r t ic u la r  

g r o u p .
S in c e  th e  o n e - p a r a m e t e r  g r o u p s  a r e  in  b i j e c t iv e  c o r r e s p o n d e n c e  w ith  n  x  n m a tr ic e s ,  

w e  a r e  a sk in g  fo r  th e  m a t r ic e s  A  s u c h  t h a t  is  in  H  f o r  a l l  t. W e  w i l l  d e t e r m in e  t h e  

o n e - p a r a m e t e r  g r o u p s  in  t h e  o r t h o g o n a l ,  u n i ta r y ,  a n d  s p e c ia l  l in e a r  g r o u p s .
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(9.5.7) Images of Some One-Parameter Groups in CX =  G L i(C ).

Proposition 9.5.8

(a) If A is a real skew-symmetric matrix (A1 = -A ), then eA is orthogonal. If A  is a complex 
skew-Hermitian matrix (A * =  -A), then eA is unitary.

(b) The one-parameter groups in the orthogonal group On are the homomorphisms t"-"+ etA, 
where A is a real skew-symmetric matrix.

(c) The one-parameter groups in the unitary group Un are the homomorphisms t etA,
where A is a complex skew-Hermitian matrix.

Proof We discuss the complex case.
The relation (eA)* =  e(A*) follows from the definition of the exponential, and we know 

that (eA ) - 1 =  e_A (5.4.5). So if A is skew-Hermitian, i.e., A * =  -A, then (eA)* =  (eA )-*, 
and eA is unitary. This proves (a) for complex matrices.

Next, if A is skew-Hermitian, so is tA, and by what was shown above, e'A is unitary 
for all t, so it is a one-parameter group in the unitary group. Conversely, suppose that etA is 
unitary for all t. We write this as eM* =  e~tA. Then the derivatives of the two sides of this 
equation, evaluated at t =  0, must be equal, so A * =  -A, and A is skew-Hermitian.

The proof for the orthogonal group is the same, when we interpret A * as A t  □

We consider the special linear group S L n next.

Lemma 9.5.9 For any square matrix A, etraceA =  det eA.

Proof An eigenvector X of A with eigenvalue A is also an eigenvector of eA with eigenvalue 
eA. So, if A 1, . . . ,  An are the eigenvalues of A, then the eigenvalues of eA are eA • The trace 
of A is the sum Ai +  .. +  An, and the determinant of eA is the product eAl ••• ex" (4.5.15). 
Therefore etraceA = eAl+'"+A" =  eA .. .  eAn = deteA. □
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P r o p o s i t io n  9 .5 .1 0  The one-parameter groups in the special linear group SLn are the 
homomorphisms t"",e tA, where A is a real n X n matrix whose trace is zero.

Proof. Lemma 9.5.9 shows that if trace A =  0, then det etA =  etltaceA =  eO =  1 for all t, so 
etA is a one-parameter group in SLn. Conversely, if det e,A = 1 for all t, the derivative of 
et trace A , evaluated at t =  0, is zero. The derivative is traceA. □

The simplest one-parameter group in SL2 is the one in Example 9.5.6(a). The one- 
parameter groups in SU2 are the longitudes described in (9.3.9).

9 .6  T H E  LIE A L G E B R A

The space of tangent vectors to a matrix group G at the identity is called the Lie algebra of 
the group. We denote it by Lie( G). It is called an algebra because it has a law of composition, 
the bracket operation that is defined below.

For instance, when we represent the circle group as the unit circle in the complex plane, 
the Lie algebra is the space of real multiples of i.

The observation from which the definition of tangent vector is derived is something 
we learn in calculus: If cp(t) =  (cpi (t), . . . ,  CP(t) ) is a differentiable path in IRk, the velocity 
vector v =  cp'(0) is tangent to the path at the point x  =  cp(0). A vector v is said to be tangent 
to a subset S of at a point x  if there is a differentiable path cp(t), defined for sufficiently 
small t and lying entirely in S, such that cp(O) =  x and cp' (0) =  v.

The elements of a linear group G are matrices, so a path cp(t) in G will be a matrix
valued function. Its derivative cp' (0) at t =  0 will be represented naturally as a matrix, 
and if cp(O) =  /, the matrix cp'(O) will be an element of Lie(G). For example, the usual

parametrization (9.5.6)(b) of the group SO2 shows that the matrix ^ J is in Lie(S0 2 ).

We already know a few paths in the orthogonal group On: the one-parameter 
groups cp(t) =  eAt, where A is a skew-symmetric matrix (9.5.8). Since (eAf) t=o =  I and 
(freAOt=0 =  A, every skew-symmetric matrix A  is a tangent vector to On at the identity -  an 
element of its Lie algebra. We show now that the Lie algebra consists precisely of those 
matrices. Since one-parameter groups are very special, this isn’t completely obvious. There 
are many other paths.

P r o p o s i t io n  9 .6 .1  The Lie algebra of the orthogonal group On consists of the skew- 
symmetric matrices.

Proof. We denote transpose by >1<. If cp is a path in On with cp(O) =  I  and cp'(O) =  A, then 
cp(t)*cp(t) =  /  identically, and so fr(cp(t)*cp(t)) =  0. Then

d  (cp* c p > - ° = ( f c p + c p - d C P )  ,=0
d  ‘ ‘ 1 A * +  A =  0 .

rf=0  □

Next, we consider the special linear group SLn. The one-parameter groups in SL n 
have the form cp(t) =  eAf, where A is a trace-zero matrix (9.5.10). Since (eA')t=o =  I  and 
(freAt)t=o =  A, every trace-zero matrix A is a tangent vector to SLn at the identity -  an 
element of its Lie algebra.
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L e m m a  9 .6 .2  Let ({J be a path in GLn with ({J(O) =  I  and ({J'(O) =  A. Then (fr (det ({J))t=0 = 
traceA.

Proof We write the matrix entries of ({J as ({Jj, and we compute fr det ({J using the complete 
expansion (1.6.4) of the determinant:

det ({J =  L  (sign P) ({Ji.pl • "  ({Jn.pn • 
peSn

By the product rule,
d  n

(9 6.3) dft (({Ji’Pi ' ‘ ‘ ({In,pn) = L  ({Jl.Pl ' ' ({Ji.pi ' ' ’ ({In,pn-
i=l

We evaluate at t = O. Since ({J(O) =  /, ({Jj(O) = 0 if i *  j  and ({J,,- (0) =  1. So in the sum
(9.6.3), the term ({Ji>pi ■ • • ({Ji p, • •• ({In,pn evaluates to zero unless p j  =  j  for all I *  i, and 
if p j  =  j  for all j * i ,  then since p  is a permutation, p i =  i too, and therefore p  is the 
identity. So (9.6.3) evaluates to zero except when p  =  1, and when p  =  1, it becomes 
L i  ({J'a (0) =  traceA. This is the derivative of det ({J. □

P r o p o s i t io n  9 .6 .4  The Lie algebra of the special linear group SLn consists of the trace-zero 
matrices. □

Proof If ({J is a path in the special linear group with ({J(O) =  I  and ({J' (0) =  A, then 
det (({J (0 ) =  1 identically, and therefore fr det (((J(t)) =  O. Evaluating at t =  0, we obtain 
trace A =  0. □

Similar methods are used to describe the Lie algebras of other classical groups. Note 
also that the Lie algebras of On and SLn are real vector spaces, subspaces of the space 
of matrices. It is usually easy to verify for other groups that Lie(G) is a real vector 
space.

T h e  L ie  B r a c k e t

The Lie algebra has an additional structure, an operation called the bracket, the law of 
composition defined by the rule

(9.6.5) [A,B] =  AB — BA.

The bracket is a version of the commutator: It iszero if and only if A and B commute. It isn’t 
an associative law, but it satisfies an identity called the Jacobi identity.

(9.6.6) [A, [B, C]] +  [B, [C, A]] +  [C, [A, B]] =  0.

To show that the bracket is defined on the Lie algebra, we must check that if A and 
B are in Lie(G), then [A, B] is also in Lie(G). This can be done easily for any particular 
group. For the special linear group, the required verification is that if A and B have trace 
zero, then AB-BA also has trace zero, which is true because trace AB =  trace BA. The Lie
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algebra of the orthogonal group is the space of skew-symmetric matrices. For that group, we 
must verify that if A and B are skew-symmetric, then [A, B] is skew-symmetric:

The definition of an abstract Lie algebra includes a bracket operation.

D e f i n i t i o n  9.6.7 A  Lie algebra V  is a real vector space together with a law of composition
V X  V -+ V  denoted by v, w  [ v, w] and called the bracket, which satisfies these axioms 
for all u ,  v, w in V and all c in lR:

bilinearity: [vj +  U2, w] =  [ui, w] +  [v 2 , w] and [cv, w] =  c[v, w],
[v, wi +  W2] =  [v, Wi] +  [v, W2] and [v, cw] =  c[v, w],

skew.symmetry: [v, w] =  -[w , v], or [v, v] =  0,
Jaoobi identity: [u, [v, w]] +  [ v, [w, u]] +  [w, [u, v]] =  0.

Lie algebras are useful because, being vector spaces, they are easier to work with 
than linear groups. And, though this is not easy to prove, many linear groups, including the 
classical groups, are nearly determined by their Lie algebras.

9.7 TRANSLATION IN A GROUP

Let P be an element of a matrix group G. Left multiplic ation by P is a bij ective map from G 
to itself:

Its inverse function is left multiplication by P~i. The maps mp and mp-i are continuous 
because matrix multiplication is continuous. Thus mp is a homeomorphism from G to G 
(not a homomorphism). It is also called left translation by P, in analogy with translation in 
the plane, which is left translation in the additive group lR2+.

The importan t property of a group that is implied by the existence of these maps is 
homogeneity. Multiplication by P is a homeomorphism that carries the identity element 1 
to P. Intuitively, the group looks the same at P as it does at 1, and since P is arbitrary, it 
looks the same at any two points. This is analogous to the fact that the plane looks the same 
everywhere.

Left multiplication in the circle group S02 rotates the circle, and left multiplication 
in SU2 is also a rigid motion of the 3-sphere. But homogeneity is weaker in other matrix 
groups. For example, let G be the group of real invertible diagonal 2 x  2 matrices. If we 
identify the elements of G with the points (a, d) in the plane and not on the coordinate axes, 
multiplication by the matrix

(9.7.2)

distorts the group G, but it does this continuously.
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(9.1.3) Left Multiplication in a Group.

Now the only geometrically reasonable subsets of IRk that have such a homogeneity
property are manifolds. A manifold M  of dimension d  is a set in which every point has a 
neighborhood that is homeomorphic to an open set in (see [Munkres], p. 155). It isn’t 
surprising that the classical groups are manifolds, though there are subgroups of G L n that 
aren’t. The group G L n (Q) of invertible matrices with rational coefficients is an interesting 
group, but it is a countable dense subset of the space of matrices.

The following theorem gives a satisfactory answer to the question of which linear 
groups are manifolds:

T h e o r e m  9 .7 .4  A subgroup of GLn that is a closed subset of GLn is a manifold.

Proving this theorem here would take us too far afield, but we illustrate it by showing 
that the orthogonal groups are manifolds. Proofs for the other classical groups are similar.

L e m m a  9 .7 .5  The matrix exponential A""'"' eA maps a small neighborhood U of 0 in IRnxn
homeomorphically to a neighborhood V of /  in G Ln (IR).

The fact that the exponential series converges uniformly on bounded sets of matrices implies 
that it is a continuous function ([Rudin] Thm 7.12). To prove the lemma, one needs to show 
that it has a continuous inverse function for matrices sufficiently near to I. This can be proved 
using the inverse function theorem, or the series for log (1 +  x):

(9.7.6) 1og(1 + x) =  x -  j x 2 +  ix 3 ------.

The series log(1 + B) converges for small matrices B, and it inverts the exponential. □

(9.1.1) The Matrix Exponential.
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Proof We denote the group On by G, and its Lie algebra, the space of skew-symmetric 
matrices, by L. If A is skew-symmetric, then eA is orthogonal (9.5.8). So the exponential 
maps L to G. Conversely, suppose that A is near O. Then, denoting transpose by *, A * and 
-A are also near zero, and eA and e~A are near to I. If eA is orthogonal, i.e., if eA* =  e~A, 
Lemma (9.7.5) tells us that A* =  -A, so A is skew-symmetric. Therefore a matrix A near 0 
is in L if and only if eA is in G. This shows that the exponential defines a homeomorphism 
from a neighborhood V of 0 in L to a neighborhood U of I  in G. Since L is a vector space, 
it is a manifold. The condition for a manifold is satisfied by the orthogonal group at the 
identity. Homogeneity implies that it is satisfied at all points. Therefore G is a manifold, and 
its dimension is the same as that of L, namely ! n(n  — 1). □

Here is another application of the principle of homogeneity.

Proposition 9.7.9 Let G be a path-connected matrix group, and let H  be a subgroup of G 
that contains a nonempty open subset U of G. Then H  =  G.

Proof A subset of lR.n is path connected if any two points of S can be joined by a continuous 
path lying entirely in S (see [Munkres, p. 155] or Chapter 2, Exercise M.6).

Since left multiplication by an element g is a homeomorphism from G to G, the set 
gU  is also open, and it is contained in a single coset of H , namely in gH . Since the translates 
of U cover G, the ones contained in a coset C cover that coset. So each coset is a union 
of open subsets of G, and therefore is open itself. Then G is partitioned into open subsets, 
the cosets of H. A path-connected set is not a disjoint union of proper open subsets (see 
[Munkres, p. 155]). Thus there can be only one coset, and H  =  G. □

We use this proposition to determine the normal subgroups of SU2.

Theorem 9.7.10

(a) The only proper normal subgroup of SU2 is its center {±/}.
(b) The rotation group S O3 is a simple group.

Proof (a) Let N  be a normal subgroup of SU2 that contains an element P *  ± I. We must 
show that N  is equal to SU2. Since N  is normal, it contains the conjugacy class C of P, which 
is a latitude, a 2-sphere.

We choose a continuous map P(t) from the unit interval [0, 1] to C such that P(O) =  P 
and P (I) * P , and we form the path Q(t) =  P (t)Jrl. Then Q(O) =  I, and Q (I )* / ,  so this 
path leads out from the identity I, as in the figure below. Since N  is a group that contains 
P and P(t), it also contains Q(t) for every t in the interval [0,1]. We don’t need to know 
anything else about the path Q(t).

We note that trace Q :: 2 for any Q in SU2, and that I  is the only matrix with trace equal 
to 2. Therefore trace Q(O) =  2 and trace Q (l) =  r  <  2. By continuity, all values between r  
and 2 are taken on by trace Q(t). Since N  is normal, it contains the conjugacy class of Q(t) 
for every t. Therefore N  contains all elements of SU2 whose traces are sufficiently near to 2,

Proposition 9.7.8 The orthogonal group On is a manifold of dimension \n (n  — 1).
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and this includes all matrices near to the identity. So N  contains an open neighborhood of 
the identity in SU2 . Since SU2 is path-connected, Proposition 9.7.9 shows that N  =  SU2.

(b) There is a surjective map ({J : SU 2 -»■ SO3 whose kernel is { ± /}  (9.4.1). By the 
Correspondence Theorem 2.10.5, the inverse image of a normal subgroup in SO 3 is a normal 
subgroup of SU2 that contains {± I }. Part ( a )  tells us that there are no proper subgroups of 
SU2  except { ± I}, so SO3 contains no proper normal subgroup at all. □

One can apply translation in a group G to tangent vectors too. If A is a tangent vector 
at the identity and if P is an element of G, the vector PA  is tangent to G at P, and if A  isn’t 
zero, neither is PA. As P ranges over the group, the family of these vectors forms what is 
called a tangent vector field. Nowjust the existence of a continuous tangent vector field that is 
nowhere zero puts strong restrictions on the space G. It is a theorem of topology, sometimes 
called the “Hairy Ball Theorem,” that any tangent vector field on the 2-sphere must vanish 
at some point (see [Milnor]). This is one reason that the 2-sphere has no group structure. 
But since the 3-sphere is a group, it has tangent vector fields that are nowhere zero.

9 . 8  N O R M A L  S U B G R O U P S  O F SL2

Let F  be a field. The center of the group SL2 (F ) is { ± /). (This is Exercise 8.5.) The quotient 
group SL2(F ) /{ ± 1} is called the projective group, and is denoted by PSL 2(F). Its elements 
are the cosets { ± PJ.

T h e o r e m  9 .8 .1  Let F  be a field of order at least four.

( a )  The only proper normal subgroup of SL2 (F) is its center Z  =  { ± I}.
(b) The projective group PSL 2(F) is a simple group.

Part ( b )  of the theorem follows from ( a )  and the Correspondence Theorem 2.10.5, 
and it identifies an interesting class of finite simple groups: the projective groups PSL 2(F) 
when F  is a finite field. The other finite, nonabelian simple groups that we have seen are the 
alternating groups (7.5.4).

We will show in Chapter 15 that the order of a finite field is always a power of a 
prime, that for every prime power q =  p*, there is a field Fq of order q, and that Fq has 
characteristic p  (Theorem 15.7.3). Finite fields of order 2e have characteristic 2. In those 
fields, 1 =  -1 and /  =  -I. Then the center of SL2(IFq) is the trivial group. Let’s assume these 
facts for now.
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We omit the proof of the next lemma. (See Chapter 3, Exercise 4.4 for the case that q 
is a prime.)

L e m m a  9 .8 .2  L etq  be a power ofa prime. The order of SL2(Fq) is q3 - q .  Ifq  is not a power 
of 2 , the order of P S L 2 (Fq) is j ( q 3 — q). If q  is a power of 2, then PSL,2 (Fq) ~  S L 2(Fq), 
and the order of PSL 2(Fq) is q 3 — q . □

The orders of P S L 2 for small q  are listed below, along with the orders of the first three 
simple alternating groups.

|F | 4 5 7 8 9 11 13 16 17 19
I PSLz  I 60 60 168 504 360 660 1092 4080 2448 3420

n 5 6 7
|A„| 60 360 2520

The orders of the ten smallest non abelian simple groups appear in this list. The next smallest 
would be PSL 3(F3), which has order 5616.

The projective group is not simple when I FI =  2 or 3. P S L 2 (F2) is isomorphic to the 
symmetric group S3 and P S L 2 (IF3 ) is isomorphic to the alternating group A4.

As shown in these tables, PSL 2(F4), P S L 2 (F5), and As have order 60. These three 
groups happen to be isomorphic. (This is Exercise 8.3.) The other coincidences among orders 
are the groups PSL  2 (F9) and A6, which have order 360. They are isomorphic too. □

For the proof, we will leave the cases I FI =  4 and 5 aside, so that we can use the next 
lemma.

L e m m a  9 .8 .3  A field F  of order greater than 5 contains an element r  whose square is not
0, 1, o r - 1.

Proof. The only element with square 0 is 0, and the elements with square 1 are ± 1. There 
are at most two elements whose squares are -1: If a 2 =  =  -1, then (a — b)(a  +  b) =  0, so
b =  ± a . □

P roo fo f Theorem 9.8.1. We assume given the field F , we let S L 2  and P S L 2 stand for 
S L 2 (F) and PSL2 (F), respectively, and we denote the space F 2 by V. We choose a nonzero 
element r  of F  whose square s is not ± 1.

Let N  be a normal subgroup of S L 2 that contains an element A =1=  ± I. We must show 
that N  is the whole group S L 2 . Since A  is arbitrary, it is hard to work with directly. The 
strategy is to begin by showing that N  contains a matrix that has eigenvalue s.

Step 1: There is a matrix P in S L 2 such that the commutator B =  A PA ^P- 1 is in N, and has 
eigenvalues s and ",-1.

This is a nice trick. We choose a vector Vi in V  that is not an eigenvector of A  and we 
let V2 =  Avi.  Then Vi and V2 are independent, so B =  (u^, V2) is a basis of V. (It is easy to 
check that the only matrices in S L 2 for which every vector is, an eigenvector are I  and -I.)

Let R be the diagonal matrix with diagonal entries r  and r~l . The matrix P =  [B]R[B]_l 
has determinant 1, and vi and V2  are eigenvectors, with eigenvalues r  and r_1, respectively
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(4.6.10). Because N  is a normal subgroup, the commutator B = APA 1p- 1 is an element of 
N  (see (7.5.4». Then

Bv 2  = APA 1 p- 1V2 =  APA  1(rv2) =  rAPv\ = r^Av 1 =  SV2. 

Therefore s is an eigenvalue of B. Because detB =  1, the other eigenvalue is s_1

Step 2: The matrices having eigenvalues s and s 1 form a single conjugacy class C in SL2, 
and this conjugacy class is contained in N.

The elements s and s-1 are distinct because s-=l= ± 1. Let S be a diagonal matrix with 
diagonal entries s and s -1. Every matrix Q with eigenvalues s and s- 1 is a conjugate of S in 
G L 2(F) (4.4.8)(b), say Q =  LSL-1. Since S is diagonal, it commutes with any other diagonal 
matrix. We can multiply L on the right by a suitable diagonal matrix, to make detL  =  1, 
while preserving the equation Q =  L S C 1  So Q is a conjugate ofS  in SL2. This shows that 
the matrices with eigenvalues s and s-1 form a single conjugacy class. By Step 1, the normal 
subgroup N  contains one such matrix. So C C N.

Step 3: The elementary matrices E = 1 x 
0 X and E , with x  in F, are in N.

For any element x  of F, the terms on the left side of the equation

s 1 O s s : 1 x
0 s 0 s"1 . 0 1 _

are in C and in N, so E is in N. One sees similarly that El is in N.

Step 4: The matrices E and El, with x in F, generate SL2. Therefore N  =  SL2. 

The proof of this is Exercise 4.8 ofChapter 2 . □

As is shown by the alternating groups and the projective groups, simple groups arise 
frequently, and this is one of the reasons that they have been studied intensively. On the 
other hand, simplicity is a very strong restriction on a group. There couldn’t be too many of 
them. A famous theorem of Cartan is one manifestation of this.

A complex algebraic group is a subgroup of the complex general linear group G L n  ( C )  

which is the locus of complex solutions of a finite system of complex polynomial equations 
in the matrix entries. Cartan’s theorem lists the simple complex algebraic groups. In the 
statement of the theorem, we use the symbol Z  to denote the center of a group.

T h e o r e m  9 .8 .4

( a )  The centers of the groups S L n (C), S O n (C), and S P n  (C) are finite cyclic groups.
( b )  For n 2 : 1, the groups S L n ( C ) / Z ,  S O n ( C ) / Z ,  and S P 2n ( C ) / Z  are path-connected 

complex algebraic groups. Except for S 0 2 ( C ) / Z  and S 04( C ) /  Z ,  they are simple.
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(c) In addition to the isomorphism classes of these groups, there are exactly five isomorphism 
classes of simple, path-connected complex algebraic groups, called the exceptional 
groups.

Theorem 9.8.4 is based on a classification of the corresponding Lie algebras. It is too hard to 
prove here.

A large project, the classification of the finite simple groups, was completed in 1980. 
The finite simple groups we have seen are the groups of prime order, the alternating groups 
An with n > 5, and the groups P S L 2(F ) when F  is a finite field of order at least 4. Matrix 
groups play a dominant role in the classification of the finite simple groups too. Each of the 
forms (9.8.4) leads to a whole series of finite simple groups when finite fields are substituted 
for the complex field. There are also some finite simple groups analogous to the unitary 
groups. All of these finite linear groups are said to be of Lie type. In addition to the groups 
of prime order, the alternating groups, and the groups of Lie type, there are 26 finite simple 
groups called the sporadic groups. The smallest sporadic group is the Mathieu group M \\, 
whose order is 7920. The largest, the Monster, has order roughly l053.

It seems unfair to crow about the successes of a theory 
and to sweep all its failures under the rug.

—Richard Brauer

EXERCISES

Section 1 The Classical Linear Groups

1.L (a) Is G Ln (C) isomorphic to a subgroup of G L 2n (R)?
(b) Is S 0 2 (C) a bounded subset of C2̂ ?

1.2. A matrix P  is orthogonal if and only if its columns form an orthonormal basis. Describe 
the properties of the columns of a matrix in the Lorentz group 03,1.

1.3. Prove that there is no continuous isomorphism from the orthogonal group 04 to the 
Lorentz group O3,1.

14. Describe by equations the group 01.1 and show that it has four path-connected 
components.

1.5. Prove that SP2 =  SL2, but that SP4 =1= SL^.
1.6. Prove that the following matrices are symplectic, if the blocks are n X n:

1 B ‘
’ I  _, where B =  B  and A is invertible.

*1.7. Prove that

(a) the symplectic group SP2n operates transitively on ]R2n,
(b) S P n  is path-connected, (c) symplectic matrices have determinant 1.
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Section 2  Interlude: Spheres

2 . 1  C o m p u te  t h e  fo r m u la  fo r  th e  in v e r s e  o f  t h e  s te r e o g r a p h ic  p r o je c t io n  t t  :§3 - +  ]R3 .

2 .2 . O n e  c a n  p a r a m e tr iz e  p r o p e r  su b s p a c e s  o f  K 2 b y  a  c irc le  in  tw o  w a y s . F ir s t , i f  a  s u b s p a c e  
W  in te r s e c t s  th e  h o r iz o n ta l  a x is  w ith  a n g le  0, o n e  c a n  u s e  th e  d o u b le  a n g le  ex =  20. T h e  
d o u b le  a n g le  e l im in a te s  th e  a m b ig u ity  b e t w e e n  () a n d  0 + tt . O r, o n e  c a n  c h o o s e  a  n o n z e r o  
v e c t o r  ( y i ,  y 2)  in  W , a n d  u se  th e  in v e r s e  o f  s te r e o g r a p h ic  p r o je c t io n  to  m a p  th e  s lo p e  
A =  y 2/ y i  to  a  p o in t  o f  § 1  C o m p a r e  t h e s e  tw o  p a r a m e tr iz a t io n s .

2 .3 . (unit vectors and subspaces in C 2)  A  p r o p e r  s u b s p a c e  W  o f  th e  v e c t o r  s p a c e  C 2 h a s
d im e n s io n  1. I ts  s lo p e  is  d e f in e d  to  b e  A =  y 2/ y i ,  w h e r e  ( y i ,  y 2)  is  a  n o n z e r o  v e c t o r  in  
W . T h e  s lo p e  c a n  b e  a n y  c o m p le x  n u m b e r , o r  w h e n  y i  =  0 , A =  00. '

(a) L e t  z  =  v l  +  V2i .  W r ite  th e  fo r m u la  fo r  s te r o g r a p h ic  p r o je c t io n  t t  ( 9 .2 .2 )  a n d  its  
in v e r s e  fu n c t io n  u  in  t e r m s  o f  z .

(b )  T h e  fu n c t io n  th a t  s e n d s  a  u n it  v e c to r  ( y l , y 2)  t o  <r(y2/ y i )  d e f in e s  a  m a p  fo r m  th e  
u n it  s p h e r e  §3 in  C 2 to  th e  tw o -s p h e r e  § 2 . T h is  m a p  c a n  b e  u se d  to  p a r a m e tr iz e  
su b s p a c e s  b y  p o in t s  o f  § 2 . C o m p u te  t h e  f u n c t io n  a ( y 2/ y i )  o n  u n it  v e c to r s  ( y i ,  y 2) .

( c )  W h a t  p a irs o f  p o in ts  o f  §2 c o r r e s p o n d  t o  p a ir s  o f  s u b s p a c e s  W  a n d  W ' th a t a r e  
o r th o g o n a l  w ith  r e s p e c t  to  th e  s ta n d a r d  H e r m it ia n  fo r m  o n  C 2 ?

Section 3  The Special Unitary Group SU2

3 .1 . L e t  P  a n d  Q  b e  e le m e n t s  o f  S U 2, r e p r e s e n te d  b y  th e  r e a l v e c to r s  ( x o ,  X i , X 2, X3)  
a n d  ( y o ,  y t .  y 2, y 3) ,  r e s p e c t iv e ly .  C o m p u te  th e  r e a l  v e c t o r  th a t c o r r e s p o n d s  t o  th e  
p r o d u c t  P Q .

3 .2 . P r o v e  th a t  U 2 is  h o m e o m o r p h ic  to  th e  p r o d u c t  §3 X § 1.

3 .3 . P r o v e  th a t  e v e r y  g r e a t  c irc le  in  S U 2 ( c ir c le  o f  r a d iu s  1) is  a  c o s e t  o f  o n e  o f  th e  lo n g itu d e s .

3 .4 . D e t e r m in e  th e  c e n tr a l iz e r  o f  j  in  S U 2.

Section 4  The Rotation Group SO3
4 .1 . L e t  W  b e  th e  sp a c e  o f  rea l s k e w -s y m m e tr ic  3  X 3  m a tr ic e s . D e s c r ib e  th e  o rb its  f o r  th e  

o p e r a t io n  P  *  A  =  P A P  o f  S O 3 o n  W .

4 .2 . T h e  r o ta t io n  g r o u p  S O 3 m a y  b e  m a p p e d  t o  a  2 - s p h e r e  b y  s e n d in g  a  r o ta t io n  m a tr ix  to  its  
first c o lu m n . D e s c r ib e  t h e  f ib r e s  o f  th is  m a p .

4 .3 . E x t e n d  th e  o r th o g o n a l  r e p r e s e n ta t io n  cp: S U 2 - +  S O 3 to  a  h o m o m o r p h is m

: U 2 - +  S O 3, a n d  d e s c r ib e  th e  k e r n e l  o f  <1>.

4 .4 . (a) W ith  n o ta t io n  a s  in  (9 .4 .1 ) ,  c o m p u t e  th e  m a tr ix  o f  t h e  r o t a t io n  y p , a n d  s h o w  th a t  its
t r a c e  is  1 +  2 c o s  2 0 .

(b) P r o v e  d ir e c t ly  th a t th e  m a tr ix  is  o r th o g o n a l .

4 .5 .  P r o v e  th a t  c o n ju g a t io n  b y  a n  e le m e n t  o f  S U 2 r o ta te s  e v e r y  la t itu d e .

4 .6 . D e s c r ib e  t h e  c o n ju g a c y  c la s s e s  in  S O 3 in  t w o  w ays:

(a) I t s  e le m e n t s  o p e r a t e  o n  ]R3 a s r o ta t io n s . W h ic h  r o ta t io n s  m a k e  u p  a  c o n ju g a c y  
c la s s?
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(b) The spin homomorphism SU2 SO3 can be used to relate the conjugacy classes in 
the two groups. Do this.

(c) The conjugacy classes in SU2 are spheres. Describe the conjugacy classes in SO 3 

geometrically. Be careful.

4.7. (a) Calculate left multiplication by a fixed matrix P in SU2 explicitly, in terms of the
coordinate vector (xo, xi , X2, X3). Prove that it is given as multiplication by a 4 X 4 
orthogonal matrix Q.

(b) Prove that Q is orthogonal by a method similar to that used in describing the 
orthogonal representation: Express dot product of the vectors (xo, x\, X2 , X3) and 
(x'0, x'j, x'2, x;) that correspond to matrices P and P' in SU2, in matrix terms.

4.8. Let W be the real vector space of Hermitian 2 X 2 matrices.
(a) Prove that the rule P . A =  PAP* defines an operation of SL2(C) on W.
(b) Prove that the function (A, A') =  det(A + A') — detA — detA' is a bilinear form on 

W, and that its signature is (3,1).
(c) Use (a) and (b) to define a homomorphism gJ:SL2CC) —> O31,whose kemelis {±1}.

*4.9. (a) Let Hi be the subgroup of SO3 of rotations about the x,-axis, i =  1, 2, 3. Prove that 
every element of SO 3 can be written as a product ABA', where A and A' are in H\ and 
B is in H2. Prove that this representation is unique unless B = I.
(b) Describe the double cosets H\QH \ geometrically (see Chapter 2, Exercise M.9).

Section 5 One-Parameter Groups

5 .1 . Can the image of a one-parameter group in G Ln cross itself?
5.2. Determine the one-parameter groups in U2 .
5.3. Describe by equations the images of the one-parameter groups in the group of real, 

invertible, 2 X 2 diagonal matrices, and make a drawing showing some of them in the 
plane.

5.4. Find the conditions on a matrix A so that etA is a one-parameter group in
(a) the special unitary group SUn, (b) the Lorentz group O34,

5.5. L e t G  b e  th e  g ro u p  o f  r e a l  m a tr ic e s  o f  th e  fo r m  [ X i , w ith  x  >  O.

( a )  D e t e r m in e  th e  m a tr ic e s  A  su ch  that etA is  a  o n e -p a r a m e te r  g r o u p  in  G .

(b )  C o m p u te  etA e x p lic it ly  fo r  t h e  m a tr ic e s  in  (a ) .

( c ) M a k e  a  d r a w in g  s h o w in g  s o m e  o n e -p a r a m e te r  g r o u p s  in  t h e  ( x , y ) -p fa n e .

5 .6 . L e t  G  b e  t h e  s u b g r o u p  o f  G L 2  o f  m a tr ic e s  | X ^ - l w ith  X >  0  a n d  y  a rb itra ry .ic e s  | X

D e t e r m in e  th e  c o n ju g a c y  c la s s e s  in  G ,  a n d  th e  m a tr ic e s  A  s u c h  th a t  etA is  a  o n e -  
p a r a m e te r  g r o u p  in  G.

5.7. D e t e r m in e  th e  o n e -p a r a m e te r  g r o u p s  in  th e  g r o u p  o f  i n v e r t ib le  n  x  n  u p p e r  tr ia n g u la r  
m a tr ic e s .

5.8. L e t  gJ(t) =  etA b e  a  o n e -p a r a m e te r  g r o u p  in  a  su b g r o u p  G  o f  G L n .  P r o v e  th a t  th e  c o s e t s  
o f  its  im a g e  a re  m a tr ix  s o lu t io n s  o f  th e  d i f f e r e n t ia l  e q u a t io n  d X / d t  =  AX.
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5.9. Let q; : K+ -> GL„ be a one-parameter group. Prove that kerq; is either trivial, or an 
infinite cyclic group, or the whole group.

5.10. Determine the differentiable homomorphisms from the circle group S 0 2 to GLn.

Section 6 The Lie Algebra

6.1. Verify the Jacobi identity for the bracket operation [A, B] =  AB -  BA.
6.2. Let V be a real vector space of dimension 2, with a law of composition [v, w] that is 

bilinear and skew-symmetric (see (9.6.7». Prove that the Jacobi identity holds.
6.3. The group SL 2 operates by conjugation on the space of trace-zero matrices. Decompose 

this space into orbits.
a b

„2 . Determine the Lie6.4. Let G be the group of invertible real matrices of the form 
algebra L of G. and compute the bracket on L.

6.5. Show that the set defined by xy =  1 is a subgroup of the group of invertible diagonal 2 X 2 
matrices, and compute its Lie algebra.

6.6. (a) Show that 02 operates by conjugation on its Lie algebra.
(b) Show that this operation is compatible with the bilinear form (A, B) =  \  traceAB.
(c) Use the operation to define a homomorphism 02 ^  02 . and describe this homo

morphism explicitly.

6.7. Determine the Lie algebras of the following groups.
(a) Un. (b) SUn. (c) 03,1, (d) SOn (C).

6.8. Determine the Lie algebra of SP2n. using block form M =

6.9. (a) Show that the vector cross product makes jR3 into a Lie algebra Li.
(b) Let L2 =  Lie(SU2), and let L3 = Lie(S03). Prove that the three Lie algebras 

L i, L2 and L3 are isomorphic.

6.10. Classify complex Lie algebras of dimension :: 3.
6.11. Let B be a real n X n matrix, and let ( ,  ) be the bilinear form XfBY. The orthogonal

group G of this form is defined to be the group of matrices P such that P(BP = B.
Determine the one-parameter groups in G, and the Lie algebra of G.

Section 7 Translation in a Group

7.1. Prove that the unitary group Un is path connected.
7.2. Determine the dimensions of the following groups:

(a) Un. (b) SUn. (c) SOn (C). (d) 03,1, (e) SP2n.
7.3. Using the exponential. find all solutions near I of the equation P2 = /.
7.4. Find a path-connected, nonabelian subgroup of G L2 of dimension 2.
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*7.5. (a) Prove that the exponential map defines a bijection between the set of all Hermitian 
matrices and the set of positive definite Hermitian matrices.

(b) Describe the topological structure of G L 2(<C) using the Polar decomposition 
(Chapter 8, Exercise M.8) and (a).

7.6. Sketch the tangent vector field PA to the group Cx, when A =  1 +  i.
7.7. Let H  be a finite normal subgroup ofa path connected group G. Prove that H  is contained 

in the center of G.

Section 8 Normal Subgroups of SL2

8.1. Prove Theorem 9.8.1 for the cases F  =  F4 and F5.
8.2. Describe isomorphisms P S L i i f i ) «  S3 and PSL2OF3) « A4.
8.3. (a) Determine the numbers of Sylow p-subgroups of PSL2OF5), for p  =  2, 3, 5.

(b) Prove that the three groups A5, PSL2(F4), and PSL2(F5) are isomorphic.
8.4. (a) Write the polynomial equations that define the symplectic group.

(b) Show that the unitary group Un can be defined by real polynomial equations in the 
real and imaginary parts of the matrix entries.

8.5. Determine the centers of the groups SLn (®) and SL„ (C ) .

8.6. Determine all normal subgroups of G L2 (1R) that contain its center.
8.7. With Z  denoting the center of a group, is PSLn(C) isomorphic to GLn(<C)/Z? Is 

PSLn (1R) isomorphic to G L„ (1R) /  Z?
8.8. (a) Let P be a matrix in the center of SOn, and let A be a skew-symmetric matrix. Prove

that PA =  AP.
(b) Prove that the center of SOn is trivial if n is odd and is {±I} if n is even and n 2:4.

8.9. Compute the orders of the groups
(a) S02 (F3), (b) S03 (F3) ,  ( c) S02(F5), (d )  S03(F5).

*8.10. (a) Let V be the space V of complex 2 X 2 matrices, with the basis (eli, ei2, ^21, ^22).
on V in block form.[ ci b

c d
(b ) Prove that conjugation defines a homomorphism ({J:SL2(C) -> G L4 (C), and that 

the image of ({J is isomorphic to PSL2OC).
( c ) Prove that PSL2(C) is a complex algebraic group by finding polynomial equations 

in the entries y j  of a 4 X 4 matrix whose solutions are the matrices in the image of ({J.

M is c e D a n e o u s  E x e r c is e s

M.1. Let G =  SL2 (1R), let A be a matrix in G, and let t be its trace. Substituting:  y  
z w

t — x  for w, the condition detA = 1 becomes x(t — x) — yz =  1. For fixed trace t, the 
locus of solutions of this equation is a quadric in x, y, z-space. Describe the quadrics that 
arise this way, and decompose them into conjugacy classes.

*M.2. Which elements of SL2W  lie on a one-parameter group?
M.3. Are the conjugacy classes in a path connected group G path connected?
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M.4. Quaternions are expressions of the form a  =  a +  bi +  cj + dk, where a, b, c, d  are real 
numbers (see (9.3.3)).

(a) Let a  =  a — bi — c j —d k . Compute a a .
(b ) Prove that every a  0 has a multiplicative inverse.
(c) Prove that the set of quaternions a  such that a2 +  b2 +  c2 + f  =  1 forms a group 

under multiplication that is isomorphic to SU2.

M .5 . The affine group An is the group of transformations of JR.” generated by GL„ and the 
group Tn of translations: ta(x) =  x  +  a. Prove that Tn is a normal subgroup of An and 
that An/Tn  is isomorphic to G Ln.

M .6 . (Cayley transform) Let U denote the set of matrices A such that J +  A  is invertible, and 
define A' =  (I — A)( /  +  A )-1.

( a )  Prove that if A is in U, then so is A', and that (A')' =  A.
(b )  Let V denote the vector space ofreal skew-symmetric n X  n matrices. Prove that the 

rule A  ( /  — A )(/ +  A) - 1 defines a homeomorphism from a neighborhood of 0 in
V to a neighborhood of J in SO” .

(c) Is there an analogous statement for the unitary group?

^  ̂ . Show that a matrix A in U is symplectic if and only if (A')*S =  -SA'.(d) Let S =
- /  0

M.7. Let G = SL2. A ray in ]R2 is a half line leading from the origin to infinity. The rays are in 
bijective correspondence with the points on the unit 1-sphere in ]R2.

(a) Determine the stabilizer H  of the ray {rei |r : :  OJ.
(b) Prove that the map f : H x S 02 -»■ G defined by f(P , B) =  PB is a homeomorphism 

(not a homomorphism).
(c) Use (b) to identify the topological structure of SL2.

M.8. Two-dimensional space-time is the space of real three-dimensional column vectors, with 
the Lorentz form (Y, Y') =  Y J24 Y' =  y \y '1 + Y2 /2 -  ^ 3- 
The space W of real trace-zero 2 X 2 matrices has a basis B =  (w\, W2, W3), where

WI
[ 1  - 1 ] ’ W  =  [ 1 1 ] ’ W3 =  [ - 1  1 ]  •

(a) Show that if A = BY and A' = BY' are trace-zero matrices, the Lorentz form carries
over to (A, A') =  y 1 y '1 + y^y/; -  =  \  trace(AA').

(b) The group SL2 operates by conjugation on the space W. Use this operation to define 
a homomorphism cp:SL2 —> O24 whose kernel is { ± J}.

*(c)
image of cp is the component that contains the identity.

(c) Prove that the Lorentz group 02,1 has four connected components and that the

M.9. The icosahedral group is a subgroup of index 2 in the group Gi of all symmetries of 
a dodecahedron, including orientation-reversing symmetries. The alternating group A5 
is a subgroup of index 2 of the symmetric group G 2 =  S5. Finally, consider the spin 
homomorphism cp: SU2 —> SO3. Let G 3 be the inverse image of the icosahedral group in 
SU2. Are any of the groups G/ isomorphic?
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*M.10. Let P be the matrix (9.3.1) in SU2 , and let T  denote the subgroup of SU2 of diagonal 
matrices. Prove that if the entries a, b of P are not zero, then the double coset TPT 
is homeomorphic to a torus, and describe the remaining double cosets (see Chapter 2, 
Exercise M.9).

*M.ll. The adjoint representation of a linear group G is the representation by conjugation on its 
Lie algebra: G x L -+ L defined by P, A . .  PA p-1 The form (A, A') =  trace(AA') on 
L is called the Killing form. For the following groups, verify that if P is in G and A is in 
L, then PAp- 1 is in L. Prove that the Killing form is symmetric and bilinear and that the 
operation is compatible with the form, i.e., that (A, A) =  (PA p -1, PA 'p-1).

(a) Un, (b) 03,1, (C) SO„(C), (d) SP2n.
*M.12. Determine the signature of the Killing form (Exercise M .ll) on the Lie algebra of

(a) SUn, (b) SOn, (c) SLn.
*M.13. Use the adjoint representation of SL2(C) (Exercise M .ll) to define an isomorphism 

SL2(C)/{ ±1}« SO 3 (C).
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Group Representations

A tremendous effort has been made by mathematicians 
for more than a century to clear up the chaos in group theory. 

Still, we cannot answer some of the simplest questions.

—Richard Brauer

Group representations arise in mathematics and in other sciences when a structure with 
symmetry is being studied. If one makes all possible measurements of some sort (in 
chemistry, it might be vibrations of a molecule) and assembles the results into a “state 
vector,” a symmetry of the molecule will transform that vector. This produces an operation 
of the symmetry group on the space of vectors, a representation of the group, that can help 
to analyze the structure.

10.1 DEFINITIONS

In this chapter, G Ln denotes the complex general linear group G Ln (C).
A matrix representation of a group G is a homomorphism

(10.1.1) R: G  - +  G Ln,

from G to one of the complex general linear groups. The number n is the dimension of the 
representation.

We use the notation Rg instead of R(g) for the image of a group element g. Each Rg 
is an invertible matrix, and the statement that R is a homomorphism reads
(10.1.2) Rgh =  RgRh.

If a group is given by generators and relations, say (x i, . . .  , Xn I r i , . . . ,  r^), a matrix 
representation can be defined by assigning matrices Rx 1, • • • , Rxn that satisfy the relations. 
For example, the symmetric group S3 can be presented as (x, y  \ x3, y2, xyxy), so a 
representation of S3 is denned by matrices Rx and Ry such that R,i =  I, R2 =  I, and 
RxRyRxRy = I. Some relations in addition to these required ones may hold.

Because S3 is isomorphic to the dihedral group D 3, it has a two-dimensional matrix 
representation that we denote by A. We place an equilateral triangle with its center at 
the origin, and so that one vertex is on the ei-axis. Then its group of symmetries will be 
generated by the rotation Ax with angle 21l" /3  and the reflection Ay about the ei-axis. With 
c =  cos 21l" /3  and s =  sin 21l" /3,

290
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c -S ' I ' 0 ‘

\ s c 1

, Ay =
0 - 1_

(10.1.3) Ax =

We call this the standard representation of the dihedral group D 3 and of S3.

• A representation R is faithful if the homomorphism R: G -+ G L n is injective, and there
fore maps G isomorphically to its image, a subgroup of G L n. The standard representation 
of S3 is faithful.

Our second representation of S3 is the one-dimensional sign representation 1:. Its value 
on a group element is the 1 x 1 matrix whose entry is the sign of the permutation:

(10.1.4) =  [1], =  [-1].

This is not a faithful representation.
Finally, every group has the trivial representation, the one-dimensional representation 

that takes the value 1 identically:

(10.1.5) Tx = [1], T  =  [1] .

There are other representations of S3, including the representation by permutation 
matrices and the representation as a group of rotations of ]R3. But we shall see that every 
representation of this group can be built up out of the three representations A, 1:, and T.

Because they involve several matrices, each of which may have many entries, repre
sentations are notationally complicated. The secret to understanding them is to throw out 
most of the information that the matrices contain, keeping only one essential part, its trace, 
or character.

• The character x r  of a matrix representation R is the complex-valued function whose 
domain is the group G, defined by x r  (g) =  trace Rg•

Characters are usually denoted by x (‘chi’). The characters of the three representations 
of the symmetric group that we have defined are displayed below in tabular form, with the 
group elements listed in their usual order.

(10.1.6)

1 X x2 y xy x2y
XT 1 1 1 1 1 1
Xr 1 1 1 -1 -1 -1
Xa 2 - 1 -1 0 0 0

Several interesting phenomena can be observed in this table:

• The rows form orthogonal vectors of length equal to six, which is also the order of S3. The 
columns are orthogonal too.

These astonishing facts illustrate the beautiful Main Theorem 10.4.6 on characters.
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Two other phenomena are more elementary:

• Xr (1) is the dimension of the representation, also called the dimension of the character.

Since a representation is a homomorphism, it sends the identity in the group to the identity 
matrix. S o  Xr(1) is the trace of the identity matrix.
• The characters are constant on conjugacy classes.

(The conjugacy classes in S3 are the sets {l}, {x, x2}, and {y, xy, x2y}.)
This phenomenon is explained as follows: Let g and g' be conjugate elements of a 

group G, say g' =  hgh -1. Because a representation R is a homomorphism, Rg  =  RhRgR, 1. 
So Rg  and Rg are conjugate matrices. Conjugate matrices have the same trace.

It is essential to work as much as possible without fixing a basis, and to facilitate this, 
we introduce the concept of a representation of a group on a vector space V. We denote by

(10.1.7) GL(V)

the group of invertible linear operators on V, the law of composition being composition of 
operators. We always assume that V is a finite-dimensional complex vector space, and not 
the zero space.
• A representation of a group G on a complex vector space V is a homomorphism

(10.1.8) p :G  - + G L ( V ) .

So a representation assigns a linear operator to every group element. A matrix representation 
can be thought of as a representation of G on the space of column vectors.

The elements of a finite rotation group (6.12) are rotations of a three-dimensional 
Euclidean space V without reference to a basis, and these orthogonal operators give us what 
we call the standard representation of the group. (We use this term in spite of the fact that, 
for D 3, it conflicts with (10.1.3).) We also use the symbol p  for other representations, and 
this will not imply that the operators Pg are rotations.

If p  is a representation, we denote the image of an element g in G L(V ) by Pg rather 
than by p(g), to keep the symbol g out of the way. The result of applying Pg to a vector v 
will be written as

Pg(v) or as pgV.
Since p is a homomorphism,

(10.1.9) Pgh =  PgPh-

The choice of a basis B =  (v i , . . . ,  vn) for a vector space V defines an isomorphism 
from GL(V) to the general linear group GL„:

G L ( V) -+ GLn
(10.1.10)

T matrix of T, 

and a representation p defines a matrix representation R, by the rule

(10.1.11) Pg its matrix =  Rg.
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Thus every representation of G on a finite-dimensional vector space can be made into a 
matrix representation, if we are willing to choose a basis. We may want to choose a basis in 
order to make explicit calculations, but we must determine which properties are independent 
of the basis, and which bases are the good ones.

A change of basis in V by a matrix P changes the matrix representation R associated 
to p  to a conjugate representation R' =  p- 1 RP, i.e.,

(10.1.12) R'g =  P~lRgP,

with the same P for every g in G. This follows from Rule 4.3.5 for a change of basis.

• An operation of a group G by linear operators on a vector space V is an operation on the 
underlying set:

(10.1.13) Iv  =  v and (gh)v = g(hv),

and in addition every group element acts as a linear operator. Writing out what this means, 
we obtain the rules

(10.1.14) g(v +  v') =  gv +  gv' and g(cv) =  cgv,

which, when added to (10.1.13), give a complete list of axioms for such an operation. We can 
speak of orbits and stabilizers as before.

The two concepts “operation by linear operators on V” and “representation on V” 
are equivalent. Given a representation p  of G on V, we can define an operation of G on
V by

(10.1.15) gv = pg (v).

Conversely, given an operation, the same formula can be used to define the operator Pg .
We now have two notations (10.1.15) for the operation of g on v, and we use them 

interchangeably. The notation gv is more compact, so we use it when possible, though it is 
ambiguous because it doesn’t specify p.

• An isomorphism from one representation p :  G -+ GL(V ) of a group G to another 
representation p ' : G -+ G L (V ') is an isomorphism of vector spaces T : V -+ V', an 
invertible linear transformation, that is compatible with the operations of G:

(10.1.16) T(gv) =  gT(v)

for all v in V and all g  in G. If T : V -+ V' is an isomorphism, and if B and B' are 
corresponding bases of V and V', the associated matrix representations Rg and R’g will be 
equal.

The main topic of the chapter is the determination of the isomorphism classes 
of complex representations of a group G, representations on finite-dimensional, nonzero 
complex vector spaces. Any real matrix representation, such as one of the representations of 
S3 described above, can be used to define a complex representation, simply by interpreting 
the real matrices as complex matrices. We will do this without further comment. And except 
in the last section, our groups will be finite.
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1 0 .2  IR R ED U C IB L E  R E P R E S E N T A T IO N S

Let p  be a representation of a finite group G on the (nonzero, finite-dimensional) complex 
vector space V. A vector v is G-invariant if the operation of every group element fixes the 
vector:

(10.2.1) gv =  v or Pg(v) =  v, for all g in G.

Most vectors aren’t G-invariant. However, starting with any vector v, one can produce a 
G-invariant vector by averaging over the group. Averaging is an important procedure that 
will be used often. We used it once before, in Chapter 6, to find a fixed point of a finite group 
operation on the plane. The G-invariant averaged vector is

(10 2.2) ' V =  jGi 8 V-
geG

The reason for the normalization factor ^  is that, if v happens to be G-invariant itself, then 
v =  v.

We verify that v is G-invariant: Since the symbol g is used in the summation (10.2.2), 
we write the condition for G-invariance as hv =  v for all h in G. The proof is based on 
the fact that left multiplication by h defines a bijective map from G to itself. We make the 
substitution g' =  hg. Then as g runs through the elements of the group G, g' does too, 
though in a different order, and

(102 .3) hv  =  h rbi L  g v =  rbi L  g 'v = \ k  L  g v =  v.
geG geG geG

This reasoning can be confusing when one sees it for the first time, so we illustrate it 
by an example, with G =  S3. We list the elements of the group as usual: g =  1, x , x2, 
y, xy, x2y. Let h =  y. Then g ' =  hg lists the group in the order g ' =  y, x2y, xy, 1, x2, x. So

T ;  g 'v  =  yv +  x2yv +  xyv +  1v +  x2v +  xv =  L  gv 
geG geG

The fact that multiplication by h is bijective implies that g ' will always run over the group in 
some order. Please study this reindexing trick.

The averaging process may fail to yield an interesting vector. It is possible that v =  O.
Next, we turn to G-invariant subspaces.

• Let p  be a representation of G on V. A subspace W of V is called G-invariant if gw is in 
W for all w in W and g in G. So the operation by a group element must carry W  to itself: 
For all g,

(10.2.4) g W C W ,  or P g W c W .

This is an extension of the concept of T -invariant subspace that was introduced in Section 4.4. 
Here we ask that W  be an invariant subspace for each of the operators pg.

When W  is G-invariant, we can restrict the operation of G to obtain a representation 
of G on W.

Lem m a 1 0 .2 .S  If W is an invariant subspace of V, then g W  =  W  for all g in G.
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Proof. Since group elements are invertible, their operations on V are invertible. So g W and 
W have the same dimension. If g W C W, then g W =  W. □

• If V is the direct sum of G-invariant subspaces, say V =  Wi E9 W2, the representation p 
on V is called the direct sum of its restrictions to Wi and W2, and we write

( 1 0 .2 .6 ) p = ex © /3,

where ex and denote the restrictions of p  to Wi and W2, respectively. Suppose that this 
is the case, and let B =  (Bi, B2) be a basis of V obtained by listing bases of Wi and W2 in 
succession. Then the matrix of pg will have the block form

(10.2.7) Rg = Ag  0 
0 Bg J

where Ag is the matrix of ex. and Bg is the matrix of f3, with respect to the chosen bases. The 
zeros below the block Ag reflect the fact that the operation of g does not spill vectors out of 
the subspace Wi, and the zeros above the block Bg reflect the analogous fact for W2.

Conversely, if R is a matrix representation and if all of the matrices Rg have a block 
form (10.2.7), with Ag and Bg square, we say that the matrix representation R is the direct 
sum A E9 B.

For example, since the symmetric group S3 is isomorphic to the dihedral group D 3, 
it is a rotation group, a subgroup of SO3. We choose coordinates so that x acts on ]R3 as a 
rotation with angle 2n /3  about the ¢3-axis, and y acts as a rotation by n  about the ei-axis. 
This gives us a three-dimensional matrix representation M:

c -s '1  "
(10.2.8) Mx = s c , My = -1

1_ -1

with c = cos 2n/3  and s =  sin 2n /3 . We see that M has a block decomposition, and that it is 
the direct sum A E9 £  of the standard representation and the sign representation.

Even when a representation p is a direct sum, the matrix representation obtained 
using a basis will not have a block form unless the basis is compatible with the direct sum 
decomposition. Until we have made a further analysis, it may be d ifcu lt to tell that a 
representation is a direct sum, when it is presented using the wrong basis. But if we find such 
a decomposition of our representation p, we may try to decompose the summands a  and 
further, and we may continue until no further decomposition is possible.
• If p  is a representation of a group G on V and if V has no proper G-invariant subspace, p 
is called an irreducible representation. If V has a proper G-invariant subspace, p  is reducible.

The standard representation of S3 is irreducible.
Suppose that our representation p is reducible, and let W be a proper G-invariant 

subspace of V. Let ex be the restriction of p  to W. We extend a basis of W to a basis of V, 
say B =  (wi , . . . ,  w k\ v^+i, . . .  Vd). The matrix of Pg will have the block form

(10.2.9) Rg =
A P

g0
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where A is the matrix of a  and B g  is some other matrix representation of G. I think of the 
block indicated by * as “junk.” Maschke’s theorem, which is below, tells us that we can get 
rid of that junk. But to do so we must choose the basis more carefully.

T h e o r e m  1 0 .2 .1 0  M a s c h k e ’s  T h e o r e m .  Every representation of a finite group G on a 
nonzero, finite-dimensional complex vector space is a direct sum of irreducible representa
tions.

This theorem will be proved in the next section. We’ll illustrate it here by one more 
example in which G is the symmetric group S3. We consider the representation of S3 by the 
permutation matrices that correspond to the permutations x = ( 1 2 3 )  and y =  ( 1 2 ) .  Let’s 
denote this representation by N:

( 1 0 .2 .1 1 ) Nx =
0  0  1 

1 0  0  

0  1 0

There is no block decomposition for this pair of matrices. However, the vector 
wi = ( 1 ,1 ,1)1 is fixed by both matrices, so it is G-invariant, and the one-dimensional 
subspace W spanned by wi is also G-invariant. The restriction of N to this subspace is the 
trivial representation T. Let’s change the standard basis of C3 to the basis B =  (wi ,  e2, e3). 
With respect to this new basis, the representation N is changed as follows:

1 0

1 
: 

O

: p - lNxP =
1 0

1 
1

, p - 1NyP =
1 1 o

1

II ] 1 1 1 1 0 0 0 -1 0 -1 0
1 0 1 1 O 1 -1 o -1 1

The upper right blocks aren’t zero, so we don’t have a decomposition of the representation 
as a direct sum.

There is a better approach: The matrices N * and Ny are unitary, so N g is unitary 
for all g in G. (They are orthogonal, but we are considering complex representations.) 
Unitary matrices preserve orthogonality. Since W is G-invariant, the orthogonal space W..l 
is G-invariant too (see (10.3.4» . If we form a basis by choosing vectors W2 and w 3 from 
W..l, the junk disappears. The permutation representation N  is isomorphic to the direct sum 
T EEl A. We’ll soon have techniques that make verifying this extremely simple, so we won’t 
bother doing so here.

This decomposition of the representation using orthogonal spaces illustrates a general 
method that we investigate next.

1 0 .3  U N IT A R Y  R E P R E S E N T A T IO N S

Let V be a Hermitian space -  a complex vector space together with a positive definite 
Hermitian form ( , ). A unitary operator T on V is a linear operator with the property

(10.3.1) (Tv, Tw) =  (v, w)

for all v and w in V (8.6.3). If A  is the matrix of a linear operator T with respect to an 
orthonormal basis, then T is unitary if and only if A  is a unitary matrix: A  * =  A  _1.
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•  A  r e p r e s e n t a t io n  p :  G  - -  G L ( V )  o n  a  H e r m it ia n  s p a c e  V  is  c a l l e d  u n ita r y  i f  pg i s  a  

u n ita r y  o p e r a t o r  f o r  e v e r y  g. W e  c a n  w r i t e  th is  c o n d i t io n  as

( 1 0 .3 .2 )  (gv, gw ) =  (v, w) o r  (pgv, pgw) =  (v, w),

fo r  a ll v a n d  w in  V  a n d  a ll g in  G .  S im ila r ly ,  a  m a tr ix  r e p r e s e n t a t io n  R  : G  - -  G L n 

is  u n ita r y  i f  R g i s  a  u n ita r y  m a tr ix  fo r  e v e r y  g in  G .  A  u n ita r y  m a tr ix  r e p r e s e n t a t io n  is  a  

h o m o m o r p h i s m  f r o m  G  t o  th e  u n ita r y  g r o u p :

( 1 0 .3 .3 )  R : G  - -  U n .

A  r e p r e s e n t a t io n  p o n  a  H e r m it ia n  s p a c e  w ill  b e  u n ita r y  i f  an d  o n ly  i f  th e  m a tr ix  r e p r e s e n 

t a t io n  o b t a in e d  u s in g  a n  o r t h o n o r m a l  b a s is  is  u n ita r y .

L e m m a  1 0 .3 .4  L e t  p b e  a  u n ita r y  r e p r e s e n t a t io n  o f  G  o n  a  H e r m it ia n  s p a c e  V , a n d  le t  W  b e  

a  G - in v a r ia n t  s u b s p a c e .  T h e  o r t h o g o n a l  c o m p le m e n t  W .L is  a l s o  G - in v a r ia n t ,  a n d  p i s  t h e  

d ir e c t  s u m  o f  i t s  r e s t r ic t io n s  t o  t h e  H e r m i t i a n  s p a c e s  W  a n d  W .L. T h e s e  r e s t r ic t io n s  a r e  a l s o  

u n ita r y  r e p r e s e n t a t io n s .

P r o o f  I t  is  t r u e  th a t  V  =  W  E9 W .L ( 8 .5 .1 ) .  S in c e  p  is  u n ita r y ,  it p r e s e r v e s  o r t h o g o n a l i t y :  I f  
W  is  in v a r ia n t  a n d  u±  W , t h e n  g u ± g W  =  W . T h i s  m e a n s  th a t  i f  u e W .L , t h e n  gu e W .L . □

T h e  n e x t  c o r o l la r y  f o l lo w s  f r o m  th e  le m m a  b y  in d u c t io n .

C o r o l la r y  1 0 .3 .5  E v e r y  u n ita r y  r e p r e s e n t a t io n  p: G  - -  G  L ( V )  o n  a  H e r m it ia n  v e c t o r  s p a c e

V  is  a n  o r t h o g o n a l  s u m  o f  i r r e d u c ib le  r e p r e s e n t a t io n s .  □

T h e  tr ick  n o w  is  to  tu r n  th e  c o n d i t io n  ( 1 0 .3 .2 )  f o r  a  u n ita r y  r e p r e s e n t a t io n  a r o u n d ,  a n d  

t h in k  o f  i t  a s  a  c o n d i t i o n  o n  t h e  f o r m  in s t e a d  o f  o n  t h e  r e p r e s e n t a t io n .  S u p p o s e  w e  a r e  g iv e n  
a  r e p r e s e n t a t io n  p : G  - -  G  L ( V )  o n  a  v e c t o r  s p a c e  V , a n d  le t  ( , ) b e  a  p o s i t i v e  d e f in i t e  

H e r m it ia n  f o r m  o n  V . W e  s a y  th a t  th e  f o r m  is  G - in v a r ia n t  i f  ( 1 0 .3 .2 )  h o ld s .  T h is  is  e x a c t ly  

t h e  s a m e  a s  s a y in g  th a t  t h e  r e p r e s e n t a t io n  is  u n ita r y ,  w h e n  w e  u s e  t h e  f o r m  t o  m a k e  V  in to  

a  H e r m i t ia n  s p a c e .  B u t  i f  o n ly  t h e  r e p r e s e n t a t io n  p  is  g iv e n ,  w e  a r e  f r e e  t o  c h o o s e  t h e  fo r m .

T h e o r e m  1 0 .3 .6  L e t  p :  G  - - G  L  ( V )  b e  a  r e p r e s e n t a t io n  o f  a  f in i t e  g r o u p  o n  a  v e c t o r  s p a c e  

V . T h e r e  e x i s t s  a  G - in v a r ia n t ,  p o s i t i v e  d e f in i t e  H e r m it ia n  f o r m  o n  V .

P r o o f  W e  b e g in  w ith  a n  a r b itr a r y  p o s i t i v e  d e f in i t e  H e r m it ia n  f o r m  o n  V  t h a t  w e  d e n o t e  b y  

{ , }. F o r  e x a m p le ,  w e  m a y  c h o o s e  a  b a s i s  f o r  V  a n d  u s e  i t  to  t r a n s f e r  t h e  s t a n d a r d  H e r m it ia n  

f o r m  X * Y  o n  C n o v e r  t o  V . T h e n  w e  u s e  t h e  a v e r a g in g  p r o c e s s  t o  c o n s t r u c t  a n o t h e r  f o r m .  

T h e  a v e r a g e d  f o r m  is  d e f in e d  b y

( 1 0 .3 .7 )  (v, w) =  j i j  L  {gv, gw}.
geG

W e  c la im  th a t  t h is  f o r m  is  H e r m it ia n ,  p o s i t i v e  d e f in i t e ,  a n d  G - in v a r ia n t .  T h e  v e r i f i c a t io n s  o f  

t h e s e  p r o p e r t ie s  a r e  e a s y .  W e  o m i t  t h e  f ir s t  t w o ,  b u t  w e  w i l l  v e r i f y  G - in v a r ia n c e .  T h e  p r o o f  

is  a lm o s t  id e n t ic a l  t o  t h e  o n e  u s e d  t o  s h o w  th a t  a v e r a g in g  p r o d u c e s  a n  G - in v a r ia n t  v e c t o r
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(10.2.3), except that it is based here on the fact that right multiplication by an element h of 
G defines a bijective map G —► G.

Let h be an element of G. We must show that (hv, hw) =  (v, w) for all v and 
w in V (10.3.2). We make the substitution g' =  gh. As g  runs over the group, so 
does g'. Then

(hv, hw) =  ŷ y J ] ) g h v ,  ghw} =  ^  ^ { g 'v ,  gw} =' ^  ^ { g v ,  gw} =  (v , w). □
g . g g

Theorem 10.3.6 has remarkable consequences:

C o r o l la r y  1 0 .3 .8

( a )  (Maschke’s Theorem): Every representation of a finite group G is a direct sum of 
irreducible representations.

( b )  Let p: G --+ GL(V) be a representation of a finite group G on a vector space V . There 
exists a basis B of V such that the matrix representation R obtained from p using this 
basis is unitary.

(c) Let R: G --+ G L n be a matrix representation of a finite group G. There is an invertible 
matrix P such that R'g =  p -1 RgP is unitary for all g, i.e., such that R' is a homomorphism 
from G to the unitary group Un.

( d )  Every finite subgroup of G Ln is conjugate to a subgroup of the unitary group Un.

Proof, (a )  This follows from Theorem 10.3.6 and Corollary 10.3.5.

( b )  Given p, we choose a G-invariant positive definite Hermitian form on V ,  and we take 
for B an orthonormal basis with respect to this form. The associated matrix representation 
will be unitary.

(c) This is the matrix form of ( b ) ,  and it is derived in the usual way, by viewing R as a  

representation on the space Cn and then changing basis.

(d) This is obtained from (c) by viewing the inclusion of a subgroup H  into G L n as a matrix
representation of H. □

This corollary provides another proof of Theorem 4.7.14:

C o r o l la r y  1 0 .3 .9  Every matrix A  of finite order in G Ln (C) is diagonalizable.

Proof The matrix A  generates a finite cyclic subgroup of G Ln. By Theorem 10.3.8(d), this 
subgroup is conjugate to a subgroup of the unitary group. Hence A  is conjugate to a unitary 
matrix. The Spectral Theorem 8.6.8 tells us that a unitary matrix is diagonalizable. Therefore 
A  is diagonalizable. □

1 0 . 4  C H A R A C T E R S

As mentioned in the first section, one works almost exclusively with characters, one reason 
being that representations are complicated. The character x  of a representation p is the
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(10.4.1) X(g) =  trace pg.

If R is the matrix representation obtained from p  by a choice of basis, then x  is also 
the character of R. The dimension of the vector space V is called the dimension of the 
representation p, and also the dimension of its character x. The character of an irreducible 
representation is called an irreducible character.

Here are some basic properties of the character.

P r o p o s i t io n  1 0 .4 .2  Let x  be the character of a representation p  of a finite group G.

( a )  x (I)  is the dimension of x.
( b )  The character is constant on conjugacy classes: If g ' =  hgh 1, then x (g ')  = X(g).
( c )  Let g  be an element of G of order k. The roots of the characteristic polynomial of pg

are powers of the k-th root of unity £ =  e21f!/k. If p  has dimension d, then x(g) is a sum
of d  such powers.

( d )  X (g ^ ) is the complex conjugate x (g ) of x(g).
( e )  The character of a direct sum p  E9 p ' of representations is the sum x  +  X' of their 

characters.
(f) Isomorphic representations have the same character.

Proof Parts ( a )  and ( b )  were discussed before, for matrix representations (see (10.1.6)).

(c ) The trace of pg is the sum of its eigenvalues. If A is an eigenvalue of p, then Ak is an 
eigenvalue of p k, and if gk =  1, then pk = I  and Ak =  1. So A is a power of f.

(d )  The eigenvalues Ai, . . . ,  Ad of Rg have absolute value 1 because they are roots of
unity. For any complex number A of absolute value 1, A- 1 =  I .  Therefore x (g -1) =
A1 1 +  ’ ’ ’ +  Ad1 = A1 +  ‘ ’ ’ +  Ad =  X(g)-

Parts ( e )  and (t) are obvious. □

Two things simplify the computation of a character x. First, since x is constant on 
conjugacy classes, we need only determine the value of x on one element in each class -  a 
representative element. Second, since trace is independent of a basis, we may select a 
convenient basis for each individual group element to compute it. We don’t need to use the 
same basis for all elements.

There is a Hermitian product on characters, defined by

(10.4.3) (X, X') =  p j  L  X(g)x'(g)-
g

When x and x ' are viewed as vectors, as in Table 10.1.6, this is the standard Hermitian 
product (8.3.3), scaled by the factor

complex-valued function whose domain is the group G , defined by
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It is convenient to rewrite this formula by grouping the terms for each conjugacy class. 
This is permissible because the characters are constant on them. We number the conjugacy 
classes arbitrarily, as C } ,. . . ,  Cr, and we let Ci denote the order of the class Ci. We also 
choose a representative element gi in the class Ci. Then

We; go back to our usual example: Let G be the symmetric group S3. Its class equation 
is 6 =  1 +  2 +  3, and the elements 1, x, y represent the conjugacy classes of orders 1, 2, 3, 
respectively. Then

( 1 0 .4 .5 )  (xa,  Xa) =  5  ( 4  +  2  +  0 )  =  1 a n d  (xa,  X e )  =  g ( 2  +  - 2  +  0 )  =  0,

The characters x t , Xl;, Xa are orthonormal with respect to the Hermitian product ( , ).

These computations illustrate the Main Theorem on characters. It is one of the most 
beautiful theorems of algebra, both because it is so elegant, and because it simplifies the 
problem of classifying representations so much.

T h e o r e m  1 0 .4 .6  M a in  T h e o r e m .  Let G be a finite group.
(a) (orthogonality relations) The irreducible characters of G are orthonormal: If Xi is the 

character of an irreducible representation Pi, then (Xi, Xi) =  1. If Xi and Xj are the 
characters of nonisomorphic irreducible representations Pi and Pj, then (Xi, Xj) =  0.

( b )  There are finitely many isomorphism classes of irreducible representations, the same 
number as the number of conjugacy classes in the group.

(c) Let p i , . . . ,  p  represent the isomorphism classes of irreducible representations of G,
and let Xl, . . .  , Xr be their characters. The dimension di of p, (or of Xi) divides the 
order |G | of the group, and |G | =  d f +---- +  d;'.

This theorem is proved in Section 10.8, except we won’t prove that d, divides |G |.

One should compare ( c )  with the class equation. Let the conjugacy classes be 
C l, . . .  , Cr and let c  =  |C,-|. Then Ci divides |G |, and |G | =  ci +------ + cr.

The Main Theorem allows us to decompose any character as a linear combination of 
the irreducible characters, using the formula for orthogonal projection (8.4.11). Maschke’s 
Theorem tells us that every representation p is isomorphic to a direct sum of the irreducible 
representations P i , . . . ,  Pr. We write this symbolically as

(10.4.7) p ~ n \p i@ -- -@ n rpr,

where n  are non-negative integers, and n p i  stands for the direct sum of ni copies of p,-.

r
(10.4.4)

(X, X') =  g (x ( l ) x '( l )  +  2x(x) x ' (x) + 3 x (y )x '(y ) ) .

Looking at Table 10.1.6, we find
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C o r o l la r y  1 0 .4 .8  Let p i , . . .  , p r represent the isomorphism classes of irreducible repre
sentations of a finite group G, and let p  be any representation of G. Let Xi and x  be the 
characters of p; and p, respectively, and let n; =  (x, Xi). Then

(a) x =  niXi + --- + n rXr, and
( b )  p  is isomorphic to n ip i © ■ ■ • E9  n rpr .
( c )  Two representations p and p' of a finite group G are isomorphic if and only if their

characters are equal.

Proof. Any representation p is isomorphic to an integer combination m ip i E9 • • • E9 m rp r 
of the representations p;, and then x  =  miXi +  ■ ■■ +  m rXr (Lemma 10.4.2). Since the 
characters Xi are orthonormal, the projection formula shows that m; =  n;. This proves ( a )  

and ( b ) ,  and ( c )  follows. □

C o r o l la r y  1 0 .4 .9  For any characters x  and x', (X, x') is an integer. □

Note also that, with x as in (10.4.8)(a),

(10.4.10) (X, X) =  n i  +  • ■ • +  n2r •

Some consequences of this formula are:

(X, X) =  1 <=* X is an irreducible character,
(X, X) =  2 <=> x is the sum of two distinct irreducible characters,
(X, X) =  3 <=s> x is the sum of three distinct irreducible characters,
(X, X) =  4 ^  X is either the sum of four distinct irreducible characters, or

X =  2x ; for some irreducible character Xi. □

A complex-valued function on the group, such as a character, that is constant on each 
conjugacy class, is called a class function. A class function cp can be given by assigning 
arbitrary values to each conjugacy class. So the complex vector space of class functions 
has dimension equal to the number of conjugacy classes. We use the same product as (10.4.3) 
to make into a Hermitian space:

(cp, 1fr) =  IGi J 2  cp(g)1fr(g)-
g

C o r o l la r y  1 0 .4 .1 1  The irreducible characters form on orthonormal basis of the space of 
class functions.

This follows from parts (a) and (b )  of the Main Theorem. The characters are independent 
because they are orthonormal, and they span because the dimension of is equal to the 
number of conjugacy classes. □

Using the Main Theorem, it becomes easy to see that T , 1:, and A  represent all of the 
isomorphism classes of irreducible representations of the group S3 (see Section 10.1). Since 
there are three conjugacy classes, there are three irreducible representations. We verified 
above (10.4.5) that (xa, Xa) =  1, so A is an irreducible representation. The representations 
T and 1: are obviously irreducible because they are one-dimensional. And, these three 
representations are not isomorphic because their characters are distinct.
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The irreducible characters of a group can be assembled into a table, the character 
table of the group. It is customary to list the values of the character on a conjugacy class 
just once. Table 10.1.6, showing the irreducible characters of S3, gets compressed into 
three columns. In the table below, the three conjugacy classes in S3 are described by the 
representative elements 1, x, y, and for reference, the orders of the conjugacy classes are 
given above them in parentheses. We have assigned indices to the irreducible characters: 
XT =  Xi. XI: =  X2, and xa  =  Xi-

conjugacy 
class 

(1) (2) (3)
1 x y

irreducible Xi 1 1 1
character X2 1 1 -1

X3 2 -1 0

order of the class 
representative element

value of the 
character

(10.4.12) Character table of the symmetric group Si

In such a table, we put the trivial character, the character of the trivial representation, 
into the top row. It consists entirely of l ’s. The first column lists the dimensions of the 
representations (10.4.2)(a).

We determine the character table of the tetrahedral group T of 12 rotational symmetries 
of a tetrahedron next. Let x denote rotation by 21l' / 3  about a face, and let z denote rotation 
by about the center of an edge, as in Figure 7.10.8. The conjugacy classes are C(1), 
C (x), C (x2), and C(z), and their orders are 1, 4, 4, and 3, respectively. So there are four
irreducible characters; let their dimensions be d (-. Then 12 = d2 +------ + 4 . The only solution
of this equation is 12 =  12 -+ 12 +  12 +  32, so the dimensions of the irreducible representations 
are 1, 1, 1, 3. We write the table first with undetermined entries:

(1)
1

(4)
x

(4)
x2

(3)
Z

Xi 1 1 1 1
X2 1 a b c
X3 1 a' V c'
X4 3 * * *

and we evaluate the form (10.4.4) on the orthogonal characters Xi and X2.

(10.4.13) (Xi, X2) =  T2 (1 +  4a +  Ab +  3c) =  0.

Since X2  is a one-dimensional character, X i(z) = c is the trace of a 1 X 1 matrix. It is the 
unique entry in that matrix, and since z2 =  1, i ts square is 1. So c is equal to 1 or -1. Similarly, 
since x3 =  1, X2(x) =  a will be a power of w =  e21Ti/3. So a  is equal to 1, w, or w-. Moreover, 
b =  a 2  ̂ Looking at (10.4.13), one sees that a =  1 is impossible. The possible values are
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a = (J) or (J)2, and then c =  1. The same reasoning applies to the character X3. Since X2 
and X3 are distinct, and since we can interchange -them, we may assume that a  =  (J) and 
a ' =  (J)2. It is natural to guess that the irreducible three-dimensional character X4 might be 
the character of the standard representation of T by rotations, and it is easy to verify this by 
computing that character and checking that (x, X) =  1. Since we know the other characters, 
X4 is also determined by the fact that the characters are orthonormal. The character table is

(1) (4) (4) (3)
1 x x 2 Z

Xl 1 1 1 1
X2 1 (J) (J)2 1
X3 1 w2 (J) 1
X4 3 0 0 -1

(10.4.14) • Character table of the tetrahedral group

The columns in these tables are orthogonal. This is a general phenomenon, whose 
proof we leave as Exercise 4.6.

1 0 .5  O N E -D I M E N S I O N A L  C H A R A C T E R S

A one-dimensional character is the character of a representation of G on a one-dimensional 
vector space. If p  is a one-dimensional representation, then pg is represented by a 1 x  1 
matrix Rg, and x(g) is the unique entry in that matrix. Speaking loosely,

(10.5.1) X(g) =  Pg =  Rg.

A one-dimensional character x is a homomorphism from G to G L i =  Cx, because

X(gh) =  pgh =  pgph =  X (g)x(h).

If x  is one-dimensional and if g is an element of G of order k, then x(g) is a power of the 
primitive root of unity l; =  e2ni/k  ̂ And since C x is abelian, any commutator is in 
the kernel of such a character.

Normal subgroups are among the many things that can be determined by looking at a 
character table. The kernel of a one-dimensional character x  is the union of the conjugacy 
classes C(g) such that x(g) =  1. For instance, the kernel of the character x2 in the character 
table of the tetrahedral group T  is the union of the two conjugacy classes C (l)  U C(y). It is 
a normal subgroup of order four that we have seen before.

Warning: A  character of dimension greater than 1 is not a homomorphism. The values taken 
on by such a character are sums of roots of unity.

T h e o r e m  1 0 .5 .2  Let G be a finite abelian group.
( a )  Every irreducible character of G is one-dimensional. The number of irreducible charac

ters is equal to the order of the group.
( b )  Every matrix representation R of G is diagonalizable: There is an invertible matrix P 

such that p- 1 RgP is diagonal for all g.
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Proof In an abelian group of order N, there will be N conjugacy classes, each contain
ing a single element. Then according to the main theorem, the number of irreducible 
representations is also equal N. The formula N  =  d  +  .■  +  shows that d; =  1 
for all i. □

A simple example: The cyclic group C3 =  {l, x, x2} of order 3 has three irreducible 
characters of dimension 1. If x  is a one of them, then x(x) will be a power of w = e21f'/3, and 
X(x2) =  x(x)2. Since there are three distinct powers of w and three irreducible characters, 
Xi(x) must take on all three values. The character table of C3 is therefore

(1) (1) (1)
1 x x2

Xl I I 1
X2 1 w w2
X3 1 w2 w

(10.5.3) Character table of the cyclic group C3

1 0 .6  T H E R E G U L A R  R E P R E S E N T A T IO N

Let S = (si, . . .  , sn) be a finite ordered set on which a group G operates, and let Rg denote 
the permutation matrix that describes the operation of a group element g on S. If g  operates 
on S as the permutation p, i.e., if gs, =  Sp,, that matrix is (see (1.5.7»

(10.6.1) Rg = Y ^C p ij,

and Rge,- =  epi-. The map g  Rg defines a matrix representation R of G that we call a 
permutation representation, though that phrase had a different meaning in Section 6.11. The 
representation (10.2.11) of S3 is an example of a permutation representation.

The ordering of S is used only so that we can assemble Rg into a matrix. It is nicer 
to describe a permutation representation without reference to an ordering. To do this we 
introduce a vector space Vs that has the unordered basis {eS indexed by elements of S. 
Elements of Vs are linear combinations L g cgeg, with complex coefficients cg. If we are 
given an operation of G on the set S, the associated permutation representation p  of G on 
Vs is defined by

(10.6.2) P g (e s ) — eg s.

When we choose an ordering of S, the basis {eS becomes an ordered basis, and the matrix 
of pg has the form described above.

The character of a permutation representation is especially easy to compute:

Lemma 10.6.3 Let p  be the permutation representation associated to an operation of a 
group G on a nonempty finite set S. For all g  in G, x(g) is equal to the number of elements 
of S that are fixed by g.

Proof  We order the set S arbitrarily. Then every element s that is fixed by g, there is a I on 
the diagonal of the matrix Rg (10.6.1), and for every element that is not fixed, there is a 0. □
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When we decompose a set on which G operates into orbits, we will obtain a decom
position of the permutation representation p or R as a direct sum. This is easy to see. But 
there is an important new feature: The fact that linear combinations are available allows us 
to decompose the representation further. Even when the operation of G on S is transitive, 
p will not be irreducible unless S is a set of one element.

L e m m a  1 0 .6 .4  Let R be the permutation representation associated to an operation of G on 
a finite nonempty ordered set S. When its character x  is written as an integer combination 
of the irreducible characters, the trivial character Xi appears.

Proof The vector L g  eg of Vs, which corresponds to (1, 1, . . . ,  1)t in Cn, is fixed by every 
permutation of S, so it spans a G-invariant subspace of dimension 1 on which the group 
operates trivially. □

E x a m p le  1 0 .6 .5  Let G be the tetrahedral group T, and let Sbe the set (vi . . . . ,  V4) ofvertices 
of the tetrahedron. The operation of G on S defines a four-dimensional representation of 
G. Let x  denote the rotation by 2rr/3 about a face and z the rotation by rr about an edge, as 
before (see 7. 10.8). Then x  acts as the 3-cyde ( 2 3 4 )  and z  acts as ( 1 3 ) ( 2 4 ) .  The associated 
permutation representation is

(10.6.6)

Its character is 

(10.6.7)

Rx =

"1 0 o 0 ' '0 0 1 0 ]
o 0 o 1

, Rz =
o 0 o 1

0 1 0 0 1 0 0 0
o 0 1 0 o 1 o 0

4 1 1 0

The character table (10.4.14) shows that x vert =  Xi +  X4. By the way, another way to 
determine the character X4 in the character table is to check that (xvert, Xvert) =  2. Then 
Xvert is a sum of two irreducible characters. Lemma 10.6.4 shows that one of them is the 
trivial character Xi. So x vert — Xi is an irreducible character. It must be X4. □

• The regular representation p reg of a group G  is the representation associated to the 
operation of G on itself by left multiplication. It is a representation on the vector space Vg 
that has a basis {eg} indexed by elements of G. If h is an element of G, then

(10.6.8) P r£ s ( e h ) = e g h .

This operation of G on itself by left multiplication isn’t particularly interesting, but the 
associated permutation representation p reg is very interesting. Its character x reg is simple:

(10.6.9) . x re8 ( l)  = \G\, and x re8 (g) = 0, ifg=1=l.

This is true because the dimension of x reg is the order of the group, and because multiplication 
by g doesn’t fix any element of G  unless g  =  1.
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This simple formula makes it easy to compute (xreg, X) for any character x:

(10.6.10) (Xreg, X) =  Xreg (i)x (g ) =  | ^ x reg (l)x (l)  =  X tt) =  dim X.

C o r o l la r y  1 0 .6 .1 1  Let Xl, . . . ,  Xr be the irreducible characters of a finite group G, let pi be 
a representation with character Xi, and let d,- =  dim Xi. Then x^g  =  di x i +  .. • +  drx r , 
and peg  is isomorphic to d iP i $  . . .  $  drpr .

This follows from (10.6.10) and the projection formula. Isn’t it nice? Counting 
dimensions,

( 1 0 .6 .1 2 ) |G | =  dim x^eg =  L d i  dim x i =  ^ d f -
i=l (=1

This is the formula in ( c )  of the Main Theorem. So that formula follows from the orthogonality 
relations (10.4.6)(a).

For instance, the character of the regular representation of the symmetric group S3 is

1 x y
*re8 6 0 0

Looking at the character table (10.4.12) for S3, one sees that x reg =  /1  +  /2  +  2x 3, as 
expected.

Still one more way to determine the last character X4 of the tetrahedral group (see
(10.4.14) is to use the relation x reg =  Xl +  X2 + X3 +  3X4-

We determine the character table of the icosahedral group I  next. As we know, I  is 
isomorphic to the alternating group A 5 (7.4.4). The conjugacy classes have been determined 
before (7.4.1). They are listed below, with representative elements taken from A5:

class representative

(10.6.13)

Ci =  {I]
C2 =  15 edge rotations, angle n  
C3 =  20 vertex rotations, angles ± 2n /3  
C4 =  12 face rotations, angles ± 2n /5  
C 5 =  12 face rotations, angles ± 4 n /5

Since there are five conjugacy classes, there are five irreducible characters. The 
character table is

(20)

( 1 )

( 1 2 ) ( 3 4 )

( 1 2 3 )

( 1 2 3 4 5 )

( 1 3 5 2 4 )

( 1 )  ( 1 5 ) ( 1 2 )  ( 1 2 )

0 n 2n/3 2n /5 4n /5
X l 1 1 1 1 1
X2 3 -1 0 a
X3 3 -1 0 a
X 4 4 0 1 -1 -1
X5 5 1 -1 0 0

angle

(10.6.14) Character table of the icosahedral group I

g

r
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The entries ex and are explained below. One way to find the irreducible characters is 
to decompose some permutation representations. The alternating group A5 operates on the 
set of five indices. This gives us a five-dimensional permutation representation; we’ll call it 
p'. Its character x' is

0 27r/3 27r/5 47r/5
x' 5 1 2 0 0

Then (x', x') =  fa ( l  . 52 +  15 • 12 +  20 • 22) =  2. Therefore x' is the sum of two distinct
irreducible characters. Since the trivial representation is a summand, x ' -  Xl is an irreducible 
character, the one labeled X4 in the table.

Next, the icosahedral group I  operates on the set of six pairs of opposite faces of the 
dodecahedron; let the corresponding six-dimensional character be x". A similar computation 
shows that x" — Xl is the irreducible character xs-

We also have the representation of dimension 3 of I  as a rotation group. Its character 
is X2. To compute that character, we remember that the trace of a rotation of ]R3 with angle 
e is 1 +  2 cos e, which is also equal to 1 +  eiG +  e~iG (5.1.28). The second and third entries for 
X2 are 1 +  2 cos =  -1 and 1 +  2 cos 2rr/3 =  0. The last two entries are labeled

ex = 1 +  2 cos(27r / 5) =  1 + £ +  f  and = 1  +  2 cos(47r / 5) =  1 +  f 2 +  f ,

where f  =  e27r1/5  ̂ The remaining character X3 can be determined by orthogonality, or by 
using the relation

Xreg =  Xl +  3X2 +  3X3 +  4X4 +  5X5-

1 0 .7  S C H U R 'S  L E M M A

Let p  and p' be representations of a group G on vector spaces V and V'. A linear 
transformation T: V' -+ V is called G-invariant if it is compatible with the operation of G, 
meaning that for all g in G,

(10.7.1) T(gv') =  gT(v'), or T =  pg 0 T,

as indicated by the diagram

(10.7.2) V' V

Pg

V7 V

A bijective G-invariant linear transformation is an isomorphism of representations (10.1.16). 
It is useful to rewrite the condition for G-invariance in the form

T(v') =  g- 1 T(gv'), or p~l Tp' =  T.

This definition of a G-invariant linear transformation T makes sense only when the 
representations p  and p  are given. It is important to keep this in mind when the ambiguous 
group operation notation T( g v') =  g T( v') is used.



If bases B and B' for V and V' are given, and if Rg, R'g, and M denote the matrices of 
Pg, p'g, and T  with respect to these bases, the condition (10.7.1) becomes

(10.7.3) MR'g = RgM  or R”lMR'g =  M

for all g in G. A matrix M is called G-invariant if it satisfies this condition.

Lemma 10.7.4 The kernel and the image of a G-invariant linear transformation T: V' -+ V 
are G-invariant subspaces of V' and V, respectively.

Proof. The kernel and image of any linear transformation are subspaces. To show that the 
kernel is G-invariant, we must show that if x  is in ker T, then gx  is in ker T, i.e., that if 
T(x) =  0, then T(gx) =  0. This is true: T(gx) =  gT(x) =  gO =  0. If y is in the image of T, 
i.e., y  = T(x) for some x in V', then g y  = gT(x) = T(gx), so gy  is in the image too. □

Similarly, if p  is a representation of G on V, a linear operator on V is G-invariant if

(10.7.5) T{gv) = gT{v) , or pgoT = Topg, for all g  in G ,

which means that T commutes with each of the operators pg. The matrix form of this 
condition is

RgM =  MRg or M =  R" 1 MRg, for all g in G.

Because a G-invariant linear operator T must commute with all of the operators p g, 
invariance is a strong condition. Schur’s Lemma shows this.

Theorem 10.7.6 Schur's Lemma.

(a) Let p  and {  be irreducible representations of G  on vector spaces V and V', respectively, 
and let T: V' -+ V be a G-invariant transformation. Either T is an isomorphism, or else 
T =  O.

(b) Let p  be an irreducible representation of G  on a vector space V, and let T: V  -+ V be 
a G-invariant linear operator. Then T is multiplication by a scalar: T  = c l.

Proof. (a) Suppose that T is not the zero map. Since p' is irreducible and since ker T is 
a G-invariant subspace, kerT  is either V' or {0}. It is not V' because T=I=O. Therefore 
ker T =  {0}, and T  is injective. Since p  is irreducible and im T is G-invariant, im T is either 
{OJ or V. It is not {OJ because T,* 0. Therefore im T =  V and T is surjective.

(b) Suppose that T is a G-invariant linear operator on V. We choose an eigenvalue ). 
of T. The linear operator S = T  — ),1 is also G-invariant. The kernel of S isn’t zero 
because it contains an eigenvector of T. Therefore S  is not an isomorphism. B y  ( a ) ,  
S  =  0 and T =  ,1 .  □

Suppose that we are given representations p  and p' on spaces V and V'. Though 
G-invariant linear tranformations are rare, the averaging process can be used to create a
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G - in v a r ia n t  t r a n s f o r m a t io n  f r o m  a n y  l in e a r  t r a n s f o r m a t io n  T :  V ' - +  V . T h e  a v e r a g e  is  t h e  

l in e a r  t r a n s f o r m a t io n  T  d e f i n e d  b y

( 1 0 .7 .7 )  T ( v ' )  =  r b i L  g - ! ( T ( g v ' » ,  o r  T  =  i l i  £  P g l Tp'g .
geG geG

S im ila r ly ,  i f  w e  a r e  g iv e n  m a tr ix  r e p r e s e n t a t io n s  R  a n d  R', o f  G  o f  d i m e n s io n s  n  a n d  m ,  a n d  

i f  M  is  a n y  m  x  n  m a tr ix ,  t h e n  t h e  a v e r a g e d  m a tr ix  is

( 1 0 .7 .8 )  M  =  i l i  J 2 R"g1 M R g .
geG

L e m m a  1 0 .7 .9  W ith  t h e  a b o v e  n o t a t io n ,  T  is  a  G - in v a r ia n t  l in e a r  t r a n s f o r m a t io n ,  a n d  M  is  a  

G - in v a r ia n t  m a tr ix . I f  T  is  G - in v a r ia n t ,  th e n  t  =  T , a n d  i f  M  is  G - in v a r ia n t ,  th e n  M  =  M .

P r o o f  S in c e  c o m p o s i t io n s  a n d  s u m s  o f  l in e a r  t r a n s f o r m a t io n s  a r e  l in e a r ,  t  is  a  l in e a r  

t r a n s f o r m a t io n ,  a n d  i t  is  e a s y  t o  s e e  t h a t  T  =  T  i f  T  is  in v a r ia n t .  T o  s h o w  t h a t  T  is  in v a r ia n t ,  

w e  l e t  h  b e  a n  e l e m e n t  o f  G  a n d  w e  s h o w  th a t  t  =  h ^ t h .  W e  m a k e  t h e  s u b s t i t u t io n  

g !  =  g h . R e in d e x in g  a s  in  ( 1 0 .2 .3 ) ,

T h e  p r o o f  t h a t  M  is  in v a r ia n t  is  a n a lo g o u s .  □

T h e  a v e r a g in g  p r o c e s s  m a y  y ie ld  t  =  0 , th e  t r iv ia l  t r a n s f o r m a t io n ,  t h o u g h  T  w a s  
n o t  z e r o .  S c h u r ’s  L e m m a  t e l l s  u s  th a t  t h is  must h a p p e n  i f  p  a n d  p '  a r e  i r r e d u c ib le  a n d  n o t  

i s o m o r p h ic .  T h is  fa c t  is  t h e  b a s is  o f  t h e  p r o o f  g iv e n  in  t h e  n e x t  s e c t i o n  t h a t  d is t in c t  i r r e d u c ib le  

c h a r a c t e r s  a r e  o r t h o g o n a l .  F o r  l in e a r  o p e r a t o r s ,  t h e  a v e r a g e  is  o f t e n  n o t  z e r o ,  b e c a u s e  tr a c e  

i s  p r e s e r v e d  b y  t h e  a v e r a g in g  p r o c e s s .

P r o p o s i t io n  1 0 .7 .1 0  L e t  p  b e  a n  ir r e d u c ib le  r e p r e s e n t a t io n  o f  G  o n  a  v e c t o r  s p a c e  V .  

L e t  T  : V  - +  V  b e  a  l in e a r  o p e r a t o r ,  a n d  l e t  t  b e  a s  in  ( 1 0 .7 .7 ) ,  w it h  p '  =  p .  T h e n  

t r a c e  t  =  t r a c e  T .  I f  t r a c e  T  0 ,  t h e n  t  0 .  □

1 0 . 8  P R O O F  O F  T H E  O R T H O G O N A L IT Y  R E L A T IO N S

W e  w il l  n o w  p r o v e  ( a )  o f  t h e  M a in  T h e o r e m .  W e  u s e  m a tr ix  n o t a t io n .  L e t  M  d e n o t e  t h e  

s p a c e  C mX" o f  m  x  n  m a tr ic e s .

L e m m a  1 0 .8 .1  L e t  A  a n d  B  b e  m  X m  a n d  n  X n  m a tr ic e s  r e s p e c t iv e ly ,  a n d  l e t  F  b e  t h e  l in e a r  

o p e r a t o r  o n  M  d e f in e d  b y  F ( M )  =  A M B . T h e  t r a c e  o f  F  is  t h e  p r o d u c t  ( t r a c e  A ) ( t r a c e  B ) .
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Proof The trace of an operator is the sum of its eigenvalues. Let a  1 , . . .  a m and fJ\, . . .  , fJn 
be the eigenvalues of A  and B‘ respectively. If X,- is an eigenvector of A  with eigenvalue ai, 
and Yj is an eigenvector of B‘ with eigenvalue fJj, the mXn matrix M = X i Yj is an eigenvector 
for the operator F , with eigenvalue a fJ  j. Since the dimension of M  is m n, the mn complex 
numbers a f J j  are all of the eigenvalues, provided that they are distinct. If so, then

trace F  =  £ a f J j  =  ( £ a 0 ( E  fJj) =  (trace A) (trace B).
' j  i j

In general, there will be matrices A' and B' arbitrarily close to A  and B  such that the products 
of their eigenvalues are distinct, and the lemma follows by continuity (see Section 5.2). □

Let p' and p  be representations of dimensions m and n, with characters x ' and x 
respectively, and let R' and R be the matrix representations obtained from p' and p  using 
some arbitrary bases. We define a linear operator on the space M  by

(10.8.2) ct>(M) =  ^  R-1MRg = M .
g

In the last section, we saw that M is a G-invariant matrix, and that M = M  if M is invariall!. 
Therefore the image of is the space of G-invariant matrices. We denote that space by M .

Parts ( a )  and (b) of the next lemma compute the trace of the operator in two ways.
The orthogonality relations are part ( c ) .

L e m m a  1 0 .8 .3  With the above notation,
( a )  trace =  (x. x')-
(b )  trace =  dim M .
( c )  If. p  is an irreducible representation, (x, X) =  1, and if p  and p' are non-isomorphic 
irreducible representations, (x, x') =  0.

Proof ( a )  We recall that x (g_1) =  x(g) (10.4.2)(d). Let Fg denote the linear operator on 
M  defined by Fg(M) =  RT^MRg.

Since trace is linear, Lemma 10.8.1 shows that

8 4) trace =  L g trace Fg =  L (trace 1 } (trace R«}
=  iC] L g  x (g -!)x '(g )  =  is] L g  x (g )x '(g ) =  (x , X')-

(b) Let M  be the kernel of <1>. If M  is in the intersection M  0 Af, then (M) =  M and also 
ct>(M) =  0, so M =  O. The intersection is the zero space. Therefore M  is the direct sum 

M  EB M  (4.3.1)(b). We choose a basis for M  by appending bases of M  and J\T. Since M =  M 
if M is invariant, is the identity on M. So the matrix of will have the block form

I

° J  ’
where I is the identity matrix of size dim M. Its trace is equal to the dimension of M .
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( c )  We apply ( a )  and (b ) :  (x, x') =  dim M . If p  and p are irreducible and not isomorphic, 
Schur’s Lemma tells us that the only G-invariant operator is zero, and so the only G- 
invariant matrix is the zero matrix. Therefore M  =  {OJ and (x, x ') =  Q:, If P  — P, Schur’s 
Lemma says that the G-invariant matrices have the form c I .  Then M  has dimension 1, 
and (x, x') =  1. □

We go over to operator notation for the proof of Theorem 1 0 .4 .6 ( b ) ,  that the number 
of irreducible characters is equal to the number of conjugacy classes in the group. As before, 

denotes the space of class functions. Its dimension is equal to the number of conjugacy 
classes (see (10.4.11)). Let C denote the subspace of spanned by the characters. We 
show that C =  by showing that the orthogonal space to C in is zero. The next lemma 
does this.

L e m m a  1 0 .8 .5

( a )  Let ({J be a class function on G that is orthogonal to every character. For any represen
tation p  of G, L g ({J(g)Pg is the zero operator.

( b )  Let preg be the regular representation of G. The operators prgeg with g in G are lineal ly 
independent.

( c )  The only class function ({J that is orthogonal to every character is the zero function.

Proof. ( a )  Since any representation is a direct sum of irreducible representations, we may 
assume that p  is irreducible. Let T =  ^  L g ({J(g)Pg. We first show that T is a G-invariant 
operator, i.e., that T =  p , JTph for every h in G. Let g ” = h ^ g h . Then as g runs over the 
group G, so does g". Since p is a homomorphism, phVgPft =  Pg", and because ({l is a class 
function, ({J(g) =  ({J(g"). Therefore

P- 1 TPh =  ii]  J 2  ̂ > P s "  = |G| I > ( S " ) Pg" =  p i  £  vO&Pg =  T. 
g g g 

Let x  be the character of p. The trace of T is ^  L g  ({J(g)x(g) =  (({J, X). The trace is 
zero because ({J is orthogonal to x. Since p is irreducible, Schur’s lemma tells us that T is 
multiplication by a scalar, and since its trace is zero, T =  0.

( b )  We apply Formula 10.6.8 to the basis element e l of Vg: p ;eg(ei) =  eg. Then since the 
vectors eg are independent elements of Vg, the operators p^eg are independent too.

( c )  Let ({J be a class function orthogonal to every character. (a )  tells us that L g ({J(g)PgeS =  0
is a linear relation among the operators p^eg, which are independent by ( b ) .  Therefore all of 
the coefficients ({l(g) are zero, and ({J is the zero function. □

10.9 REPRESENTATIONS OF SU2
Remarkably, the orthogonality relations carry over to compact groups, matrix groups that 
are compact subsets of spaces of matrices, when summation over the group is replaced by
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an integral. In this section, we verify this for some representations of the special unitary 
group SU2.

We begin by defining the representations that we will analyze. Let Hn denote the 
complex vector space of homogeneous polynomials of degree n  in the variables w, v, of 
the form

(10.9.1) / ( « ,  V) =  COU n +  Cn-1 u”_l v+--------+Cn-\Ul/'- 1 +  C„ v” •

We define a representation

(10.9.2) pn :SU 2 -+ G L {H n)

as follows: The result of operating by an element P of SU2 on a polynomial f  in will be 
another polynomial that we denote by [Pf). The definition is

(10.9.3) [P f)(u , v) =  f ( u a  +  vb, -u b  +  vZf), where P _  [ a  - E  

~  y b  a

In words, P operates by substituting (u , v)P for the variables (u , v). Thus

[Pu‘v7] =  (ua  +  vb)‘(-u b  +  v a ) i .

It is easy to compute the matrix of this operator when P is diagonal. Let a  =  e‘°, and let

(10.9.4) * = [ *"  e - ]  = [ a  a ]  =  [ “  a -

Then [Agu'v-7] =  (u a ) ‘(vCi)i  =  u ‘vJ’a ' j. SoAe acts on the basis (u” , u” 1 V, • • • , uv” 1, vn) 
of the space H n as the diagonal matrix

The character Xn of the representation Pn is defined as before: Xn(g) _  trace It 
is constant on the conjugacy classes, which are the latitudes on the sphere SU2. Because of 
this, it is enough to compute the characters x n on one matrix in each latitude, and we use 
Ag. To simplify notation, we write X” (0) for Xn (Ag). The character is

xo(O) =  1 ‘
Xi (0) =  a  +  a - 1 

X2(0) =  a 2 +  1 +  a - 2

(10.9.5) Xn (0) =  a n +  a ” 2 + ■ +  a ~ n =
an+! - a"(n+1)

a  — a - 1
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(10.9.6) (Xm, Xn) =  iGi f  Xm (g)Xn (g) dV.
J  G

In this formula G stands for the group SU 2 , the unit 3-sphere, |G | i s the three-dimensional 
volume of the unit sphere, and dV stands for the integral with respect to three-dimensional 
volume. The characters happen to be real-valued functions, so the complex conjugation that 
appears in the formula is irrelevant.

T h e o r e m  1 0 .9 .7  The characters of SU2 that are defined above are orthonormal: (xm, Xn) =  0 
if m =l= n, and (Xn, Xn) =  1.

Proof. Since the characters are constant onthe latitudes,wecan evaluate the integral (10.9.6) 
by slicing, as we learn to do in calculus. We use the unit circle xo =  cosO, Xi =  sinO, and
X2 = .. . =  x n =  0 to parametrize the slices of the unit n-sphere §n : {x§ + x \ +------+x2 =  I}.
So 0 =  0 is the north pole, and 0 =  rr is the south pole (see Section 9.2). For 0 <  0 <  rr, the 
slice of the unit n-sphere is an (n -l)-sphere  of radius sin 0.

To compute an integral by slicing, we integrate with respect to arc length on the unit 
circle. Let voln (r) denote the n-dimensional volume of the n-sphere of radius r. So voh (r) 
is the arc length of the circle of radius r, and volz(r) is the surface area of the 2-sphere of 
radius r. If f  is a function on the unit n-sphere §n that is constant on the slices 0 =  c, its 
integral will be

The Hermitian product that replaces (10.4.3) is

(10.9.8) f  f d V n = (  /(0 )vol„_ i(sin0)d0 ,
Jsn Jo

where d V n denotes integration with respect to n-dimensional volume, and /(0 )  denotes the 
value of f  on the slice.

Integration by slicing provides a recursive formula for the volumes of the spheres:

(10.9.9) voln (1) =  f I dVn = f voln-1 (sin 0) dO,
J sn Jo

and voln (r) =  ^  voln (1). The zero-sphere x§ =  consists of two points. Its zero
dimensional volume is 2. So

r 7 t  p7T

voli(r) =  r  I volo(sinO)dO =  r  I 2dO =  2rrr,
Jo Jo

f i r  r n

(10.9.10) volz(r) =  -,2 I vol 1 (sinO)dO =  -,2 I 2rrsin OdO =  4rr-,2,
Jo Jo

vo J(r) =  ,3 fo vol2(sinO)dO =  ,3 fo 4rrsin2 OdO =  2;r2,3.
Jo Jo

To evaluate the last integral, it is convenient to use the formula sin 0 =  -i (a  -  a ' 1) /2.

(10.9.11) vol2(sin0) =  4rrsin20 =  -rr(ot -  a -1)2.
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Expanding, V0I2 (sinfJ) =  1l' ( 2  -  (a  +  a  J)). The integral of a 2 +  a  2 is zero:

f7T p2lT
( 1 0 .9 .1 2 )  ( a k  +  a - k  ) d f J  =  a k d fJ  =

J 0 Jo
0  if k  >  0 
21l '  if k  =  O.

We now compute the integral (10.9.6). The volume of the group SU2 is

(10.9.13) vol3(l) =  21l '2.

The latitude sphere that contains A# has radius sin fJ. Since the characters are real, integration 
by slicing gives

(10.9.14)

(Xm, Xn) =  j 0  Xm(fJ)Xn(fJ) vol2(sinfJ) dfJ

_  1  [ n ( a m + 1 - a - ( m + l ) )  ( a n + 1 - a - ( n + 1 ) )  ( 

21l' 2  J o  \  a  _ a - 1  J y  a  _  a -1  J  (

r n

( - 1l' ( a  - a  ^ ) 2} d fJ

=  _  —  f n (am+n+2 +  a _(m+”+2»} dfJ +  ± -  f n (am- n +  a ”- m) dfJ 
21l '  Jo 21l '  Jo

This evaluates to 1 if m =  n and to zero otherwise (see (10.9.12». The characters Xn are 
orthonormal. □

We won’t prove the next theorem, though the proof follows the case of finite groups 
fairly closely. If you are interested, see [Sepanski].

Theorem 10.9.15 Every continuous representation of SU2 is isomorphic to a direct sum of 
the representations pn (10.9.2).

We leave the obvious generalizations to the reader.

—Israel Herstein

E X E R C ISE S

Section 1 Definitions
1.1. Show that the image of a representation of dimension 1 of a finite group is a cyclic group.
1.2. (a) Choose a suitable basis for ]R3 and write the standard representation of the octahedral 

group O explicitly. (b) Do the same for the dihedral group D„.

Section 2 Irreducible Representations

2.1. Prove that the standard three-dimensional representation of the tetrahedral group T is 
irreducible as a complex representation.
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2.2. C o n s id e r  t h e  s ta n d a r d  t w o -d im e n s io n a l  r e p r e s e n ta t io n  o f  t h e  d ih e d r a l g r o u p  D „ .  F o r  
w h ic h  n  is  th is  a n  ir r e d u c ib le  c o m p le x  r e p r e s e n ta t io n ?

2.3. S u p p o s e  g iv e n  a  r e p r e s e n ta t io n  o f  t h e  s y m m e tr ic  g r o u p  S 3 o n  a  v e c t o r  s p a c e  V . L e t  x  
a n d  y  d e n o t e  th e  u s u a l  g e n e r a to r s  fo r  S 3.

(a) L e t  m b e  a  n o n z e r o  v e c to r  in  V . L e t  v  =  u  +  x u  +  x 2u  a n d  w  =  u  +  y u .  B y  
a n a ly z in g  th e  G - o r b it s  o f  v ,  w ,  s h o w  th a t  V  c o n ta in s  a  n o n z e r o  in v a r ia n t  s u b s p a c e  
o f  d im e n s io n  a t m o s t  2.

(b) P r o v e  th a t  a ll ir r e d u c ib le  t w o -d im e n s io n a l  r e p r e s e n ta t io n s  o f  G  a r e  is o m o r p h ic , a n d  
d e t e r m in e  a ll  ir r e d u c ib le  r e p r e s e n ta t io n s  o f  G .

Section 3 Unitary Representations
'-1  -13.1. L e t  G  b e  a  c y c lic  g r o u p  o f  o r d e r  3. T h e  m a tr ix  A  =

1 0
h a s  o r d e r  3, s o  it  d e f in e s

a  m a tr ix  r e p r e s e n t a t io n  o f  G . U s e  t h e  a v e r a g in g  p r o c e s s  t o  p r o d u c e  a  G - in v a r ia n t  f o r m  
f r o m  t h e  s ta n d a r d  H e r m it ia n  p r o d u c t  X *  Y  o n  C 2 .

3.2. L e t  p :  G  - >  G  L  ( V )  b e  a  r e p r e s e n ta t io n  o f  a  f in ite  g ro u p  o n  a  r e a l v e c t o r  s p a c e  V . P r o v e  
th e  fo llo w in g :

(a) T h e r e  e x is ts  a  G - in v a r ia n t , p o s i t iv e  d e f in it e  sy m m e tr ic  f o r m  ( , ) o n  V .

(b) p  is  a  d ir e c t  su m  o f  ir r e d u c ib le  r e p r e s e n ta t io n s .

(c) E v e r y  f in ite  su b g r o u p  o f  G  L „  (JR) is  c o n ju g a te  t o  a  s u b g r o u p  o f  O „ .

3.3. (a) L e t  R  : G  ->• S L 2JR ) b e  a  fa ith fu l  r e p r e s e n ta t io n  o f  a  fin ite  g r o u p  b y  rea l 2 x 2
m a tr ic e s  w ith  d e te r m in a n t  1. U s e  th e  r e s u lts  o f  E x e r c is e  3 .2  t o  p r o v e  th a t  G  is  a  
c y c lic  g r o u p .

(b) D e t e r m in e  t h e  f in it e  g r o u p s  th a t  h a v e  fa ith fu l r e a l tw o -d im e n s io n a l  r e p r e s e n ta t io n s .

(c) D e t e r m in e  th e  f in it e  g r o u p s  th a t  h a v e  fa ith fu l  r e a l  th r e e -d im e n s io n a l  r e p r e s e n ta t io n s  
w ith  d e te r m in a n t  1.

3.4. L e t  ( , ) b e  a  n o n d e g e n e r a t e  s k e w -s y m m e tr ic  f o r m  o n  a  v e c t o r  s p a c e  V ,  a n d  le t  p  b e  
a  r e p r e s e n ta t io n  o f  a  f in i t e  g r o u p  G  o n  V . P r o v e  th a t  t h e  a v e r a g in g  p r o c e s s  ( 1 0 .3 .7 )  
p r o d u c e s  a  G - in v a r ia n t  sk e w -s y m m e tr ic  fo r m  o n  V , a n d  s h o w  b y  e x a m p le  t h a t  t h e  fo r m  
o b ta in e d  in  th is  w a y  n e e d n ’t b e  n o n d e g e n e r a t e .

' 1  1 '3.5. L e t  x  b e  a  g e n e r a to r  o f  a  c y c lic  g r o u p  G  o f  o r d e r  p .  S e n d in g  x 1 d e f in e s  a

m a tr ix  r e p r e s e n ta t io n  G  ->• G  L 2 (IF p). P r o v e  th a t  th is r e p r e s e n ta t io n  is  n o t  th e  d ir e c t  
su m  o f  ir r e d u c ib le  r e p r e s e n ta t io n s .

Section 4 Characters
4.1. F in d  t h e  d im e n s io n s  o f  th e  ir r e d u c ib le  r e p r e s e n ta t io n s  o f  t h e  o c ta h e d r a l g r o u p , th e  

q u a te r n io n  g r o u p , a n d  t h e  d ih e d r a l g r o u p s  D 4, D s ,  a n d  D 6.

4.2. A  n o n a b e l ia n  g ro u p  G  h as o r d e r  5 5 . D e t e r m in e  its c la s s  e q u a t io n  a n d  th e  d im e n s io n s  o f  
its ir r e d u c ib le  c h a r a c te r s .

4.3. D e t e r m in e  th e  c h a r a c te r  ta b le s  fo r

(a) th e  K le in  fo u r  g r o u p ,

(b) th e  q u a te r n io n  g r o u p ,
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(c) the dihedral group D4,
(d) the dihedral group Dg,
(e) a nonabelian group of order 21 (see Proposition 7.7.7).

4.4. Let G be the dihedral group D5, presented with generators x, y  and relations x5 = 1, 
y2 =  1, yxy_l =  x_1, and let X be an arbitrary two-dimensional character of G.

(a) What does the relation x 5 = 1 tell us about x(x)?
(b )  What does the fact that x and x_1 are conjugate tell us about x(x)?
(c) Determine the character table of G.
(d )  Decompose the restriction of each irreducible character of Ds into irreducible 

characters of Cs.

4 .5 . Let G = (x, y  | x5, y4, y x y - 1 [ 2). Determine the character table of G.
4 .6 . Explain how to adjust the entries of a character table to produce a unitary matrix, and 

prove that the columns of a character table are orthogonal.
4 .7 . Let 7r : G  --+ G' =  G /  N  be the canonical map from a finite group to a quotient group, 

and let p' be an irreducible representation of G'. Prove that the representation p =  p' o n  
of G is irreducible in two ways: directly, and using Theorem 10.4.6.

4.8. Find the missing rows in the character table below:

(1) (3) (6) (6) (8)
Xl 1 1 1 1 1
X2 1 1 -1 -1 1
X3 3 -1 1 -1 0
X4 3 -1 - 1 1 0

*4.9. Below is a partial character table. One conjugacy class is missing.

(1) (1) (2) (2) (3)
1 u v w X

Xl 1 1 1 1 1
X2 1 1 1 1 -1
X3 1 -1 1 -1 i
X4 1 -1 1 -1 - i
Xs 2 2 -1 -1 0

(a) Complete the table.
(b) Determine the orders of representative elements in each conjugacy class.
(c) Determine the normal subgroups.
(d) Describe the group.

4.10. (a) Find the missing rows in the character table below.
(b) Determine the orders of the elements a, b, c, d.
(c) Show that the group G with this character table has a subgroup H  of order 10, and 

describe this subgroup as a union of conjugacy classes.
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(d )  Decide whether H  is Cio or D5.
(e) Determine all normal subgroups of G.

(1 )  ( 4 )  ( 5 )  ( 5 )  ( 5 )

1 a b c d
Xl 1 1 1 1 1
X2 1 1 -1 -1 1
X3 1 1 -i i -1
X4 1 1 i - l -1

*4.11. In the character table below, a> = £ nil/.

(1 )  ( 6 )  ( 7 )  ( 7 )  ( 7 )  ( 7 )  ( 7 )

1 a b c d e f
Xl 1 1 1 1 1 1 1
X2 1 1 1 w W ( J W
X3 1 1 1 W c0 W CO
X4 1 1 -1 - 0} -u> CO £0
X5 1 1 -1 - £ 0 - ( 0 £0 CO
X6 1 1 -1 -1 -1 1 1
X7 6 -1 0 0 0 0 0

( a )  S h o w  th a t  G  h a s  a  n o r m a l s u b g r o u p  N  is o m o r p h ic  t o  D 7.

(b )  D e c o m p o s e  th e  r e s tr ic t io n s  o f  e a c h  c h a r a c te r  t o  N  in to  ir r e d u c ib le  N -c h a r a c te r s .

( c )  D e t e r m in e  th e  n u m b e r s  o f  S y lo w  p - s u b g r o u p s , fo r  p  =  2, 3, a n d  7.

(d )  D e t e r m in e  th e  o r d e r s  o f  t h e  r e p r e s e n ta t iv e  e le m e n t s  c ,  d, e ,  f .

( e )  D e t e r m in e  a ll  n o r m a l s u b g r o u p s  o f  G .

4.12. L e t  H  b e  a  su b g r o u p  o f  in d e x  2  o f  a  g r o u p  G ,  a n d  l e t  u : H  - +  G L ( V )  b e  a  r e p r e s e n 
ta t io n . L e t  a  b e  a n  e le m e n t  o f  G  n o t  in  H .  D e f in e  a  c o n ju g a te  r e p r e s e n t a t io n  U  : H  - +  
G L ( V )  b y  t h e  ru le u ' ( h )  =  a ( a ~ Jh a ) .  P r o v e  th a t

(a )  u '  is  a  r e p r e s e n ta t io n  o f  H .

( b )  I f  u  is  t h e  r e s tr ic t io n  t o  H  o f  a  r e p r e s e n ta t io n  o f  G , t h e n  a' i s  is o m o r p h ic  t o  u .

(c) I f  b  is  a n o th e r  e le m e n t  o f  G  n o t  in  H ,  t h e n  t h e  r e p r e s e n ta t io n  u " ( h )  =  u ( b - 1 h b )  is  
i s o m o r p h ic  t o  cr' .

S e c t io n  5  O n e - D im e n s io n a l  C h a r a c te r s

5 .1 . D e c o m p o s e  th e  s ta n d a r d  tw o -d im e n s io n a l  r e p r e s e n ta t io n  o f  t h e  c y c l ic  g r o u p  Cn b y  
r o ta t io n s  in to  ir r e d u c ib le  ( c o m p le x )  r e p r e s e n ta t io n s .

5 .2 . P r o v e  th a t  th e  s ig n  r e p r e s e n ta t io n  p  s ig n  p  a n d  t h e  tr iv ia l r e p r e s e n ta t io n  a r e  th e  o n ly  
o n e - d im e n s io n a l  r e p r e s e n ta t io n s  o f  th e  sy m m e tr ic  g r o u p  S n .

5.3. S u p p o s e  th a t  a  g r o u p  G  h a s  e x a c t ly  t w o  ir r e d u c ib le  c h a r a c te r s  o f  d im e n s io n  1, a n d  le t  x  
d e n o t e  t h e  n o n tr iv ia l  o n e - d im e n s io n a l  c h a r a c te r . P r o v e  th a t  fo r  a ll  g  in  G , X ( g )  =  ±  1.
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5.4. Let x be the character of a representation p of dimension d. Prove that Ix(g)l :: d  for 
all g in G, and that if Ix(g)l =  d, then p(g) =  {J, for some root of unity {. Moreover, if 
X(g) =  d, then Pg is the identity operator.

5.5. Prove that the one-dimensional characters of a group G form a group under multiplication 
of functions. This group is called the character'proup of G, and is often denoted by G. 
Prove that if G is abelian, then | G I =  I G I and G « G.

5.6. Let G be a cyclic group oforder n, generated byan element x, and let f  =  elmln.

( a )  Prove that the irreducible representations are Po, . . . ,  pn- i ,  where pk : G Cx is
defined by Pk(x) =  {k. .

(b ) Identify the character group of G (see Exercise 5.5).

5.7. ( a )  Let cp: G -+ G' be a homomorphism of abelian groups. Define an induced homo
morphism cp: G' -+ G between their character groups (see Exercise 5.5).

(b )  Prove that if cp is injective, then cp is surjective, and conversely.

Section 6 The Regular Representation

6.1. Let Rreg denote the regular matrix representation of a group G. Determine L g  Rrg 8-
6.2. Let p  be the permutation representation associated to the operation of D 3 on itself by 

conjugation. Decompose the character of p into irreducible characters.
6.3. Let xe denote the character of the representation of the tetrahedral group T  on the six 

edges of the tetrahedron. Decompose this character into irreducible characters.
6.4. ( a )  Identify the five conjugacy classes in the octahedral group O, and find the orders of

its irreducible representations.
(b )  The group O operates on these sets:

• six faces of the cube,
• three pairs of opposite faces,
• eight vertices,
• four pairs of opposite vertices,
• six pairs of opposite edges,
• two inscribed tetrahedra.

Decompose the corresponding characters into irreducible characters.
(c) Compute the character table for O.

6.5. The symmetric group S n operates on C” by permuting the coordinates. Decompose this 
representation explicitly into irreducible representations.
Hint: I recommend against using the orthogonality relations. This problem is closely 
related to Exercise M.l from Chapter 4.

6.6. Dec ompose the characters of the representations of the icosahedral group on the sets of 
faces, edges, and vertices into irreducible characters.

6.7. The group S5 operates by conjugation on its normal subgroup A5. How does this action 
operate on the isomorphism classes of irreducible representations of A5?
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6.8. The stabilizer in the icosahedral group of one of the cubes inscribed in a dodecahedron 
is the tetrahedral group T. Decompose the restrictions to T of the irreducible characters 
oU .

6.9. (a) Explain how one can prove that a group is simple by looking at its character
table.

(b) Use the character table of the icosahedral group to prove that it is a simple group.
6.10. Determine the character tables for the nonabelian groups of order 12 

(see (7.8.1».
6.11. The character table for the group G = PSL2('F7) is below, with y =  !(-1 +  . . i ) ,  

y '  =  1 ( - 1  -  . . j ) .

(1) (21) (24) (24) (42) (56)
1 a b c d e

Xl 1 1 1 1 1 1
X2 3 -1 Y y ' 1 0
X3 3 -1 y ' y 1 0
X4 6 2 -1 -1 0 0
x s 7 -1 0 0 -1 1
X6 8 0 1 1 0 -1

(a) Use it to give two proofs that this group is simple.
(b) Identify, so far as possible, columns that corresponds to the conjugacy classes of the 

elements

and find matrices that represent the remaining conjugacy classes.
(c) G operates on the set of eight one-dimensional subspaces of F2. Decompose the 

associated character into irreducible characters.

Section 7 Schur’s Lemma
7.1. Prove a converse to Schur’s Lemma: If p is a representation, and if the only G-invariant 

linear operators on V are multiplications by scalars, then p is irreducible.
7.2. Let A be the standard representation (10.1.3) of the symmetric group S3, and let 

'1  1 "B . Use the averaging process to produce a G-invariant linear operator from
left multiplication by B.

'1  1 - 1* -1 - 1 '
7.3. The matrices Rx = 1 , Ry = -1 1

1 -1 -1
define a representation R of the

group S3. Let rp be the linear transformation C1 -*■ C3 whose matrix is (1, 0, 0)1 . Use the 
averaging method to produce a G-invariant linear transformation from rp, using the sign 
representation of (10.1.4) on C1 and the representation Ron C3.
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7.4. Let p  be a representation of G and let C be a conjugacy class in G. Show that the linear 
operator T = L gec  Ps is G-invariant.

7.5. Let p  be a representation of a group G on V, and let X be a character of G, not necessarily 
the character of p. Provd that the linear operator T  = L g  X(g)ps on V is G-invariant.

7.6. Compute the matrix of the operator F  of Lemma 10.8.1, and use the matrix to verify the 
formula for its trace.

S e c t io n  8 R e p r e s e n ta t io n s  o f  SU2

8.1. Calculate the four-dimensional volume of the 4-ball B4 of radius r  in ]R4, the locus
*0 + ' ‘ ' +  x 3 by slicing with three-dimensional slices. Check your answer by
differentiating.

8.2. Verify the associative law [Q[P/]] =  [(Q P)/] for the operation (10.9.3).
8.3. Prove that the orthogonal representation (9.4.1) SU2 -+ SO3 is irreducible.
8.4. Left multiplication defines a representation of SU2 on the space ]R4 with coordinates 

xo, . . . ,  X3, as in Section 9.3. Decompose the associated complex representation into 
irreducible representations.

8.5. Use Theorem 10.9.14 to determine the irreducible representations of the rotation group 
SO3.

8.6. (representations o f the circle group) All representations here are assumed tobe  differen
tiable functions of 0. Let G be the circle group {ei6}.

( a )  Let p be a representation of G on a vector space V. Show that there exists a positive 
definite G-invariant Hermitian form on V.

(b )  Prove Maschke’s Theorem for G.
(c) Describe the representations of G in terms of one-parameter groups, and use that 

description to prove that the irreducible representations are one-dimensional.
(d) Verify the orthogonality relations, using an analogue of the Hermitian product

(10.9.6).

8.7. Using the results of Exercise 8.6, determine the irreducible representations of the 
orthogonal group O2.

M is c e l la n e o u s  P r o b le m s

M .I .  The representations in this problem are' real. A molecule M in ‘Flatland’ (a two
dimensional world) consists of three like atoms a i , a 2 , a 3 forming a triangle. The triangle 
is equilateral at time to, its center is at the origin, and ai is on the positive x-axis. The group 
G of symmetries of M at time to is the dihedral group D 3 . We list the velocities of the 
individual atoms at to and call the resulting six-dimensional vector v =  (vi, V2 , V3 )‘ the 
state of M. The operation of G on the space V of state vectors defines a six-dimensional 
matrix representation S. For example, the rotation p  by 21l' / 3  about the origin permutes 
the atoms cyclically, and at the same time it rotates them.

( a )  Let r be the reflection about the x-axis. Determine the matrices Sp and Sr.
(b) Determine the space W of vectors fixed by Sp, and show that W is G-invariant.
( c )  Decompose W and V explicitly into direct sums ofirreducible G-invariant subspaces.
(d) Explain the subspaces found in (c) in terms of motions and vibrations of the molecule.
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M.2. W h a t  c a n  b e  sa id  a b o u t  a  g r o u p  th a t  h a s e x a c t ly  t h r e e  ir r e d u c ib le  c h a r a c te r s , o f d im e n s io n s
1 , 2 , a n d  3, r e s p e c t iv e ly ?

M .3 . L e t  p  b e  a  r e p r e s e n ta t io n  o f  a g r o u p  G . In  e a c h  o f  th e  f o l lo w in g  c a s e s , d e c id e  w h e th e r  o r  
n o t  p ' is  a  r e p r e s e n ta t io n ,  a n d  w h e th e r  o r  n o t  it  is  n e c e s s a r i ly  i s o m o r p h ic  t o  p .

(a) x  is a  f ix e d  e le m e n t  o f  G ,  a n d  p ' =  p vgv- i

(b ) cp is  a n  a u to m o r p h is m  o f  G ,  a n d  =  pcp(g).

( c )  cr is  a o n e - d im e n s io n a l  r e p r e s e n ta t io n  o f  G ,  a n d  p '  =  O"gPg.

M .4 . P r o v e  th a t  a n  e le m e n t  z  o f  a  g r o u p  G  is in  th e  c e n te r  o f  G  i f  a n d  o n ly  i f  fo r  a ll  ir r e d u c ib le  
r e p r e s e n ta t io n s  p ,  p ( z )  is  m u lt ip lic a t io n  b y  a  sca lar .

M .S . L e t  A., B  b e  c o m m u t in g  m a tr ic e s  su c h  th a t  s o m e  p o s i t iv e  p o w e r  o f  e a c h  m a tr ix  is  th e  
id e n tity . P r o v e  th a t th e r e  is a n  in v e r t ib le  m a tr ix  P  su c h  th a t  P A P 1 a n d  P B P 1 a r e  b o th  
d ia g o n a l.

M .6 .  L e t  p  b e  a n  ir r e d u c ib le  r e p r e s e n ta t io n  o f  a  f in it e  g r o u p  G . H o w  u n iq u e  is  t h e  p o s i t i v e  
d e f in i t e  G - in v a r ia n t  H e r m it ia n  fo r m ?

M .7 . D e s c r ib e  t h e  c o m m u t a to r  s u b g r o u p  o f  a  g r o u p  G  in  te r m s  o f  t h e  c h a r a c te r  ta b le .

M .8 .  P r o v e  th a t  a  f in i t e  s im p le  g r o u p  th a t  is  n o t  o f  p r im e  o r d e r  h a s  n o  n o n tr iv ia l  r e p r e s e n t a t io n  
o f  d im e n s io n  2.

* M .9 . L e t  H  b e  a  su b g r o u p  o f  in d e x  2  o f  a  f in ite  g r o u p  G . L e t  a  b e  a n  e le m e n t  o f  G  th a t  is  n o t  
in  H ,  s o  th a t  H  a n d  a H  a r e  t h e  t w o  c o s e t s  o f  H .

( a )  G iv e n  a  m a tr ix  r e p r e s e n ta t io n  S  : H  - +  G  L «  o f  t h e  su b g r o u p  H ,  t h e  induced 
representation ind S  : G  - +  G  £ 2« o f  t h e  g r o u p  G  is  d e f in e d  b y

(ind S) g =

fo r  h  i n  H  a n d  g  in  a H .  P r o v e  th a t  ind S  i s  a  r e p r e s e n ta t io n  o f  G ,  a n d  d e s c r ib e  its  
c h a r a c te r .

Note: T h e  e le m e n t  a ^ h a  w ill  b e  in  H ,  b u t  b e c a u s e  a  is  n o t  in  H ,  it  n e e d n ’t b e  a  
c o n ju g a te  o f  h  in  H .

( b )  I f  R :  G  - +  G  L n is  a  m a tr ix  r e p r e s e n ta t io n  o f  G ,  w e  m a y  r e s tr ic t  it  t o  H .  W e  d e n o t e  
t h e  r e s tr ic t io n  b y  res R : H  - +  G  Ln. P r o v e  th a t res (ind S) ~  S  EB S', w h e r e  S ' is  t h e  
conjugate representation d e f in e d  b y  S"  =  S a- i h a .

( c )  P r o v e  Frobenius reciprocity: (X indS, X r )  =  (X s ,  X ^ r ) .

( d )  L e t  S  b e  a n  ir r e d u c ib le  r e p r e s e n ta t io n  o f  H .  U s e  F r o b e n iu s  r e c ip r o c ity  t o  p r o v e  th a t  i f  
S  n o t  is o m o r p h ic  t o  th e  c o n ju g a te  r e p r e s e n ta t io n  S ', th e n  t h e  in d u c e d  r e p r e s e n t a t io n  
ind S  is  ir r e d u c ib le , an d  o n  th e  o th e r  h a n d , i f  S  a n d  S '  a r e  is o m o r p h ic , t h e n  ind S  is  a  
su m  o f  tw o  n o n - is o m o r p h ic  r e p r e s e n ta t io n s  o f  G .

* M .1 0 . L e t  H  b e  a  su b g r o u p  o f i n d e x  2  o f a  g r o u p  G ,  a n d  le t  R  b e  a  m a tr ix  r e p r e s e n ta t io n  o f  G .
L e t  R ' d e n o t e  th e  r e p r e s e n ta t io n  d e f in e d  b y  R ^ =  R g  i f  g  e  H ,  a n d  R ^ =  - R g  o t h e r w is e .

(a) S h o w  that R ' is  is o m o r p h ic  to  R  i f  a n d  o n ly  i f  th e  c h a r a c te r  o f  R  is  id e n t ic a l ly  z e r o  o n  
th e  c o s e t  g  H  n o t  e q u a l  t o  H .

( b )  U s e  F r o b e n iu s  r e c ip r o c ity  (E x e r c is e  M .9 )  t o  s h o w  th a t ind(res R )  ^  R  EB R '.
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(c) Suppose that R is irreducible. Show that if R is not isomorphic to R', then res R is 
irreducible, and if these two representations are isomorphic, then res R is a sum of 
two irreducible representations of H.

*M.ll. Derive the character table of using induced representations from A”, when
(a) n =  3, (b) n =  4, (c) n =  5.

*M.12. Derive the character table of the dihedral group D„, using induced representations 
from C„.

M.13. Let G be a finite subgroup of GLn (C). Prove that if L g  trace g =  0, then L g  g =  O.
M.14. Let p : G —> GL(V) be a two-dimensional representation of a finite group G, and 

assume that 1 is an eigenvalue of pg for every g in G. Prove that p is a sum of two 
one-dimensional representations.

M.1S. Let p : G --+ G (C) be an irreducible representation of a finite group G. Given a 
representation 0' :  G --+G L(V) of G L„, we can consider the composition 0'  o p as a 
representation of G.

(a) Determine the character of the representation obtained in this way when cr is left 
multiplication of G L„ on the space V of n X n matrices. Decompose 0'  o p into 
irreducible representations in this case.

(b) Determine the character of 0'  o p  when 0'  is the operation of conjugation on C” Xn.
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R i n g s

Bitte vergiB alles, was Du auf der Schule gelernt hast;
denn Du hast es nicht gelernt.

—Edmund Landau

11.1 DEFINITION OF A RING

R in g s  a r e  a lg e b r a ic  s t r u c t u r e s  c l o s e d  u n d e r  a d d it io n ,  s u b t r a c t io n ,  a n d  m u l t ip l i c a t io n ,  b u t  n o t  

u n d e r  d iv i s io n .  T h e  in t e g e r s  f o r m  o u r  b a s ic  m o d e l  f o r  th is  c o n c e p t .
B e f o r e  g o i n g  t o  t h e  d e f in i t io n  o f  a  r in g , w e  l o o k  a t  a  f e w  e x a m p le s ,  s u b r in g s  o f  t h e  

c o m p l e x  n u m b e r s .  A  subring o f  C  is  a  s u b s e t  w h i c h  is  c l o s e d  u n d e r  a d d i t io n ,  s u b t r a c t io n  a n d  

m u lt ip l i c a t io n ,  a n d  w h i c h  c o n t a in s  1.

•  T h e  Gauss integers , t h e  c o m p l e x  n u m b e r s  o f  t h e  f o r m  a  +  b i , w h e r e  a  a n d  b  a r e  in t e g e r s ,  

f o r m  a  s u b r in g  o f  C  th a t  w e  d e n o t e  b y  Z [ i] :

( 1 1 .1 .1 )  Z [ i ] =  {a +  b i  | a, b  e  Z } .

Its e l e m e n t s  a r e  th e  p o in t s  o f  a  s q u a r e  la t t i c e  in  t h e  c o m p l e x  p la n e .

W e  c a n  f o r m  a  s u b r in g  Z[ex] a n a lo g o u s  t o  t h e  r in g  o f  G a u s s  in t e g e r s ,  s t a r t in g  w it h  a n y  
c o m p l e x  n u m b e r  ex: t h e  s u b r in g  generated by  ex. T h i s  is  t h e  s m a l le s t  s u b r in g  o f  C  t h a t  c o n t a in s  

ex, a n d  i t  c a n  b e  d e s c r ib e d  in  a  g e n e r a l  w a y . I f  a  r in g  c o n t a in s  ex, t h e n  i t  c o n t a in s  a l l  p o s i t i v e  

p o w e r s  o f  ex b e c a u s e  it  is  c l o s e d  u n d e r  m u l t ip l i c a t io n .  I t  a l s o  c o n t a in s  s u m s  a n d  d i f f e r e n c e s  

o f  s u c h  p o w e r s ,  a n d  i t  c o n t a in s  1. T h e r e f o r e  it  c o n t a in s  e v e r y  c o m p l e x  n u m b e r  t h a t  c a n

b e  e x p r e s s e d  a s  a n  in t e g e r  c o m b in a t io n  o f  p o w e r s  o f  ex, o r , s a y in g  th is  a n o t h e r  w a y ,  c a n  b e  

o b t a in e d  b y  e v a lu a t in g  a  p o ly n o m ia l  w i t h  in te g e r  c o e f f i c ie n t s  a t  ex:

( 1 1 .1 .2 )  fi =  a n a n  +  ■ • • +  d \ d  +  a o ,  w h e r e  a,- a r e  in  Z .

O n  t h e  o t h e r  h a n d ,  t h e  s e t  o f  a l l  s u c h  n u m b e r s  is  c lo s e d  u n d e r  t h e  o p e r a t io n s  + ,  — , a n d  x ,  

a n d  it  c o n t a in s  1. S o  it  is  t h e  s u b r in g  g e n e r a t e d  b y  ex.

In  m o s t  c a s e s ,  Z [ex] w i l l  n o t  b e  r e p r e s e n t e d  a s  a  la t t i c e  in  t h e  c o m p l e x  p la n e .  F o r  

e x a m p le ,  t h e  r in g  Z [  c o n s i s t s  o f  t h e  r a t io n a l  n u m b e r s  th a t  c a n  b e  e x p r e s s e d  a s  a  p o l y n o m ia l  

in  \  w i t h  in t e g e r  c o e f f ic ie n t s .  T h e s e  r a t io n a l  n u m b e r s  c a n  b e  d e s c r ib e d  s im p ly  a s  t h o s e  w h o s e  
d e n o m in a t o r s  a r e  p o w e r s  o f  2 . T h e y  f o r m  a  d e n s e  s u b s e t  o f  t h e  r e a l  l in e .

323



324 Chapter 11 Rings

• A complex number a  is algebraic if it is a root of a (nonzero) polynomial with integer 
coefficients -  that is, if some expression of the form (11.1.2) evaluates to zero. If there is no 
polynomial with integer coefficients having a  as a root, a  is transcendental. The numbers e 
and are transcendental, though it isn’t very easy to prove this.
When a  is transcendental, two distinct polynomial expressions (11.1.2) represent distinct 
complex numbers. Then the elements of the ring Z[a] correspond bijectively to polynomials 
p (x) with integer coefficients, by the rule p (x ) p (a ). When a  is algebraic there will be 
many polynomial expressions that represent the same complex number. Some examples of 
algebraic numbers are: i +  3, 1/7, 7 +  ../2, and v'3 +  v̂CS.

The definition of a ring is similar to that of field (3.2.2). The only difference is that 
multiplicative inverses aren’t required:

D e f i n i t i o n  1 1 .1 .3  (+ , —, x ,  1) A ring R  is a set with two laws of composition +  and x ,  called 
addition and multiplication, that satisfy these axioms:
( a )  With the law of composition + , R is an abelian group that we denote by R+; its identity 

is denoted by O.
( b )  Multiplication is commutative and associative, and has an identity denoted by 1.
(c) distributive law: For all a , b, and c in R, (a +  b)c =  ac  +  bc.
A subring of a ring is a subset that is closed under the operations of addition, subtraction, 
and multiplication and that contains the element 1.

Note: There is a related concept, of a noncommutative ring -  a structure that satisfies all 
axioms of (11.1.3) except the commutative law for multiplication. The set of all real n X n 
matrices is one example. Since we won’t be studying noncommutative rings, we use the word 
“ring” to mean “commutative ring.” □

Aside from subrings of C, the most important rings are polynomial rings. A  polynomial 
in x  with coefficients in a ring R  is an expression of the form

(11.1.4) a„xn + -----\-a ix + a0,

with ai in R. The set of these polynomials forms a ring that we discuss in the next section.

Another example: The set f t  of continuous real-valued functions. of a real variable x  
forms a ring, with addition and multiplication of functions: [ f  +  g](x) =  f (x )  +  g(x) and 
[/g ](x ) =  f(x )g (x ).

There is a ring that contains just one element, 0; it is called the zero ring. In the 
definition of a field (3.2.2), the set F x obtained by deleting 0 is a group that contains the 
multiplicative identity 1. So 1 is not equal to 0 in a field. The relation 1 =  0 hasn’t been ruled 
out in a ring, but it occurs only once:

P r o p o s i t io n  11.1.S A ring R  in which the elements 1 and 0 are equal is the zero ring.

Proof. We first note that Oa = 0 for every element a  of a ring R. The proof is the same as 
for vector spaces: 0 = Oa — Oa = ( 0  — O)a =  Oa. Assume that 1 = 0  in R, and let a be any 
element. Then a = l a  =  Oa =  O. The only element of R  is 0. □
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Though elements of a ring aren’t required to have multiplicative inverses, a particular 
element may have an inverse, and the inverse is unique if it exists.

• A unit of a ring is an element that has a multiplicative inverse.

The units in the ring of integers are 1 and -1, and the units in the ring of Gauss integers 
are ± 1 and ± i. The units in the ring lR[x] of real polynomials are the nonzero constant 
polynomials. Fields are rings in which 0 1 and in which every nonzero element is a unit.

The identity element 1 of a ring is always a unit, and any reference to “the” unit 
element in R refers to the identity element. The ambiguous term “unit” is poorly chosen, 
but it is too late to change it.

1 1 .2  P O L Y N O M IA L  R IN G S

• A polynomial with coefficients in a ring R is a (finite) linear combination of powers of the 
variable:

(11.2.1) / 0 0  =  a„x" +  a„_ ixn-1 +------ + a ix  +  ao,

where the coefficients a; are elements of R. Such an expression is sometimes called a formal 
polynomial, to distinguish it from a polynomial function. Every formal polynomial with real 
coefficients determines a polynomial function on the real numbers. But we use the word 
polynomial to mean formal polynomial.

The set of polynomials with coefficients in a ring R will be denoted by R[x]. Thus Z[x] 
denotes the set of polynomials with integer coefficients -  the set of integer polynomials.

The monomials x ' are considered independent. So if

is another polynomial with coefficients in R, then f (x )  and g(x) are equal if and only if
a, =  h(- for all i =  0, 1, 2, ___

• The degree of a nonzero polynomial, which may be denoted by deg f ,  is the largest integer 
n such that the coefficient a„ of is not zero. A polynomial of degree zero is called a 
constant polynomial. The zero polynomial is also called a constant polynomial, but its degree 
will not be defined.

The nonzero coefficient of highest degree of a polynomial is its leading coefficient, and 
a monic polynomial is one whose leading coefficient is 1.

The possibility that some coefficients of a polynomial may be zero creates a nuisance. 
We have to disregard terms with zero coefficient, so the polynomial f(x )  can be written 
in more than one way. This is irritating because it isn’t an interesting point. One way to 
avoid ambiguity is to imagine listing the coefficients of all monomials, whether zero or not. 
This allows efficient verification of the ring axioms. So for the purpose of defining the ring 
operations, we write a polynomial as

(11.2.3) / (x )  =  ao +  a\X + a \x2 +
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where the coefficients a; are all in the ring R and only finitely many of them are different 
from zero. This polynomial is determined by its vector (or sequence) of coefficients a/:

(11.2.4) a = (a o ,a i , . . . ) ,

where a; are elements of R, all but a finite number zero. Every such vector corresponds to a 
polynomial.

When R  is a field, these infinite vectors form the vector space Z  with the infinite 
basis e/ that was defined in (3.7.2). The vector e/ corresponds to the monomial x!, and the 
monomials form a basis of the space of all polynomials.

The definitions of addition and multiplication of polynomials mimic the familiar 
operations on polynomial functions. If f (x )  and g(x) are polynomials, then with notation 
as above, their sum is

(11.2.5) f(x )  +  g(x) =  (ao +  bo) +  (ai +  b i)x  +  . •• =  L  (ak +  h ) x k,
k

where the notation (a ;- +  b;) refers to addition in R. So if we think of a polynomial as a 
vector, addition is vector addition: a  +  b =  (ao +  bo, ai +  bi, . . . )  .

The product of polynomials f  and g is computed by expanding the product:

(11.2.6) /(x )g (x )  =  (ao +  a ix  +  ---)(bo +  b1xH-------- ) =  ^ a / b / x '+ i ,

where the products a/bj are to be evaluated in the ring R. There will be finitely many 
nonzero coefficients a ;bj. This is a correct formula, but the right side is not in the standard 
form (11.2.3), because the same monomial xn appears several times -  once for each pair i, j  
of indices such that i +  j  =  n. So terms have to be collected on the right side. This leads to 
the definition

(11.2.7) f(x )g (x ) =  po +  P ix  +  p 2x2 +  • . • ,

with Pk =  ^  a /b j,
i + j = k

Po = aobo, P i =  aobi +  aibo, P 2 =  aob2 +  a ib i +  a 2bo, . . .

Each Pk is evaluated using the laws of composition in the ring. However, when making 
computations, it may be desirable to defer the collection of terms temporarily.

P r o p o s i t io n  1 1 .2 .8  There is a unique commutative ring structure on the set of polynomials 
R[x] having these properties:

• Addition of polynomials is defined by (11.2.5).
• Multiplication of polynomials is defined by (11.2.7).
• The ring R becomes a subring of R [x] when the elements of R are identified with 

the constant polynomials.
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Since polynomial algebra is familiar and since the proof of this proposition has no interesting 
features, we omit it. □

Division with remainder is an important operation on polynomials.

P r o p o s i t io n  1 1 .2 .9  D i v i s i o n  w i t h  R e m a in d e r .  Let R be a ring, let f  be a monic polynomial 
and let g be any polynomial, both with coefficients in R. There are uniquely determined 
polynomials q and r  in R[x] such that

g (x) =  f(x )q (x ) +  r(x) ,

and such that the remainder r, if it is not zero, has degree less than the degree of f .  Moreover, 
f  divides g in R[x] if and only if the remainder r  is zero.

The proof of this proposition follows the algorithm for division of polynomials that one 
learns in school. ' □

C o r o l la r y  1 1 .2 .1 0  Division with remainder can be done whenever the leading coefficient of 
f  is a unit. In particular, it can be done whenever the coefficient ring is a field and f ,* 0 .

If the leading coefficient is a unit u, we can factor it out of f .  □

However, one cannot divide x2 +  1 by 2x + 1 in the ring Z[x] of integer polynomials.

C o r o l la r y  1 1 .2 .1 1  Let g (x ) be a polynomial in R[x], and let ex be an element of R. The 
remainder of division of g(x) by x — ex is g(ex). Thus x -  ex divides g in R[x] if and only if 
g (ex) =  O.

This corollary is proved by substituting x =  ex into the equation g (x) =  (x — ex)q(x) +  r  and 
noting that r  is a constant. □

Polynomials are fundamental to the theory of rings, and we will also want to use 
polynomials in several variables. There is no major change in the definitions.

• A monomial is a formal product of some variables Xi, . . . ,  xn of the form

x 1'1x2 i2---xnin,

where the exponents i v are non-negative integers. The degree of a monomial, sometimes 
called the total degree, is the sum it +  . . .  +  i„.

An n-tuple (ii, . . . ,  i„) is called a multi-index, and vector notation i =  (it, . . . ,  in) 
for multi-indices is convenient. Using multi-index notation, we may write a monomial 
symbolically as x':

The monomial xo, with 0 =  (0, . . .  , 0), is denoted by 1. A polynomial in the variables 
Xi, • • • , xn, with coefficients in a ring R, is a linear combination of finitely many monomials,
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with coefficients in R. With multi-index notation, a polynomial f (x ) =  f ( x ) , . . . ,  Xn) can 
be written in exactly one way in the form

(11.2.13) / (x )  =  ] T a ,x \
i

where i runs through all multi-indices 01 , . . . , i„), the coefficients a,- are in  R, and only 
finitely many of these coefficients are different from zero.

A polynomial in which all m onomials with nonzero coefficients have (total) degree d  
is called a homogeneous polynomial.

Using multi-index notation, formulas (11.2.5) and (11.2.7) define addition and multi
plication of polynomials in several variables, and the analogue of Proposition 11.2.8 is true. 
However, division wi th remainder req uires more thought. We will come back to it below 
(see Corollary 11.3.9).

The ring of polynomials with coefficients in R is usually denoted by one of the symbols

(11.2.14) R[*i, . . . , Xn] or R[x],

where the symbol x  is understood to refer to the set of variables {xi, . . • , x„}. When no set 
of variabl es has been introduced, R[x] denotes the polynomial ring in one variable.

11.3 HOMOMORPHISMS AND IDEALS

• A ring homomorphism lp:R -+ R' is a map from one ring to another which is compatible 
with the laws of composition and which carries the unit element 1 of R  to the unit element 1 
in R ' -  a map such that, for all a  and b in R,

(11.3.1 ) lp(a +  b) =  lp(a) +  lp(b) , lp(ab) =  lp(a)lp(b), and lp(1) =  1.

The map

(11.3.2) <p:Z-+Wp

that sends an integer to its congruence class modulo p  is a ring homomorphism.
An isomorphism of rings is a bijective homomorphism, and if there is an isomorphism 

from R  to R', the two rings are said to be isomorphic. We often use the notation R «  R' to 
indicate that two rings R and R' are isomorphic.

A word about the third condition of (11.3.1): The assumption that a homomorphism lp 
is compatible with addition implies that it is a homomorphism from the additive group R+ 
of R to the additive group R'+ . A group homomorphism carries the identity to the identity, 
so lp(O) =  O. But we can’t conclude that lp(1) =  1 from compatibility with multiplication, 
so that condition must be listed separately. (R  is not a group with respect to x.) For example, 
the zero map R -+ R' that sends all elements of R to zero is compatible with +  and x, but 
it doesn’t send 1 to 1 unless 1 =  0 in R'. The zero map is not called a ring homomorphism 
unless R ' is the zero ring (see (11.1.5)).

The most important ring homomorphisms are obtalned by evaluating polynomials. 
Evaluation of real polynomials at a real number a  defines a homomorphism

(11.3.3) R [x] - + JR., that sends p (x )  . .  p (a ).
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One can also evaluate real polynomials at a complex number such a s  i  to obtain a 
homomorphism lR[x] -+ C  that sends p ( x ) . .  p (i) .

The general formulation of the principle of evaluation of polynomials is this:

P r o p o s i t io n  1 1 ..3 .4  S u b s t i t u t io n  P r i n d p l e .  Let q>: R -+ R ' be a ring homomorphism, and let 
R  [x] be the ring of polynomials with coefficients in R.

(a) Let a  be an element of R'. There is a unique homomorphism : R[x] -+ R' that agrees 
with the map on constant polynomials, and that sends x  . .  ex.

(b) More generally, given elements exi> . . . ,  a„ of R', there is a unique homomorphism
: R[x i ........ Xn] -+ R', from the polynomial ring in n variables to R', that agrees with
on constant polynomials and that sends x v a v, for v =  1 , . . .  ,n .

Proof. (a) Let us denote the image q>(a) of an element a of R by d . Using the fact that 
is a homomorphism that restricts to on R and sends x  to a ,  we see that it acts on a 

polynomial f (x )  = £ a , x ‘ by sending

(11.3.5) ¢ ( £ ^ )  =  £  4>(«;)4>(*)f =  •

In words, acts on the coefficients of a polynomial as q>, and it substitutes a  for x. Since this
formula describes <1> , we have proved the uniqueness of the substitution homomorphism. 
To prove its existence, we take this formula as the definition of <1>, and we show that is a 
homomorphism R[x] -+ R'. It is clear that 1 is sent to 1, and it is easy to verify compatibility 
with addition of polynomials. Compatibility with multiplication is checked using formula
(11.2.6):

=  =  L :  <I>(a;bjx‘+j ) =  L :a ib jex '+i

=  ( L :a ;a ') ( L :b je x ‘)  =  <1>(f)<I>(g).
‘ j

With multi-index notation, the proof of ( b )  becomes the same as that of ( a ) .  □

Here is a simple example of the substitution principle in which the coefficient ring 
R changes. Let 1/1: R -+ S be a ring homomorphism. C omposing 1/1 with the inclusion of 
S as a subring of the polynomial ring S[x], we obtain a homomorphism : R -+ S[x). 
The substitution principle asserts that there is a unique extension o f to a homomorphism 
<!>: R[x] -+ S[x] that sends x - x .  This map operates on the coefficients of a polynomial, 
while leaving the variable x  fixed. If we denote 1/1(a) by d ,  then it sends a polynomial
anxn +------+ a lx  +  ao to a'n.rz +-------- + a'jX +  a'0-

A particularly interesting case is that is the homomorph ism Z -+ JFp that sends an 
integer a  to its residue a modulo p. This map extends to a homomorphism :Z[x] -+ Fp [x], 
defined by

(11.3.6) f ( x )  =  an.rz +----- +  ao . .  an xn +  • • • +  an =  f ( x ) ,
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where is the residue class of a,- modulo p. It is natural to call the polynomial / ( x )  the 
residue of / ( x )  modulo p.

Another example: Let R be any ring, and let P  denote the polynomial ring R[x]. One 
can use the substitution principle to construct an isomorphism

(11.3.7) R[x, y] -+ P[y] =  (R[x])[y].

This is stated and proved below in Proposition 11.3.8. The domain is the ring of polynomials 
in two variables x and y, and the range is the ring of polynomials in y whose coefficients 
are polynomials in x. The statement that these rings are isomorphic is a formalization of the 
procedure of collecting terms of like degree in y in a polynomial / ( x ,  y). For example,

x4y +  x3 -  3x2y +  y2 + 2 =  y2 + (x4 -  3x2)y  +  (x3 +  2).

This procedure can be useful. For one thing, one may end up with a polynomial that is monic 
in the variable y, as happens in the example above. If so, one can do division with remainder 
(see Corollary 11.3.9 below).

Proposition 11.3.8 Let x =  (xi, . . .  ,xm) and y =  (yi, . . . ,  yn) denote sets of variables. 
There is a unique isomorphism R[x, y] -+ R[x][y], which is the identity on R and which 
sends the variables to themselves.

This is very elementary, but it would be boring to verify compatibility of multiplication in 
the two rings directly.

Proof We note that since R is a subring of R[x] and R[x] is a subring of R[x][y], R is also a 
subring of R[x][y]. Let cp be the inclusion of R into R[x][y]. The substitution principle tells 
us that there is a unique homomorphism <l>: R[x, y] -+ R[x][y], which extends cp and sends 
the variables xJ.L and yu wherever we want. So we can send the variables to themselves. 
The map thus constructed is the required isomorphism. It isn’t difficult to see that is 
bijective. One way to show this would be to use the substitution principle again, to define 
the inverse map. □

Corollary 11.3.9 Let / ( x ,  y) and g(x, y) be polynomials in two variables, elements of 
R[x, y]. Suppose that, when regarded as a polynomial in y, /  is a monic polynQmial 
of degree ra. There are uniquely determined polynomials q(x, y) and r(x , y) such that 
g =  / q  +  r, and such that if r (x , y) is not zero, its degree in the variable y is less than m.

This follows from Propositions 11.2.9 and 11.3.8. □

Another case in which one can describe homomorphisms easily is when the domain is 
the ring of integers.

Proposition 11.3.10 Let R be a ring. There is exactly one homomorphism cp :Z -+ R from 
the ring of integers to R. It is the map defined, for n :: 0, by cp(n) =  1 +  . . .  +  1 (n terms) 
and cp(-n) =  -cp(n).

Sketch o f Proof Let cp : Z -+ R be a homomorphism. By definition of a homomorphism, 
cp(1) =  1 and cp(n +  1) =  cp(n) +  cp(1). This recursive definition describes cp on the natural
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numbers, and together with ({J(-n) =  -({J(n) if n >  0 and ({J(O) =  0, it determines ({J uniquely. 
So it is the only map Z -+ R that could be a homomorphism, and it isn’t hard to convince 
oneself that it is one. To prove this formally, one would go back to the definitions of addition 
and multiplication of integers (see Appendix). □

Proposition (11.3.10) allows us to identify the image of an integer in an arbitrary ring R. 
We interpet the symbol 3, for example, as the element 1 +  1 +  1 of R.

• Let ({J:R -+ R' be a ring homomorphism. The kernel of ({J is the set of elements of R that 
map to zero:

(11.3.11) ker({J =  {s e R  | ({J(s) =  OJ.

This is the same as the kernel obtained when one regards ({J as a homomorphism of additive 
groups R+ -+ R'+. So what we have learned about kernels of group homomorphisms 
applies. For instance, ({J is injective if and only if ker ({J =  (O).

As you will recall, the kernel of a group homomorphism is not only a subgroup, it 
is a normal subgroup. Similarly, the kernel of a ring homomorphism is closed under the 
operation of addition, and it has a property that-is stronger than closure under multiplication:

(11.3.12) If s  is in ker ({J, then for every element r  of R, rs  is in ker({J.

For, if ({J(s) =  0, then ({J(rs) =  ({J(r)({J(s) =  ({J(r) O =  O.
This property is abstracted in the concept of an ideal.

D e f i n i t i o n  1 1 .3 .1 3  An ideal I  of a ring R  is a nonempty subset of R with these properties:

• I  is closed under addition, and
• If s is in I  and r  is in R, then rs is in I .

The kernel of a ring homomorphism is an ideal.
The peculiar term “ideal” is an abbreviation of the phrase “ideal element” that was 

formerly used in number theory. We will see in Chapter 13 how it arose. A good way, 
probably a better way, to think of the definition of an ideal is this equivalent formulation:

(11 3 14) I  is not empty, and a line ar combination ris j +------ + r^s*
( ’ . ) of elements s; of I  with coefficients r; in R is in I.

• In any ring R, the multiples of a particular element a  form an ideal called the principal 
ideal generated by a. An element b of R is in this ideal if and only if b is a multiple of a, 
which is to say, if and only if a  divides b in R.

There are several notations for this principal ideal:

(11.3.15) (a )  =  aR  =  Ra =  {ra | r e  R}.

The ring R itself is the principal ideal (1), and because of this it is called the unit ideal. 
It is the only ideal that contains a unit of the ring. The set consisting of zero alone is the 
principal ideal (0), and is called the zero ideal. An ideal I  is proper  if it is neither the zero 
ideal nor the unit ideal.
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Every ideal I  satisfies the requirements for a subring, except that the unit element 1 of 
R will not be in I  unless I  is the whole ring. Unless I  is equal to R, it will not be what we call 
a subring.

E x a m p le s  11.3.16

( a )  Let cp be the homomorphism R[x] -+ R defined by substituting the real number 2 for x. 
Its kernel, the set of polynomials that have 2 as a root, can be described as the set of 
polynomials divisible by x — 2. This is a principal ideal that might be denoted by (x -  2).

(b )  Let : R[x, y] -+ R[t] be the homomorphism that is the identity on the real numbers, and 
that sends x  *2, y *3. Then it sends g(x, y) g(t2, f3). The polynomial / ( x ,  y) =  
y  — x3 is in the kernel of <1>. We’ll show that the kernel is the principal ideal ( f )  
generated by / ,  i.e., that if g(x, y) is a polynomial and if g (F , t3) =  0, then f  
divides g. To show this, we regard f  as a polynomial in y whose coefficients are 
polynomials in x (see (11.3.8». It is a monic polynomial in y, so we can do division 
with remainder: g =  / q  +  r, where q and r  are polynomials, and where the remainder 
r, if not zero, has degree at most 1 in y. We write the remainder as a polynomial in 
y : r(x , y) =  ri (x)y +  ro(x). If g(*2, t3) =  0, then both g and / q  are in the kernel of <1>, 
so r  is too: r(*2, *3) _  n ( t 2)*3 + ro(f2) =  O. The monomials that appear in ro (f2) have 
even degree, while those in r i( t2^  have odd degree. Therefore, in order for r (F , *3) to 
be zero, ro(x) and ri (x) must both be zero. Since the remainder is zero, f  divides g. □

The notation (a) for a principal ideal is convenient, but it is ambiguous because the ring 
isn’t mentioned. For instance, (x — 2) could stand for an ideal of R[x] or of Z[x], depending 
on the circumstances. When several rings are being discussed, a different notation may be 
preferable .

• The ideal I  generated by a set ofelements {ai, . . . ,  an} of a ring R is the smallest ideal that 
contains those elements. It can be described as the set of all linear combinations

(11.3.17) ryay + --- + rnan

with coefficients r , in the ring. This ideal is often denoted by (a\, . . . ,  an):

(11.3.18) {ay, . . . ,  an) =  {ryay H-------b rnan | n  e i?}.

For instance, the kernel K of the homomorphism cp:Z[x] -+ Fp that sends / (x )  to 
the residue of /(0 )  modulo p  is the ideal (p, x) of Z[x] generated by p  and x. Let’s check 
this. First, p  and x are in the kernel, so (p, x) C K. To show that K  C (p , x), we let
/ (x )  =  anxn +------+aix +  ao be an integer polynomial. Then /(0 )  =  ao. Ifao !! O modulo p,
say ao = bp , then /  is the linear combination b p  +  (anx" - 1 H------ + a i)x  of p  and x. So f
is in the ideal (p , x).

The number of elements required to generate an ideal can be arbitrarily large. 
The ideal ( x \  x2y, x y ,  I )  of the polynomial ring C[x, y] consists of the polynomials 
in which every term has degree at least 3. It cannot be generated by fewer than four 
elements.

In the rest of this section, we describe ideals in some simple cases.
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P r o p o s i t io n  1 1 .3 .1 9

( a )  The only ideals of a field are the zero ideal and the unit ideal.
( b )  A ring that has exactly two ideals is a field.

Proof. If an ideal 1 of a field F  contains a nonzero element a, that element is invertible. 
Then I  contains a -1a  =  1, and is the unit ideal. The only ideals of F  are (0) and (1).

Assume that R has exactly two ideals. The properties that distinguish fields among 
rings are that 1 0 and that every nonzero element a of R has a multiplicative inverse. We
have seen that 1 0 happens only in the zero ring. The zero ring has only one ideal, the zero
ideal. Since our ring has two ideals, 1,* 0 in R. The two ideals (1) and (0) are different, so 
they are the only two ideals of R.

To show that every nonzero element a of R has an inverse, we consider the principal 
ideal (a). It is not the zero ideal because it contains the element a. Therefore it is the unit 
ideal. The elements of (a) are the multiples of a, so 1 is a multiple of a, and therefore a is 
invertible. □

C o r o l la r y  1 1 .3 .2 0  Every homomorphism qJ: F  R from a field F  to a nonzero ring R is 
injective.

Proof. The kernel of qJ is an ideal of F. So according to Proposition 11.3.19, the kernel is 
either (0) or (1). If kerqJ were the unit ideal (1), qJ would be the zero map. But the zero 
map isn’t a homomorphism when R isn’t the zero ring. Therefore kerqJ =  (0), and qJ is 
injective. □

P r o p o s i t io n  1 1 .3 .2 1  The ideals in the ring of integers are the subgroups of Z + , and they are 
principal ideals.

An ideal of the ring Z  of integers will be a subgroup of the additive group Z + .  It was proved 
before (2.3.3) that every subgroup of Z +  has the form Zn. □

The proof that subgroups of Z +  have the form Zn  can be adapted to the polynomial 
ring F [ x ] .

P r o p o s i t io n  1 1 .3 .2 2  Every ideal in the ring F[x] of polynomials in one variable x  over a 
field F  is a principal ideal. A nonzero ideal I  in F[x] is generated by the unique monic 
polynomial of lowest degree that it contains.

Proof. Let 1 be an ideal of F[x]. The zero ideal is principal, so we may assume that 1 is not 
the zero ideal. The first step in finding a generator for a nonzero subgroup of Z  is to choose 
its smallest positive element. The substitute here is to choose a nonzero polynomial f  in 1 
of minimal degree. Since F  is a field, we may choose f  to be monic. We claim that 1 is the 
principal ideal ( f )  of polynomial multiples of f . Since f  is in I, every multiple of f  is in I, 
so ( f )  C 1. To prove that 1 C ( / ) ,  we choose an element g of 1, and we use division with 
remainder to write g =  fq  +  r, where r, if not zero, has lower degree than f .  Since g and f  
are in 1, g  — f q  = r is in 1 too. Since f  has minimal degree among nonzero elements of 1, 
the only possibility is that r  =  0. Therefore f  divides g, and g is in ( f ) .
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If / i  and h  are two monic polynomials of lowest degree in I, their difference is in I  
and has lower degree than n, so it must be zero. Therefore the monic polynomial of lowest 
degree is unique. □

E x a m p le  11.3.23 Let y  =  .ifi be the real cube root of 2, and let q, : Q[x] -+ C be the 
substitution map that sends x 'V't y. The kernel of this map is a principal ideal, generated by 
the monic polynomial of lowest degree in Q[x] that has y  as a root (11.3.22). The polynomial 
x3 — 2 is in the kernel, and because .ifi is not a rational number, it is not the product 
I  =  gh of two nonconstant polynomials with rational coefficients. So it is the lowest degree 
polynomial in the kernel, and therefore it generates the kernel.

We restrict the map q, to the integer polynomial ring Z[x], obtaining a homomorphism 
<1>': Z [x] -+ C. The next lemma shows that the kernel of is the principal ideal of Z[x] 
generated by the same polynomial / .

L e m m a  11.3.24 Let /  be a monic integer polynomial, and let g be another integer polynomial. 
If /  divides g in Q[x], then /  divides g in Z[x].

Proof Since /  is monic, we can do division with remainder in Z[x]: g =  / q  +  r. This 
equation remains true in the ring Q[x], and division with remainder in Q[x] gives the same 
result. In Q[x], /  divides g. Therefore r  =  0, and f  divides g in Z[x]. □

The proof of the following corollary is similar to the proof of existence of the greatest 
common divisor in the ring of integers ((2.3.5), see also (12.2.8».

C o r o l la r y  11.3.25 Let R denote the polynomial ring F[x] in one variable over a field F , 
and let f  and g be elements of R, not both zero. Their greatest common divisor d( x )  is the 
unique monic polynomial that generates the ideal ( f ,  g). 11 has these properties:

(a) Rd =  R f  +  Rg.
( b )  d  divides /  and g.
( c )  If a polynomial e =  e(x) divides both /  and g, it also divides d.
( d )  There are polynomials p  and q such that d =  p  f  + qg. □

The definition of the characteristic of a ring R is the same as for a field. It is the 
non-negative integer n that generates the kernel of the homomorphism cp:Z -+ R (11.3.10). 
If n =  0, the characteristic is zero, and this means that no positive multiple of 1 in R is equal 
to zero. Otherwise n is the smallest positive integer such that “n times 1” is zero in R. The 
characteristic of a ring can be any non-negative integer.

11.4 QUOTIENT RINGS

Let I  be an ideal of a ring R. The cosets of the additive subgroup 1+ of R+ are the subsets
a +  I. It follows from what has been proved for groups that the set of cosets R =  R / I  is a
group under addition. It is also a ring:
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T h e o r e m  1 1 .4 .1  Let I  be an ideal of a ring R. There is a unique ring structure on the set 
R of additive cosets of I  such that the map JT: R -+ R that sends a a =  [a +  I] is a ring 
homomorphism. The kernel of JT is the ideal I.

As with quotient groups, the map JT is referred to as the canonical map, and R  is called 
the quotient ring. The image a of an element a  is called the residue of the element.

Proof. This proof has already been carried out for the ring of integers (Section 2.9). We 
want to put a ring structure on R, and if we forget about multiplication and consider only 
the addition law, I  becomes a normal subgroup of R+, for which the proof has been given
(2.12.2). What is left to do is to define multiplication, to verify the ring axioms, and to prove 
that JT is a homomorphism. Let a  =  [a + I ]  and b =  [b +  /] be elements of R. We would 
like to define the product by the setting ab  =  [ab  +  /]. The set of products

P  =  (a +  I) (b  + I) =  {rs | r  e  a  +  I, s e b  + I}

isn’t always a coset of I. However, as in the case of the ring of integers, P  is always contained 
in the coset ab  + I. If we write r  =  a  + u and s =  b +  v with u and v in I, then

(a  +  u)(b  +  v) =  ab  + (av  + bu +  uv).

Since /  is an ideal that contains u and v, it contains a v  +  bu  +  uv. This is all that is needed 
to define the product coset: It is the coset that contains the set of products. That coset is 
unique because the cosets partition R.

The proofs of the remaining assertions follow the patterns set in Section 2.9. □

As with _groups, one often drops the bars_over the letters that represent elements of a 
quotient ring R, remembering that “a  =  b in R” means a =  b.

The next theorems are analogous to ones that we have seen for groups:

T h e o r e m  1 1 .4 .2  M a p p in g  P r o p e r t y  o f  Q u o t i e n t  R in g s .  Let f:_R -+ R' be a ring homomor
phism with kernel K and let I  be another ideal. Let JT: R -+ R be the canonical map from
R to R =  R /I . ____ _
( a )  If / C  K, there is a unique homomorphism / :  R -+ R' such that /JT =  / :

R ------------- ^ R'

R =  R / I

(b) (FirstIsomorphism Theorem) I f f  is surjective and I  =  K, /  i sani  somorphism. □

The First Isomorphism Theorem is our fundamental method of identifying quotient 
rings. However, it doesn’t applyvery often. Quotient ringswill be new rings in most cases, and 
this is one reason that the quotient construction is important. The ring C[x, y ]/(y 2 _ x 3 + 1), 
for example, is completely different from any ring we have seen up to now. Its elements are 
functions on an elliptic curve (see [Silverman]).
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The Correspondence Theorem for rings describes the fundamental relationship be
tween ideals in a ring and a quotient ring.

T h e o r e m  1 1 .4 .3  C o r r e s p o n d e n c e  T h e o r e m .  Let cp: R -+ 'R be a surjective ring homomor
phism with kernel K. There is a bijective correspondence between the set of all ideals of 'R 
and the set of ideals of R that contain K:

{ideals of R that contain K} <— > {ideals of 'R}.

This correspondence is defined as follows:

• If I  is a ideal of R and if K C I, the corresponding ideal of 'R is cp(l).
• If I  is a ideal of 'R, the corresponding ideal of R is cp-1 ( I ) .

If the ideal I  of R corresponds to the ideal I  of 'R, the quotient rings R / I  and 'R / I  are 
naturally isomorphic.

Note that the inclusion K  C I  is the reverse of the one in the mapping property.

Proof o f the Correspondence Theorem. We let I  be an ideal of 'R and we let I  be an ideal 
of R that contains K. We must check the following points:

• cp( I )  is an ideal of TZ.

• cp_1( I )  is an ideal of R, and it contains K.
• cp(cp-1 ( I ) )  =  I ,  and cp-1(cp(1) ) =  I.
• If cp(1) =  I ,  then R / I  ' ; 'R / J .

We go through these points in order, referring to the proof of the Correspondence Theorem
2.10.5 for groups when it applies. We have seen before that the image of a subgroup is a 
subgroup. So to show that cp(1) is an ideal of 'R, we need only prove that it is closed under 
multiplication by elements of 'R. Let r  be in 'R and let x be in cp( I ) .  Then x =  cp(x) for some 
x in I, and because cp is surjective, r  =  cp(r) for some r  in R. Since I  is an ideal, rx  is in I, 
and rx  =  cp(rx), so rx  is in cp(l).

Next, we verify that cp“i ( I )  is an ideal of R that contains K. This is true whether or 
not cp is surjective. Let’s write cp(a) =  a. By definition of the inverse image, a  is in cp- i ( I )  
if and only if a is in I .  If a  is in cp-i ( I )  and r  is in R, then cp(ra) =  ra  is in I  because I  is 
an ideal, and hence ra  is in cp- i ( I ) .  The facts that cp- i ( I )  is closed under sums and that it 
contains K were shown in (2.10.4).

The third assertion, the bijectivity of the correspondence, follows from the case of a 
group homomorphism.

Finally, suppose that an ideal I  of R that contains K  corresponds to an ideal I  of 'R, 
that is, I  =  cp(1) and I  =  cp“i ( I ) .  Let f : 'R  -+ 'R/ 1  be the canonical map, and let f  denote 
the composed map ircp: R -+ 'R -+ 'R /I .  The kernel of f  is the set of elements x  in R such 
that ncp(x) =  0, which translates to cp(x) e I ,  or to x  e cp- 1 ( I )  =  I. Tht?.kernel of f  is I. 
The mapping property, applied to the map f ,  gives us a homomorphism J : R / I  - + 'R /I ,  
and the First Isomorphism Theorem asserts that f  is an isomorphism. ' □
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To apply the Correspondence Theorem, it helps to know the ideals of one of the rings. 
The next examples illustrate this in very simple situations, in which one of the two rings is 
C[t]. We will be able to use the fact that every ideal of C[t] is principal (11.3.22).

E x a m p le  1 1 .4 .4  (a) Let qJ:C[x, y] --+ C[t] be the homomorphism that sends x  — t and 
y fl. This is a surjective map, and its kernel K is the principal ideal of C[x, y] generated 
by y — x 2. (The proof of this is similar to the one given in Example 11.3.16.)

The Correspondence Theorem relates ideals I  of C[x, y] that contain y — x2 to ideals 
J  of C[t], by J  = qJ(1) and I  =  Here J  will be a principal ideal, generated by
a polynomial p (t). Let 1i denote the ideal of C[x, y] generated by y -  x2 and p ( x ) . 
Then I t contains K, and its image is equal to J . The Correspondence Theorem asserts 
that I i  =  I. Every ideal of the polynomial ring C[x, y] that contains y — x 2 has the form 
1  = (y — x2, p (x )) , for some polynomial p(x).

(b) We identify the ideals of the quotient ring R ' =  C[t]/(f2 -  1) using the canonical 
homomorphism 1!  : C[t] --+ R'. The kernel of 1!  is the principal ideal (fl — 1). Let I  be an 
ideal of C[t] that contains — 1. Then I  is principal, generated by a monic polynomial / ,  
and the fact that fl -  1 is in I  means that /  divides fl — 1. The monic divisors of fl — 1 are:
1, t  — 1, t +  1 and fl -  1. Therefore the ring R ' contains exactly four ideals. They are the 
principal ideals generated by the residues of the divisors of fl — 1.  □

Adding Relations

We reinterpret the quotient ring construction when the ideal l  is principal, say I  =  (a). In 
this situation, we think of R = R |  I  as the ring obtained by imposing the relation a  = 0 
on R, or of killing the element a. For instance, the field lF7 will be thought of as the ring 
obtained by killing 7 in the ring Z of integers.

Let’s examine the collapsing that takes place in the map 1!  : R --+ R. Its kernel is the 
ideal I, so a is in the kernel: 1! ( a )  =  O. If b is any element of R, the elements that have the 
same image in R  as b are those in the coset b +  I, and since I  =  (a) those elements have 
the fonn b +  ra . We see that imposing the relation a  =  0 in the ring R  forces us also to set 
b =  b +  ra for all b  and r  in R, and that these are the only consequences of killing a.

Any number of relations ai — 0, . . .  ,a n = 0 can be introduced, by working modulo 
the ideal I  generated by a t, . . .  , a„, the set of linear combinations r ia i  +  . +  rnan, with 
coefficients r; in R. The quotient ring R  = R / I  is viewed as the ring obtained by killing the 
n elements. Two elements b and b' of R have the same image in R if and only if b ' has the 
form b +  n a i  +  . .  +  r„a„ for some r; in R.

The more relations we add, the more collapsing takes place in the map 1! .  If we add 
relations carelessly, the worst that can happen is that we may end up with I  — R  and R =  O. 
All rela tions a  =  0 become true when we collapse R to the zero ring.

Here the Correspondence Theorem asserts something that is intuitively clear: Intro
ducing relations one at a time or all together leads to isomorphic results. To spell this out, 
let a and b be elements of a ring R, and let R =  R /(a )  be the result of killing a  in R. Let_b 
be the residue of b in R. The Correspondence Theorem tells us that the principal_ideal (b) 
of R corresponds to the ideal (a, b) of R, and that R /(a , b) is isomorphic to R |(b ) . Killing 
a  and b in R at the same time gives the same result as killing b in the ring R that is obtained 
by killing a  first.
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Example 11.4.5 We ask to identify the quotient ring R =  Z[i]/ (i -  2), the ring obtained from 
the Gauss integers by introducing the relation i -  2 =  O. Instead of analyzing this directly, 
we note that the kernel of the map Z[x] -+ Z[i] sending x  i is the principal ideal of Z[x] 
generated by /  = x 2 +  1. The First Isomorphism Theorem tells us that Z [x ] /( f )  «  Z[i]. The 
image of g =  x -  2 is i — 2, so R  can also be obtained by introducing the two relations /  =  0 
and g =  0 into the integer polynomial ring. Let I  =  ( / ,  g) be the ideal of Z[x] generated by 
the two polynomials /  and g. Then R «  Z[x]/ I.

To form R, we may introduce the two relations in the opposite order, first killing g. 
then / .  The principal ideal (g) of Z[x] is the kernel of the homomorphism Z[x] -+ Z that 
sends x 2. So when we kill x -  2 in Z[x], we obtain a ring isomorphic to Z, in which the 
residue of x  is 2. Then the residue of f  =  x2 + 1 becomes 5. So we can also obtain R by 
killing 5 in Z, and therefore R «  F5.

The rings we have mentioned are summed up in this diagram:

(11.4.6)
kill

Z[x] Z
kill

x2 + 1
Z

kill
5

kill
i - 2

-F5
□

1 1 .5  A D J O IN IN G  E L E M E N T S

In this section we discuss a procedure closely related to that of adding relations: adjoining 
new elements to a ring. Our model for this procedure is the construction of the complex 
number field from the real numbers. That construction is completely formal: The complex 
number i has no properties other than its defining property: i2 =  -1. We will now describe 
the general principle behind this construction. We start with an arbitrary ring R, and consider 
the problem of building a bigger ring containing the elements of R and also a new element, 
which we denote by a. We will probably want a  to satisfy some relation such as a 2 +  1 =  O. 
A ring that contains another ring as a subring is called a ring extension. So we are looking 
for a suitable extension.

Sometimes the element ex. may be available in a ring extension R' that we already know. 
In that case, our solution is the subring of R' generated by R and a , the smallest subring 
containing R  and a. The subring is denoted by R[a]. We described this ring in Section 11.1 in 
the case R =  Z, and the description is no different in general: R[a] consists of the elements 
fJ of R' that have polynomial expressions

with coefficients ri in R.
But as happens when we construct C from R., we may not yet have an extension 

containing a. Then we must construct the extension abstractly. We start with the polynomial 
ring R[x]. It is generated by R and x. The element x of satisfies no relations other than those 
implied by the ring axioms, and we will probably want our new element a  to satisfy some 
relations. But now that we have the ring R[x] in hand, we can add relations to it using the
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procedure explained in the previous section on the polynomial ring R[x]. The fact that R is 
replaced by R[x] complicates the notation, but aside from this, nothing is different.

For example, we construct the complex numbers by introducing the relation x2 +  1 =  0 
into the ring P  =  R[x] of real polynomials. We form the quotient ring P  =  P /(x 2 +  1), and 
the residue of x  becomes our element i. The relation x2 +  1 =  0 holds in P  because the map 
n : P  -+ P  is a homomorphism and because x2 + 1 is in its kernel. So P  is isomorphic to C .

In general, say that we want to adjoin an element a  to a ring R, and that we want a  to 
satisfy the polynomial relation f ( x )  =  0, where

(11.5.1) /(x )  =  a „ x " + a „ _ 1x "~1 -1------ ba i x  +  ao, with a , in R.

The solution is R ' =  R [x ] /( /) ,  where ( f )  is the principal ideal of R[x] generated by f .
We let a  denote the residue x of x  in R'. Then because the map n : R[x] -+ R [x ] /( f )  

is a homomorphism,

(11.5.2) n ( / ( x »  =  1 x )  =  an a n + -----+ ao =  0.

Here a; is the image in R' of the constant polynomial a,. So, dropping bars, a  satisfies the 
relation f ( a )  =  O. The ring obtained in this way may be denoted by R[a] too.

An example: Let a be an element of a ring R. An inverse of a is an element a  that 
satisfies the relation

(11.5.3) aa  -  1 =  O.

So we can adjoin an inverse by forming the quotient ring R ' =  R[x]/ (ax -  1).

The most important case is that our element a  is a root o fa  monic polynomial:

(11.5.4) / ( x  ) =  xn +  a n_ixn-1 +  ■•• +  a ix  +  ao, with a, in R.

We can describe the ring R[a] precisely in this case.

Proposition 11.5.5 Let R  be a ring, and let /(x )  be a monic polynomial of positive degree n 
with coefficients in R. Let R[a] denote the ring R [x ] /( f )  obtained by adjoining an element 
satisfying the relation f ( a )  — O.

( a )  The set (1, a, . . .  , a n-1) is a basis of R[a] over R: every element of R[a] can be written 
uniquely as a linear combination of this basis, with coefficients in R.

( b )  Addition of two linear combinations is vector addition.
(c) Multiplication of linear combinations is as follows: Let f i  and be elements of R[a], 

and let g i(x) and g2(x) be polynomials such that f i  =  g i(a )  and f32 =  g2(a). One 
divides the product polynomial g ig2 by J ,  say g ig 2 =  Jq  +  r, where the remainder 
r  (x), if not zero, has degree < n . Then f i f  =  r(a ) .

The next lemma should be clear.

Lemma 11.5.6 Let f  be a monic polynomial of degree n in a polynomial ring R[x]. Every 
nonzero element of ( J )  has degree at least n. □
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Proof o f  the proposition. (a )  Since R[a] is a quotient of the polynomial ring R[x], every 
element fJ of R[a] is the residue of a polynomial g(x), i.e., fJ =  g (a ) . Since f  is monic, we 
can perform division with remainder: g(x) =  J(x )q (x ) +  r(x ), where r(x ) is either zero or 
else has degree less than n (11.2.9). Then since f ( a ) =  0, fJ =  g(a)  = r(a). In this way, fJ is 
written as a combination of the basis. The expression for fJ is unique because the principal 
ideal ( J )  contains no element of degree < n . This also proves ( c ) ,  and ( b )  follows from the 
fact that addition in R[x] is vector addition. □

E x a m p le s  1 1 .5 .7  (a )  The kernel of the substitution map Z[x] - -  C  that sends x — y =  . / 2  

is the principal ideal (x3 — 2) of Z[x] (11.3.23). So Z[y] is isomorphic to Z [x]/(x3 — 2). The 
proposition shows that (1, y, y2) is a Z-basis for Z[y). Its elements are linear combinations 
ao +  a i y  + a2 yZ, where aj are integers. If fJi =  (y 2  -  y) and fJ2 =  (y2 + 1), then

fJifJ2 =  y4 -  0  +  /  -  y  =  / (y ) (y  - 1) +  ( /  +  y — 2) =  /  +  y -  2.

( b )  Let R ' be obtained by adjoining an element 8 to lFs with the relation 82 — 3 =  0. Here 8 
becomes an abstract square root of 3. Proposition 11.5.5 tells us that the elements of R ' are 
the 25 linear expressions a + b 8  with coefficients a and b in lFs.

We’ll show that R ' i s a field of order 25by showing that every nonzero element a +  b 8 
of R' is invertible. To see this, consider the product c = (a +  b8) (a  -  b 8) =  (a2 -  3^2). This 
is is an element of lFs, and because 3 isn’t a square in F5, it isn’t zero unless both a and b are 
zero. So if a +  b8 ",0, c is invertible in F5. Then the inverse of a + b 8  is (a — b8)c -1.

( c )  The procedure used in ( b )  doesn’t yield a field when i t i  s applied to  F^ . The reason is
that Fn  already contains two square roots of 3, namely ± 5. If R ' is the ring obtained by 
adjoining 8 with the relation 82 —3 =  0, we are adjoining an abstract square root of 3, though 
Fn already contains two square roots. At first glance one might expect to get Fn  back. We 
don’t, because we haven’t told 8 to be equal to 5 or -5. We’ve told 8 only that its square is 3. 
So 8 -  5 and 8 +  5 are not zero, but (8 +  5)  (8 — 5) =  <$2 — 3 =  0 . This cannot happen in a 
field. □

It is harder to analyze the structure of the ring obtained by adjoining an element when 
. the polynomial relation isn’t monic.

• There is a point that we have suppressed in our discussion, and we consider it now: 
When we adjoin an element a  to a ring R  with some relation f ( a )  =  0, will our original 
R  be a subring of the ring R' that we construct? We know that R is contained in the 
polynomial ring R[x], as the subring of constant polynomials, and we also have the canonical 
map : R[x] - -  R' =  R [x ] /( f) . Restricting to the constant polynomials gives us a 
homomorphism R - -  R', let’s call it 1/f. Is injective? If it isn’t injective, we cannot identify 
R with a subring of R'.

The kernel of is the set of constant polynomials in the ideal:

(11.5.8) ker = R  n  ( f ) .

I t i  s fairly likely that ken/! is zero because /  will have positive degree. There will have to 
be a lot of cancellation to make a polynomial multiple of f  have degree zero. The kernel
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is zero when a  is required to satisfy a monic polynomial relation. But it isn’t always zero. 
For instance, let R be the ring Z /(6) of congruence classes modulo 6, and let /  be the 
polynomial 2x +  1 in R[x]. Then 3 /  =  3. The kernel of the map R  -+ R / ( f )  is not zero.

11.6 PRODUCT RINGS

The product G  X G ' of two groups was defined in Chapter 2. It isthe product set, and the law 
of composition is componentwise: (x, x ')(y , y') =  (xy, x 'y '). The analogous construction 
can be made with rings. *

P r o p o s itio n  11.6.1 Let R and R' be rings.

(a) The product set R  X R' is a ring called the product ring, with component-wise addition 
and multiplication:

(x, x ') +  (y, y ') =  (x +  y, x ' +  / )  and (x, x ')(y , y ') =  (xy, * ' / ) ,

( b )  The additive and multiplicative identities in R  X  R ' are (0, 0) and (1, 1), respectively.
(c) The projections : R X  R ' -+ R and Jr' : R X R' -+ R' defined by 1r ( x ,  x ')  =  x and 

Jr'(x, x ') =  X  are ring homomorphisms. The kernels of and Jr' are the ideals {OJ X R' 
and R  X {OJ, respectively, of R x  R'.

(d) The kernel R X  {OJ of 1r '  is a ring, with multiplicative identity e =  (1,0). It is not a 
subring of R X R' unless R ' is the zero ring. Similarly, {O} X R ' is a ring with identity 
e' =  (0, 1). It is not a subring of R X  R' unless R is the zero ring.

The proofs of these assertions are very elementary. We omit them, but see the next 
proposition for part (d). □

To determine whether or not a given ring is isomorphic to a product ring, one looks 
for the elements that in a product ring would be (1, 0) and (0, 1). They are idempotent 
elements.
• An idempotent element e of a ring S is an element of S such that e2 =  e.

P r o p o s itio n  11.6.2 Let e be an idempotent element of a ring S.
(a) The element e' =  1 — e is also idempotent, e +  e ' =  1, and ee' =  0.
( b )  With the laws of composition obtained by restriction from S, the principal ideal eS is 

a ring with identity element e, and multiplication by e defines a ring homomorphism
S —— e S.

(c) The ideal eS is not a subring of S unless e is the unit element 1 of S and e' =  O.
( d )  The ring S is isomorphic to the product ring eS x  e'S.

Proof. (a) e'2 =  (1 -  e)2 =  1 — 2e +  e =  e', and ee' =  e(1 -  e) =  e — e =  0.

( b )  Every ideal I  of a ring S has the properties of a ring except for the existence of a 
multiplicative identity. In this case, e is an identity element for eS, because if a  is in eS, 
say a  =  es, then ea =  e2s =  es =  a. The ring axioms show that multiplication by e is a 
homomorphism: e (a  +  b) =  ea +  eb, e(ab) =  e2ab  =  (ea) (eb) , and e l = e.
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(c) To be a subring of S; eS must contain the identity 1 of S. If it does, then e and 1 will both 
be identity elements of leS, and since the identity in a ring is unique, e =  1 and e' =  0.

( d )  The rule cp(x) =  (:ex, e'x) defines a homomorphism cp : S -+ eS x e'S, because both 
of the maps x ex  and x e'x are homomorphisms and the laws of compostition in the 
product ring are componentwise. We verify that this homomorphism is bijective. First, if 
cp(x) =  (0, 0), then ex.=  0 and e 'x  =  O. If so, then x  = (e +  e ')x  =  ex +  e'x  =  0 too. This 
shows that cp is injective. To show that cp is surjective, let ( u ,  v )  be an element of eS x e'S, 
say u  =  ex and v  =  e'y. Then cp (u  +  v )  =  (e(ex + e'y), e'(ex +  e 'y ) ) =  ( u ,  v ) .  So ( u ,  v )  is 
in the image, and therefore cp is surjective. □

E x a m p le s  1 1 .6 .3  ( a )  We go back to the ring R' obtained by adjoining an abstract square 
root of 3 to F n. Its elements are the 112 linear combinations a  +  b8, with a  and b in IF 11 and 
82 =  3. We saw in (11.S.7)(c) that this ring is not a field, the reason being that Fn  already 
contains two square roots ± 5 of 3. The elements e =  8 — 5 and e' =  -8 — 5 are idempotents 
in R', and e +  e' =  1. Therefore R' is isomorphic to the product eR' x e'R '. Since the order 
of R' is 112, | eR'| =  |e 'R '| =  11. The rings eR ' and e 'R ' are both isomorphic to F n , and R' 
is isomorphic to the product ring IF 11 X Fn.

( b )  We define a homomorphism cp: C[x, y] -+ C[x] X C[y] from the polynomial ring in two 
variables to the product ring by cp ( f ( x , y) ) =  ( f (x , 0), f(O, y)). Its kernel is the set of 
polynomials / (x ,  y) divisible both by y and by x, which is the principal ideal of C[x, y] 
generated by xy. The map isn’t quite surjective. Its image is the subring of the product 
consisting of pairs (p (x ) , q (y »  of polynomials with the same constant term. So the quotient 
<C[x, y]/ (xy) is isomorphic to that subring. □

1 1 .7  F R A C T IO N S

In this section we consider the use of fractions in rings other than the integers. For instance, 
a fraction p /  q c_ polynomials p  and q, with q not zero, is called a rational function.

Let’s review the arithmetic of integer fractions. In order to apply the statements below 
to other rings, we denote the ring of integers by the neutral symbol R .

• A fraction is a symbol a /b , or [;, where a  and b are elements of R and b is not zero .
• Elements of R are viewed as fractions by the rule a  =  a / l .
• Two fractions a / b i  and a 2/ b 2 are equivalent, a i /b i  a 2/b 2, if t he elements of R 

that are obtained by “cross multiplying” are equal, i.e., if a  i &2 =  «2^ 1.
. . a  c a d  +  bc a  c ac

• Sums and products of fractions are given by -  +  — =  — —— , and T — = ——
b d  bd b d  bd

We use the term “equivalent” in the third item because, strictly speaking, the fractions aren’t 
actually equal.

A problem arises when one replaces the integers by an arbitrary ring R: In the 
definition of addition, the denominator of the sum is the product bd. Since denominators 
aren’t allowed to be zero, bd had better not be zero. Since b and d  are denominators, they 
aren’t zero individually, but we need to know that the product of nonzero elements of R is 
nonzero. This turns out to be the only problem, but it isn’t always true. For example, in the
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ring Z / (6) of congruence classes modulo 6, the classes 2 and 3 are not zero, but 2 3 =  0. Or, 
in a product R x R ' of nonzero rings, the idempotents (1,0) and (0, 1) are nonzero elements 
whose product is zero. One cannot work with fractions in those rings.

• An integral domain R, or just a domain  for short, is a ring with this property: R  is not the 
zero ring, and if a and b  are elements of R  whose product ab  is zero, then a  =  0 or b  =  0.

Any subring of a field is a domain, and if R  is a domain, the polynomial ring R[x] is also a 
domain.

An element a  of a ring is called a zero divisor if it is nonzero, and if there is another 
nonzero element b such that ab  =  0. An integral domain is a nonzero ring which contains 
no zero divisors.

An integral domain R  satisfies the cancellation law:

(11.7.1) If ab  =  ac  and a*O , then b =  c.

For, from ab  =  ac  it follows that a (b  — c) =  0. Then since a * 0 and since R  is a domain,
b -  c =  0. □

Theorem 11.7.2 Let F  be the set of equivalence classes of fractions of elements of an 
integral domain R.

(a) With the laws defined as above, F  is a field, called the fraction field of R.
( b )  R  embeds as a subring of F  by the rule a"" a l l .
(c) Mapping Property: If R is embedded as a subring of another field F , the rule a /b  =  ab~l 

embeds F  into F  too.

The phrase “mapping property” is explained as follows: To write the property carefully, one 
should imagine that the embedding of R  into F  is given by an injective ring homomorphism 
cp: R -+ F . The assertion is then that the rule 4>(a/b) =  cp(a)cp(b)^1 extends cp to an 
injective homomorphism 4>: F  - +  F.

The proof of Theorem 11.7.2 has many parts. One must verify that what we call 
equivalence of fractions is indeed an equivalence relation, that addition and multiplication 
are well-defined on equivalence classes, that the axioms for a field hold, and that sending 
a . .  a/1  is an injective homomorphism R  - +  F .  Then one must check the mapping property. 
All of these verifications are straightfoward.

If we were the first people who wished to use fractions in a ring, we’d be nervous and 
would want to go carefully through each of the verifications. But they have been made many 
times. It seems sufficient to check a few of them to get a sense of what is involved.

Let us check that equivalence of fractions is a transitive relation. Suppose that 
a j / b]  : :a 2/ b 2 and also that a 2 / b 2 ~ a 3 l b 3 Then a \b 2 = a 2 b\ and a 2b3 =  a3 b2. We multiply 
by bj  and b\.

a \b 2 b 3 =  a 2 b \b 3 and a 2 b^b\ = a3 b2 b\.

Therefore a\bzb 3 =  a^bib\. Cancelling bz-, a^b\ =  a \b 3 . Thus a \ j b \ «  a^/b^.  Since we 
used the cancellation law, the fact that R is a domain is essential here.

Next, we show that addition of fractions is well-defined. Suppose that a /b  «  a '/b ' 
and c | d  ~ c '| d ' .  We must show that a lb  + c | d  «  a!Ib' +  c' | d ' ,  and to do that, we cross
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multiply the expressions for the sums. We must show that u =  (a d  +  bc)(b 'd ') is equal to 
v =  (a 'd ' +  b 'c ')(bd). The relations ab ' =  a 'b  and cd ' =  c 'd  show that

u =  adb 'd ' +  bcb 'd ' =  a 'dbd ' +  bc 'b 'd  =  v.

Verification ofthe mapping property is routine too. The only thing worth remarking is 
that, if R is contained in and if a /b  is a fraction, then b*O, so the rule a /b  =  ab- 1 makes 
sense.

As mentioned above, a fraction of polynomials is called a rational function, and the 
fraction field of the polynomial ring K[x], where K  is a field, is called the field o f  rational 
functions in x, with coefficients in K. This field is usually denoted by K(x):

(11.7.3) K (x ) - equivalence classes of fractions / /  g, where f  and g 
are polynomials, and g is not the zero polynomial

The rational functions we define here are equivalence classes of fractions of the formal 
polynomials that were defined in Section 11.2. If K  =  R, evaluation of a rational function 
f ( x ) / g ( x )  defines an actual function on the real line, wherever g(x):;eO. But as with 
polynomials, we should distinguish the formally defined rational functions, which are 
fractions of formal polynomials, from the functions that they define.

1 1 . 8  M A X I M A L  ID E A L S

In this section we investigate the kernels of surjective homomorphisms

(11.8.1) q;:R -+ F

from a ring R to a field F.
Let q; be such a map. The field F  has just two ideals, the zero ideal (0) and the unit 

ideal (1) (11.3.19). The inverse image of the zero ideal is the kernel I  of q;, and the inverse 
image of the unit ideal is the unit ideal of R. The Correspondence Theorem tells us that the 
only ideals of R that contain I  are I  and R. Because of this, I  is called a maximal ideal.

• A maximal ideal M  of a ring R is an ideal that isn’t equal to R, and that isn’t contained in 
any ideal other than M  and R: If an ideal I  contains M, then I  = M  or I  =  R.

Proposition 11.8.2

(a) Let q; : R -+ R' be a surjective ring homomorphism, with kernel I. The image R ' is a 
field if and only if I  is a maximal ideal.

(b) An ideal I  of a ring R is maximal if and only if R =  R /  I  is a field.
(c) The zero ideal of a ring R is maximal if and only if R is a field.

Proof (a) A ring is a field if it contains precisely two ideals (11.3.19), so the Correspondence 
Theorem asserts that the image of q; is a field if and only if there are two precisely ideals that 
contain its kernel !. This.will be true if and only if I  is a maximal ideal.

Parts (b )  and (c) follow when (a) is applied to the canonical map R -+ R /  / .  □
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Proposition 11.8.3 The maximal ideals of the ring Z of integers are the principal ideals 
generated by prime integers. □

Proof. Every ideal of Z is principal. Consider a principal ideal (n), with n 2:  O. If n is a 
prime, say n =  p, then Z /(n ) =  Fp, a field. The ideal (n) is maximal. If n is not prime, there 
are three possibilities: n =  0, n =  1, or n factors. Neither the zero ideal nor the unit ideal 
is maximal. If n factors, say n =  ab, with 1 <  a <  n, then 1 ¢ (a), a ¢. (n), and n e (a). 
Therefore (n) <  (a) <  (1). The ideal (n) is not maximal. □

• A polynomial with coefficients in a field is called irreducible if it is not constant and if is 
not the product of two polynomials, neither of which is a constant.

Proposition 11.8.4

(a) Let F  be a field. The maximal ideals of F[x] are the principal ideals generated by the 
monic irreducible polynomials.

(b) Let q;: F[x] -+ R ' be a homomorphism to an integral domain R', and let P  be the kernel 
of q;. Either P  is a maximal ideal, or P  =  (0).

The proof of part (a) is analogous to the proof just given. We omit the proof of (b). □

Corollary 11.8.S There is a bijective correspondence between maximal ideals of the 
polynomial ring C[x] in one variable and points in the complex plane. The maximal ideal 
M a that corresponds to a point a of C is the kernel of the substitution homomorphism 
sa : C[x] -+ C that sends x  a. It is the principal ideal generated by the linear polynomial 
x  — a.

Proof. The kernel Ma  of the substitution homomorphism Sa consists of the polynomials 
that have a as a root, which are those divisible by x - a .  So M a =  (x — a). Conversely, let 
M  be a maximal ideal of C[x]. Then M  is generated by a monic irreducible polynomial. The 
monic irreducible polynomials in C[x] are the polynomials x  — a. □

The next theorem extends this corollary to polynomials rings in several variables.

Theorem 11.8.6 Hilbert’s Nullstellensatz.1 The maximal ideals of the polynomial ring 
C[Xb . . . ,  x„] are in bijective correspondence with points of complex n-dimensional space.
A point a = (a\, . . . ,  an) of Cn corresponds to the kernel M a  of the substitution map 
Sa : C[xi, . . . , x n] -+ C that sends Xi a , . The kernel Ma is generated by the n linear 
polynomials xi — a, .

Proof Let a be a point of Cn, and let Ma be the kernel of Sa. Since Sa is surjective and since 
C is a field, Ma is a maximal ideal. To verify that Ma  is generated by the linear polynomials 
as asserted, we first consider the case that the point a is the origin (0, . . . ,  0). We must show 
that the kernel of the map So that evaluates a polynomial at the origin is generated by the ,  
variables x i, • . • , X„. Well, /(0 , . . . ,  0) =  0 if and only if the constant term of f  is zero. If 
so, then every monomial that occurs in f  is divisible by at least one ofthe variables, so f  can

*The German w ord NuZ/steZ/ensatz is a com bination o f  three words w h ose  translations are zero, places, theorem .
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be written as a linear combination of the variables, with polynomial coefficients. The proof 
for an arbitrary point a  can be made using the change of variable xi =  xi +  ai to move a  to 
the origin.

It is harder to prove that every maximal ideal has the form M a. Let M  be a maximal 
ideal, and let F  denote the field C[xi, . . .  , xn]/M . We restrict the canonical map (11.4.1) 
1r :C [x i, . . . ,  x„] -+ F  to the subring C[xi] ofpolynomials in in the first variable, obtaining 
a homomorphism <Pi :C[xi] -+ F . Proposition 11.8.4 shows that the kernel of is either the 
zero ideal, or one of the maximal ideals (xi -  a i)  of C[xi]. We’ll show that it cannot be the 
zero ideal. The same will be true when the index 1 is replaced by any other index, so M  will 
contain linear polynomials of the form Xi -  ai for each i. This will show that M  contains one 
of the ideals M a, and since Ma is maximal, M  will be equal to that ideal.

In what follows, we drop the subscript from xi. We suppose that ker<p =  (0). Then 
maps C[x] isomorphically to its image, a subring of F . The mapping property of fraction 

fields shows that this map extends to an injective map C(x) -+ F , where C(x) is the field of 
rational functions -  the field of fractions of the polynomial ring C[x]. So F  contains a field 
isomorphic to C(x). The next lemma shows that this is impossible. Therefore ker<p:;e(O).

L e m m a  1 1 .8 .7

( a )  Let R be a ring that contains the complex numbers C as a subring. The laws of 
composition on R  can be used to make R into a complex vector space.

( b )  As a vector space, the field F  =  C[xl , . . .  , xn] /M  is spanned by a countable set of 
elements.

(c) Let V  be a vector space over a field, and suppose that V  is spanned by a countable set 
of vectors. Then every independent subset of V  is finite or countably infinite.

( d )  When C(x) is made into a vector space over C, the uncountable set of rational functions 
(x — a ) -1, with a  in C, is independent.

Assume that the lemma has been proved. Then ( b )  and (c) show that every independent set 
in F  is finite or countably infinite. On the other hand, F  contains a subring isomorphic to 
C(x), so by ( d ) ,  F  contains an uncountable independent set. This is a contradiction. □

Proof o f  the Lemma. ( a )  For addition, one uses the addition law in R. Scalar multiplication 
ca of an element a  of R by an element c of C is defined by multiplying these elements in R. 
The axioms for a vector space follow from the ring axioms.

(b )  The surjective homomorphism 1r :C [x i, . . . , x „] -+ F  defines a map C -+ F , by means 
of which we identify C as a subring of F , and make F  into a complex vector space. The 
countable set of monomials xp  ■ ■ x^n forms a basis for C[xi, . . .  , xn], and since is 
surjective, the images of these monomials span F .

(c) Let S be a countable set that spans V, say S =  {vi, V2, • ..} . It could be finite or infinite. 
Let Sn be the subset (vi,  . . • , Vn) consisting of the first 1)  elements of S, and let Vn be the 
span of Sn. If S is infinite, there will be infinitely many of these subspaces. Since S spans V, 
every element of V  is a linear combination of finitely many elements of S, so it is in one of 
the spaces Vn . In other words, U Vn = V.
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Let L be an independent set in V, and let Ln =  L n Vn. Then Ln is a linearly 
independent subset of the space V„, which is spanned by a set of n elements. So |Ln| :: n
(3.4.18). Moreover, L =  U Ln  because V  =  U Vn. The union of countably many finite sets 
is finite or countably infinite.

(d) We must remember that linear combinations can involve only finitely many vectors. So 
we ask: Can we have a linear relation

k

where a i ,  . . . ,  a* are distinct complex numbers andthe coefficients cw aren’t zero? No. Such 
a linear combination of formal rational functions defines a complex valued function except 
at the points x =  a u. If the linear combination were zero, the function it defines would be 
identically zero. But (x -  a i ) - 1 takes on arbitrarily large values near a i ,  while (x — a „)_1 
is bounded near a i  for v =  2, . . . ,  k. So the linear combination does not define the zero 
function. □

11.9 ALGEBRAIC GEOMETRY
A point (a1 , . . . ,  an) of Cn is called a zero of a polynomial / ( x i ,  . . . ,  xn) of n variables 
if f ( a \ ,  . . . , an) =  O. We also say that the polynomial f  vanishes at such a point. The 
common zeros of a set {fl, . . . , f r } of polynomials are the points of Cn at which all of them 
vanish -  the solutions of the system of equations f i  =  .. • =  / ,  =  0.
• A subset V  of complex n-space Cn that is the set of common zeros of a finite number of 
polynomials in n variables is called an algebraic variety, or just a variety.

For instance, a complex line in the (x, y)-plane C2 is, by definition, the set of solutions 
of a linear equation ax +  by  + c — O. This is a variety. So is a point. The point (a, b) of C2 
is the set of common zeros of the two polynomials x  -  a  and y -  b. The group SL2(C) is a 
variety in C2x2. It is the set of zeros of the polynomial X^X22 — X12X21 -  1.

The Nullstellensatz provides an important link between algebra and geometry. It tells 
us that the maximal ideals in the polynomial ring C[xi, . . .  ,Xn] correspond to points in 
Cn. This correspondence also relates algebraic varieties to quotient rings of the polynomial 
ring.

Theorem 11.9.1 Let I  be the ideal of C[xi, " . . , xn] generated by some polynomials 
/ 1, . . .  / - ,  and let R be the quotient ring C[xi, , . . ,  xn]/ T. Let V  be the variety of (common) 
zeros of the polynomials /1 . . . . ,  f r  in Cn. The maximal ideals of R are in bijective 
correspondence with the points of V.

Proof. The maximal ideals of R correspond to the maximal ideals of C[xi, . . . ,  Xn] that 
contain I  (Correspondence Theorem). An ideal of C[xi, . . . ,  xn] will contain I  if and only 
if it contains the generators / 1, . . . ,  f r  of I. Every maximal ideal of the ring C[xi, • . . , xn] 
is the kernel Ma of the substitution map that sends X; 'V'7  a; for some point a  =  (a i, . . .  , a n) 
of Cn, and the polynomials / 1, . . .  , f r  are in Ma if and only if /  (a) =  • ■• =  / - ( a )  =  0, 
which is to say, if and only if a  is a point of V. □
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As this theorem suggests, algebraic properties of the ring R  = C[x]/ I  are closely related 
to geometric properties of the variety V. The analysis of this relationship is the field of 
mathematics called algebraic geometry.

A simple question one might ask about a set is whether or not it is empty. Is it possible 
for a ring to have no maximal ideals at all? This happens only for the zero ring.

T h e o r e m  1 1 .9 .2  Let R be a ring. Every ideal I  of R  that is not R itself is contained in a 
maximal ideal.

To find a maximal ideal, one might try this procedure: If I  is not maximal, choose a proper 
ideal I ' that is larger than I. Replace I  by I', and repeat. The proof follows this line of 
reasoning, but one may have to repeat the procedure many times, possibly uncountably 
often. Because of this, the proof requires the Axiom o f  Choice, or Zorn’s Lemma (see the 
Appendix). The Hilbert Basis Theorem, which we will prove later (14.6.7), shows that for 
most rings that we study, the proof requires only a weak countable version of the Axiom of 
Choice. Rather than enter into a discussion of the Axiom of Choice here, we defer further 
discussion of the proof to Chapter 14. □

C o r o l la r y  1 1 .9 .3  The only ring R  having no maximal ideals is the zero ring.

This follows from the theorem, because every nonzero ring R contains an ideal different 
from R: the zero ideal. □

Putting Theorems 11.9.1 and 11.9.2 together gives us another corollary:

C o r o l la r y  1 1 .9 .4  If a system of polynomial equations f t  =  . ■■ = f r =  0 in n variables has 
no solution in C” , then 1 is a linear combination 1 =  L  gi f i  with polynomial coefficients gi.

Proof. If the system has no solution, there is no maximal ideal that contains the ideal 
I  =  ( f t ,  . . . ,  f t) .  So I  is the unit ideal, and 1 is in I. □

E x a m p le  1 1 .9 .5  Most choices of three polynomials f t ,  f t , /3 in two variables have no 
common solutions. For instance, the ideal of C[t, x] generated by

(11.9.6) f t  =  t2 +  x2 — 2, f t  =  tx  — 1, /3 =  ^  +  5 tx2 +  1

is the unit ideal. This can be proved by showing that the equations /1 =  f t  =  /3 =  0 have 
no solution in C2  ̂ □

It isn’t easy to get a clear geometric picture of an algebraic variety in C” , but the 
general shape of a variety in C2 can be described fairly simply, and we do that here. We 
work with the polynomial ring in the two variables t and x.

L e m m a  1 1 .9 .7  Let f ( t, x) be a polynomial, and let Of. be a complex number. The following 
are equivalent:
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(a) f ( t , x) vanishes at every point of the locus {t =  a} in c 2,
(b) The one-variable polynomial f ( a ,  x) is the zero polynomial,
(c) t — a  divides f  in C[t, x ].

Proof. If f  vanishes at every point of the locus t =  a , the polynomial f ( a ,  x) is zero for 
every x. Then since a nonzero polynomial in one variable has finitely many roots, f ( a ,  x) is 
the zero polynomial. This shows that (a) implies (b).

A change of variable t =  t  +  a  reduces the proof that (b) implies (c) to the case that 
a  =  O. If f(O, x) is the zero polynomial, then t divides every monomial that occurs in f ,  and 
t divides f .  Finally, the implication (c) implies (a) is clear. □

Let F  denote the field of rational functions C(t) in t, the field of fractions of the ring 
C[t]. The ring C[t, x] is a subring of the one-variable polynomial ring F[x]; its elements are 
polynomials in x,

whose coefficients a,- (t) are rational functions in t. It can be helpful to begin by studying 
a problem about C[t, x] in the ring F[x], because its algebra is simpler. Division with 
remainder is available, and every ideal of F[x] is principal.

Proposition 11.9.9 Let h(t, x) and f ( t ,  x) be nonzero elements of C[t, x]. Suppose that h 
is not divisible by any polynomial of the form t — a. If h divides f  in F[x], then h divides f  
in q t ,  x].

Proof We divide by h in F[x], say f  =  h q , and we show that q is an element of C[t, x]. 
Since q is an element of F[x], it is a polynomial in x whose coefficients are rational functions 
in t. We multiply both sides of the equation f  =  hq by a monic polynomial in t to clear 
denominators in these coefficients. This gives us an equation of the form

u (t) f ( t ,  x) =  h (t, x)qi (t, x ) ,

where u (t) is a monic polynomial in t, and qi is an element of C[t, x]. We use induction on 
the degree of u. If u has positive degree, it will have a complex root a. Then t — a  divides 
the left side of this . equation, so it divides the right side too. This means that h (a , x )q i(a , x) 
is the zero polynomial in x. By hypothesis, t — a  does not divide h, so h (a , x) is not zero. 
Since the polynomial ring C[x] is a domain, qi (a , x) =  0, and the lemma shows that t — a  
divides qi (t, x). We cancel t — a  from u and qi. Induction completes the proof. □

Theorem 11.9.10 Two nonzero polynomials f ( t ,  x) and g(t, x) in two variables have 
only finitely many common zeros in C2, unless they have a common nonconstant factor 
in C[t, x].

If the degrees of the polynomials f  and g are m and n respectively, the number 
of common zeros is at most mn. This is known as the Bezout bound. For instance, two
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quadratic polynomials have at most four common zeros. (The analogue of this statement for 
real polynomials is that two conics intersect in at most four points.) It is harder to prove the 
Bezout bound than the finiteness. We won’t need that bound, so we won’t prove it.

Proof o f Theorem 11.9.10. Assume that f  and g have no common factor. Let I  denote the 
ideal generated by f  and g in F[x], where F  =  C(t), as above. This is a principal ideal, 
generated by the (monic) greatest common divisor h of f  and g in F[x\.

If h =1=  1, it will be a polynomial whose coefficients may have denominators that are 
polynomials in t. We multiply by a polynomial in t to clear these denominators, obtaining 
a polynomial h i in C[t, x ]  We may assume that h i isn’t divisible by any polynomial t -  a. 
Since the denominators are units in F  and since h divides f  and g in F[x], hi also divides 
f  and g in F[x]. Proposition 11.9.9 shows that h i divides f  and g in C[t, x]. Then f  and g 
have a common nonconstant factor in C[t, x]. We’re assuming that this is not the case.

So the greatest common divisor of f  and g in F[x] is 1, and 1 =  r f  +  sg, where r  and 
s are elements of F[x]. We clear denominators from r  and s, multiplying both sides of the 
equation by a suitable polynomial u (t) . This gives us an equation of the form

u(t)  =  r \( t ,  x) f ( t ,  x) +  si (t, x)g(t, x ),

where all terms on the right are polynomials in C[t, x\. This equation shows that if (to, xo) 
is a common zero of f  and g, then to must be a root of u. But u is a polynomial in t, and 
a nonzero polynomial in one variable has finitely many roots. So at the common zeros of 
f  and g, the variable t takes on only finitely many values. Similar reasoning shows that 
x takes on only finitely many values. This gives us only finitely many possibilities for the 
common zeros. □

Theorem 11.9.10 suggests that the most interesting varieties in C2 are those defined as 
the locus of zeros of a single polynomial f ( t ,  x) .
• The locus X of zeros in C2 of a polynomial / ( t ,  x) is called the Riemann surface of f .
It is also called a plane algebraic curve -  a confusing phrase. As a topological space, the 
locus X has dimension two. Calling it an algebraic curve refers to the fact that the points 
of X depend only on one complex parameter. We give a rough description of a Riemann 
surface here. Let’s assume that the polynomial f  is irreducible -  that it is not a product of 
two nonconstant polynomials, and also that it has positive degree in the variable x. Let

(11.9.11) X =  {(t, x) e C 2 I f ( t ,  x) =  OJ

be its Riemann surface, and let T denote the complex t-plane. Sending (t, x) . .  t defines a 
continuous map that we call a projection

(11.9.12) n :X  -+ T.

We will describe X in terms of this projection. However, our description will require that a 
finite set of “ bad points” be removed from X. In fact, what is usually called the Riemann 
surface agrees with our definition only when suitable finite subsets are removed. The locus 
{ / =  0} may be “singular” at some points, and some other points of X  may be “at infinity.” 
The points at infinity are explained below (see (11.9.17)).
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The simplest examples of singular points are nodes, at which the surface crosses itself, 
and cusps. The locus x2 =  t3 — t2 has a node at the origin, and the locus x2 =  t3 has a cusp 
at the origin. The real points of these Riemann surfaces are shown here.

K -

- a node a cusp

(11.9.13) Some Singular Curves

To avoid repetition of the disclaimer “except on a finite set,” we write X' for the 
complement of an unspecified finite subset of X, which is allowed to vary. Whenever 
a construction runs into trouble at some point, we simply delete that point. Essentially 
everything we do here and when we come back to Riemann surfaces in Chapter 15 will be 
valid only for X'. We keep X  on hand for reference.

Our description of the Riemann surface will be as a branched covering of the complex 
t-plane T. The definition of covering space that we give here assumes that the spaces are Haus
dorff: spaces ([Munkres] p. 98). You can ignore this point if you don’t know what it means. 
The sets in which we are interested are Hausdorff spaces because they are subsets of C2.

D e f in i t io n  1 1 .9 .1 4  Let X  and T be Hausdorff spaces. A continuous map rr : X -+ T is an 
n-sheeted covering space if every fibre consists of n points, and if it has this property: Let 
Xo be a point of X and let rr(xo) =  to. Then rr maps an open neigborhood U of Xo in X 
homeomorphically to an open neighborhood V of to in T.
A map rr from X to the complex plane T is an n-sheeted branched covering if X  contains 
no isolated points, the fibres of rr are finite, and if there is a finite set A of points of T  called 
branch points, such that the map (X -  r r^ A )  -+ (T — A) is an n-sheeted covering space. 
For emphasis, a covering space is sometimes called an unbranched covering.

Figure 11.9.15 below depicts the Riemann surface of the polynomial x2 — t, a two- 
sheeted covering of T that is branched at the point t =  O. The figure has been obtained by 
writing t and x in terms of their real and imaginary parts, t =  to +  t\i and x =  Xo +  Xii, 
and dropping the imaginary part Xi ofx,  to obtain a surface in three-dimensional space. Its 
further projection to the plane is depicted using standard graphics.

The projected surface intersects itself along the negative to-axis, though the Riemann 
surface itself does not. Every negative real number t has two purely imaginary square roots. 
The real parts of these square roots are zero, and this produces the self-crossing in the 
projected surface.
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v ' (

( 1 1 .9 .1 4 )  P a r t  o f  a n  u n b r a n c h e d  c o v e r in g .

(11.9.15) The Riemann surface x 2 =  t.
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Given a branched covering X -> T, we refer to the points in the set A as its branch 
points, though this is imprecise: The defining property continues to hold when we add any 
finite set of points to A. So we allow the possibility that some points of A don’t need to be 
included -  that they aren’t “true” branch points.

Theorem 11.9.16 Let f i t ,  x) be an irreducible polynomial in C[t, x] which has positive 
degree n in the variable x. The Riemann surface of f  is an n-sheeted branched covering of 
the complex plane T.

Proof. The main step is to verify the first condition of (11.9.14), that the fibre (to) consists 
of precisely n points except on a finite subset A.

The points of the fibre 1l' - 1 (to) are the points (to, xo) such that xo is a root of the 
one-variable polynomial f(to, x). We must show that, except for a finite set of values t =  to, 
this polynomial has n distinct roots. We write f ( t , x) as a polynomial in x whose coefficients 
are polynomials in t, say f (x )  =  an(t)x” +  • • • +  ao(t), and we denote a,-(to) by a? . The
polynomial fUo, x) =  a°x” +------ + a jx  +  ag has degree at most n, so it has at most n roots.
Therefore the fibre 1l'-* (p ) contains at most n points. It will have fewer than n points if 
either
(11.9.17) ^

(a) the degree of f(to, x) is less than n, or
(b) f(to, x) has a multiple root.

The first case occurs when to is a root of a„ (t) . (If to is a root of a n (t), one of the roots 
of f ( t i ,  x) tends to infinity as ti -+ to.) Since an(t) is a polynomial, there are finitely many 
such values.

Consider the second case. A complex number Xo is a multiple root of a polynomial 
h(x) if (x -  xo)2 divides h(x), and this happens if and only if xo is a common root of h(x) 
and its derivative h '(x) (see Exercise 3.5). Here h(x) =  f(to, x). The first variable is fixed, 
so the derivative is the partial derivative Going back to the polynomial f ( t ,  x ) in two 
variables, we see that the second case occurs at the points (to, xo) that are common zeros of 
f  and ^ .  Now f  cannot divide its partial derivative, which has lower degree in x. Since f  is 
assumed to be irreducible, f  and have no common nonconstant factor. Theorem 11.9.10 
tells us that there are finitely many common zeros.

We now check the second condition of (11.9.14). Let to be a point of T such that the 
fibre :r~i(to) consists of n points, and let (to, xo) be a point of X  in the fibre. Then Xo is 
a simple root of f(to, x), and therefore ^  is not zero at this point. The Implicit Function 
Theorem A.4.3 implies that one can solve for x as a function x(t) of t in a neighborhood of 
to, such that x(to) =  Xo. The neighborhood U referred to in the definition of covering space 
is the graph of this function. □

To me algebraic geometry is algebra with a kick.

—Solomon Lefschetz
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E X E R C ISE S

S e c t io n  1 D e f in i t io n  o f  a  R in g

1 .1 . P r o v e  th a t  7  +  . . /2  a n d  . . /2  +  a r e  a lg e b r a ic  n u m b e r s .

1 .2 . P r o v e  th a t , fo r  n  * 0 ,  c o s ( 2 r r /n )  is  a n  a lg e b r a ic  n u m b e r .

1 .3 . L e t  Q [ a ,  ,s]  d e n o t e  t h e  s m a lle s t  su b r in g  o f  C  c o n t a in in g  t h e  r a t io n a l n u m b e r s  Q  a n d  th e  

e le m e n ts  a  =  . . /2  a n d  =  ../2 . L e t  y  =  a  +  ,s . Is  Q [ a ,  ,s] =  Q [ y ]?  Is  Z [ a , ,s] =  Z [ y ] ?

1 .4 . L e t  a  =  j i .  P r o v e  th a t  th e  e le m e n t s  o f  Z [ a ]  a r e  d e n s e  in  th e  c o m p le x  p la n e .

1 .5 .  D e t e r m in e  a ll  su b r in g s  o f  R  th a t  a r e  d is c r e te  s e t s .

1 .6 .  D e c i d e  w h e t h e r  o r  n o t  S  is  a  su b r in g  o f  R , w h e n

( a )  S  is  th e  se t  o f  a ll  r a t io n a l n u m b e r s  a | b ,  w h e r e  b is  n o t  d iv is ib le  b y  3 , a n d  R  =  Q ,

( b )  S  is  t h e  s e t  o f  fu n c t io n s  w h ic h  a r e  l in e a r  c o m b in a t io n s  w it h  in te g e r  c o e f f ic ie n t s  o f  t h e  
fu n c t io n s  { l ,  c o s  n t ,  s in  n t} ,  n  e  Z , a n d  R  is  t h e  s e t  o f  a l l  r e a l  v a lu e d  fu n c t io n s  o f  t.

1 .7 . D e c id e  w h e th e r  t h e  g iv e n  s tr u c tu r e  fo r m s  a  r in g . I f  i t  is  n o t  a  r in g , d e t e r m in e  w h ic h  o f  th e  
r in g  a x io m s  h o ld  a n d  w h ic h  fa il:

( a )  U  is  a n  a rb itra ry  s e t ,  a n d  R  is  t h e  s e t  o f  s u b s e t s  o f  U .  A d d it io n  a n d  m u lt ip l ic a t io n  o f  
e le m e n t s  o f  R  a r e  d t!fin e d  b y  t h e  r u le s  A +  B =  (A U B )  — (A n  B )  a n d  A . B  =  A n  B .

(b )  R  is t h e  se t  o f  c o n t in u o u s  fu n c t io n s  JR - +  JR. A d d it io n  a n d  m u lt ip l ic a t io n  a r e  d e f in e d  
b y  t h e  r u le s  [ f  +  g ] ( x )  =  f ( x )  +  g ( x )  a n d  [ f  o g ] ( x )  =  f ( g ( x ) ) .

1 .S . D e t e r m in e  th e  u n its  in: ( a )  Z / 1 2 Z ,  (b )  Z / 8 Z ,  ( c )  Z / n Z .

1 .9 . L e t  R  b e  a  s e t  w ith  tw o  la w s  o f  c o m p o s i t io n  s a t is fy in g  a l l  r in g  a x io m s  e x c e p t  t h e  
c o m m u ta t iv e  la w  f o r  a d d it io n . U s e  t h e  d is tr ib u t iv e  la w  t o  p r o v e  th a t  t h e  c o m m u t a t iv e  la w  
f o r  a d d it io n  h o ld s ,  s o  th a t  R  is  a  r in g .

S e c t io n  2  P o ly n o m ia l  R in g s  ,

2 .1 . F o r  w h ic h  p o s i t iv e  in te g e r s  n  d o e s  x 2 +  x  +  1 d iv id e  x 4 +  3X3 +  x 2 +  7 x  +  5  in  [ Z / ( n ) ] [ x ] ?

2 .2 . L e t  F  b e  a  f ie ld . T h e  s e t  o f  a l l  f o r m a l p o w e r  s e r ie s  p ( t )  =  a o  +  a \t  +  a 2t2 +-------- , w ith  a,
in  F ,  fo r m s  a  r in g  th a t  is  o f t e n  d e n o t e d  b y  F [ [ t ] ] .  B y  formal p o w e r  s e r ie s  w e  m e a n  th a t  
th e  c o e f f ic ie n t s  f o r m  a n  a rb itra ry  s e q u e n c e  o f  e le m e n t s  o f  F .  T h e r e  is  n o  r e q u ir e m e n t  o f  
c o n v e r g e n c e .  P r o v e  th a t  F [ [ f ] ]  is  a  r in g , a n d  d e t e r m in e  th e  u n its  in  th is  r in g .

S e c t io n  3  H o m o m o r p h is m s  a n d  I d e a ls

3 .1 . P r o v e  th a t  a n  id e a l o f  a  r in g  R  is  a  su b g r o u p  o f  t h e  a d d it iv e  g r o u p  R + .

3 .2 . P r o v e  th a t  e v e r y  n o n z e r o  id e a l  in  th e  r in g  o f  G a u s s  in te g e r s  c o n ta in s  a  n o n z e r o  in te g e r .

3 .3 .  F in d  g e n e r a to r s  f o r  t h e  k e r n e ls  .p f th e  fo l lo w in g  m a p s:

( a )  R [ x ,  y ]  - +  JR d e f in e d  b y  f ( x ,  y )  . .  f (O ,  0 ) ,

(b ) JR[x] - +  C  d e f in e d  b y  f ( x )  . .  f ( 2  +  i),
( c )  Z [x ]  - +  JR d e f in e d  b y  f ( x )  . .  f ( 1  +  . . /2 ) ,
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(d) Z[x] --+ C defined by x  + ./3.
(e) C[x, y, z] --+ C[t] defined by x t, y f2, z t3.

3.4. Let cp: C[x, y] --+ C[t] be the homomorphism that sends x  t+ 1 andy"", t3-1 . Determine 
the kernel K of cp, and prove that every ideal I  of C[x, y] that contains K can be generated 
by two elements.

3.5. The derivative of a polynomial f  with coefficients in a field F  is defined by the calculus 
formula (anxn + ... +  aix  + ao)' =  nanx”— + . •. +  1 a i . The integer coefficients are 
interpreted in F  using the unique homomorphism Z --+ F.

(a) Prove the product rule (fg ) ' = f  g +  f g  and the chain rule ( f  o g)' = ( / '  o g)g'.
(b) Let a  be an element of F. Prove that ex is a multiple root of a polynomial f  if and only

if it is a common root of f  and of its derivative f .

3.6. An automorphism of a ring R is an isomorphism from R  to itself. Let R be a ring, 
and let / ( y) be a polynomial in one variable with coefficients in R. Prove that the map 
R[x, y] --+ R[x, y] defined by x x +  /(y ), y"'" y is an automorphism of R[x, y].

3.7. Determine the automorphisms of the polynomial ring Z[x] (see Exercise 3.6).
3.8. Let R be a ring of prime characteristic p. Prove that themap R --+ R defined by x  xP is 

a ring homomorphism. (It is called the Frobenius map.)
3.9. (a) An element x  of a ring R is called nilpotent if some power is zero. Prove that if x  is 

nilpotent, then 1 +  x is a unit.
(b) Suppose that R has prime characteristic p  O. Prove that if a  is nilpotent then 1 +  a  is 
unipotent, that is, some power of 1 +  a  is equal to 1.

3.10. Determine all ideals of the ring F[[t]] of formal power series with coefficients in a field F  
(see Exercise 2.2).

3.11. Let R be a ring, and let I  be an ideal of the polynomial ring R[x]. Let n be the lowest 
degree among nonzero elements of I. Prove or disprove: I  contains a monic polynomial of 
degree n if and only if it is a principal ideal.

3.12. Let I  and J  be ideals of a ring R. Prove that the set I  +  J  of elements of the form x + y, 
with x in I  and y in J, is an ideal. This ideal is called the sum of the ideals I  and J.

3.13. Let I  and J  be ideals of a ring R. Prove that the intersection I  n J  is an ideal. Show by 
example that the set of products {xy | x e I, y e J) need not be an ideal, but that the set 
of finite sums L  XvYv of products of elements of I  and J  is an ideal. This ideal is called 
the product ideal, and is denoted by I  J. Is there a relation between I J  and I n  J?

Section 4 Quotient Rings

4.1. Consider the homomorphism Z[x] --+ Z that sends x"'" 1 Explain what the Correspon
dence Theorem, when applied to this map, says about ideals of Z[x].

4.2. What does the Correspondence Theorem tell us about ideals of Z[x] that contain x 2 +  1?
4.3. Identify the following rings: (a) Z[xl/(x2 — 3, 2x + 4), (b) Z [i]/(2 +  i),

(c) Z[x]/(6, 2x -  1), (d) Z[x]/(2xi -  4, 4x -  5), (e) Z[x]/(x2 + 3, 5).
4.4. Are the rings Z[x]/(x2 + 7) and Z[x]/(2x2 + 7) isomorphic?
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Section 5 Adjoining Elements

5.1. Let f  =  x4 + x 3 + x 2 + x  + 1 and let a  denote the residue of x in the ring R =  Z [x]/(f). 
Express (a3 +  a 2 + a)(a5 + 1) in terms of the basis (1, a , a 2, a 3) of R.

5.2. Let a  be an element of a ring R. If we adjoin an element a  with the relation a  =  a, we 
expect to get a ring isomorphic to R. Prove that this is true.

53. Describe the ring obtained from Z/12Z by adjoining an inverse of 2.
5.4. Determine the structure of the ring R' obtained from Z by adjoining an element a  satisfying 

each set of relations.
(a) 2a =  6, 6a  =  15, (b) 2a -  6 =  0, a  — 10 =  0, (c) a3 + a2 +  1 =  0, a2 +  a  =  O.

5.5. Are there fields F  such that the rings F[x]/(x2) and F[x]/(x2 -  1) are isomorphic?
5.6. Let a be an element of a ring R, and let R' be the ring R[x]/  (ax — 1) obtained by adjoining 

an inverse of a to R. Let a  denote the residue of x (the inverse of a  in R').

(a) Show that every element of R' can be written in the form =  a^b, with b in R.
(b) Prove that the kernel of the map R -+ R' is the set of elements b of R such that 

anb =  0 for some n > 0.
(c) Prove that R' is the zero ring if and only if a is nilpotent (see Exercise 3.9).

5.7. Let F  be a field and let R =  F[t] be the polynomial ring. Let R' be the ring extension 
R[x]/(tx — 1) obtained by adjoining an inverse of t to R. Prove that this ring can be 
identified as the ring of Laurent polynomials, which are finite linear combinations of 
powers of t, negative exponents included.

Section 6 Product Rings

6.1. Let cp:JR[x] -+ C x C be the homomorphism defined by cp(x) =  (1, i) and cp(r) =  (r, r) 
for r  in R  Determine the kernel and the image of cp.

6.2. Is Z /(6) isomorphic to the product ring Z/(2) XZ/(3)? Is Z /(8) isomorphic to Z/(2) X 
Z/(4)?

6.3. Classify rings of order 10.
6.4. In each case, describe the ring obtained from the field lF2 by adjoining an element a  

satisfying the given relation:

(a) a 2 +  a  + 1 =  0 , (b) a 2 +  1 =  0 , (c) a 2 + a  =  0.

6.5. Suppose we adjoin an element a  satisfying the relation a2 =  1 to the real numbers K. 
Prove that the resulting ring is isomorphic to the product JR X JR.

6.6. Describe the ring obtained from the product ring JR X JR by inverting the element (2, 0).
6.7. Prove that in the ring Z[x], the intersection (2) n  (x) of the principal ideals (2) and (x) 

is the principal ideal (2x), and that the quotient ring R =  Z[x]/(2x) is isomorphic to the 
subring of the product ring lF2[x] X Z of pairs (f(x ) , n) such that f(0) =  n modulo 2.

6.8. Let I  and J  be ideals of a ring R such that 1 + J  =  R.

(a) Prove that I J  =  I n  J  (see Exercise 3. 13).
(b) Prove the Chinese Remainder Theorem: For any pair a, b of elements of R, there is an 

element x such that x a  modulo I  and x"'" b modulo J. (The notation x"'" a modulo 
I  means x — a E / . )
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(c) Prove that if 1J =  0, then R is isomorphic to the product ring (R /l)  X (R / 1).
(d) Describe the idempotents corresponding to the product decomposition in (c).

Section 7 Fractions
7.1. Prove that a domain of finite order is a field.
7.2. Let R be a domain. Prove that the polynomial ring R[x] is a domain, and identify the units

in R[x]. •
7.3. Is there a domain that contains exactly 15 elements?
7.4. Prove that the field of fractions of the formal power series ring F[[x]] over a field F  can be 

obtained by inverting the element x. Find a neat description of the elements of that field 
(see Exercise 11.2.1).

7.5. A subset S of a domain R  that is closed under multiplication and that does not contain 0 is 
called a multiplicative set. Given a multiplicative set S, define S-fractions to be elements of 
the form a/b,  where b is in S. Show that the equivalence classes of S-fractions form a ring.

Section 8 Maximal Ideals
8.1. Which principal ideals in Z[x] are maximal ideals?
8.2. Determine the maximal ideals of each of the following rings:

(a) RXR,  (b) lR[x]/(x2), (c) R[x]/(x2 -  3x + 2), (d) K[x]/(x2 + x  + I).
8.3. Prove that the ring lFi[x]/(x3 + x +  1) is a field, but that F3 [x]/ (x3 + x + 1) is not a field.
8.4. Establish a bijective correspondence between maximal ideals of K[x] and points in the 

upper half plane.

Section 9 Algebraic Geometry

9.1. Let I  be the principal ideal of C[x, y] generated by the polynomial y2+x3 -17. Which of the
following sets generate maximal ideals in the quotient ring R = C[x, y]/ l?  (x — 1, y — 4), 
(x + 1, y + 4), (x3 -1 7 , y2).

9.2. Let f t ,  . . . , f  - be complex polynomials in the variables Xi, . . . ,  x„, let V be the variety 
of their common zeros, and let I  be the ideal of the polynomial ring R  =  C[xi, • • . , xn] 
that they generate. Define a homomorphism from the quotient ring R =  R /1 to the ring 
R  of continuous, complex-valued functions on V.

9.3. Let U =  (h (x i, . . .  , xm) =  O), V = (gj(yi, . . . , y«) =  0} be varieties in Cm and C", 
respectively. Show that the variety defined by the equations {/;(x) =  0, gj(y)  =  0} in 
x, y-space Cm+” is the product set U x V.

9.4. Let U and V be varieties in C”. Prove that the union U U V and the intersection U n V 
are varieties. What does the statement U n V =  0 mean algebraically? What about the 
statement U U V = C”?

9.5. Prove that the variety of zeros of a set {ft, . . . ,  f r} of polynomials depends only on the 
ideal that they generate.

9.6. Prove that every variety in C2 is the union of finitely many points and algebraic curves.
9.7. Determine the points of intersection in C2 of the two loci in each of the following cases:

(a) /  -  x3 +  x2 = 1, x +  y =  1 , (b) x2 + xy + Y  =  1, x2 + 2/  =  1,
(c) Y  =  x3, xy =  1, (d )  x + y2 =  0, y + x2 + 2xY  + y4 =  0.



9.8. W h ic h  id e a ls  in  t h e  p o ly n o m ia l  r in g  C [x ,  y ]  c o n ta in  x 2 +  y 2 — 5 a n d  x y  — 2 ?

9.9. A n  irreducible p la n e  a lg e b r a ic  c u r v e  C  is  th e  lo c u s  o f  z e r o s  in  C 2 o f  a n  ir r e d u c ib le  
p o ly n o m ia l  f (x ,  y ) .  A  p o in t  p  o f  C  is  a  singular point o f  t h e  c u r v e  i f  f  =  d f / d x  =  
d / / d y  =  0  a t p .  O th e r w is e  p  is  a  nonsingular point. P r o v e  th a t  a n  ir r e d u c ib le  c u r v e  h a s  
o n ly  f in it e ly  m a n y  s in g u la r  p o in ts .

9.10. L e t  L  b e  th e  ( c o m p le x )  l in e  { a x  +  b y  + c  =  0} in  C 2, a n d  le t  C  b e  t h e  a lg e b r a ic  c u r v e  
{f ( x ,  y )  =  0 } , w h e r e  f  is  a n  ir r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  d . P r o v e  C  n L  c o n ta in s  a t 
m o s t  d  p o in ts  u n le s s  C  =  L .

9.11. L e t  C i  a n d  C 2 b e  th e  z e r o s  o f  q u a d r a tic  p o ly n o m ia ls  i t  a n d  h  r e s p e c t iv e ly  th a t  d o n ’t
h a v e  a  c o m m o n  l in e a r  fa c to r . ,

(a )  L e t  p  a n d  q  b e  d is t in c t  p o in ts  o f  in te r s e c t io n  o f  C 1 a n d  C 2, a n d  le t  L  b e  th e  ( c o m p le x )  
l in e  th r o u g h  p  a n d  q . P r o v e  th a t  t h e r e  a r e  c o n s ta n t s  Ci a n d  C2, n o t  b o th  z e r o ,  s o  th a t  
g  =  Ci i t  +  C2/2 v a n is h e s  id e n t ic a l ly  o n  L .  P r o v e  a lso  th a t  g  is  th e  p r o d u c t  o f  l in e a r  
p o ly n o m ia ls .

Hint: F o r c e  g  t o  v a n is h  a t  a  th ir d  p o in t  o f  L .

( b )  P r o v e  th a t  C i  a n d  C 2 h a v e  a t  m o s t  4  p o in ts  in  c o m m o n .

9.12. P r o v e  in  t w o  w a y s  th a t  th e  t h r e e  p o ly n o m ia ls  i t  =  t2 +x2 -2 , h  =  t x —l ,  =  il+5tx2 +l 
g e n e r a t e  th e  u n it  id e a l  in  C [ x ,  y ]: b y  sh o w in g  th a t  t h e y  h a v e  n o  c o m m o n  z e r o s ,  a n d  a lso  
b y  w r it in g  1 a s  a l in e a r  c o m b in a t io n  o f  i t , 12, 13 , w ith  p o ly n o m ia l  c o e f f ic ie n t s .

*9.13. L e t  cp : C[x, y] - +  C [t]  b e  a h o m o m o r p h is m  th a t  is  t h e  id e n t ity  o n  C  a n d  s e n d s  x  . .  x(t), 
y  . .  y ( t ) ,  an d  su ch  th a t  x ( t )  a n d  y ( t )  a r e  n o t  b o t h  c o n s ta n t . P r o v e  th a t  th e  k e r n e l  o f  cp is  a  
p r in c ip a l id e a l .

M is c e l la n e o u s  E x e r c is e s

M.l. P r o v e  o r  d isp r o v e :  I f  a 2 =  a  fo r  e v e r y  a  in  a  n o n z e r o  r in g  R , th e n  R  h a s  c h a r a c te r is t ic  2.

M.2. A  se m ig r o u p  S  is  a  s e t  w ith  a n  a s s o c ia t iv e  la w  o f  c o m p o s i t io n  h a v in g  a n  id e n t i t y  e le m e n t .  
L e t  S  b e  a  c o m m u ta t iv e  s e m ig r o u p  th a t  s a t is f ie s  t h e  c a n c e l la t io n  la w : a b  =  a  c  im p l ie s  
b  = c. P r o v e  th a t  S  c a n  b e  e m b e d d e d  i n t o  a  g r o u p .

M.3. L e t  R  d e n o te  th e  s e t  o f  s e q u e n c e s  a =  (a\, a2, a%, . . . )  o f  r e a l n u m b e r s  th a t  a r e  e v e n t u a l ly  
c o n s ta n t:  an =  a „ + i  =  . . .  fo r  su f f ic ie n t ly  la r g e  n . A d d i t io n  a n d  m u lt ip l ic a t io n  a r e  
c o m p o n e n t w is e ,  th a t  is , a d d it io n  is  v e c to r  a d d it io n  a n d  m u lt ip l ic a t io n  is  d e f in e d  b y  
a b  =  ( a j b i ,  02̂ 2, . . . ) .  P r o v e  th a t R  is  a  r in g , a n d  d e t e r m in e  its  m a x im a l  id e a ls .

M.4. ( a )  C la s s ify  r in g s  R  th a t  c o n t a in  C  a n d  h a v e  d im e n s io n  2  a s  v e c t o r  s p a c e  o v e r  C.

( b )  D o  th e  s a m e  f o r  r in g s  th a t  h a v e  d im e n s io n  3.

M.S. D e f in e c p :C [ x ,  y ]  - +  C [ x ] x <C[y ] x C [ t ]  b y  f ( x , y )  . .  ( f (x ,  0 ) ,  f ( 0 , y ) ,  f ( t ,  t » . D e t e r m i n e  
th e  im a g e  o f  th is  m a p , a n d  f in d  g e n e r a to r s  fo r  t h e  k e r n e l.

M.6. P r o v e  th a t  t h e  lo c u s  y  =  s in  x  in  R 2 d o e s n ’t l i e  o n  a n y  a lg e b r a ic  c u r v e  in  C 2 ^

*M.7. L e t X d e n o t e  th e  c lo s e d  u n it in te r v a l  [0 , 1 ] , a n d  le t R  b e  th e  r in g  o f  c o n t in u o u s  fu n c t io n s
X  -+ R.

( a )  L e t  i t ,  . . . ,  i t ,  b e  f u n c t io n s  w ith  n o  c o m m o n  z e r o  o n  X. P r o v e  th a t  th e  id e a l  g e n e r a t e d  
b y  t h e s e  fu n c t io n s  is  t h e  u n it  id e a l.

Hint: C o n s id e r  f f  +---------+ / / ; .

(b )  E s ta b l is h  a  b ije c t iv e  c o r r e s p o n d e n c e  b e t w e e n  m a x im a l id e a ls  o f  R  a n d  p o in ts  o n  th e  
in te r v a l.
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C H A P T E R  1 2

Factoring

You probably think that one knows everything about polynomials.

—Serge Lang

12.1 FACTORING INTEGERS

We study division in rings in this chapter, modeling our investigation on properties of the 
ring of integers, and we begin by reviewing those properties. Some have been used without 
comment in earlier chapters of the book, and some have been proved before.

A property from which many others follow is division with remainder: If a  and b are 
integers and a  is positive, there exist integers q and r  so that

(12.1.1) b =  a q  +  r, and 0 :s r  <  a.

We’ve seen some of its important consequences:

T h e o r e m  U . l . 2

( a )  Every ideal of the ring Z of integers is principal.
( b )  A pair a, b of integers, not both zero, has a greatest common divisor, a positive integer 

d  with these properties:

(i) Zd = Za +  Zb,
(ii) d  divides a  and d  divides b,

(iii) if an integer e divides a  and b, then e divides d.
(iv) There are integers r  and s such that d  =  r a  +  sb.

( c )  If a prime integer p  divides a product ab  of integers, then p  divides a  or p  divides b.
( d )  Fundamental Theorem o f  Arithmetic: Every positive integer a:;e1 can be written as 

a product a  =  p i • • ■ pk, where the p, are positive prime integers, and k >  O. This 
expression is unique except for the ordering of the prime factors.

The proofs of these facts will be reviewed in a more general setting in the next section.

359



1 2 .2  U N IQ U E  F A C T O R IZ A T IO N  D O M A I N S

It is natural to ask which rings have properties analogous to those of the ring of integers, 
and we investigate this question here. There are relatively few rings for which all parts of 
Theorem 12.1.2 can be extended, but polynomial rings over fields are important cases in 
which they do extend.

When discussing factoring, we assume that the ring R is an integral domain, so that the 
Cancellation Law 11.7.1 is available, and we exclude the element zero from consideration. 
Here is some terminology that we use:

(12.2.1) u is a unit if u has a multiplicative inverse in R.
a divides b if b =  aq  for some q in R. 

a  is a proper divisor of b if b =  aq  and neither a  nor q is a unit. 
a  and b are associates if each divides the other, or if b =  u a , and u is a unit. 

a  is irreducible if a is not a unit, and it has no proper divisor -  
its only divisors are units and associates. 

p  is a prime element if p  is not a unit, and whenever p  divides a product ab, 
then p  divides a or p  divides b.

These concepts can be interpreted in terms of the principal ideals generated by the elements. 
Recall that the principal ideal (a) generated by an element a consists of all elements of R
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that are are divisible by a. Then

(12.2.2) u is a unit <=> (u) =  (1).
a  divides b <=> (b) C  (a).

a is a proper divisor of b <=> (b) <  (a) <  (1).
a and b are associates <=> (a) =  (b).

a is irreducible ¢: (a) <  (1), and there is no principal ideal (c)
such that (a) < (c) <  (1).

p  is a prime element ab E (p ) implies a E (p ) or b e (p ).

Before continuing, we note one of the simplest examples of a ring element that has 
more than one factorization. The ring is R =  Z[^J-S]. It consists of all complex numbers of 
the form a + b^J-S, where a  and b are integers. We will use this ring as an example several 
times in this chapter and the next. In R, the integer 6 can be factored in two ways:

(12.2.3) 2 -3  =  6 = (1  +  vCS)(l -v C S ).

It isn’t hard to show that none of the four terms 2, 3, 1 +  1 — can be factored
further; they are irreducible elements of the ring.

We abstract the procedure of division with remainder first. To make sense of division 
with remainder, we need a measure of size of an element. A size function on an integral 
domain R can be any function (1 whose domain is the set of nonzero elements of R, and
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whose range is the set of nonnegative integers. An integral domain R is a Euclidean domain 
if there is a size function a  on R such that division with remainder is possible, in the following 
sense:

Let a  and b be elements of R, and suppose that a  is not zero.
' (12.2.4) There are elements q and r in R such that b =  aq  +  r,

and either r  = 0 or else a (r )  <  a ( a ) .

The most important fact about division with remainder is that r  is zero, if and only if a 
divides b.

P r o p o s i t io n  U . 2 . 5

( a )  The ring Z  of integers is a Euclidean domain, with size function a (a )  =  |a l .
(b )  A polynomial ring F[x\ in one variable over a field F  is a Euclidean domain, with 

a ( j )  =  degree of f .
( c )  The ring Z[i\ of Gauss integers is a Euclidean domain, with a ( a ) =  |a |2^

The ring of integers and the polynomial rings were discussed in Chapter 11. We show 
here that the ring of Gauss integers is a Euclidean domain. The elements of Z[i\ form a 
square lattice in the complex plane, and the multiples of a given nonzero element a  form 
the principal ideal (a), which is a similar geometric figure. If we write a  =  re10, then (a) is 
obtained from the lattice Z[i\ by rotating through the angle () and stretching by the factor r, 
as is illustrated below with a  =  2 +  i:

*  •

(12.2.6) A  Principal Ideal in the Ring of Gauss Integers.

For any complex number fJ, there is a point of the lattice (a) whose square distance from fJ 
is less than |a |2  ̂We choose such a point, say y  =  aq , and let r  =  fJ -  y. Then fJ =  aq  +  r, 
and |r |2 <  |a |2, as required. Here q is in Z[i\, and if fJ is in Z[i\, so is r.

Division with remainder is not unique: There may be as many as four choices for the 
element y. □
• An integral domain in which every ideal is principal is called a principal ideal domain.
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Proof W e  m im ic  th e  p r o o f  th a t  t h e  r in g  o f  in t e g e r s  is a  p r in c ip a l  id e a l  d o m a in  o n c e  m o r e .  

L e t  R  b e  a  E u c l id e a n  d o m a in  w it h  s i z e  f u n c t io n  a, a n d  le t  A  b e  a n  id e a l  o f  R. W e  m u s t  

s h o w  th a t  A  is  p r in c ip a l .  T h e  z e r o  id e a l  is  p r in c ip a l ,  s o  w e  m a y  a s s u m e  t h a t  A  is  n o t  t h e  z e r o  

id e a l .  T h e n  A  c o n t a in s  a  n o n z e r o  e l e m e n t .  W e  c h o o s e  a  n o n z e r o  e l e m e n t  a  o f  A  s u c h  th a t  

a ( a )  is  a s  s m a ll  a s  p o s s ib le ,  a n d  w e  s h o w  th a t  A  is  t h e  p r in c ip a l  id e a l  ( a )  o f  m u l t ip l e s  o f  a .

B e c a u s e  A  is  a n  id e a l  a n d  a  is  in  A ,  a n y  m u l t ip l e  aq  w i t h  q  in  R  is  in  A .  S o  ( a )  C  A .  T o  

s h o w  th a t  A  C  ( a ) ,  w e  t a k e  a n  a r b itr a r y  e l e m e n t  b  o f  A . W e  u s e  d iv i s io n  w i t h  r e m a in d e r  to  
w r it e  b  =  aq  +  r , w h e r e  e i t h e r  r  =  0 , o r  a(r) < a ( a ) .  T h e n  b  a n d  aq  a r e  in  A ,  s o  r  =  b  -  a q  

is  in  A  t o o .  S in c e  a(a )  is  m in im a l ,  w e  c a n ’t h a v e  a (r)  <  a(a ),  a n d  it  f o l l o w s  th a t  r  =  O. T h is  

s h o w s  th a t  a  d iv id e s  b ,  a n d  h e n c e  th a t  b  is  in  t h e  p r in c ip a l  id e a l  ( a ) .  S in c e  b  is  a r b itr a r y ,  

A  C  ( a ) ,  a n d  t h e r e f o r e  A  =  ( a ) .  □

L e t  a  a n d  b  b e  e l e m e n t s  o f  a n  in te g r a l  d o m a in  R, n o t  b o t h  z e r o .  A  g r e a t e s t  common 
divisor d  o f  a  a n d  b  is  a n  e le m e n t  w ith  t h e  f o l lo w in g  p r o p e r t ie s :

( a )  d  d iv id e s  a  a n d  b .

( b )  I f  a n  e l e m e n t  e  d iv id e s  a  a n d  b , t h e n  e  d iv id e s  d .

A n y  t w o  g r e a t e s t  c o m m o n  d iv is o r s  d  a n d  d '  a r e  a s s o c ia t e  e le m e n t s .  T h e  f ir s t  c o n d i t i o n  t e l l s  

u s  th a t  b o t h  d  a n d  d '  d iv id e  a  a n d  b ,  a n d  t h e n  t h e  s e c o n d  o n e  t e l l s  u s  th a t  d '  d iv id e s  d  a n d  

a ls o  th a t  d  d iv id e s  d ' .

H o w e v e r ,  a  g r e a t e s t  c o m m o n  d iv is o r  m a y  n o t  e x is t .  T h e r e  w ill  o f t e n  b e  a  c o m m o n  

d iv i s o r  m  th a t  is  m a x im a l ,  m e a n in g  th a t  a /m  a n d  b /m  h a v e  n o  p r o p e r  d iv i s o r  in  c o m m o n .  B u t  

th is  e l e m e n t  m a y  fa i l  t o  s a t i s f y  c o n d i t i o n  ( b ) .  F o r  in s t a n c e ,  in  t h e  r in g  Z [^ J -S ]  c o n s i d e r e d  

a b o v e  ( 1 2 .2 .3 ) ,  t h e  e l e m e n t s  a  =  6  a n d  b  =  2  +  2 ^ J -S  a r e  d iv i s ib le  b o t h  b y  2  a n d  b y  

1 +  ^ J -S . T h e s e  a r e  m a x im a l  e l e m e n t s  a m o n g  c o m m o n  d iv is o r s ,  b u t  n e i t h e r  o n e  d iv id e s  
t h e  o th e r .

O n e  c a s e  in  w h ic h  a  g r e a t e s t  c o m m o n  d iv i s o r  d o e s  e x is t  is  th a t  a  a n d  b  h a v e  n o  c o m m o n  

f a c to r s  e x c e p t  u n it s .  T h e n  1 is  a  g r e a t e s t  c o m m o n  d iv is o r .  W h e n  th is  is  s o ,  a  a n d  b  a r e  sa id  

t o  b e  relatively prime.
G r e a t e s t  c o m m o n  d iv i s o r s  a lw a y s  e x is t  in  a  p r in c ip a l  id e a l  d o m a in :

P r o p o s i t io n  1 2 .2 .8  L e t  R  b e  a  p r in c ip a l  id e a l  d o m a in ,  an d  le t  a  a n d  b  b e  e l e m e n t s  o f  R ,  
w h ic h  a r e  n o t  b o t h  z e r o .  A n  e l e m e n t  d  th a t  g e n e r a t e s  t h e  id e a l  ( a ,  b)  =  R a +  R b  i s  a  

g r e a t e s t  c o m m o n  d iv is o r  o f  a  a n d  b. It h a s  t h e s e  p r o p e r t ie s :

( a )  R d  =  R a  +  R b ,

( b )  d  d i v i d e s  a  a n d  b .

( c )  I f  a n  e l e m e n t  e  o f  R  d iv id e s  b o t h  a  a n d  b , it a l s o  d iv id e s  d .

(d )  T h e r e  a r e  e l e m e n t s  r  a n d  s  in  R  s u c h  t h a t  d  =  r a  +  sb.

Proof  T h is  is  e s s e n t ia l ly  t h e  s a m e  p r o o f  a s  fo r  th e  r in g  o f  in t e g e r s .  ( a )  r e s t a t e s  t h a t  d  
g e n e r a t e s  th e  id e a l  ( a ,  b ) .  (b )  s t a t e s  th a t  a  a n d  b  a r e  in  R d ,  a n d  (d )  s t a t e s  th a t  d  is  in  th e  

id e a l  Ra  +  R b .  F o r  (c ) ,  w e  n o t e  th a t  i f  e  d iv id e s  a  a n d  b  t h e n  a  a n d  b  a r e  e l e m e n t s  o f  Re. 
In  th a t  c a s e ,  Re  c o n t a in s  R a  +  R b  =  R d ,  s o  e  d m d e s  d .  □

Proposition 12.2.7 A  Euclidean domain is a principal ideal domain.



Section 12.2 Unique Factorization Domains 363

C o r o l la r y  1 2 .2 .9  L e t  R  b e  a  p r in c ip a l  id e a l  d o m a in .

( a )  I f  e l e m e n t s  a  a n d  b  o f  R  a r e  r e la t iv e ly  p r im e , t h e n  1 is  a  l in e a r  c o m b in a t io n  ra +  sb.
( b )  A n  e l e m e n t  o f  R  is  i r r e d u c ib le  if  a n d  o n l y  i f  it  is  a  p r im e  e l e m e n t .

( c )  T h e  m a x im a l  id e a l s  o f  R  a r e  t h e  p r in c ip a l  i d e a l s  g e n e r a t e d  b y  t h e  ir r e d u c ib le  e l e m e n t s .

Proof. ( a )  T h is  f o l l o w s  f r o m  P r o p o s i t io n  1 2 .2 .8 ( d ) .

(b )  In  a n y  in t e g r a l  d o m a in ,  a  p r im e  e l e m e n t  is  i r r e d u c ib le .  W e  p r o v e  th is  b e l o w ,  in  L e m m a

1 2 .2 .1 0 .  S u p p o s e  th a t  R  is  a  p r in c ip a l  id e a l  d o m a in  a n d  t h a t  a n  ir r e d u c ib le  e l e m e n t  q  o f  R  

d iv id e s  a  p r o d u c t  a b .  W e  h a v e  t o  s h o w  th a t  i f  q  d o e s  n o t  d iv id e  a ,  t h e n  q  d iv id e s  b . L e t  d  b e  

a  g r e a t e s t  c o m m o n  d iv i s o r  o f  a  a n d  q .  S in c e  q  is  ir r e d u c ib le ,  t h e  d iv is o r s  o f  q  a r e  t h e  u n i t s  

a n d  t h e  a s s o c ia t e s  o f  q .  S in c e  q  d o e s  n o t  d iv id e  a ,  d  is  n o t  a n  a s s o c ia t e  o f  q .  S o  d  i s  a  u n it ,  q  

a n d  a  a r e  r e la t iv e ly  p r im e , a n d  1 =  r a + s q  w ith  r a n d  s  in  R . W e  m u l t ip ly  b y  b: b  =  r a b + s q b .  

B o t h  t e r m s  o n  t h e  r ig h t  s i d e  o f  t h i s  e q u a t io n  a r e  d iv i s ib le  b y  q ,  s o  q  d iv id e s  t h e  l e f t  s id e ,  b .

( c )  L e t  q  b e  a n  ir r e d u c ib le  e l e m e n t .  I t s  d iv is o r s  a r e  u n it s  a n d  a s s o c ia t e s .  T h e r e f o r e  t h e  o n ly

p r in c ip a l  id e a ls  t h a t  c o n t a in  ( q )  a r e  ( q )  i t s e l f  a n d  th e  u n it  id e a l  ( 1 )  ( s e e  ( 1 2 .2 .2 ) ) .  S in c e  

e v e r y  id e a l  o f  R  is  p r in c ip a l ,  t h e s e  a r e  t h e  o n l y  id e a l s  th a t  c o n t a in  ( q ) .  T h e r e f o r e  ( q )  is  a  

m a x im a l  id e a l .  C o n v e r s e ly ,  i f  a n  e l e m e n t  b  h a s  a  p r o p e r  d iv is o r  a ,  t h e n  ( b )  <  (a) <  ( 1 )  , s o

( b )  is  n o t  a  m a x im a l  id e a l .  □

L e m m a  1 2 .2 .1 0  In  a n  in te g r a l  d o m a in  R , a  p r im e  e l e m e n t  is  ir r e d u c ib le .

Proof S u p p o s e  th a t  a  p r im e  e l e m e n t  p  is  a  p r o d u c t ,  s a y  p  =  a b .  T h e n  p  d iv id e s  o n e  o f  t h e  

fa c to r s ,  s a y  a .  B u t  t h e  e q u a t io n  p  =  a b  s h o w s  t h a t  a  d iv id e s  p  t o o .  S o  a  a n d  p  a r e  a s s o c ia t e s  

a n d  b  is  a  u n it .  T h e  f a c t o r iz a t io n  is  n o t  p r o p e r .  □

W h a t  a n a lo g y  to  th e  F u n d a m e n t a l  T h e o r e m  o f  A r i t h m e t i c  1 2 .1 .2 ( d )  c o u ld  o n e  h o p e  f o r  

in  a n  in t e g r a l  d o m a in ?  W e  m a y  d iv id e  th e  d e s ir e d  s t a t e m e n t  o f  u n iq u e n e s s  o f  f a c t o r iz a t io n  

i n t o  t w o  p a r ts .  F ir s t ,  a  g iv e n  e l e m e n t  s h o u ld  b e  a  p r o d u c t  o f  ir r e d u c ib le  e l e m e n t s ,  a n d  

s e c o n d ,  th a t  p r o d u c t  s h o u ld  b e  e s s e n t ia l ly  u n iq u e .
U n i t s  in  a  r in g  c o m p l ic a t e  t h e  s t a t e m e n t  o f  u n iq u e n e s s .  U n i t  f a c to r s  m u s t  b e  d i s r e g a r d e d  

a n d  a s s o c i a t e  f a c to r s  m u s t  b e  c o n s id e r e d  e q u iv a le n t .  T h e  u n it s  in  t h e  r in g  o f  in t e g e r s  a r e  
± l ,  a n d  in  th is  r in g  it  is  n a tu r a l  t o  w o r k  w it h  p o s i t i v e  in t e g e r s .  S im i la r ly ,  in  t h e  p o ly n o m ia l  

r in g  F [ x ]  o v e r  a  f ie ld , it  is  n a tu r a l  t o  w o r k  w it h  m o n ic  p o ly n o m ia ls .  B u t  w e  d o n ’t h a v e  a  

r e a s o n a b le  w a y  to  n o r m a l iz e  e l e m e n t s  in  a n  a r b itr a r y  in te g r a l  d o m a in ;  it is  b e s t  n o t  to  try .

W e  s a y  th a t  f a c t o r in g  in  a n  in t e g r a l  d o m a in  R  is  u n iq u e  if , w h e n e v e r  a n  e l e m e n t  a  o f  
R  is  w r i t te n  in  t w o  w a y s  a s  a  p r o d u c t  o f  i r r e d u c ib le  e l e m e n t s ,  s a y

( 1 2 .2 .1 1 )  p i  ■Pm =  a  =  q i  • • • q „ ,

t h e n  m  =  n ,  a n d  i f  th e  r ig h t  s id e  is  r e a r r a n g e d  s u i t a b ly ,  q, is  a n  a s s o c i a t e  o f  pi  f o r  e a c h  i. S o  

in  t h e  s t a t e m e n t  o f  u n iq u e n e s s ,  a s s o c ia t e  f a c t o r iz a t io n s  a r e  c o n s id e r e d  e q u iv a le n t .

F o r  e x a m p le ,  in  t h e  r in g  o f  G a u s s  in t e g e r s ,

( 2  +  i ) ( 2  -  i )  =  5  =  (1  +  2 i )  (1  -  2 i ) .

T h e s e  tw o  f a c t o r iz a t io n s  o f  th e  e l e m e n t  5  a re  e q u iv a le n t  b e c a u s e  th e  t e r m s  th a t  a p p e a r  o n  

t h e  l e f t  a n d  r ig h t  s i d e s  a r e  a s s o c ia t e s :  - i ( 2  +  i )  =  1 — 2 i  a n d  i ( 2  — i )  =  1 +  2 i .
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I t  is  n e a t e r  t o  w o r k  w i t h  p r in c ip a l  id e a l s  th a n  w i t h  e l e m e n t s ,  b e c a u s e  a s s o c ia t e s  g e n e r a t e  

t h e  s a m e  p r in c ip a l  id e a l .  H o w e v e r ,  i t  i s n ’t t o o  c u m b e r s o m e  t o  u s e  e l e m e n t s  a n d  w e  w i l l  s t a y  

w i t h  t h e m  h e r e .  T h e  im p o r t a n c e  o f  id e a l s  w i l l  b e c o m e  c le a r  in  t h e  n e x t  c h a p t e r .

W h e n  w e  a t t e m p t  t o  w r i t e  a n  e l e m e n t  a  a s  a  p r o d u c t  o f  ir r e d u c ib le  e l e m e n t s ,  w e  a lw a y s  

a s s u m e  t h a t  it  is  n o t  z e r o  a n d  n o t  a  u n it .  T h e n  w e  a t t e m p t  t o  f a c t o r  a, p r o c e e d i n g  t h is  w a y :  I f  

a  is  i r r e d u c ib le ,  w e  s t o p .  I f  n o t ,  t h e n  a  h a s  a  p r o p e r  fa c to r ,  s o  it  d e c o m p o s e s  in  s o m e  w a y  a s  

a  p r o d u c t ,  s a y  a  =  a i b i ,  w h e r e  n e i t h e r  a i  n o r  bi  i s  a  u n it .  W e  c o n t i n u e  f a c t o r in g  a\  a n d  b i ,  

i f  p o s s ib le ,  a n d  w e  h o p e  th a t  th is  p r o c e d u r e  t e r m in a t e s ;  in  o t h e r  w o r d s ,  w e  h o p e  t h a t  a f t e r  a  

f in i t e  n u m b e r  o f  s t e p s  a ll th e  f a c to r s  a r e  i r r e d u c ib le .  W e  sa y  t h a t  factoring terminates in  R  if  

th is  is  a lw a y s  t r u e ,  a n d  w e  r e f e r  t o  a  f a c t o r iz a t io n  i n t o  i r r e d u c ib le  e l e m e n t s  a s  a n  irreducible 
factorization.

A n  in te g r a l  d o m a in  R  is  a  unique factorization domain i f  i t  h a s  t h e s e  p r o p e r t ie s :

( 1 2 .2 .1 2 )

•  F a c t o r in g  t e r m in a t e s .

•  T h e  i r r e d u c ib le  f a c t o r iz a t io n  o f  a n  e l e m e n t  a  i s  u n iq u e  in  t h e  s e n s e  d e s c r ib e d  a b o v e .

T h e  c o n d i t i o n  th a t  f a c t o r in g  t e r m in a t e s  h a s  a  u s e f u l  d e s c r ip t io n  in  t e r m s  o f  p r in c ip a l  
id e a ls :

P r o p o s i t io n  1 2 .2 .1 3  L e t  R  b e  a n  in t e g r a l  d o m a in .  T h e  f o l lo w in g  c o n d it io n s '  a r e  e q u iv a le n t :

•  F a c t o r in g  t e r m in a t e s .

•  R  d o e s  n o t  c o n t a in  a n  in f in i t e  s t r ic t ly  in c r e a s in g  c h a in  ( a i )  <  ( a 2)  <  ( a 3 )  <  . . .  o f  

p r in c ip a l  id e a l s .

Proof  I f  t h e  p r o c e s s  o f  f a c t o r in g  d o e s n ’t t e r m in a t e ,  t h e r e  w i l l  b e  a n  e l e m e n t  a t  w i t h  a  
p r o p e r  f a c t o r iz a t io n  su c h  th a t  th e  p r o c e s s  fa ils  t o  t e r m in a t e  f o r  a t  l e a s t  o n e  o f  t h e  f a c to r s .  

L e t ’s  sa y  t h a t  th e  p r o p e r  f a c t o r iz a t io n  i s  a i  =  a ib 2 , a n d  th a t  th e  p r o c e s s  f a i l s  t o  t e r m in a t e  

f o r  t h e  f a c t o r  w e  c a l l  a 2. S in c e  a 2 i s  a  p r o p e r  d iv i s o r  o f  a i ,  ( a t )  <  ( a 2)  ( s e e  ( 1 2 .2 .2 ) ) .  W e  

r e p la c e  a i  b y  a 2 a n d  r e p e a t .  I n  t h i s  w a y  w e  o b t a i n  a n  in f in i t e  c h a in .

C o n v e r s e ly ,  i f  t h e r e  is  a  s t r ic t ly  in c r e a s in g  c h a in  ( a i )  <  ( a 2)  <  . .  • , t h e n  n o n e  o f  t h e  

id e a l s  ( a n )  is  t h e  u n it  id e a l ,  a n d  t h e r e f o r e  a 2 is  a  p r o p e r  d iv is o r  o f  a i ,  a 3 is  a  p r o p e r  d iv i s o r  

o f  a 2, a n d  s o  o n  ( 1 2 .2 .2 ) .  T h is  g iv e s  u s  a  n o n t e r m in a t in g  p r o c e s s .  □

W e  w il l  r a r e ly  e n c o u n t e r  r in g s  in  w h ic h  f a c t o r in g  fa ils  t o  t e r m in a t e ,  a n d  w e  w i l l  p r o v e  

a  t h e o r e m  th a t  e x p la in s  t h e  r e a s o n  la t e r  ( s e e  ( 1 4 . 6 . 9 » ,  s o  w e  w o n ’t w o r r y  m u c h  a b o u t  it  

h e r e .  In  p r a c t ic e  it  is  t h e  u n iq u e n e s s  th a t  g iv e s  t r o u b le .  F a c t o r in g  i n t o  i r r e d u c ib le  e l e m e n t s  

w i l l  u s u a l ly  b e  p o s s i b l e ,  b u t  it  w i l l  n o t  b e  u n iq u e ,  e v e n  w h e n  o n e  t a k e s  i n t o  a c c o u n t  t h e  

a m b ig u i t y  o f  a s s o c ia t e  f a c to r s .

G o i n g  b a c k  t o  t h e  r in g  R  =  Z [^ .J=5], i t  i s n ’t h a r d  t o  s h o w  t h a t  a l l  o f  t h e  e l e m e n t s  2 ,  3 ,  
1 +  a n d  1 — a r e  ir r e d u c ib le ,  a n d  th a t  t h e  u n it s  o f  R  a r e  1 a n d  - 1 .  S o  2  i s  n o t  a n  

a s s o c ia t e  o f  1 +  o r  o f  1 — T h e r e f o r e  2 - 3  =  6  =  (1  +  ^ .J= 5)(1  — a r e  e s s e n t i a l ly

d i f f e r e n t  f a c to r iz a t io n s :  R  i s  n o t  a  u n iq u e  f a c t o r iz a t io n  d o m a in .
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Proposition 12.2.14

(a) Let R be an integral domain. Suppose that factoring terminates in R. Then R is a unique 
factorization domain if and only if every irreducible element is a prime element.

(b) A principal ideal domain is a unique factorization domain.
(c) The rings Z, Z[i] and the polynomial ring F[x] in one variable over a field F  are unique 

factorization domains.

Thus the phrases irreducible factorization and prime factorization are synonymous in 
unique factorization domains, but most rings contain irreducible elements that are not prime. 
In the ring Z[^.J-5], the element 2 is irreducible. It is not prime because, though it divides the 
product (1 +  .̂J-5 ) (1  — .̂J-5 ), it does not divide either factor.

The converse of (b) is not true. We will see in the next section that the ring Z[x] of 
integer polynomials is a unique factorization domain, though it isn’t a principal ideal domain.

ProofofProposition (12.2.14). First of all, (c) follows from (b) because the rings mentioned 
in (c) are Euclidean domains, and therefore principal ideal domains.

(a) Let R be a ring in which every irreducible element is prime, and suppose that an element 
a factors in two ways into irreducible elements, say p i  • .. p m =  a =  qi •.. qn, where m n. 
If n =  1, then m =  1 and p i  =  qi. Suppose that n >  1. Since p i  is prime, it divides one of 
the factors q i, . . . ,  qn, say qi. Since qi is irreducible and since p i  is not a unit, qi and p i  are 
associates, say p i  =  uq i, where u is a unit. We move the unit factor over to q2, replacing 
qi by uqi and q2 by u_1q2. The result is that now p i =  qi. Then we cancel p i  and use 
induction on n.

Conversely, suppose that there is &n irreducible element p  that is not prime. Then 
there are elements a and b such that p  divides the product r  =  a b , say r  =  pc, but p  
does not divide a  or b. By factoring a, b, and c into irreducible elements, we obtain two 
inequivalent factorizations of r.

(b) Let R be a principal ideal domain. Since every irreducible element of R is prime (12.2.8), 
we need only prove that factoring terminates (12.2.14). We do this by showing that R 
contains no infinite strictly increasing chain of principal ideals. We suppose given an infinite 
weakly increasing chain

and we prove that it cannot be strictly increasing.

Lemma 12.2.15 Let /  C h  C / 3 C . .. be an increasing chain of ideals in a ring R. The union 
J  =  U  In is an ideal.

Proof. If u and v are in J , they are both in In for some n. Then u +  v and ru, for any r  in 
R, are also in In, and therefore they are in J. This shows that J  is an ideal. □
We apply this lemma to our chain of principal ideals, with Iv =  (av), and we use the 
hypothesis that R is a principal ideal domain to conclude that the union J  is a principal 
ideal, say J  =  (b). Then since b is in the union of the ideals (an), it is in one of those ideals.
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But if b is in (an), then (b) C (an). On the other hand, (an) C (an+i) C (b). Therefore 
(b) =  (an) =  (an+i). The chain is not strictly increasing. □

One can decide whether an element a divides another element b in a unique factorization 
domain, in terms of their irreducible factorizations.

Proposition 12.2.16 Let R be a unique factorization domain.

(a) Let a  =  p i  • - • p m and b =  qi • • • qn be irreducible factorizations of two elements of 
R. Then a  divides b in R if and only if m :: n and, when the factors q j  are arranged 
suitably, p  is an associate of qi for i =  1, . . . ,  m.

( b )  Any pair of elements a, b, not both zero, has a greatest common divisor.

Proof, (a) This is very similar to the proof of Proposition 12.2.14(a). The irreducible factors 
of a  are prime elements. If a divides b, then p i  divides b, and therefore p i  divides some q;-, 
say qj. Then p i and qi are associates. The assertion follows by induction when we cancel p i 
from a and qi from b. We omit the proof of (b). ■ □

Note: Any two greatest common divisors of a  and b are associates. But unless a unique 
factorization domain is a principal ideal domain, the greatest common divisor, though it 
exists, needn’t have the form ra +  sb. The greatest common divisor of 2 and x in the unique 
factorization domain Z[x\ is 1, but we cannot write 1 as a linear combination of those 
elements with integer polynomials as coefficients. □

We review the results we have obtained for the important case of a polynomial ring 
F[x\ over a field. The units in the polynomial ring F[x] are the nonzero constants. We can 
factor the leading coefficient out of a nonzero polynomial to make it monic, and the only 
monic associate of a monic polynomial j  is j  itself. By working with monic polynomials, 
the ambiguity of associate factorizations can be avoided. With this taken into account, the 
next theorem follows from Proposition 12.2.14.

T h e o r e m  12.2.17 Let F [ x ]  be the polynomial ring in one variable over a field F.

(a) Two polynomials j  and g, not both zero, have a unique monic greatest common divisor 
d, and there are polynomials r  and s such that r j  +  sg =  d.

( b )  If two polynomials j  and g have no nonconstant factor in common, then there are 
polynomials r  and s such that r j  +  sg =  l.

(c) Every irreducible polynomial p  in F [ x ]  is a prime element of F [ x \ :  If p  divides a 
product jg , then p  divides j  or p  divides g.

( d )  Unique factorization: Every monic polynomial in F[x] can be written as a product
P i ■ • P h  where pi are monic irreducible polynomials in F[x \ and k  :: O. This factor
ization is unique except for the ordering of the terms. □

In the future, when we speak of the greatest common divisor of two polynomials with 
coefficients in a field, we will mean the unique monic polynomial with the properties (a) 
above. This greatest common divisor will sometimes be denoted by gcd ( j ,  g).

The greatest common divisor gcd(j, g ) of two polynomials j  and g, not both zero, 
with coefficients in a field F  can be found by repeated division with remainder, the process
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c a l l e d  t h e  Euclidean algorithm  t h a t  w e  m e n t io n e d  in  S e c t i o n  2 .3  fo r  t h e  r in g  o f  in te g e r s :  

S u p p o s e  t h a t  t h e  d e g r e e  o f  g  is  a t  l e a s t  e q u a l  to  t h e  d e g r e e  o f  J .  W e  w r i t e  g  =  J q  +  r  w h e r e  

t h e  r e m a in d e r  r , i f  it  is  n o t  z e r o ,  h a s  d e g r e e  l e s s  th a n  t h a t  o f  J .  T h e n  g c d ( J ,  g )  =  g c d ( J ,  r ) .  

I f  r  =  O. g c d ( J ,  g )  =  J .  I f  n o t ,  w e  r e p la c e  J  a n d  g  b y  r  a n d  J ,  a n d  r e p e a t  th e  p r o c e s s .  

S in c e  d e g r e e s  a r e  b e in g  lo w e r e d ,  t h e  p r o c e s s  is f in it e .  T h e  a n a lo g o u s  m e t h o d  c a n  b e  u s e d  to  

d e t e r m in e  g r e a t e s t  c o m m o n  d iv is o r s  in  a n y  E u c l id e a n  d o m a in .

O v e r  t h e  c o m p l e x  n u m b e r s ,  e v e r y  p o l y n o m i a l  o f  p o s i t iv e  d e g r e e  h a s  a  r o o t  a ,  a n d  

t h e r e f o r e  a  d iv i s o r  o f  th e  f o r m  x  — a .  T h e  i r r e d u c ib le  p o ly n o m ia l s  a r e  l in e a r ,  a n d  t h e  

ir r e d u c ib le  f a c t o r iz a t io n  o f  a  m o n ic  p o l y n o m i a l  h a s  t h e  fo r m

w h e r e  a (- a r e  t h e  r o o t s  o f  J ( x ) ,  w ith  r e p e t i t i o n s  fo r  m u l t ip le  r o o t s .  T h e  u n iq u e n e s s  o f  th is  

f a c t o r iz a t io n  is  n o t  s u r p r is in g .

W h e n  F  =  JR, t h e r e  a r e  t w o  c la s s e s  o f  i r r e d u c ib le  p o ly n o m ia ls :  l in e a r  a n d  q u a d r a t ic .  A  

r e a l  q u a d r a t ic  p o ly n o m ia l  x 2  +  bx  +  c  is  i r r e d u c ib le  i f  a n d  o n ly  i f  its  d i s c r im in a n t  b 2 — 4 c  
is  n e g a t iv e ,  in  w h ic h  c a s e  it  h a s  a  p a ir  o f  c o m p l e x  c o n j u g a t e  r o o t s .  T h e  fa c t  th a t  e v e r y  

i r r e d u c ib le  p o ly n o m ia l  o v e r  t h e  c o m p le x  n u m b e r s  is  l in e a r  im p l i e s  th a t  n o  r e a l  p o ly n o m ia l  

o f  d e g r e e  > 2  is  ir r e d u c ib le .

P r o p o s i t io n  U . 2 . 1 9  L e t  a  b e  a  c o m p le x ,  n o t  r e a l ,  r o o t  o f  a  r e a l  p o ly n o m ia l  J .  T h e n  t h e  

c o m p l e x  c o n j u g a t e  ( i  is  a l s o  a  r o o t  o f  J .  T h e  q u a d r a t ic  p o ly n o m ia l  q  =  ( x  — a ) ( x  — ( i )  h a s  

r e a l  c o e f f ic ie n t s ,  a n d  it  d i v i d e s  J .  □

F a c to r in g  p o ly n o m ia l s  in  th e  r in g  Q [ x ]  o f  p o ly n o m ia l s  w ith  r a t io n a l  c o e f f i c ie n t s  is  m o r e  
i n t e r e s t in g ,  b e c a u s e  t h e r e  e x i s t  i r r e d u c ib le  p o ly n o m ia l s  in  Q [ x ]  o f  a r b it r a r y  d e g r e e .  T h is  is  

e x p la in e d  in  t h e  n e x t  t w o  s e c t io n s .  N e i t h e r  t h e  f o r m  o f  t h e  i r r e d u c ib le  f a c t o r iz a t io n  n o r  its  

u n iq u e n e s s  a r e  in t u i t iv e ly  c l e a r  in  th is  c a s e .
F o r  f u t u r e  r e f e r e n c e ,  w e  n o t e  th e  f o l lo w in g  e le m e n t a r y  fa c t:

P r o p o s i t io n  U . 2 . 2 0  A  p o l y n o m i a l  J  o f  d e g r e e  n  w it h  c o e f f i c ie n t s  in  a  f ie ld  F  h a s  a t  m o s t  n  

r o o t s  in  F .

Proof. A n  e l e m e n t  a  i s  a  r o o t  o f  J  i f  a n d  o n ly  i f  x  — a  d iv id e s  J  ( 1 1 .2 .1 1 ) .  I f  s o ,  w e  c a n  

w r it e  J ( x )  =  ( x  — a ) q ( x ) ,  w h e r e  q ( x )  is  a  p o l y n o m i a l  o f  d e g r e e  n  — 1. L e t  fJ b e  a  r o o t  o f  

J  d i f f e r e n t  f r o m  a .  S u b s t i t u t in g  x  =  fJ, w e  o b ta in  0  =  (fJ  — a ) q  ( fJ ) . S in c e  fJ i s  n o t  e q u a l  

to  a ,  it m u s t  b e  a  r o o t  o f  q .  B y  in d u c t io n  o n  t h e  d e g r e e ,  q  h a s  a t  m o s t  n  — 1 r o o t s  in  F .  

P u t t in g  t h o s e  r o o t s  t o g e t h e r  w it h  a ,  w e  s e e  th a t  J  h a s  a t  m o s t  n  r o o t s .  □

1 2 .3  G A U S S 'S  L E M M A

E v e r y  m o n ic  p o ly n o m ia l  J(x )  w i t h  r a t io n a l  c o e f f i c ie n t s  c a n  b e  e x p r e s s e d  u n iq u e ly  in  t h e  

f o r m  p i  • . .  P k ,  w h e r e  p ,  a r e  m o n ic  p o ly n o m ia l s  t h a t  a r e  ir r e d u c ib le  e l e m e n t s  in  t h e  r in g  

Q f x ] .  B u t  s u p p o s e  th a t  a  p o ly n o m ia l  J ( x )  h a s  in t e g e r  c o e f f ic ie n t s ,  a n d  th a t  it  f a c t o r s  in  Q [ x ] .  

C a n  it b e  f a c t o r e d  w i t h o u t  l e a v in g  th e  r in g  Z[x] o f  in t e g e r  p o ly n o m ia ls ?  W e  w i l l  s e e  t h a t  it 

c a n , a n d  a l s o  th a t  Z [ x ]  is  a  u n iq u e  f a c t o r iz a t io n  d o m a in .
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H e r e  i s  a n  e x a m p le  o f  a n  ir r e d u c ib le  f a c t o r iz a t io n  in  i n t e g e r  p o ly n o m ia ls :

6 x 3 +  9 x 2 +  9 x  +  3  =  3 ( 2 x  +  1 ) ( x 2 + x  +  1 ) .

A s  w e  s e e ,  i r r e d u c ib le  f a c t o r iz a t io n s  a r e  s l ig h t ly  m o r e  c o m p l ic a t e d  in  Z [ x ]  th a n  i n  Q [ x ] .  
P r im e  in t e g e r s  a r e  i r r e d u c ib le  e l e m e n t s  o f  Z [ x ] ,  a n d  t h e y  m a y  a p p e a r  in  th e  f a c t o r iz a t io n  o f  a  

p o ly n o m ia l .  A n d ,  i f  w e  w a n t  t o  s t a y  w ith  in t e g e r  c o e f f ic ie n t s ,  w e  c a n ’t r e q u ir e  m o n i c  f a c to r s .

W e  h a v e  t w o  m a in  t o o l s  f o r  s t u d y in g  f a c t o r in g  in  Z [ x ] .  T h e  f ir s t  is  t h e  i n c l u s i o n  o f  t h e  

in t e g e r  p o ly n o m ia l  r in g  i n t o  t h e  r in g  o f  p o ly n o m ia l s  w i t h  r a t io n a l  c o e f f ic ie n t s :

Z [ x ]  C  Q [ x ] .

T h is  c a n  b e  u s e f u l  b e c a u s e  a lg e b r a  in  th e  r in g  Q [ x ]  is  s im p le r .

T h e  s e c o n d  t o o l  is  r e d u c t io n  m o d u lo  s o m e  i n t e g e r  p r im e  p ,  t h e  h o m o m o r p h i s m

( 1 2 .3 .1 )  : Z [ x ]  - +  F  p [ x ]

th a t  s e n d s  x  x  ( 1 1 .3 .6 ) .  W e ’ll o f t e n  d e n o t e  th e  im a g e  o f  a n  in t e g e r  p o l y n o m i a l  b y

] ,  t h o u g h  th is  n o t a t io n  is  a m b ig u o u s  b e c a u s e  it  d o e s n ’t m e n t io n  p .

T h e  n e x t  l e m m a  s h o u ld  b e  c le a r .

Lemma U.3.2 L e t  / ( x )  =  a n x n +  • • . +  a l x  +  a o  b e  a n  in t e g e r  p o ly n o m ia l ,  a n d  l e t  p  b e  a n  

i n t e g e r  p r im e . T h e  f o l lo w in g  a r e  e q u iv a le n t :

•  • p  d iv id e s  e v e r y  c o e f f i c ie n t  a (- o f  f  in  Z ,

•  p  d iv id e s  f  in  Z [ x ] ,

•  f  is  in  th e  k e r n e l  o f  1/fp. □

T h e  l e m m a  s h o w s  t h a t  th e  k e r n e l  o f  c a n  b e  in t e r p r e t e d  e a s i ly  w i t h o u t  m e n t io n in g  

t h e  m a p . B u t  t h e  f a c t s  th a t  is  a  h o m o m o r p h i s m  a n d  th a t  i t s  im a g e  F p [ x ]  i s  a n  in t e g r a l  

d o m a in  m a k e  t h e  in t e r p r e t a t io n  a s  a  k e r n e l  u s e f u l .

•  A  p o ly n o m ia l  f ( x )  =  a n x n +--------+ a i x + a o  w it h  r a t io n a l  c o e f f ic ie n t s  is  c a l l e d  primitive i f  it

is  a n  in t e g e r  p o ly n o m ia l  o f  p o s i t i v e  d e g r e e ,  t h e  g r e a t e s t  c o m m m o n  d iv i s o r  o f  i t s  c o e f f i c ie n t s
a o ,  . . . , a n in  t h e  in t e g e r s  is  1, a n d  it s  l e a d in g  c o e f f ic ie n t  a n is  p o s i t i v e .

Lemma U.3.3 L e t  f  b e  a n  in t e g e r  p o ly n o m ia l  f  o f  p o s i t i v e  d e g r e e ,  w i t h  p o s i t i v e  l e a d in g  

c o e f f ic ie n t .  T h e  f o l lo w in g  c o n d i t i o n s  a r e  e q u iv a le n t :

•  f  is  p r im it iv e ,

•  f  is  n o t  d iv i s ib le  b y  a n y  i n t e g e r  p r im e  p ,

•  f o r  e v e r y  in t e g e r  p r im e  p ,  # : 0 .  □

Proposition U.3.4

(a) A n  in t e g e r  is  a  p r im e  e l e m e n t  o f  Z [x ]  i f  a n d  o n ly  i f  i t  is  a  p r im e  i n t e g e r .  S o  a  p r im e  

in t e g e r  p  d iv id e s  a  p r o d u c t  / g  o f  in t e g e r  p o ly n o m ia ls  i f  a n d  o n ly  i f  p  d iv id e s  f  o r  p  

d iv id e s  g .

(b) (Gauss’s Lemma) T h e  p r o d u c t  o f  p r im it iv e  p o ly n o m ia l s  is  p r im it iv e .
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P r o o f .  ( a )  I t  i s  o b v i o u s  t h a t  a n  in t e g e r  m u s t  b e  ^ r i m e  i f  it  i s  a n  i r r e d u c ib le  e l e m e n t  o f  Z [ x ] .  

L e t  p  b e  a  p r im e  in t e g e r .  W e  u s e  b a r  n o ta t io n :  f  =  t itp C !> . T h e n  p  d iv id e s  f g  i f  a n d  o n ly  i f  

/ g  =  O. a n d  s i n c e  F p [ x ]  i s  a  d o m a i n , t h is  is  t r u e  i f  a n d  o n ly  i f  /  =  0  o r  I i  =  0 ,  i . e . ,  i f  a n d  o n ly  
i f  p  d iv id e s  f  o r  p  d iv id e s  g .

( b )  S u p p o s e  t h a t  f  a n d  g  a r e  p r im it iv e  p o ly n o m ia l s .  S in c e  t h e ir  le a d in g  c o e f f i c ie n t s  a r e  

p o s i t i v e , th e  l e a d in g  c o e f f ic ie n t  o f  / g  is  a l s o  p o s i t i v e .  M o r e o v e r ,  n o  p r im e  p  d iv id e s  f  o r  g ,  

a n d  b y  ( a ) ,  n o  p r im e  d iv id e s  f g .  S o  f g  is  p r im it iv e . □

L e m m a  1 2 .3 .5  E v e r y  p o l y n o m i a l  I ( x )  o f  p o s i t i v e  d e g r e e  w it h  r a t io n a l  c o e f f i c ie n t s  c a n  b e  

w r it t e n  uniquely as a  p r o d u c t  / ( x )  =  c / o ( x ) ,  w h e r e  c  is  a  r a t io n a l  n u m b e r  a n d  / o ( x )  i s  a  

p r im it iv e  p o ly n o m i  a l. M o r e o v e r ,  c  is  a n  in t e g e r  i f  a n d  o n ly  i f  f  i s  a n  i n t e g e r  p o ly n o m ia l .  I f  

/  is  a n  in t e g e r  p o ly n o m ia l ,  t h e n  t h e  g r e a t e s t  c o m m o n  d iv i s o r  o f  t h e  c o e f f ic ie n t s  o f  /  is  ± c .

P r o o f .  T o  f in d  / o ,  w e  first m u l t ip ly  f  b y  a n  i n t e g e r  d  t o  c le a r  th e  d e n o m in a t o r s  in  it s  
c o e f f ic ie n t s .  T h i s  w il l  g iv e  u s  a  p o ly n o m ia l  d f  =  1  w ith  in t e g e r  c o e f f ic ie n t s .  T h e n  w e  f a c to r  

o u t  th e  g r e a t e s t  c o m m o n  d iv i s o r  o f  th e  c o e f f ic ie n t s  o f  f i  a n d  a d ju s t  th e  s ig n  o f  th e  l e a d in g  

c o e f f ic ie n t .  T h e  r e s u l t in  g  p o l y n o m ia l  /<> i s  p r im it iv e , a n d  /  =  c / o  f o r  s o m e  r a t io n  a l n u m b e r  

c .  T h is  p r o v e s  e x i s t e n  c e .

If  f  is  a n  i n t e g e r  p o ly n o m ia l ,  w e  d o n ’t  n e e d  t o  c l e a r  t h e  d e n o m in a t o r .  T h e n  c  w i l l  b e  

a n  in t e g e r . a n d  u p  t o  s ig n ,  it i s  th e  g r e a t e s t  c o m m o n  d iv is o r  o f  th e  c o e f f ic ie n t s ,  a s  s t a t e d .

T h e  u n iq u e  n e s s  o f  th is  p r o d u c t  is  im p o r t a n t ,  s o  w e  c h e c k  it  c a r e f u l ly .  S u p p o s e  g iv e  n  

r a t io n a l  n  u m b e r s  c  a n d  c '  a n d  p r im i t i v e  p o ly n o m ia l s  fo  a n d  / 0  s u c h  th a t  c / o  =  c '  / .  W e  
w ill  s h o w  th a t  f o  =  / 0 ,  S in c e  Q [ x ]  is  a  d o m a in .  it w i l l  f o l lo w  th a t  c  =  c ' .

W e  m u l t ip ly  th e  e q u a t io n  c / o  =  c ' / 0  b y  a n  i n t e g e r  a n d  a d ju s t  t h e  s ig n  i f  n e c e s s a r y ,  t o  
r e d u c e  t o  t h e  c a s e  t h a t  c  a n d  c '  a r e  p o s i t i v e  in t e g e r s .  I f  e , *  1, w e  c h o o s e  a  p r i m e  in t e g e r  p  

th  a t  d iv id e s  c .  T h e n  p  d iv id e s  c ' / 0 .  P r o p o s i t io n  1 2 .3 .4 ( a )  s h o w s  t h a t  p  d iv id e s  o n e  o f  t h e  

f a c to r s  c '  o r  / 0 .  S in c e  / 0  i s  p r im it iv e ,  i t  i s n ’t  d iv i s ib l e  b y  p ,  s o  p  d iv id e s  c'. W e  c a n c e l  p  

f r o m  b o th  s id e s  o f  th e  e q u a t io n .  I n d u c t i  o n  r e d u c e s  u s  t o  th e  c a s e  t h a t  c  =  1 , a n d  t h e  s a m e  

r e a s o n in g  s h o w s  t h a t  t h e n  c '  =  1 . S o  / 0  =  / 0 ,  □

T h e o r e m  1 2 .3 .6

( a )  L e t  /0 b e  a  p r im it iv e  p o ly n o m ia l ,  a n d  le t  g  b e  a n  in t e g e r  p o l y n o m i a l . I f  / 0  d iv id e s  g  in  

Q [ x ] ,  t h e n  f o  d iv id e s  g  in  Z [ x ] .

(b )  I f  t w o  i n t e g e r  p o l y n o m ia l s  /  a n d  g  h a v e  a  c o m m o n  n o n c o n s t a n t  f a c t o r  in  Q [ x ) ,  t h e y  

h a v e  a  c o m m o n  n o n c o n s t a n t  f a c to r  in  Z [ x ] .

P r o o f .  (a )  S a y  th  a t  g  =  / o q  w h e r e  q  h a s  r a t io n a l  c o e f f ic ie n t s .  W e  s h o w  t h a t  q  h a s  in t e g e r  

c o e f f ic ie n t s .  W e  w r i t e  g  =  e g o ,  a n d  q =  c 'q o ,  w it h  g o  a n d  q o  p r im it iv e . T h e n  e g o  =  c ' / o q o .  
G a u s s ’s  L e m m a  te lls  u s  t h a t  / > q o  is p r im it iv e . T h e r e f o r e  b y  t h e  u n iq u e n e s s  a s s e r t io n  o f  

L e m m a  1 2 .3 .5 ,  c  =  C  a n d  g o  =  / o q o .  S in c e  g  is  a n  in t e g e r  p o ly n o m ia l ,  c  i s  a n  in t e g e r .  S o  

q  =  c q o  is  a n  in t e g e r  p o ly n o m i  a l.

(b )  I f  t h e  i n t e g e r  p o ly n o m ia l s  /  a n d  g  h a v e  a  c o m m o n  f a c to r  h  in  Q [ x ]  a n d  i f  w e  w r i t e  

h  =  c h o ,  w h e r e  h o  i s  p r im it iv e , t h e n  h o  a l s o  d iv id e s  /  a n d  g  in  Q [ x ] ,  a n d  b y  ( a ) ,  h o  d iv id e s  

b o t h  /  a n d  g  in  Z [ x ] .  □
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P r o p o s i t io n  1 2 .3 .7

( a )  Let f  be an integer polynomial with positive leading coefficient. Then /  is an irreducible 
element of Z[x] if and only if it is either a prime integer or a primitive polynomial that 
is irreducible in Q [x].

(b )  Every irreducible element of Z[x] is a prime element.

Proof. Proposition 12.3.4(a) proves ( a ) and ( b )  for a constant polynomial. If f  is irreducible 
and not constant, it cannot have an integer factor different from ±1, so if its leading coefficient 
is positive, it will be primitive. Suppose that f  is a primitive polynomial and that it has a 
proper factorization in Q[x], say f  =  gh. We write g =  ego and h =  e'ho, with go and ho 
primitive. Then goho is primitive. Since f  is also primitive, f  =  goho. Therefore I  has a 
proper factorization in Z[x] too. So if I  is reducible in Q[x], it is reducible in Z[x]. The fact 
that a primitive polynomial that is reducible in Z [x] is also reducible in Q[x] is clear. This 
proves ( a ) .

Let I  be a primitive irreducible polynomial that divides a product gh of integer 
polynomials. Then f  is irreducible in Q[x]. Since Q[x] is a principal ideal domain, f  is a 
prime element of Q[x] (12.2.8). So I  divides g or h in Q[x]. By (12.3.6) I  divides g or h in 
Z[x]. This shows that f  is a prime element, which proves ( b ) .  □

T h e o r e m  U . 3 . 8  The polynomial ring Z[x] is a unique factorization domain. Every nonzero 
polynomial /(x )  e Z[x] that is not ± l can be written as a product

f(x )  =  ± p i " -  Pmqi(x)" ••qn(x),

where p* are integer primes and q7(x) are primitive irreducible polynomials. This expression 
is unique except for the order of the factors.

Proof. It is easy to see that factoring terminates in Z[x], so this theorem follows from 
Propositions 12.3.7 and 12.2.14. □

The results of this section have analogues for the polynomial ring F[t, x ] in two 
variables over a field F. To set up the analogy, we regard F[t, x] as the ring F[t][x] of 
polynomials in x whose coefficients are polynomials in t  The analogue of the field Q will be 
the field F(t) of rational functions in t  the field of fractions of F  [t]. We’ll denote this field 
by F . Then F [ t  x] is a subring of the ring F  [x] of polynomials

I  =  an (t)xn +  . . .  +  a i (t)x +  ao(t)

whose coefficients a, (0  are rational functions in t  This can be useful because every ideal of 
F  [x] is principal.

The polynomial f  is called primitive if it has positive degree, its coefficients a/ (t) are 
polynomials in F[t] whose greatest common divisor is equal to 1, and the leading coefficient 
a n (0  is monic. A primitive polynomial will be an element of the polynomial ring F [ t  x].

It is true again that the product of primitive polynomials is primitive, and that every 
element f ( t  x) of F  [x] can be written in the form e ( t ) /o ( t  x), where /0  is a primitive 
polynomial in F[t, x] and e is a rational function in t  both uniquely determined up to 
constant factor.



Section 12.4 Factoring Integer Polynomials 371

The proofs of the next assertion's are almost identical to the proofs ofProposition 12.3.4 
and Theorems 12.3.6 and 12.3.8.

T h e o r e m  12.3.9 Let F[t] be a polynomial ring in one variable over a field F, and let 
F  =  F(t) be its field of fractions.
( a )  The product of primitive polynomials in F[t, x] is primitive.
(b )  Let fo be a primitive polynomial, and let g  be a polynomial in F [t, x]. If fo divides g  in 

F[x], then fo divides g  in F [t, x].
( c )  If two polynomials f  and g  in F [t, x] have a common nonconstant factor in F[x], they 

have a common nonconstant factor in F[t, x].
(d) Let f  be an element of F[t, x] whose leading coefficient is monic. Then f  is an 

irreducible element of F[t, x] if and only if it is either an irreducible polynomial in t 
alone, or a primitive polynomial that is irreducible in F[x].

( e )  The ring F [t, x] is a unique factorization domain. □

The results about factoring in Z[ x] also have analogues for polynomials with coefficients 
in any unique factorization domain R.

T h e o r e m  12.3.10 If R is a unique factorization domain, the polynomial ring R[xi, . . . ,  xn] 
in any number of variables is a unique factorization domain.

Note: In contrast to the case of one variable, where every complex polynomial is a product of 
linear polynomials, complex polynomials in two variables are often irreducible, and therefore 
prime elements, of C[t, x]. □

1 2 . 4  F A C T O R IN G  IN T E G E R  P O L Y N O M IA L S

We pose the problem of factoring an integer polynomial

with an O. Linear factors can be found fairly easily.

L e m m a  1 2 .4 .2

( a )  If an integer polynomial bix +  bo divides f  in Z[x], then bi divides a„ and bo 
divides ao.

(b) A  primitive polynomial bix +  bo divides f  in Z[x] if and only if the rational number 
-bo/ bi is a root of f .

( c )  A rational root of a monic integer polynomial f  is an integer.

Proof. ( a )  The constant coefficient of a product (bix +  bo)(qn_ixn-1 + • • • +  qo) is boqo, 
and if qn-l 0 ,  the leading coefficient is biq„_i.

( b )  According to Theorem 12.3.10(c), b ix  +  bo divides f  in Z[x] if and only if it  divides f  in 
Q[x], and this is true if and only if x +  bo/bi divides f ,  i.e., -bo /b i is a root.
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(c) If ex. =  a /b  is a root, written with b >  0, and if gcd(a, b) =  1, then bx  — a  is a primitive 
polynomial that divides the monic polynomial f ,  so b =  1 and ex. is an integer. □

The homomorphism l/fp : Z[x] --+ IFp [x] (12.3.1) is useful for explicit factoring, one 
reason being that there are only finitely many polynomials in Fp[x] of each degree.

Proposition U.4.3 Let f ( x ) =  anx n +  . . .  +  ao be an integer polynomiaj, and let p  be a 
prime integer that does not divide the leading coefficient a n. If the residue f  of f  modulo p  
is an irreducible element of Fp [x], then f  is an irreducible element of Q[x).

Proof. We prove the contrapositive, that if f  is reducible, then f  is reducible. Suppose that 
f  =  gh is a proper factorization of f  in Q[x]. We may assume that g and h are in Z[x]
(12.3.6). Since the factorization in Q[x] is proper, both g and h have positive degree, and, if 
deg f  denotes the degree of f ,  then d.!g f  =_deg g +  d_eg h. _

Since l/fp is a homomorphism, f  =  gh, so deg f  =  deg g +  deg h. For any integer 
polynomial p, deg p  : :  deg p. Our assumption on the leading coefficient of f  tells us that 
deg /  =  deg f .  This be_ing so we must have deg g. =  deg g and deg h =  deg h. Therefore 
the factorization f  =  gh  is proper. □

If p  divides the leading coefficient of f ,  then f  has lower degree, and using reduction 
modulo p  becomes harder.

If we suspect that an integer polynomial is irreducible, we can try reduction modulo p  
for a small prime, p  =  2 or 3 for instance, and hope that f  turns out to be irreducible and of 
the same degree as f .  If so, f  will be irreducible too. Unfortunately, there exist irreducible 
integer polynomials that can be factored modulo every prime p. The polynomial x4 -  lOx2+ 1 
is an example. So the method of reduction modulo p  may not work. But it does work 
quite often.

The irreducible polynomials in IFp[x] can be found by the “sieve” method. The sieve 
o f Eratosthenes is the name given to the following method of determining the prime integers 
less than a given number n. We list the integers from 2 to n. The first one, 2, is prime because 
any proper factor of 2 must be smaller than 2, and there is no smaller integer on our list. We 
note that 2 is prime, and we cross out the multiples of 2 from our list. Except for 2 itself, 
they are not prime. The first integer that is left, 3, is a prime because it isn’t divisible by any 
smaller prime. We note that 3 is a prime and then cross out the multiples of 3 from our list. 
Again, the smallest remaining integer, 5, is a prime, and so on.

2 3 5 ) (  7 Jla 11 K  13 ^  17 ^  19 . . .

The same method will determine the irreducible polynomials in Fp  [x]. We list the 
monic polynomials, degree by degree, and cross out products. For example, the linear 
polynomials in lF2[x] are x and x +  1. They are irreducible. The polynomials of degree 2 are 
*2, x2 +  x, x2 +  1, and X  +  x  +  1. The first three have roots in lF2, so they are divisible by x 
or by x +  1. The last one, x2 + x +  1, is the only irreducible polynomial of degree 2 in lF2[x].
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(12.4.4) The irreducible polynomials of degree :: 4 in 1F2[x]:

x, x  +  1; x2 +  x +  l; x3 +  x2 +  1, x3 +  x +  l;

By trying the polynomials on this list, we can factor polynomials of degree at most 9 in 
1F2[x]. For example, let’s factor / (x )  =  x5 +  x3 +  1 in [x]. If it factors, there must be an 
irreducible factor of degree at most 2. Neither 0 nor 1 is a root, so f  has no linear factor. 
There is only one irreducible polynomial of degree 2, namely p  =  x2 +  x +  1. We carry out 
division with remainder: / ( x )  =  p (x )(x 3 +  x2 +  x) +  (x +  1). So p  doesn’t divide / ,  and 
therefore /  is irreducible.

Consequently, the integer polynomial x5 -  64x4 +  127x3 -  200x +  99 is irreducible in 
Q[x], because its residue in 1F2 [x] is the irreducible polynomial x5 +  x3 +  1.

(12.4.5) The monic irreducible polynomials of degree 2 in 1F3 [x]:

x2 +  1, x2 +  x -  1, x2 - x  -  1.

Reduction modulo p  may help describe the factorization of a polynomial also when the 
residue is reducible. Consider the polynomial / (x )  =  x3 +  3x2 +  9^  +  6. Reducing modulo
3, we obtain x3. This doesn’t look like a promising tool. However, suppose that / ( x )  were 
reducible in Z[x], say / (x )  =  (x +  a)(x2 +  bx +  c). Then the residue o fx + aw o u ld  divide x3 
in 1F3[x], which would imply a  =  O modulo 3. Similarly, we could conclude c =  0 modulo 3. It 
is impossible to satisfy both of these conditions because the constant term ac  of the product 
is supposed to be equal to 6. Therefore no such factorization exists, and / ( x )  is irreducible. 

The principle at work in this example is called the Eisenstein Criterion.

P r o p o s i t io n  1 2 .4 .6  E i s e n s t e in  C r i t e r io n .  Let / (x )  =  a„X + ----- +ao be an integer polynomial
and let p  be a prime integer. Suppose that the coefficients of /  satisfy the following conditions:

• p  does not divide a„;
• p  divides all other coefficients a n_i, . . . ,  ao;
• p 2 does not divide ao.

Then f  is an irreducible element of Q[x].

For example, the polynomial x4 +  25x2 +  30x +  20 is irreducible in Q[x].

Proof o f  the Eisenstein Criterion. Assume that /  satisfies_the cond itions, and let f  denote 
the residue of /  modulo p. The hypotheses imply that f  =  anx” and that O. If /  is 
reducible in Q[x], it will factor in Z[x] into factors of positive degree, say f  = gh, where
g(x) =  brxr +---- +  bo and h (x) =  csx5 +  . . .  +  Co. Then g  divides a nxn, so g  has the form
brx r. Every coefficient of g except the leading coefficients divisible by p. The same is true 
of h. The constant coefficient ao of /  will be equal to boco, and since p  divides bo and co, 
p2 must divide ao. This contradicts the third condition. Therefore /  is irreducible. □
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One application of the Eisenstein Criterion is to prove the irreducibility of the
cyclotomicpolynomial <I>(x) =  x p~l +  x p ~ 2  +------ + x  +  1, where p  is a prime. Its roots are
the pth roots of unity, the powers of £ =  ib t '/  p different from 1:

(12.4.7) (x -  1) <I>(x) =  xP - 1 .

Lemma 12.4.8 Let p  be a prime integer. The binomial coefficient (£) is an integer divisible 
exactly once by p  for every r  in the range 1 <  r  <  p.

Proof. The binomial coefficient (£) is

( p )  =  p (p  -  1) ..• (p  -  r  +  1)
[ r j  r ( r - 1 ) - - 1  .

When r  <  p , the terms in the denominator are all less th an p, so they cannot cancel the
single p  that is in the numerator. Therefore (£) is divisible exactly once by p. □

Theorem 12.4.9 Let p  be a prime. The cyclotomic polynomial (x) =  xP— +  x p“ 2 +------ +
x  +  1 is irreducible over Q.

Proof. We substitute x  =  y +  1 i nto (12.4.7) and expand the result:

y< l> (y+ 1) =  (y +  l)P  - 1  =  yP + ( ^ 3 ^ 1 +  . . . +  ( p  l! .1) y +  1 -  1.

We cancel y. The lemma shows that the Eisenstein Criterion applies, and that <t>(y +  1) is
irreducible. It follows that <I>(x) is irreducible too. □

Estimating the Coefficients

Computer programs factor integer polynomials by factoring modulo powers of a prime, 
usually the prime p  =  2. There are fast algorithms, the Berlekamp algorithms, to do this. 
The simplest case is that f  is a monic integer polynomial_whose residue modulo p  is the 
product of relatively prime monic polynomials, say f  =  gh in IFp[x]. Then there will be a 
unique way to factor f  modulo any power of p. (We won’t take the time to prove this.) 
Let’s suppose that this is so, and that we (or the comp uter) have factored modulo the powers 
p , p 2, r ,  .. If f  factors in Z[x], the coefficients of the factors modulo pk  will stabilize 
when they are represented by integers between - p /2  and p k/ 2, and this will produce the 
in teger factorization. If f  is irreducible in Z[x], the coefficients of the factors won’t stabilize. 
When they get too big, one can conclude that the polynomial is irreducible.

The next theorem of Cauchy can be used to estimate how big the coefficients of the 
integer factors could be.

Theorem 12.4.10 Let / ( x )  =  x n + a„_ ix”- i  +------ + a ix  +  ao be a monic polynomial with
complex coefficients, and let r  be the maximum of the absolute values |a,- | of its coefficients. 
The roots of f  have absolute value less than r  +  1.
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P roofof Theorem 12.4.10. The trick is to rewrite the expression for /  in the form

m o d u lo  2 is

S in c e  t h e  f a c to r s  a r e  d is t in c t ,  t h e r e  is  j u s t  o n e  w a y  t o  f a c t o r  /  m o d u lo  2 2 , a n d  it  is

x 6 +  x 4 +  x 3 +  x 2 +  1 =  ( x 2 -  x  +  l ) ( x 4 +  x 3 +  x 2 +  x  +  1 ) ,  m o d u lo  4,

t io n s ,  w e  w o u l d  g u e s s  th a t  t h is  is  a n  i n t e g e r  f a c t o r iz a t io n ,  w h ic h  it  is .

( b )  L e t  f ( x )  =  x 6 — x 4 +  x 3 +  x 2 +  1. • T h is  p o l y n o m i a l  f a c to r s  in  t h e  s a m e  w a y  m o d u l o  2 . I f  
/  w e r e  r e d u c ib le  in  Z [ x ] ,  i t  w o u ld  h a v e  a  q u a d r a t ic  f a c t o r  x 2  +  a x  +  b ,  a n d  b  w o u ld  b e  t h e  

p r o d u c t  o f  t w o  r o o t s  o f  f .  C a u c h y ’s  t h e o r e m  t e l l s  u s  th a t  t h e  r o o t s  h a v e  a b s o lu t e  v a lu e  le s s  

t h a n  2 ,  s o  Ib l <  4 . C o m p u t in g  m o d u lo  2 4 ,

x 6 -  X 4 +  x 3  +  x 2  +  1 =  ( x 2  +  x  -  5 ) ( x 4 -  x  +  5 x 2  +  y x  +  3) ,  m o d u lo  1 6 .

T h e  c o n s t a n t  c o e f f ic ie n t  o f  t h e  q u a d r a t ic  f a c to r  i s  - 5 .  T h is  i s  t o o  b ig ,  s o  /  i s  ir r e d u c ib le .

Note: I t  i s n ’t n e c e s s a r y  t o  u s e  C a u c h y ’s  T h e o r e m  h e r e .  S i n c e  t h e  c o n s t a n t  c o e f f ic ie n t  o f  /  is
1, t h e  f a c t  th a t  - 5  =1= ± l  m o d u lo  1 6  a l s o  p r o v e s  th a t  /  is  i r r e d u c ib le .  □

T h e  c o m p u t e r  im p le m e n t a t io n s  f o r  f a c to r in g  a r e  in t e r e s t in g ,  b u t  t h e y  a r e  p a in f u l  to  

ca rry  o u t  b y  h a n d . I t  is  u n p le a s a n t  t o  d e t e r m in e  a  f a c t o r iz a t io n  m o d u lo  16 s u c h  as th e  o n e  

a b o v e  b y  h a n d ,  t h o u g h  it  c a n  b e  d o n e  b y  l in e a r  a lg e b r a .  W e  w o n ’t d is c u s s  c o m p u t e r  m e t h o d s  

fu r th e r .  I f  y o u  w a n t  t o  p u r s u e  th is  t o p ic ,  s e e  [L L & L ] .

a n d  t o  u se  th e  t r ia n g le  in e q u a l it y :

(12.4. 11) |x|" :: |/ (x ) | + |an_ i||x |"  1 +  . . .  +  |a i||x | + |ao|
Ix I " — 1

: :  | / ( x ) |  +  r ( | x | ” - !  +  • • •  +  Ix l +  1) =  | / ( x ) |  +  r  i - I — - .
|x |  — 1

x  =  a  i n t o  (1 2 .4 .1 1 ) :

lal" — 1
|a |"  :: I /(a ) | +  r  - ■-_  1 :: | / ( a ) |  +  |a |"  -  1.

T h e r e f o r e  | / ( a ) |  : :  1 , a n d  a  is  n o t  a  r o o t  o f  / .  

W e  g iv e  t w o  e x a m p le s  in  w h ic h  r  =  1.

E x a m p le s  1 2 .4 .1 2  ( a )  L e t  / ( x )  =  x 6 +  x 4 +  x 3  +  x 2  +  1. T h e  ir r e d u c ib le  f a c t o r iz a t io n

T h e  f a c t o r iz a t io n s  m o d u lo  23 a n d  m o d u lo  2 4 a r e  t h e  s a m e . I f  w e  h a d  m a d e  t h e s e  c o m p u t a -
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1 2 .5  G A U S S  P R IM E S

We have seen that the ring Z[i] of Gauss integers is a Euclidean domain. Every element that 
is not zero and not a unit is a product of prime elements. In this section we describe these 
prime elements, called Gauss primes, and their relation to integer primes.

In Z[i], 5 =  (2 +  i)(2 — i), and the factors 2 +  i and 2 — i are Gauss primes. On the 
other hand, the integer 3 doesn’t have a proper factor in Z[i]. It is itself a Gauss prime. These 
examples exhibit the two ways that prime integers can factor in the ring of Gauss integers. 

The next lemma follows directly from the definition of a Gauss integer:

L e m m a  U . 5 . 1

• A Gauss integer that is a real number is an integer.

• An integer d  divides a Gauss integer a  +  bi in the ring Z[i] if and only if d  divides both a
and b in Z. □

T h e o r e m  U . 5 . 2

( a )  Let be a Gauss prime, and let be its complex conjugate. Then is either an integer 
prime or the square of an integer prime.

( b )  Let p  be an integer prime. Then p  is either a Gauss prime or the product of a Gauss 
prime and its complex conjugate.

( c )  The integer primes p  that are Gauss primes are those congruent to 3 modulo 4: 
p  =  3, 7,11,19, . . .

(d) Let p  be an integer prime. The following are equivalent:

( i )  p  is the product of complex conjugate Gauss primes.
( i i )  p  is congruent 1 modulo 4, or p  =  2: p  =  2, 5,13,17, . . .

( i i i )  p  is the sum of two integer squares: p  =  a2  +  b2.
( iv )  The residue of -1 i s a square modulo p.

Proof o f Theorem 12.5.2 ( a )  Let be a Gauss prime, say =  a +  b i . We factor the positive 
integer =  a 2 +  b2 in the ring of integers: =  p i • •. p*. This equation is also true in the
Gauss integers, though it is not necessarily a prime factorization in that ring. We continue 
factoring each p; if possible, to arrive at a prime factorization in Z[i]. Because the Gauss 
integers have unique factorization, the prime factors we ob,tain must be associates of the two 
factors and 7r. Therefore k  is at most two. Either is an integer prime, or else it is the 
product of two integer primes. Suppose that =  p i p 2, and say that is an associate of 
the integer prime p i, i.e., that =  ± p i or ± ip i. Then is also an associate of p i, so is 7r, so 
Pi =  p 2, and = p2 •
(b) If p  is an integer prime, it is not a unit in Z[i]. (The units are ±1, ±i.) So p  is divisible by 
a Gauss prime 7r .  Then divides p , and p  =  p. So the integer divides p 2 in Z[i] and 
also in Z. Therefore 1frr is equal to p  or p 2. If 1frr =  p 2, then rr and p  are associates, so p  is 
a Gauss prime.

Part ( c )  of the theorem follows from ( b )  and ( d ) ,  so we need not consider it further, and we 
turn to the proof of (d). It is easy to see that ( d ) ( i )  and ( d ) ( i i i )  are equivalent: If p  =
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for some Gauss prime, say 7r =  a  +  bi, then p  =  a 2 +  b2 is a sum of two integer squares. 
Conversely, if p  =  a 2 +  b2, then p  factors in the Gauss integers: p  =  (a  — b i)(a  +  bi), and
(a) shows that the two factors are Gauss primes. □

Lemma 12.5.3 below shows that (d)(i) and (d)(iv) are equivalent, because (12.5.3)(a) 
is the negation of (d)(i) and (12.5.3)(c) is the negation of (d)(iv).

Lemma 12.5.3 Let p  be an integer prime. The following statements are equivalent:

(a) p  is a Gauss prime;
(b) the quotient ring R =  Z [i]/(p ) is a field;
(c) x2 +  1 is an irreducible element of Fp [x] (12.2.8)(c).

Proof. The equivalence of the first two statements follows from the fact that Z [i]/(p ) is a 
field if and only if the principal ideal (p) of Z[i] is a maximal ideal, and this is true if and 
only if p  is a Gauss prime (see (12.2.9».

What we are really after is the equivalence of (a) and (c), and at a first glance these 
statements don’t seem to be related at all. It is in order to obtain this equivalence that we 
introduce the auxiliary ring R = Z [i]/(p ). This ring can be obtained from the polynomial 
ring Z[x] in two steps: first killing the polynomial x2 +  1, which yields a ring isomorphic to 
Z[i], and then killing the prime p  in that ring. We may just as well introduce these relations 
in the opposite order. Killing the prime p  first gives us the polynomial ring IFp[x], and then 
killing x2 + 1 yields R again, as is summed up in the diagram below.

kill

(12.5.4) Z
k il

x 1 +  1

Z
kill
P

We now have two ways to decide whether or not R is a field. First, R will be a field if 
and only if the ideal (p) in the ring Z[ i] is a maximal ideal, which will be true if and only if p  

is a Gauss prime. Second, R will be a field if and only if the ideal (x2 +  1) in the ring IFp[x] 
is a maximal ideal, which will be true if and only if x2 +  1 is an irreducible element of that 
ring (12.2.9). This shows that (a) and (c) of Theorem 12.5.2 are equivalent. □

To complete the proof of equivalence of (i)-(iv) of Theorem 12.5.2(d), it suffices to 
show that (ii) and (iv) are equivalent. It is true that -1 is a square modulo 2. We look at the 
primes different from 2. The next lemma does the job:

Lemma 1 2 .5 .5  Let p  be an odd prime.
(a) The multiplicative group F* contains an element of order 4 if and only if p  == 1 

modulo 4.
( b )  The integer a  solves the congruence x2 == -1 modulo p  if and only if its residue a is an 

element of order 4 in the multiplicative group F*.

x] IFP[x]
kill

x 2 +  1

R
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Proof, (a) This follows from a fact mentioned before, that the multiplicative group F* is a 
cyclic group (see (15.7.3». We give an ad hoc proof here. The order of an element divides the 
order of the group. So if {i has order 4 in F*, then the order of Fp, which is p  — 1, is divisible 
by 4. Conversely, suppose that p  — 1 is divisible by 4. We consider the homomorphism 
qJ : Fx -+ Fx that sends x  x 2. The only elements of F* whose squares are 1 are ±1 (see 
(12.2.20». So the kernel of qJ is {±1}. Therefore its image, call it H, has even order (p  — 1) /2. 
The first Sylow Theorem shows that H  contains an element of order 2. That element is the 
square of an element x  of order 4.

(b) The residue {i has order 4 if and only if a 2 has order 2. There is just one element in Fp of 
order 2, namely the residue of -1 . So {i has order 4 if and only if {i2 =  -1. □

This competes the proof of Theorem 12.5.2. □

You want to hit home run without going into spring training?

—Kenkichi Iwasawa

E X E R C ISE S

Section 1 Factoring Integers

1 .1 . Prove that a positive integer n that is not an integer square is not the square of a rational 
number.

1 .2 . (partial fractions)

(a) Write the fraction 7/24 in the form a / 8  +  b/3.
(b) Prove that if n =  uv, where u  and v are relatively prime, then every fraction 

' q =  m / n can be written in the form q =  a/u +  b /v .

1 .3 . (Chinese Remainder Theorem)

(a) Let n and m be relatively prime integers, and let a  and b be arbitrary integers. Prove 
that there is an integer x that solves the simultaneous congruence x == a  modulo m 
and x  == b modulo n.

(b) Determine all solutions of these two congruences.

1 .4 . Solve the following simultaneous congruences:

(a) x == 3 modulo 8, x == 2 modulo 5,
(b) x == 3 modulo 15, x == 5 modulo 8, x == 2 modulo 7,
(c) x == 13 modulo 43, x == 7 modulo 71.

1.5. Let a  and b be relatively prime integers. Prove that there are integers m and n such that 
am +  b” == 1 modulo ab.
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2.1. F a c to r  t h e  f o l lo w in g  p o ly n o m ia ls  in to  ir r e d u c ib le  fa c to r s  in  IF p[x].

(a ) x 3 +  x 2 +  x  + 1, p  =  2  , (b) x 2 -  3 x  -  3 ,  p  =  5  , (c) x 2 +  1 , p  =  7

2.2. C o m p u t e  t h e  g r e a te s t  c o m m o n  d iv iso r  o f t h e  p o ly n o m ia ls  x 6 +  x 4 +  x 3 +  x 2  +  x  +  1 a n d  
x 5  +  2 x 3  + x 2  + x  + 1 in  Q [x ] .

2.3. H o w  m a n y  r o o t s  d o e s  th e  p o ly n o m ia l  x 2  — 2  h a v e ,  m o d u lo  8?

2.4. E u c l id  p r o v e d  t h a t  t h e r e  a r e  in f in ite ly  m a n y  p r im e  in te g e r s  in  t h e  f o l lo w in g  w a y :  I f  
p i ,  . . . ,  p k  a r e  p r im e s , th e n  a n y  p r im e  fa c to r  p  o f  ( p i  ■ ■ ■ P k ) +  1 m u st b e  d i f f e r e n t  fr o m  
a ll o f  th e  p,-. A d a p t  th is  a r g u m e n t  t o  p r o v e  th a t  fo r  a n y  f ie ld  F  t h e r e  a r e  in f in ite ly  m a n y  
m o n ic  ir r e d u c ib le  p o ly n o m ia ls  in  F [ x ] .

2.5. (partial fractions for polynomials)

(a )  P r o v e  th a t  e v e r y  e le m e n t  o f  C ( x )  x  c a n  b e  w r it te n  as a  su m  o f  a  p o ly n o m ia l  a n d  a 
l in e a r  c o m b in a t io n  o f  fu n c t io n s  o f  th e  fo r m  l / ( x  — a) 1.

(b) E x h ib it  a  b a s is  fo r  th e  f ie ld  C ( x )  o f  r a t io n a l  fu n c t io n s  a s  v e c t o r  s p a c e  o v e r  C

2.6. P r o v e  th a t  t h e  f o l lo w in g  r in g s  a r e  E u c l id e a n  d o m a in s .

(a )  Z [w ] , w  =  g27ri/3, (b) z [ . J - 2 ] .

2.7. L e t  a  a n d  b  b e  in te g e r s . P r o v e  th a t  th e ir  g r e a te s t  c o m m o n  d iv iso r  in  t h e  r in g  o f i n t e g e r s  
is  t h e  s a m e  a s  th e ir  g r e a te s t  c o m m o n  d iv is o r  in  t h e  r in g  o f  G a u ss  in te g e r s .

2.S. D e s c r ib e  a sy s te m a t ic  w a y  to  d o  d iv is io n  w ith  r e m a in d e r  in  Z [ i] .  U s e  it  t o  d iv id e  4  +  3 6 i  
b y  5 +  i.

2.9. L e t  F  b e  a  f ie ld . P r o v e  th a t  t h e  r in g  F [ x ,  x _ 1 ] o f  L a u r e n t  p o ly n o m ia ls  (C h a p te r  1 1 , 
E x e r c is e  5 .7 )  i s  a p r in c ip a l id e a l  d o m a in .

2.10. P r o v e  th a t  t h e  r in g  ]R[[t]] o f  fo r m a l p o w e r  s e r ie s  (C h a p te r  1 1 , E x e r c i s e  2 .2 )  is  a u n iq u e  
fa c to r iz a t io n  d o m a in .

S e c t io n  3  G a u s s ’s  L e m m a

3 .1 . L e t  cp d e n o t e  t h e  h o m o m o r p h is m  Z [x ]  —» d e f in e d  b y

( a )  cp (x ) =  1 + - / 2 ,  (b )  cp ( x )  =  !  +  - / 2 .

Is  th e  k e r n e l  o f  cp a p r in c ip a l id e a l?  I f  s o ,  find  a g e n e r a to r .

3.2. P r o v e  th a t  tw o  in te g e r  p o ly n o m ia ls  a r e  r e la t iv e ly  p r im e  e le m e n t s  o f  Q [x ]  i f  a n d  o n ly  i f  
t h e  id e a l  th e y  g e n e r a t e  in  Z [x ]  c o n t a in s  a n  in te g e r .

3 .3 . S ta t e  an d  p r o v e  a v e r s io n  o f  G a u s s ’s L e m m a  fo r  E u c l id e a n  d o m a in s .

3.4. L e t  x ,  y ,  z , w  b e  v a r ia b le s . P r o v e  th a t  x y  — z w , t h e  d e te r m in a n t  o f  a v a r ia b le  2 X 2 m a t r ix ,  
is  a n  ir r e d u c ib le  e le m e n t  o f  th e  p o ly n o m ia l  r in g  (C[x, y ,  Z, w ] .

3.5. ( a )  C o n s id e r  th e  m a p  l /r : C [ x ,  y ]  - +  <C[t] d e f in e d  b y  f ( x ,  y ) / ( / 2 , rJ). P r o v e  th a t  it s

im a g e  is  th e  se t  o f  p o ly n o m ia ls  p ( t )  s u c h  th a t  ( 0 )  =  0.

(b) C o n s id e r  t h e  m a p  c p :C [x , y ]  - +  C [ t]  d e f in e d  b y  / ( x ,  y )  (f2  — t, r3 _  f2) .  P r o v e  th a t  
k e r  cp is  a p r in c ip a l id e a l ,  a n d  f in d  a g e n e r a to r  g ( x ,  y )  f o r  t h is  id e a l .  P r o v e  t h a t  th e  
im a g e  o f  cp is  t h e  s e t  o f  p o ly n o m ia ls  p ( t )  s u c h  th a t  p (O )  =  p(l ) .  G iv e  a n  in tu it iv e  
e x p la n a t io n  in  te r m s  o f  t h e  g e o m e tr y  o f  t h e  v a r ie ty  { g  =  0} in  C 2 .

Section 2 Unique Factorization Domains
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3 .6 . L e t  ex b e  a  c o m p le x  n u m b e r . P r o v e  th a t  t h e  k e r n e l  o f t h e  s u b s t itu t io n  m a p  Z [x ]  —*■ C  th a t  
s e n d s  x  ex is a  p r in c ip a l id e a l ,  a n d  d e s c r ib e  it s  g e n e r a to r .

S e c t io n  4  F a c to r in g  I n te g e r  P o ly n o m ia ls

4 .1 . (a) F a c to r  x 9 — x  a n d  x 9 -  1 in  lF3[x ] .  ( b )  F a c to r  x 16 — x  in  lF2[x ] .

4 .2 . P r o v e  th a t  th e  fo l lo w in g  p o ly n o m ia ls  a r e  ir r e d u c ib le :

(a) x 2 +  1 , in  lF7[x ]  , (b )  x 3  — 9 , in  F 31[x ] .

4 .3 .  D e c i d e  w h e th e r  o r  n o t  th e  p o ly n o m ia l  x 4 +  6 x 3  +  9 x  +  3  g e n e r a te s  a  m a x im a l id e a l  
in  Q [x ] .

4 .4 . F a c to r  th e  in te g e r  p o ly n o m ia l  x 5 +  2 x 4  +  3 x 3  +  3 x  +  5 m o d u lo  2 , m o d u lo  3, a n d  in  Q .

4 .5 . W h ic h  o f  t h e  fo l lo w in g  p o ly n o m ia ls  a r e  ir r e d u c ib le  in  Q [x ]?

( a )  x 2  +  2 7 x  +  2 1 3  , (b )  8 x 3  — 6x  +  1 , (c) x 3  +  6x 2 +  1 , (d) x 5  — 3 x 4  +  3.

4 .6 . F a c to r  x 5 +  5 x  +  5 in to  ir r e d u c ib le  fa c to r s  in  Q [x ]  a n d  in  lF2[x ] .

4 .7 . F a c to r  x 3  +  x  +  1 in  IF p [x], w h e n  p  =  2 , 3 , a n d  5.

4 .8 . H o w  m ig h t  a  p o ly n o m ia l  f ( x )  =  x 4 +  b x 2  +  c  w i t h  c o e f f ic ie n t s  in  a  f i e ld  F  f a c to r  in  F [ x ] ?  
E x p la in  w ith  r e f e r e n c e  to  th e  p a r t ic u la r  p o ly n o m ia ls  x 4  +  4 x 2  +  4 a n d  x 4  +  3 x 2  +  4.

4 .9 . F o r  w h ic h  p r im e s  p  a n d  w h ic h  in te g e r s  n  is  th e  p o ly n o m ia l  x "  — p  ir r e d u c ib le  in  Q  [x ]?

4 .1 0 . F a c to r  t h e  f o l lo w in g  p o ly n o m ia ls  in  Q [x ] .  ( a )  x 2  +  2 3 5 1 x  +  1 2 5 , (b )  x 3  +  2 x 2 +  3 x +  1,

(c )  x 4 +  2x 3 +  2x 2 +  2x  +  2, (d) x 4  +  2 x 3  +  3x 2 +  2x  +  1, ( e )  x 4  +  2 x 3  +  x 2 +  2x  +  1,

( f )  x 4  + 2 x 2  + x  +  1, (g )  x 8 + x 6 + x 4 +  x 2  +  1, (h )  x 6 -  2 x 5 - 3 x 2  +  9 x  - 3 ,  ( j ) x 4  + x 2 +  1, 

(k )  3 x s +  6 x 4  +  9 x 3  +  3 x 2  _  1, ( |)  x 5  +  x 4  +  x 2  +  X +  2 .

4 .1 1 . U s e  th e  s ie v e  m e th o d  t o  d e t e r m in e  th e  p r im e s  < 1 0 0 ,  a n d  d is c u s s  th e  e f f ic ie n c y  o f  th e  
s ie v e :  H o w  q u ic k ly  a r e  t h e  n o n p r im e s  f i lt e r e d  o u t?

4 . U .  D e te r m in e :

( a )  t h e  m o n ic  ir r e d u c ib le  p o ly n o m ia ls  o f  d e g r e e  3  o v e r  F3,

(b )  th e  m o n ic  ir r e d u c ib le  p o ly n o m ia ls  o f  d e g r e e  2 o v e r  F 5,

( c )  th e  n u m b e r  o f  ir r e d u c ib le  p o ly n o m ia ls  o f  d e g r e e  3  o v e r  th e  f ie ld  F 5.

4 .1 3 . Lagrange interpolation formula:

( a )  L e t  ao, . . . ,  ad b e  d is t in c t  c o m p le x  n u m b e r s . D e t e r m in e  a  p o ly n o m ia l  p(x)  o f  d e g r e e  
n, w h ic h  h a s  a 1 , . . . ,  a n  a s  r o o t s ,  a n d  su c h  th a t  p ( a o )  =  1.

( b )  L e t  a o ,  . . .  , ad  a n d  b o , . . . ,  bd b e  c o m p le x  n u m b e r s , a n d  s u p p o s e  th a t  t h e  a ,  a r e
d is t in c t . T h e r e  is  a  u n iq u e  p o ly n o m ia l  g  o f  d e g r e e  <  d  su c h  th a t  g(a{) =  b ,■ fo r  e a c h
i =  0, . . .  , d .  D e t e r m in e  t h e  p o ly n o m ia l  g  e x p l ic i t ly  in  te r m s  o f  a, a n d  b , .

4 .1 4 . B y  a n a ly z in g  th e  lo c u s  x 2  +  y 2 =  1 , p r o v e  th a t  th e  p o ly n o m ia l  x 2 +  y 2  -  1 is  ir r e d u c ib le  
in  C  [ x , y ] .

4 .1 5 . W ith  r e f e r e n c e  t o  th e  E is e n s t e in  c r ite r io n , w h a t  c a n  o n e  s a y  w h e n

(a )  /  is  c o n s ta n t , (b )  f  =  x n +  b x n _ 1 ?

4 .1 6 . F a c to r  x l4 +  8x  ̂  +  3  in  Q [ x ] ,  u s in g  r e d u c t io n  m o d u lo  3  a s  a  g u id e .

4 .1 7 . U s in g  c o n g r u e n c e  m o d u lo  4  a s a n  a id , f a c to r  x 4  +  6x 3 +  7 x 2  +  8x  +  9  in  Q [x ] .
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*4.18. Let q =  p e with p  prime, and let r  =  p e l . Prove that the cyclotomic polynomial
( X  — 1) /  (xr — 1) is irreducible.

4.19. Factor x5 — x4 — x2 — 1 modulo 2, modulo 16, and over Q.

Section 5 Gauss Primes
5.1. Factor the following into primes in Z[i]: (a) 1 — 3i, (b) 10, (c) 6 + 9i, (d) 7 + i.
5.2. Find the greatest common divisor in Z[i] of (a) 11 + 7i, 4 + 7i, (b) 11 + 7i, 8 + i,

(c) 3 + 4i, 18 -  i.
5.3. Find a generator for the ideal of Z[i] generated by 3 + 4i and 4 + 7i.
5.4. Make a neat drawing showing the primes in the ring of Gauss integers in a reasonable 

size range.
5.5. Let Jr be a Gauss prime. Prove that Jr and Ti are associates if and only if Jr is an associate 

of an integer prime, or TiJr =  2.
5.6. Let R be the ring Z[̂ .J.=3]. Prove that an integer prime p is a prime element of R if and 

only if the polynomial x2 + 3 is irreducible in IFp[x].
5.7. Describe the residue ring Z[i]/ (p) for each prime p.
5.8. Let R =  Z[w], where w = e2*'/3. Make a drawing showing the prime elements of absolute 

value 10 in R.
*5.9. Let R =  Z[w], where w = e21f'/3. Let p  be an integer prime *3. Adapt the proof of 

Theorem 12.5.2 to prove the following:

(a) The polynomial x2 + x +  1 has a root in IFp if and only if p  =  1 modulo 3.
(b) (p) is a maximal ideal of R if and only if p  =  -1 modulo 3.
( c) p  factors in R if and only if it can be written in the form p =  a 1 + ab + b2, for some 

integers a and b.

5.10. ^a) Let a be a Gauss integer. Assume that a  has no integer factor, and that Cia is a 
square integer. Prove that a  is a square in Z[i].

(b) Let a, b, c be integers such that a and b are relatively p rime and a2 +  b2 = c1. Prove 
that there are integers m and n such that a =  m 2 — n2,b  =  2 mn, and c =  m 2 +  n 2.

Miscellaneous Problems
M.1. Let S be a commutative semigroup -  a set with a commutative and associative law 

of composition and with an identity element (Chapter 2, Exercise M.4). Suppose the 
Cancellation Law holds in S: If ab  = ac then b =  c. Make the appropriate definitions 
and extend Proposition 12.2.14(a) to this situation.

M.2. Let Vi, • • • , Vn be elements of '1.2, and let S  be the semigroup of all combinations
aiVi +------+ an Vn with non-negative integer coefficients a,-, the law of composition being
addition (Chapter 2, Exercise M.4). Determine which of these semigroups has unique 
factorization (a) when the coordinates of the vectors v, are nonnegative, and (b) in 
general.

Hint: Begin by translating the terminology (12.2.1) into additive notation.

Suggested by Nathaniel Kuhn.
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M.3. Let p  be an integer prime, and let A be an n X n integer matrix such that A p =  I  but 
A  =1=  I. Prove that n > p  — 1. Give an example with n =  p  — 1.

*M.4. ( a )  Let R be the ring of functions that are polynomials in cos t and sin t, with real 
coefficients. Prove that R is isomorphic to JR[x, y]/(x2 + y2 _ 1).

(b) Prove that R is not a unique factorization domain.
(c) Prove that S = (C[x, y]/(x2 +  y2 -  1) is a principal ideal domain and hence a unique 

factorization domain.
(d) Determine the units in the rings S and R.

Hint: Show th at S is isomorphic to a Laurent polynomial ring C[w, «-*].
M.S. For which integers n does the circle x2 + y2 =  n contain a point with integer coordinates?
M.6. Let R be a domain, and let I  b e an ideal that is a product of distinct maximal ideals in 

two ways, say 1 =  Pi • • Pr =  Q\ - Qs. Prove that the two factorizations are the same, 
except for the ordering of the terms.

M.7. Let R  =  Z [x].

(a )  Prove that every maximal ideal in R  has the form (p, j) ,  where p  is an integer prime 
and f  is a primitive integer polynomial that is irreducible modulo p.

(b) Let I  be an ideal of R  generated by two polynomials f  and g that have no common 
factor other than ±1. Prove that R/ I  is finite.

M.8. Let u and v be relatively prime integers, and let R' be the ring obtained from Z by 
adjoining an element a  with the relation va =  w. Prove that R' is isomorphic to Z[^] 
and also to Z[ H

M.9. Let R denote the ring of Gauss integers, and let W be the R-submodule of V =  R2 
generated by the columns of a 2X2 matrix with coefficients in R. Explain how to determine 
the index [V: W].

M.10. Let f  and g  be polynomials in C[x, y] with no common factor. Prove that the ring 
R =  C[x, y)/ ( f  g) is a finite-dimensional vector space over C.

M .ll. (Berlekamp’s method) The problem here is to factor efficiently in lF2[x). Solving linear 
equations and finding a greatest common divisor are easy compared with factoring. The 
derivative f  of a polynomial f  is computed using the rule from calculus, but working 
modulo 2. Prove:

( a )  (square factors) The derivative f  is a square, and f  — 0 if and only if /  is a square. 
Moreover, gcd ( / ,  f ')  is the product of powers of the square factors of f .

(b) (relatively prime factors) Let n be the degree of f .  If f  =  m u, where w and v are 
relatively prime, the Chinese Remainder Theorem shows that there is a polynomial 
g  of degree at most n such that g  — g =  O modulo / ,  and g  can be found by solving 
a system of linear equations. Either g cd (f g) or g cd (f g — 1) will be a proper 
factor of f .

( c  ) Use this method to factor x9 + x 6 + x4 + 1.
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Quadratic Number Fields

Rien n'est beau que Ie vrai. 

—Hermann Minkowski

In this chapter, we see how ideals substitute for elements in some interesting rings. We will 
use various facts about plane lattices, and in order not to break up the discussion, we have 
collected them together in Section 13.10 at the end of the chapter. ’

1 3 .1  A L G E B R A IC  IN T E G E R S

A complex number ex that is the root of a polynomial with rational coefficients is called an 
algebraic number. The kernel of the substitution homomorphism cp:Q[x] -*■ C that sends x 
to an algebraic number ex is a principal ideal, as are all ideals of Q[x]. It is generated by the 
monic polynomial of lowest degree in Q[x] that has a  as a root. If a  is a root of a product 
gh of polynomials, then it is a root of one of the factors. So the monic polynomial of lowest 
degree with root ex is irreducible. We call this polynomial the irreducible polynomial for a  
over Q.

• An algebraic number is an algebraic integer if its (monic) irreducible polynomial over Q 
has integer coefficients.

The cube root of unity w =  e27T'/3 =  i  (-1 +  is an algebraic integer because its 
irreducible polynomial over Q is x 2  +  X +  1, while a  =  |  (-1 +  J 3  ) is a root of the irreducible 
polynomial x2 -  x  — \  and is not an algebraic integer.

Lemma 13.1.1 A rational number is an algebraic integer if and only if it is an ordinary integer.

This is true because the irreducible polynomial over Q for a rational number a  is x -  a . □

A quadratic number field is a field of the form Q[-Jd], where d  is a fixed integer, 
positive or negative, which is not a square in Q. Its elements are the complex numbers

(13.1.2) a  +  b,J(j, with a and b in Q,

The notation J d  stands for the positive real square root if d  >  0 and for the positive 
imaginary square root if d  <  0. The field Q[ J d ]  is a real quadratic number field if d  >  0, and 
an imaginary quadratic number field if d  <  O.

383
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If d  has a square integer factor, we can pull it out of the radical without changing the 
field. So we assume d  square-free. Then d  can be any one of the integers

d  =  -1, ±2, ±3, i5 , ±6, ±7, ±1O, . . .

We determine the algebraic integers in a quadratic number field Q[ Jd]  now. Let 5 
denote J d ,  let a  =  a +  b8 be an element of Q[ 5] that is not in Q, that is, with b  0, and let 
a ' =  a -  b8 . Then a  and a '  are roots of the polynomial

(13.1.3) (x — a ') (x  — a )  =  x2 — 2 ax + (a2  — b 2 d),

which has rational coefficients. Since a  is not a rational number, it is not the root of a linear 
polynomial. So this quadratic polynomial is irreducible over Q. It is therefore the irreducible 
polynomial for a  over Q.

Corollary 13.1.4 A complex number a  =  a  +  b 8  with a  and b in Q is an algebraic integer if 
and only if 2a and a 2 -  b2d  are ordinary integers. □

This corollary is also true when b =  0 and a  = a.
The possibilities for a and b depend on congruence modulo 4. Since d  is assumed to be 

square free, we can’t have d  == 0, so d  == 1, 2, or 3 modulo 4.

Lemma 13.1.5 Let d  be a square-free integer, and let r  be a rational number. If r2d  is an 
integer, then r  is an integer.

Proof The square-free integer d  cannot cancel a square in the denominator of r2. □

A half integer is a rational number of the form m + j ,  where m is an integer.

Proposition 13.1.6 The algebraic integers in the quadratic field Q[5], with 82 =  d  and d  
square free, have the form a  = a + b 8 , where:

• If d = 2 or 3 modulo 4, then a  and b are integers.
• If d  == 1 modulo 4, then a and b are either both integers, or both half integers.

The algebraic integers form a ring R, the ring o f integers in F.

Proof We assume that 2a and a2 -  b2d  are integers, and we analyze the possiblities for a  
and b. There are two cases: Either a  is an integer, or a is a half integer.

Case 1: a is an integer. Then b2d  must be an integer. The lemma shows that b is an integer.

Case 2: a = m  +  ! is a half integer. Then a 2 =  m 2 +  m + \  will be in the set Z +  | .  Since 
a 2 — b2d  is an integer, b2d  is also in Z +  l  Then 4b2d  is an integer and the lemma shows 
that 2b is an integer. So b is a half integer, and then b2d  is in the set Z +  \  if and only if d  =  1 
modulo 4.

The fact that the algebraic integers form a ring is proved by computation. □
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T h e  im a g in a r y  q u a d r a t ic  c a s e  d  <  0  is  e a s i e r  t o  h a n d le  t h a n  t h e  r e a l  c a s e ,  s o  w e  

c o n c e n t r a t e  o n  i t  in  t h e  n e x t  s e c t io n s .  W h e n  d  <  0 , t h e  a lg e b r a ic  in t e g e r s  f o r m  a  la t t i c e  in  t h e  

c o m p le x  p la n e .  T h e  la t t ic e  i s  r e c t a n g u la r  i f  d = 2 o r  3  m o d u l o  4 ,  a n d  “ i s o s c e l e s  t r ia n g u la r ”  i f  

d  == 1 m o d u l o  4 .
W h e n  d  =  - 1 ,  R  is  t h e  r in g  o f  G a u s s  in t e g e r s ,  a n d  t h e  la t t i c e  i s  s q u a r e .  W h e n  d  =  - 3 ,  

t h e  la t t ic e  is  e q u i la t e r a l  t r ia n g u la r . T w o  o t h e r  e x a m p le s  a r e  s h o w n  b e lo w .

» • ■ 4 4 4  + * * »

+

d  =  - 5  d  =  - 7

( 1 3 .1 .7 )  I n t e g e r s  in  S o m e  I m a g in a r y  Q u a d r a t ic  F ie ld s .

B e in g  a  la t t i c e  is  a  v e r y  s p e c ia l  p r o p e r t y  o f  th e  r in g s  t h a t  w e  c o n s id e r  h e r e ,  a n d  th e  g e o m e t r y  

o f  t h e  l a t t i c e s  h e lp s  t o  a n a ly z e  t h e m .
W h e n  d ==2  o r  3  m o d u lo  4 , th e  in t e g e r s  in  Q [8 ]  a r e  t h e  c o m p l e x  n u m b e r s  a  +  b 8 ,  w it h  

a  a n d  b  in t e g e r s .  T h e y  f o r m  a  r in g  th a t  w e  d e n o t e  b y  Z [ 8 ] .  A  c o n v e n i e n t  w a y  t o  w r i t e  a ll  t h e  

in t e g e r s  w h e n  d  == 1 m o d u l o  4  is  t o  i n t r o d u c e  t h e  a lg e b r a ic  in t e g e r

( 1 3 .1 .8 )  1] = ! ( 1  +  8 ) .

It i s  a  r o o t  o f  th e  m o n ic  i n t e g e r  p o ly n o m ia l

( 1 3 .1 .9 )  x 2 - x  +  h,

w h e r e  h  =  (1  — d ) / 4 .  T h e  a lg e b r a ic  in t e g e r s  in  Q [ 8 ]  a r e  t h e  c o m p l e x  n u m b e r s  a  +  b 1],  w it h  

a  a n d  b  in t e g e r s .  T h e  r in g  o f  in t e g e r s  i s  Z  [ 1]] •

1 3 .2  F A C T O R IN G  A L G E B R A IC  IN T E G E R S

T h e  s y m b o l  R  w i l l  d e n o t e  t h e  r in g  o f  in t e g e r s  in  a n  im a g in a r y  q u a d r a t ic  n u m b e r  f i e l d  Q [ 8 ] .  
T o  f o c u s  y o u r  a t t e n t i o n , it  m a y  b e  b e s t  t o  t h in k  a t  fir st  o f  t h e  c a s e  th a t  d  is  c o n g r u e n t  2  o r  3  

m o d u lo  4 , s o  th a t  th e  a lg e b r a ic  in t e g e r s  h a v e  th e  f o r m  a  +  b 8 ,  w i t h  a  a n d  b  in t e g e r s .
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W h e n  p o s s i b le ,  w e  d e n o t e  o r d in a r y  in t e g e r s  b y  L a t in  l e t t e r s  a, b, . . . ,  e l e m e n t s  o f  R  

b y  G r e e k  le t t e r s  a , fJ, . . . ,  a n d  id e a ls  b y  c a p it a l  l e t t e r s  A ,  B,  . . .  W e  w o r k  e x c l u s iv e ly  w it h  

n o n z e r o  id e a ls .
I f  a  = a +  b 8  is  in  R ,  it s  c o m p le x  c o n j u g a t e  a  = a -  b 8  is  in  R  t o o .  T h e s e  a r e  t h e  r o o t s  

o f  t h e  p o ly n o m ia l  x 2 — 2 ax  +  (a2  — b2 d) th a t  w a s  in t r o d u c e d  in  S e c t i o n  1 3 .1 .

•  T h e  norm o f  a  =  a  +  b 8  i s  N ( a )  =  a a .

T h e  n o r m  is e q u a l  to  | a | 2 a n d  a l s o  t o  a 2 — b 2d .  I t  is  a  p o s i t iv e  in t e g e r  f o r  a ll a " *  0, a n d  it  h a s  

t h e  m u l t ip l i c a t iv e  p r o p e r ty :

( 1 3 .2 .1 )  N(fJy) =  N ( f J ) N ( y ) .

T h is  p r o p e r t y  g iv e s  u s  s o m e  c o n t r o l  o f  th e  f a c to r s  o f  a n  e l e m e n t .  I f  a  =  fJ y ,  t h e n  b o t h  t e r m s  

o n  t h e  r ig h t  s id e  o f  ( 1 3 .2 .1 )  a r e  p o s i t i v e  in te g e r s .  T o  c h e c k  f o r  f a c to r s  o f  a, it  is  e n o u g h  t o  

l o o k  a t  e l e m e n t s  fJ w h o s e  n o r m s  d iv id e  t h e  n o r m  o f  a. T h is  is  m a n a g e a b le  w h e n  N (a )  is  

s m a ll. F o r  o n e  th in g , it  a l lo w s  u s  t o  d e t e r m in e  t h e  u n it s  o f  R .

P r o p o s i t io n  1 3 .2 .2  L e t  R  b e  t h e  r in g  o f  in t e g e r s  in  a n  im a g in a r y  q u a d r a t ic  n u m b e r  f ie ld .

•  A n  e l e m e n t  a  o f  R  is  a  u n it  i f  a n d  o n ly  i f  N (a ) =  1. I f  s o ,  th e n  a - 1  =  a.
•  T h e  u n it s  o f  R  a r e  {± 1 }  u n le s s  d  =  - l  o r  - 3.

•  W h e n  d  = -1, R  is  th e  r in g  o f  G a u s s  i n t e g e r s ,  a n d  th e  u n it s  are  th e  fo u r  p o w e r s  o f  i .

•  W h e n  d  =  - 3 ,  t h e  u n it s  a r e  t h e  s ix  p o w e r s  o f  e 2lTi /6  =  i ( l  +  . J - 3 ) .

Proof. I f  a  is  a  u n it ,  t h e n  N ( a ) N ( a - J)  =  N ( ^  =  1 . S in c e  N ( a )  a n d  N (a -1) a r e  p o s i t i v e  

in t e g e r s ,  t h e y  a r e  b o t h  e q u a l  t o  1. C o n v e r s e ly ,  i f  N (a)  =  a a  = 1, t h e n  a  is  t h e  in v e r s e  o f  a, 
s o  a  is  a  u n it .  T h e  r e m a in in g  a s s e r t io n s  f o l l o w  b y  in s p e c t io n  o f  t h e  l a t t i c e  R . □

C o r o l la r y  1 3 .2 .3  F a c t o r in g  t e r m in a t e s  in  th e  r in g  o f  in t e g e r s  in  a n  im a g in a r y  q u a d r a t ic  

n u m b e r  f ie ld .

T h is  f o l lo w s  f r o m  t h e  f a c t  t h a t  f a c t o r in g  t e r m in a t e s  in  t h e  in t e g e r s .  I f  a  = fJy i s  a  p r o p e r  

fa c t o r iz a t io n  in  R ,  t h e n  N (a ) =  N ( f J ) N ( y )  is  a  p r o p e r  f a c t o r iz a t io n  in  Z . □

P r o p o s i t io n  1 3 .2 .4  L e t  R  b e  th e  r in g  o f  in t e g e r s  in  a n  im a g in a r y  q u a d r a t ic  n u m b e r  f ie ld .  

A s s u m e  th a t  d = 3  m o d u l o  4 . T h e n  R  is  n o t  a  u n i q u e  f a c t o r iz a t io n  d o m a i n  e x c e p t  in  t h e  c a s e  

d  =  - 1 ,  w h e n  R  is  t h e  r in g  o f  G a u s s  in t e g e r s .

Proof  T h is  is  a n a lo g o u s  t o  w h a t  h a p p e n s  w h e n  d  =  - 5 .  S u p p o s e  th a t  d = 3  m o d u lo  4  a n d  
th a t  d  <  - 1 .  T h e  in t e g e r s  in  R  h a v e  t h e  f o r m  a +  b 8  w h ic h  a ,  b  e  Z , a n d  t h e  u n it s  a r e  ± 1 .  L e t  

e  =  (1  - d ) / 2 .  T h e n

2 e =  1 — d  = ( 1  +  8 ) (1  - 8 ) .

T h e  e l e m e n t  1 — d  f a c to r s  in  t w o  w a y s  in  R . S in c e  d  <  - 1 ,  t h e r e  is  n o  e l e m e n t  a  +  b 8  w h o s e  

n o r m  is  e q u a l  t o  2 . T h e r e f o r e  2 ,  w h ic h  h a s  n o r m  4 ,  is  a n  i r r e d u c ib le  e l e m e n t  o f  R . I f  R  w e r e  

a u n iq u e  f a c t o r iz a t io n  d o m a in ,  2  w o u ld  d iv id e  e i t h e r  1 +  8  o r  1 — 8  in  R , w h ic h  i t  d o e s  n o t:  

J (1  ±  8 )  is  n o t  a n  e l e m e n t  o f  R  w h e n  d = 3 m o d u lo  4 .  □
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There is a similar statement for the case d=-2 modulo 4. (This is Exercise 2..2.) But 
note that the reasoning breaks down when d  ==1 modulo 4. In that case, \  (1 +  8) is in R, and 
in fact there are more cases of unique factorization when d  =  1 modulo 4. A famous theorem 
enumerates these cases:

T h e o r e m  1 3 .2 .5  The ring of integers R in the imaginary quadratic field Q[^Jd] is a unique 
factorization domain if and only if d  is one of the integers -1 ,-2 , -3 ,-7 , -11,-19, - 43, -67, -163.

Gauss proved that for these values of d, R has unique factorization. We will learn how to do 
this. He also conjectured that there were no others. This much more difficult part of the theo
rem was finally proved by Baker, Heegner, and Stark in the middle of the 20th century, after 
people had worked on it for more than 150 years. We won’t be able to prove their theorem.

1 3 .3  ID E A L S  IN Z[^ H ]
Before going to the general theory, we describe the ideals in the ring R =  as lattices
in the complex plane, using an ad hoc method.

P r o p o s i t io n  1 3 .3 .1  Let R be the ring of integers in an imaginary quadratic number field. 
Every nonzero ideal of R is a sublattice of the lattice R. Moreover,

• If d==2 or 3 modulo 4, a sublattice A is an ideal if and only if 8A  C A.
• Ifd== 1 modulo 4, a sublattice A is an ideal if and only if I1A C A (see (13.1.8».

Proof  A nonzero ideal A contains a nonzero element a , and (a , a 8 ) is an independent set 
over R . Also, A  is discrete because it is a subgroup of the lattice R. Therefore A is a lattice 
(Theorem 6.5.5).

To be an ideal, a subset of R must be closed under addition and under multiplication 
by elements of R. Every sublattice A is closed under addition and multiplication by integers. 
If A is also closed under multiplication by 8, then it is closed under multiplication by an 
element of the form a  +  bS, with a  and b integers. This includes all elements of R if d  == 2 or
3 modulo 4. So A is an ideal. The proof in the case d  == 1 modulo 4 is similar. □

We describe ideals in the ring R =  Z[8], when 8 2  =  -5.

L e m m a  1 3 .3 .2  Let R =  Q[8] with 82 =  -5. The lattice A of integer combinations of 2 and
1 + 8 is an ideal.

Proof  The lattice A is closed under multiplication by 8, because 8 . 2 and 8 (1 +  8) are 
integer combinations of 2 and 1 +  8. □

Figure 13.3.4 shows this ideal.

T h e o r e m  1 3 .3 .3  Let R =  Z [8], where 8 =  and let A be a nonzero ideal of R. Let a  be 
a nonzero element of A of minimal norm (or minimal absolute value). Then either

• The set (a , aO) is a lattice basis for A, and A is the principal ideal (a), or
• The set (a , i ( a  +  acS» ) is a lattice basis for A, and A is not a principal ideal.
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This theorem has the following geometric interpretation: The lattice basis (ex, ex8) 
of the principal ideal (ex) is obtained from the lattice basis (1, 8) of the unit ideal R by 
multiplying by ex. If we write ex in polar coordinates ex =  re‘e, then multiplication by ex 
rotate s the complex plane through the angle () and stretches by the factor r. So all principal 
ideals are similar geometric figures. Also, the lattice with basis (ex, j(ex +  ex8)) is obtained 
from the lattice (2, 1 +  8) by multiplying by iex. All ideals of the second type are geometric 
figures similar to the one shown below (see also Figure 13.7.4).

(13.3.4) The Ideal (2, 1 +  8) in the Ring Z[J=5].

Similarity classes of ideals are called ideal classes, and the number of ideal classes is the 
class number of R. The theorem asserts that the class number of Z[^J=5] is two. Ideal classes 
for other quadratic imaginary fields are discussed in Section 13.7.

Theorem 13.3.3 is based on the following simple lemma about lattices:

L e m m a  1 3 .3 .5  Let A be a lattice in the complex plane, let r  be the minimum absolute value 
among nonzero elements of A, and let y be an element of A. Let n be a positive integer. 
The interior of the disk of radius ^ r  about the point ^ y contains no element of A other than 
the center ^ y. The center may lie in A or not.

Proof If is an element of A in the interior of the disk, then |f3 — ^y | <  ^ r, which is to 
say, |nf3 — y| < r. Moreover, — y is in A. Since this is an element of absolute value less 
than the minimum, n -  y =  O. Then =  £ y is the center of the disk. □

Proof o f  Theorem 13.3.3. Let ex be a nonzero element of an ideal A of minimal absolute value 
r. Since A contains ex, it contains the principal ideal (ex), and if A =  (ex) we are in the first case.

Suppose that A contains an element not in the principal ideal (ex). The ideal (ex) has 
the lattice basis B = (ex, ex8), so we may choose to lie in the parallelogram n (B ) of linear 
combinations rex +  sex8 with 0 ::5 r, s ::5 1. (In fact, we can choose so that 0 ::5 r, s  < 1 . See 
Lemma 13.10.2.) Because 8 is purely imaginary, the parallelogram is a rectangle. How large
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t h e  r e c t a n g le  i s ,  a n d  h o w  i t  is  s i t u a t e d  in  t h e  p la n e ,  d e p e n d  o n  ex, b u t  t h e  r a t io  o f  t h e  s id e  

l e n g t h s  is  a lw a y s  1 : 0 .  W e ’11 b e  d o n e  i f  w e  s h o w  t h a t  {3 is  t h e  m id p o in t  £ (ex +  ex8) o f  t h e  

r e c t a n g le .

F ig u r e  1 3 .3 .6  s h o w s  d is k s  o f  r a d iu s  r  a b o u t  th e  f o u r  v e r t i c e s  o f  s u c h  a  r e c t a n g le ,  a n d  

a ls o  d is k s  o f  r a d iu s  a b o u t  t h r e e  h a l f  la t t i c e  p o in t s ,  i e x 8 ,  | ( e x  +  e x 8 ), a n d  ex +  ie x 8 .  N o t i c e  

th a t  t h e  in t e r io r s  o f  t h e s e  s e v e n  d is k s  c o v e r  t h e  r e c t a n g le .  ( I t  w o u ld  b e  f u s s y  t o  c h e c k  t h is  b y  

a lg e b r a .  L e t ’s n o t  b o th e r .  A  g la n c e  a t  t h e  f ig u r e  m a k e s  i t  c l e a r  e n o u g h .)

A c c o r d in g  t o  L e m m a  1 3 .3 .5 ,  t h e  o n ly  p o in t s  o f  t h e  in te r io r s  o f  t h e  d is k s  t h a t  c a n  b e  

e l e m e n t s  o f  A  a r e  t h e ir  c e n t e r s .  S in c e  {3 is  n o t  in  t h e  p r in c ip a l  i d e a l  (e x ) , it  is  n o t  a  v e r t e x  o f  t h e  

r e c t a n g le .  S o  {3 m u s t  b e  o n e  o f  t h e  t h r e e  h a l f  l a t t i c e  p o in t s .  I f  {3 =  ex +  ie x 8 , t h e n  s i n c e  ex is  in  

A ,  ie x 8  w i l l  b e  in  A  t o o .  S o  w e  h a v e  o n ly  t w o  c a s e s  t o  c o n s id e r :  {3 =  ie x 8  a n d  {3 =  j ( e x  +  ex 8 ).

T h is  e x h a u s t s  th e  in f o r m a t io n  w e  c a n  g e t  f r o m  th e  fa c t  t h a t  A  is  a  la t t i c e .  W e  n o w  u s e  t h e  

f a c t  th a t  A  is  a n  id e a l .  S u p p o s e  th a t  ie x 8  is  in  A . M u lt ip ly in g  b y  8  s h o w s  th a t  i e x 8 2 =  -  | e x  is  in  

A . T h e n  s i n c e  ex is  in  A , |e x  is  in  A  t o o .  T h i s  c o n t r a d ic t s  o u r  c h o ic e  o f  ex a s  a  n o n z e r o  e l e m e n t  

o f  m in im a l  a b s o lu t e  v a lu e .  S o  {3 c a n n o t  b e  e q u a l  t o  ie x 8 . T h e  r e m a in in g  p o s s ib i l i t y  is  t h a t  {3 

is  th e  c e n t e r  j ( e x  +  ex8) o f  th e  r e c t a n g le .  I f  s o ,  w e  a r e  in  th e  s e c o n d  c a s e  o f  t h e  t h e o r e m .  □

1 3 . 4  ID E A L  M U L T IP L IC A T IO N

L e t  R  b e  t h e  r in g  o f  in t e g e r s  in  a n  im a g in a r y  q u a d r a t ic  n u m b e r  f ie ld .  A s  u s u a l ,  t h e  n o t a t io n  

A  =  (ex , {3, . . . , y )  m e a n s  t h a t  A  is  t h e  t h e  id e a l  o f  R  g e n e r a t e d  b y  t h e  e l e m e n t s  ex, {3, . . . ,  y .  
I t  c o n s i s t s  o f  a ll  l in e a r  c o m b in a t io n s  o f  t h o s e  e l e m e n t s ,  w it h  c o e f f ic ie n t s  in  t h e  r in g .



390 Chapter 13 Quadratic Number Fields

S in c e  a  n o n z e r o  id e a l  A  i s  a  la t t i c e ,  i t  h a s  a  l a t t i c e  b a s is  ( a ,  f3 ) c o n s i s t in g  o f  t w o  

e l e m e n t s .  E v e r y  e l e m e n t  o f  A  is  a n  integer c o m b in a t io n  o f  a  a n d  f3. W e  m u s t  b e  c a r e f u l  t o  

d is t in g u is h  b e t w e e n  t h e  c o n c e p t s  o f  a  la t t i c e  b a s is  a n d  a  g e n e r a t in g  s e t  f o r  a n  id e a l .  A n y  

la t t i c e  b a s is  g e n e r a t e s  t h e  i d e a l ,  b u t  t h e  c o n v e r s e  is  f a ls e .  F o r  in s t a n c e ,  a  p r in c ip a l  id e a l  is  

g e n e r a t e d  a s  a n  id e a l  b y  a  s in g le  e l e m e n t ,  w h e r e a s  a  la t t i c e  b a s is  h a s  t w o  e l e m e n t s .
D e d e k i n d  e x t e n d e d  t h e  n o t i o n  o f  d iv is ib i l i t y  t o  id e a l s  u s in g  t h e  f o l lo w in g  d e f in i t io n  o f  

i d e a l  m u lt ip l ic a t io n :

•  L e t  A  a n d  B  b e  id e a l s  in  a  r in g  R . T h e  product ideal A  B  c o n s i s t s  o f  a l lfinite sums ofproducts

( 1 3 .4 .1 )  ^  a f 3 i ,  w i t h  a,- i n  A  a n d  f3i in  B .

T h is  i s  t h e  s m a l le s t  id e a l  o f  R  th a t  c o n t a in s  a l l  o f  t h e  p r o d u c t s  a f3 .

T h e  d e f in i t io n  o f  id e a l  m u l t ip l i c a t io n  m a y  n o t  b e  q u ite  a s  s im p le  a s  o n e  m ig h t  h o p e ,  
b u t  it  w o r k s  w e l l .  N o t i c e  t h a t  it  is  a  c o m m u t a t iv e  a n d  a s s o c ia t iv e  la w , a n d  t h a t  it  h a s  a  u n it  
e l e m e n t ,  n a m e ly  R . ( T h is  is  o n e  o f  t h e  r e a s o n s  t h a t  R  is  c a l l e d  t h e  u n it  i d e a l . )

W e  o m i t  t h e  p r o o f  o f  t h e  n e x t  p r o p o s i t i o n ,  w h ic h  is  t r u e  f o r  a r b itr a r y  r in g s .

P r o p o s i t io n  1 3 .4 .3  L e t  A  a n d  B  b e  id e a l s  o f  a  r in g  'R .

( a )  L e t  { a t ............a m } a n d  { f3 i, . . . ,  f3„} b e  g e n e r a t o r s  f o r  t h e  id e a l s  A  a n d  B ,  r e s p e c t iv e ly .
T h e  p r o d u c t  id e a l  A B  is  g e n e r a t e d  a s  id e a l  b y  t h e  m n  p r o d u c t s  a , f 3 j :  E v e r y  e l e m e n t  o f  

A B  i s  a  l in e a r  c o m b in a t io n  o f  t h e s e  p r o d u c t s  w i t h  c o e f f ic ie n t s  in  t h e  r in g .

( b )  T h e  p r o d u c t  o f  p r in c ip a l  id e a ls  is  p r in c ip a l:  I f  A  =  ( a )  a n d  B  =  ( f3 ) ,  t h e n  A B  is  t h e  

p r in c ip a l  id e a l  ( a f 3 )  g e n e r a t e d  b y  t h e  p r o d u c t  a f3 .

( c )  A s s u m e  t h a t  A  =  ( a )  is  a  p r in c ip a l  id e a l  a n d  l e t  B  b e  a r b itr a r y . T h e n  A B  i s  t h e  s e t  o f

p r o d u c t s  a f 3  w i t h  in  B :  A b  =  a B .  □

W e  g o  b a c k  t o  th e  e x a m p le  o f  th e  r in g  R  =  Z  [8 ]  w ith  8 2 =  - 5 ,  in  w h ic h

I f  f a c t o r in g  in  R  w e r e  u n iq u e ,  t h e r e  w o u ld  b e  a n  e l e m e n t  y  in  R  d iv id in g  b o t h  2  a n d  1 +  8 ,  
a n d  t h e n  2  a n d  1 +  8  w o u ld  b e  in  t h e  p r in c ip a l  id e a l  ( y ) .  T h e r e  is  n o  s u c h  e l e m e n t .  H o w e v e r ,  

t h e r e  i s  a n  ideal th a t  c o n t a in s  2  a n d  1 +  8 ,  n a m e ly  t h e  id e a l  ( 2 ,  1 +  8 )  g e n e r a t e d  b y  t h e s e  t w o  

e l e m e n t s ,  t h e  o n e  d e p ic t e d  in  F ig u r e  1 3 .3 .4 .
W e  c a n  m a k e  f o u r  id e a l s  u s in g  t h e  f a c to r s  o f  6:

( 1 3 .4 .5 )  A  =  ( 2 ,  1 +  8 ) ,  A  =  ( 2 , 1 - 8 ) ,  B  =  ( 3 , 1  +  8 ) ,  B  = ( 3 ,  1 - 8 ) .

In  e a c h  o f  t h e s e  id e a l s ,  th e  g e n e r a t o r s  th a t  a r e  g iv e n  h a p p e n  t o  f o r m  la t t i c e  b a s e s .  W e  d e n o t e  

t h e  la s t  o f  t h e m  b y  B  b e c a u s e  it  is  t h e  c o m p l e x  c o n j u g a t e  o f  B :

( 1 3 .4 .2 ) A  B  =  B A ,  A ( B C )  =  ( A B ) C ,  A R  =  R A  =  A .

( 1 3 .4 .4 ) 2 - 3  =  6  =  (1  +  8 ) ( 1  - 8 ) .

( 13. 4.6)
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It is obtained by reflecting B about the real axis. The fact that R =  R implies that the 
complex conjugate of an ideal is an ideal. The ideal A, the complex conjugate of A, is equal 
to A. This accidental symmetry of the lattice A doesn’t occur very often.

We now compute some product ideals. Proposition 13.4.3(a) tells us that the ideal AA 
is generated by the four products of the generators (2, 1 -  8) and (2, 1 + 8) of A and A:

AA =  (4,2 + 28, 2 - 2 8 , 6).

Each of the four generators is divisible by 2, so AA is contained in the principal ideal (2). 
(The notation (2) stands for the ideal 2R here.) On the other hand, 2 is an element of AA 
because 2 =  6 -  4. Therefore (2) C AA. This shows that AA = (2).

Next, the product A B  is generated by four products:

A B  =  (6, 2 +  28, 3 +  38, (1 + 8)2).

Each of these four elements is divisible by 1 + 8, and 1 +  8 is the difference of two of them, 
so it is an element of A B. Therefore A B  is equal to the principal ideal (1 +  8). One sees 
similarly that A B = (1 -  8) and that B B  =  (3).

The principal ideal (6) is the product of four ideals:

(13.4.7) (6) =  (2)(3) =  (A A )(BB) = (A B) ( AB)  =  (1 -  8)(1 +  8)

Isn’t this beautiful? The ideal factorization (6) =  A A B B has provided a common refinement 
of the two factorizations (13.4.4).

In the next section, we prove unique factorization of ideals in the ring of integers of 
any imaginary quadratic number field. The next lemma is the tool that we will need.

L e m m a  1 3 .4 .8  M a in  L e m m a .  Let R be the ring of integers in an imaginary quadratic number 
field. The product of a nonzero ideal A of R and its conjugate A is a principal ideal, generated 
by a positive ordinary integer n: AA = (n) =  nR.

This lemma would be false for any ring smaller than R, for example, if one didn’t include 
the elements with half integer coefficients, when d  = 1 modulo 4.

Proof Let (a , fJ) be a lattice basis for the ideal A. Then (a , fi) is a lattice basis for A. 
Moreover, A and A are generated as ideals by these bases, so the four products a a ,  af), 
fJa_,_and fJf) generate the product ideal AA. The three elements a a ,  fJf) and fJa + af) are 
in AA. They are algebraic integers equal to their complex conjugates, so they are rational 
numbers, and therefore ordinary integers (13.1.1). Let n be their greatest common divisor in 
the ring of integers. It is_an integer combination of those elements, so it is also an element of 
A A. Therefore (n) C AA. _Ifwe show that n divides each of the four generators of AA in 
R, it will follow that (n) =  AA, and this will prove the lemma.

By construction, n divides a a  and -SfJ in z", hence in R. We have to show that n divides 
a f) and fJa. How can we do this? There is a beautiful insight here. We use the definition of 
an algebraic integer. If we show that the quotients y =  a f) /n  and y  =  fJa /n  are algebraic 
integers, it will follow that they are elements of the ring of integers, which is R. This will 
mean that n divides af) and {ja in R.
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The elements y  and y  are roots of the polynomial p (x )  = x 2 — ( y  +  y )x  + (y y ):

n ’ n
fia afJ a a  fifJ
n n n n

By its definition, n divides each of the three integers fia  +  afJ, aa , and fifJ . The coefficients 
of p(x) are integers, so y and y are algebraic integers, as we hoped. (See Lemma 12.4.2 for

Our first applications of the Main Lemma are to divisibility of ideals. In analogy with 
divisibility of elements of a ring, we say that an ideal A divides another ideal B if there is an 
ideal C such that B is the product ideal AC.

Corollary 13.4.9 Let R be the ring of integers in an imaginary quadratic number field.
(a) Cancellation Law: Let A, B, C be nonzero ideals of R. Then A B  =  AC if and only if 

B =  C. Similarly, AB C AC, if and only if B C C, and AB <  AC if and only if B <  C.
(b) Let A and B be nonzero ideals of R. Then A B if and only if A divides B, i.e., if and 

only if there is an ideal C such that B =  A C.

Proof (a) It is clea£_that if B =  C, then AB =  AC. If AB =  AC, then A A B =  AAC. By 
the Main Lemma, AA =  (n), so nB  =  nC. Dividing by n shows that B =  C. The other 
assertions are proved in the same way.

(b) We first consider the case that a principal ideal (n) generated by an ordinary integer n 
contains an ideal B. Then n divides every element of B in R. Let C =  n - 1 B be the set of 
quotients, the set of elements n_1 fJ with fJ in B. You can check that C is an ideal and that 
nC =  B. Then B is the product ideal (n)C, so (n) divides B.

Now suppose that an ideal A contains B. We apply the Main Lemma again: AA =  (n). 
Then (n) =  AA contains AB. By what has been shown, there is an ideal C such that 
AB =  (n)C  =  AAC. By the Cancellation Law, B =  AC.

Conversely, if A divides B, say B =  AC, then B =  A C c A R  =  A. □

1 3 .5  F A C T O R IN G  ID E A L S

We show in this section that nonzero ideals in rings of.integers in imaginary quadratic fields 
factor uniquely. This follows rather easily from the Main Lemma 13.4.8 and its Corollary
13.4.9, but before deriving it, we define the concept of a prime ideal. We do this to be consistent 
with standard terminology: the prime ideals that appear are simply the maximal ideals.

Proposition 13.5.1 Let R  be a ring. The following conditions on an ideal P  of R  are 
equivalent. An ideal that satisfies these conditions is called a prime ideal. .

(a) The quotient ring R / P  is an integral domain.
(b) P  =I= R, and if a  and b are elements of ft such that ab e P, then a e P  or b e P.
(c) P  =I= ft, and if A and B are ideals of R  such that AB C P, then A C P  or B C P.

the case that y  happens to be a rational number.) □

Condition (b) explains the term “prime.” It mimics the important property of a prime 
integer, that if a prime p  divides a product ab  of integers, then p  divides a  or p  divides b.
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Proof ( a )  •«=>■ (b ) :  The conditions for R /P  to be an integral domain are that R/P=#={O} 
and ab  =  0  implies a =  0  or b =  O. These conditions translate to P  =#= R  and ab  e P  implies 
a  e P  or b e P.

( b )  => (c ): Suppose that ab  e P  implies a  e P  or b e  P , and let A and B be ideals such that 
AB C P . If A ct P, there is an element a  in A that isn’t in P. Let b be any element of B. 
Then ab  is in A B and therefore in P. But a is not in P, so b is in P. Since b was an arbitrary 
element of B, B C P.

( e )  => (b ): Suppose that P  has the property ( e ) ,  and let a and b be elements of R  such that 
ab  is in P. The principal ideal (ab) is the product ideal (a) (b). If ab e P, then (ab) C P, 
and so (a) C P  or (b) C P. This tells us that a e P  or b e  P. □

C o r o l la r y  1 3 .5 .2  Let R  be a ring.

(a )  The zero ideal of R  is a prime ideal if and only if R  is an integral domain.
(b ) A maximal ideal of R  is a prime ideal.
( e )  A principal ideal (a) is a prime ideal of R  if and only if a  is a prime element of R.

Proof, ( a )  This follows from ( 1 3 .5 .1 ) ( a ) ,  because the quotient ring R/(O) is isomorphic to R.

( b )  This also follows from ( 1 3 .5 .1 ) ( a ) ,  because when M  is a maximal ideal, R / M  is a field. 
A field is an integral domain, so M  is a prime ideal. Finally, ( c )  restates ( 1 3 .5 .1 ) ( b )  for a 
principal ideal. □

This completes our discussion of prime ideals in arbitrary rings, and we go back to the 
ring of integers in an imaginary quadratic number field.

C o r o l la r y  1 3 .5 .3  Let R be the ring of integers in an imaginary quadratic number field, let A 
and B be ideals of R, and let P  be a prime ideal of R that is not the zero ideal. If P  divides 
the product ideal AB, then P  divides one of the factors A or B.

This follows from ( 1 3 .5 .1 ) ( c )  when we use ( 1 3 .4 .9 ) ( b )  to translate inclusion into divisibility.D

L e m m a  1 3 .5 .4  Let R be the ring of integers in an imaginary quadratic number field, and let 
B be a nonzero ideal of R. Then
( a )  B has finite index in R,
( b )  there are finitely many ideals of R that contain B,
( c )  B is contained in a maximal ideal, and
( d )  B is a prime ideal if and only if it is a maximal ideal.

Proof ( a )  is Lemma 1 3 .1 0 .3 ( d ) ,  and ( b )  follows from Corollary 1 3 .1 0 .5

( e )  Among the finitely many ideals that contain B, there must be at leastone that is maximal.

( d )  Let P  be a nonzero prime ideal. Then by ( a ) ,  P  has finite index in R. So R / P  is a 
finite integral domain. A finite integral domain is a field. (This is Chapter 11, Exercise 7.1.) 
Therefore P  is a maximal ideal. The converse is ( 1 3 .5 .2 ) ( b ) .  □
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T h e o r e m  1 3 .5 .5  Let R be the ring of integers in an imaginary quadratic field F. Every 
proper ideal of R is a product of prime ideals. The factorization of an ideal into prime ideals 
is unique except for the ordering of the factors.

Proof. If an ideal B is a maximal ideal, it is itself a prime ideal. Otherwise, there is an ideal 
A that properly contains B. Then A  divides B, say B = AC. The cancellation law shows 
that C properly contains B too. We continue by factoring A and C. Since only finitely many 
ideals contain B, the process terminates, and when it does, all factors will be maximal and 
therefore prime.

If P\ - ■ Pr = Q i - Qs, with Pi and Q j prime, then Pi divides Q i • • • Qs, and 
therefore P i divides one of the factors, say Qi. Then Pi contains Q i, and since Q i is 
maximal, P i =  Q i . The uniqueness of factorization follows by induction when one cancels 
Pi from both sides of the equation. □

Note: This theorem extends to rings of algebraic integers in other number fields, but it is a 
very special property. Most rings do not admit unique factorization of ideals. The reason is 
that in most rings, P  B  does not imply that P  divides B, and then the analogy between 
prime ideals and prime elements is weaker. □

T h e o r e m  1 3 .5 .6  The ring of integers R in an imaginary quadratic number field is a unique 
factorization domain if and only if it is a principal ideal domain, and this is true if and only if 
the class group C of R is the trivial group.

Proof A principal ideal domain is a unique factorization domain (12.2.14). Conversely, 
suppose that R is a unique factorization domain. We must show that every ideal is principal. 
Since the product of principal ideals is principal and since every nonzero ideal is a product 
of prime ideals, it suffices to show that every nonzero prime ideal is principal.

Let P  be a nonzero prime ideal of R, and let ex be a nonzero element of P. Then ex is 
a product of irreducible elements, and because R has unique factorization, they are prime 
elements (12.2.14). Since P  is a prime ideal, P  contains one of the prime factors of ex, say Jr. 
Then P  contains the principal ideal (Jr). But since Jr is a prime element, the principal ideal 
(Jr) is a nonzero prime ideal, and therefore a maximal ideal. Since P  contains (Jr), P  =  (Jr). 
So P  is a principal ideal. □

1 3 .6  P R IM E  ID E A L S  A N D  P R IM E  IN T E G E R S

In Section 12.5, we saw how Gauss primes are related to integer primes. A similar analysis 
can be made for the ring R of integers in a quadratic number field, but we should speak of 
prime ideals rather than of prime elements. This complicates the analogues of some parts of 
Theorem 12.5.2. We consider only those parts that extend directly.

T h e o r e m  1 3 .6 .1  Let R be the ring of integers in an imaginary quadratic number field.

( a )  Let P  be a nonzero prime ideal of R. Say that P  P  =  (n) where n is a positive integer. 
Then n is either an integer prime or the square of an integer prime.

( b )  Let p  be an integer prime. The principal ideal (p) =  pR  is either a prime ideal, or the 
p'roduct P P  of a prime ideal and its conjugate.
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(c) Assume that d ==2 or 3 modulo 4. An integer prime p  generates a prime ideal (p) of R 
if and only if d  is not a square modulo p, and this is true if and only if the polynomial 
x 2  — d  is irreducible in IFp[x].

(d )  Assume that d  == 1 modulo 4, and let h =  ^ ( 1  — d). An integer prime p  generates a 
prime ideal (p) of R if and only if the polynomial x2 — x  +  h is irreducible in Fp[x].

C o r o l la r y  1 3 .6 .2  With the notation as in the theorem. any proper ideal strictly larger than 
(p) is a prime, and therefore a maximal, ideal. □

• An integer prime p  is said to remain prime if the principal ideal (p) =  p R  is a prime ideal. 
Otherwise, the principal ideal (p) is a product P P  of a prime ideal and its conjugate, and in 
this case the prime p  is said to split. If in addition P = P, the prime p  is said to ramify.

Going back to the case d  =  -5, the prime 2 ramifies in Z[-̂ yCS] because (2) =  AA and 
A =  A. The prime 3 splits. It does not ramify, because (3) =  B B  and B=I= B  (see (13.4.5».

Proof o f Theorem 13.6.1. The proof follows that of Theorem 12.5.2 closely, so we omit the 
proofs of ( a )  and ( b ) .  We discuss (c) in order to review the reasoning. Suppose d  == 2 or 3 
modulo 4. Then R =  Z[S] is isomorphic to the quotient ring Z[x]/ (x2 — d). A prime integer 
p  remains prime in R if and only if R  =  R /  (p) is a field. (We are using a tilde here to avoid 
confusion with complex conjugation.) This leads to the diagram

(13.6.3) Z
kernel 

(x2 -  d)
Z

x]

S]

kernel
(p)

IFp [x]
kernel 

(x2 -  d)

kernel
(p )

R

This diagram shows that R  is a field if and only if x2 — d  is irreducible in IFp[x].
The proof of (d )  is similar. □

P r o p o s i t io n  1 3 .6 .4  Let A, B, C be nonzero ideals with B J  C. The index [B: C] of C in B  
is equal to the index [AB: A C].

Proof Since A is a product of prime ideals, it suffices to show that [B:C] =  [PB: PC] when 
P  is a nonzero prime ideal. The lemma for an arbitrary ideal A follows when we multiply by 
one prime ideal at a time.

There is a prime integer p  such that either P  =  (p) or P P  =  (p) (13.6.1). If P  is the 
principal ideal (p), the formula to be shown is [B: C] =  [pB :pC ], and this is rather obvious 
(see (13.10.3)(c».

Suppose that (p) =  P P . We inspect the chain of ideals B J  PB  J  P  PB  =  pB . 
The cancellation law shows that the inclusions are strict, and [B: pB] =  p2. Therefore
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[B: PB] = p. Similarly, [C: PC] =  p  (13.10.3)(b). The diagram below, together with the 
multiplicative property of the index (2.8.14), shows that [B: C] =  [PB: PC).

B :: C
U  u

PB :: PC  □

1 3 .7  ID E A L  C L A S S E S

As before, R denotes the ring of integers in an imaginary quadratic number field. We
have seen that R is a principal ideal domain if and only if it is a unique factorization
domain (13.5.6). We define an equivalence relation on nonzero ideals that is compatible with 
multiplication of ideals, and such that the principal ideals form one equivalence class .

• Two nonzero ideals A and A' of R are similar if, for some complex number A,

(13.7.1) A ' = AA.

Similarity of ideals is an equivalence relation whose geometric interpretation was mentioned 
before: A and A' are similar if and only if, when regarded as lattices in the complex plane, they 
are similar geometric figures, by a similarity that is orientation-preserving. To see this, we 
note that a lattice looks the same at all of its points. So a geometric similarity can be assumed 
to relate the element 0 of A to the element 0 of A'. Then it will be described as a rotation 
followed by a stretching or shrinking, that is, as multiplication by a complex number A .

• Similarity classes of ideals are called ideal classes. The class of an ideal A will be denoted 
by (A).

L e m m a  1 3 .7 .2  The class (R) of the unit ideal consists of the principal ideals.

Proof If (A) =  (R), then A =  AR for some complex number A. Since 1 is in R, A is an 
element of A, and therefore an element of R. Then A is the principal ideal (A). □

We saw in (13.3.3) that there are two ideal classes in the ring R =  Z [is], when iS2 =  - 5 .  

Both of the ideals A = (2, 1 +  is) and B =  (3, 1 +  is) represent the class of nonprincipal 
ideals. They are shown below, in Figure 13.7.4. Rectangles have been put into the figure to 
help you visualize the fact that the two lattices are similar geometric figures.

We see below (Theorem 13.7.10) that there are always finitely many ideal classes. The 
number of ideal classes in R is called the class number of R.

P r o p o s i t io n  1 3 .7 .3  The ideal classes form an abelian group C, the class group of R, the law 
of composition being defined by multiplication of ideals: (A) ( B) =  (AB):

(class of A)(class of B) =  (class of AB).

Proof Suppose that (A) =  (A') and (B) =  (B'), i.e., A ' =  A A and B' =  yB  for some 
complex numbers A and y. Then A 'B ' =  AyAB, and therefore (AB) =  (A' B'). This shows 
that the law of composition is well defined. The law is commutative and associative because
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m u lt ip l i c a t io n  o f  id e a l s  i s  c o m m u t a t iv e  a n d  a s s o c ia t iv e ,  a n d  t h e  c la s s  (R )  o f  t h e  u n it  i d e a l  is  

a n  id e n t i t y  e l e m e n t  th a t  w e  d e n o t e  b y  1 , a s  u s u a l .  T h e  o n ly  g r o u p  a x io m  t h a t  i s n ’t o b v io u s  

is  th a t_ e v e r y  c la s s  (A) h a s  a n  in v e r s e .  B u t  th is  f o l l o w s  f r o m  th e  M a in  L e m m a , w h i c h  a s s e r t s  

t h a t  AA is  a  p r in c ip a l  id e a l  ( n ) .  S in c e  t h e  c la s s  o f  a  p r in c ip a l  id e a l  is  1 , (A)(A)  — 1 a n d  

( A )  =  (A )-1. ■ □

T h e  c la s s  n u m b e r  is  t h o u g h t  o f  a s  a  w a y  t o  q u a n t i f y  h o w  b a d ly  u n iq u e  f a c t o r iz a t io n  

o f  e i c m e n t s  f a i ls .  M o r e  p r e c i s e  in f o r m a t io n  is  g iv e n  b y  t h e  s t r u c t u r e  o f  C a s  a  g r o u p .  A s  w e  

h a v e  s e e n ,  t h e  c la s s  n u m b e r  o f  t h e  r in g  R  =  Z[ .̂J-5] is  t w o .  T h e  c la s s  g r o u p  o f  R  h a s  o r d e r  

t w o . O n e  c o n s e q u e n c e  o f  t h is  is  th a t  t h e  p r o d u c t  o f  a n y  t w o  n o n p r in c ip a l  id e a l s  o f  R  i s  a  

p r in c ip a l  id e a l .  W e  sa w  s e v e r a l  e x a m p le s  o f  th is  in  ( 1 3 .4 .7 ) .

• * . * • * . * • * •  • * • • * • • * • • *

• *  • *

*  • *  •

*

* * * *

* *

* * * *

( 1 3 .7 .4 )  T h e  I d e a l s  A  =  ( 2 ,  1 +  15) a n d  B  =  (3 , 1 +  15), 152 == - 5 .

* * * * * * * **

M e a s u r i n g  a n  I d e a l

T h e  M a in  L e m m a  t e l l s  u s  t h a t  i f  A  is  a  n o n z e r o  i d e a l ,  t h e n  A A . =  (n ) is  t h e  p r in c ip a l  

id e a l  g e n e r a t e d  b y  a  p o s i t i v e  in te g e r .  T h a t  in t e g e r  is  d e f in e d  t o  b e  t h e  norm o f  A . I t  w i l l  b e  

d e n o t e d  b y  N ( A ) :

( 1 3 .7 .5 )  N ( A )  =  n ,  i f  n  is  t h e  p o s i t i v e  in t e g e r  s u c h  th a t  A A  =  (n ) .

T h e  n o r m  o f  a n  id e a l  is  a n a lo g o u s  t o  th e  n o r m  o f  a n  e l e m e n t .  A s  is  tr u e  f o r  n o r m s  o f  

e l e m e n t s ,  th is  n o r m  is  m u l t ip l i c a t iv e .

L e m m a  1 3 .7 .6  I f  A  a n d  B  a r e  n o n z e r o  id e a ls ,  t h e n  N ( A B )  =  J V ( A ) N ( B ) .  M o r e o v e r ,  th e  
n o r m  o f  t h e  p r in c ip a l  id e a l  ( a )  is  e q u a l  t o  N(a) ,  t h e  n o r m  o f  t h e  e l e m e n t  a .

Proof. S a y  th a t  N ( A ) _ =  m _ a n d  N(B)  =  n. T h is  m e a n s  th a t  A A  =  ( m )  a n d  B B  =  (n).  
T h e n  ( A B ) ( A S )  =  ( A A ) ( B B )  =  (m ) (n ) =  (m n ) . S o  N ( A R : )  =  mn.

N e x t ,  s u p p o s e  th a t  A  is  th e  p r in c ip a l  id e a l  ( a ) ,  a n d  l e t  n  =  N ( a )  ( =  a a ) .  T h e n  
A A  =  ( a )  ( a )  =  ( a a )  =  (n ) , s o  N ( A )  =  n t o o .  □
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W e  n o w  h a v e  f o u r  w a y s  t o  m e a s u r e  t h e  s iz e  o f  a n  id e a l  A :

•  t h e  n o r m  N ( A ) ,

•  t h e  i n d e x  [ R : A ]  o f  A  in  R ,

•  t h e  a r e a  A ( A )  o f  t h e  p a r a l le lo g r a m  s p a n n e d  b y  a  l a t t i c e  b a s is  f o r  A ,

•  t h e  m in im u m  v a lu e  t a k e n  o n  b y  t h e  n o r m  N ( a ) ,  o f  t h e  n o n z e r o  e l e m e n t s  o f  A .

T h e  r e la t io n s  a m o n g  t h e s e  m e a s u r e s  a r e  g iv e n  b y  T h e o r e m  1 3 .7 .8  b e l o w .  T o  s t a t e  th a t  

t h e o r e m ,  w e  n e e d  a  p e c u l i a r  n u m b e r :

( 1 3 .7 .7 )  -
if  d  =  2  o r  3  ( m o d  4 )3

!\d\
3 i f  d = 1 ( m o d  4 ) .

T h e o r e m  1 3 .7 .8  L e t  R  b e  th e  r in g  o f  in t e g e r s  in  a n  im a g in a r y  q u a d r a t ic  n u m b e r  f i e ld ,  a n d  

l e t  A  b e  a  n o n z e r o  id e a l  o f  R . T h e n

( a )  N ( A )  =  [ R : A ]  =  a ( R )  '

(b )  I f  a  is  a  n o n z e r o  e l e m e n t  o f  A  o f  m in im a l  n o r m , N ( a )  < N ( A ) J 1-.

T h e  m o s t  im p o r ta n t  p o in t  a b o u t  (b )  i s  th a t  th e  c o e f f ic ie n t  J-L d o e s n ’t d e p e n d  o n  t h e  id e a l .

Proof, ( a )  W e  r e f e r  t o  P r o p o s i t io n  1 3 .1 0 .6  fo r  t h e  p r o o f  th a t  [ R :  A ]  =: . I n  o u t l i n e ,  t h e

p r o o f  t h a t  N ( A )  =  [ R :  A ]  is  a s  f o l lo w s .  R e f e r e n c e  l e t t e r s  h a v e  b e e n  p u t  o v e r  t h e  e q u a l i t y  

s y m b o ls .  L e t  n  =  N ( A \ ) .  T h e n

n 2 =  [ R : n R ]  =  [ R : A A ]  == [ R : A ]  [ A : A A ]  =: [ R  : A ]  [ R : - ]  =  [ R  : A ] 2 .

T h e  e q u a l i t y  l a b e le d  1 is L e m m a  1 3 .1 0 .3 ( b ) ,  th e  o n e  la b e le d  2  is  th e  M a in  L e m m a ,  w h ic h  

s a y s  th a t  n R  =  A  A ,  a n d  3  i s  th e  m u l t ip l i c a t iv e  p r o p e r t y  o f t h e  in d e x .  T h e  e q u a l i t y  4  f o l lo w s  

f r o m  P r o p o s i t io n  1 3 .6 .4: [A  : A A ]  =  [ R A  : A A ]  =  [R  : A ] ._ F in a l ly ,  th e  r in g  R  is  e q u a l  t o  
i t s  c o m p l e x  c o n j u g a t e  R , a n d  5  c o m e s  d o w n  t o  t h e  f a c t  th a t  [ R :  A ]  =  [ R :  A ] .

( b )  W h e n  d = 2 ,  3  m o d u l o  4 ,  R  h a s  t h e  la t t i c e  b a s is  ( 1 , 8 ) ,  a n d  w h e n  d = l  m o d u lo  4 ,  R  h a s  

t h e  l a t t i c e  b a s is  ( 1 ,  1]) .  T h is  a r e a  A ( R )  o f  t h e  p a r a l le lo g r a m  s p a n n e d  b y  t h is  b a s i s  is

( 1 3 .7 .9 )  A ( R )  =
■J\d\ i f  d = 2  o r  3  m o d u lo  4  

i f  d  =  1 m o d u lo  4 .

S o  =  - ^ A ( R ) .  T h e  l e n g t h  o f  th e  s h o r t e s t  v e c t o r  in  a  l a t t i c e  is  e s t im a t e d  in  L e m m a  

1 3 .1 0 .8 :  N ( a )  <  ^ A ( A ) .  W e  s u b s t i t u t e  A ( A )  =  N ( A ) A ( R )  f r o m  p a r t  ( a )  i n t o  th is  

in e q u a l i t y ,  o b t a in in g  N ( a )  s  N ( A ) J 1-.  □
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T h e o r e m  1 3 .7 .1 0

( a )  Every ideal class contains an ideal A with norm N (A ) < IL.
( b )  The class group C is generated by the classes of prime ideals P  whose norms are prime 

integers p  < IL.
( c )  The class group C is finite.

Proof o f Theorem 13.7.10. (a )  Let A be an ideal. We must find an ideal C in the class (A) 
whose norm isatm ost IL. We choose a nonzero element a  inA , with N (a ) < N(A)IL. Then 
A contains the principal ideal ( a ) , so A divides ( a ) , i. e., (a) =  AC for some ideal C, and 
N (A )N (C ) =  N (a) < N(A)IL. Therefore N(C) < IL. Now since A C  is a principal ideal, 
(C) =  (A)-1 =  (A). This shows that the class (A) contains an ideal, namely C, whose norm 
is at most IL. Then the class (A) contains C, and N (C ) =  N (C) < IL.

( b )  Every class contains an ideal A of norm N (A ) < IL. We factor A into prime ideals: 
A =  Pi - • • Pk. Then N(A) =  N (P i)  • • • N (Pk), so N ( P )  < IL for each i. The classes of 
prime ideals with norm < IL generate C. The norm of a prime ideal P  is either a prime 
integer p  or the square p 2 of a prime integer. If N (P ) =  p 2, then P  = (p) (13.6.1). This is 
a principal ideal, and its class is trivial. We may ignore those primes.

( c )  We show that there are finitely many ideals A with norm N(A ) < IL. If we write such an
ideal as a product of prime ideals, A =  P i • • • Pk, and if m* =  N (P j), then mi • • . < IL.
There are finitely many sets of integers m,-, each a prime or the square of a prime, that satisfy 
this inequality, and there are at most two prime ideals with norms equal to a given integer 
m,-. So there are finitely many sets of prime ideals such that N (P i • • • Pk) < IL. □

1 3 . 8  C O M P U T IN G  T H E  C L A S S  G R O U P

The table below lists a few class groups. In the table, LILJ denotes the floor of IL, the largest 
integer < IL. If n is an integer and if n < IL, then n < LILJ-

d  LILJ class g r o u p
-2 1 C5
-5 2 C2
-7 1 Cl
-14 4 C4
-21 5 C  X C2
-23 2 C3
-47 3 Cs
-71 4 C7

(13.8.1) Some Class Groups

To apply Theorem 13.7.10, we examine the prime integers p  < LILJ. If p  splits (or 
ramifies) in R, we include the class of one of its two prime ideal factors in our set of
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generators for the class group. The class of the other prime factor is its inverse. If p  remains 
prime, its class is trivial and we discard it.

E x a m p le  1 3 .8 .2  d  = -163. Since -163 = 1 modulo 4, the ring R of integers is Z [T/], where 
T/ =  !(1 +  8), and L/lJ =  8. We must inspect the primes p  =  2, 3, 5, and 7. If p  splits, we 
include one of its prime divisors as a generator of the class group. According to Theorem
13.6.1, an integer prime p  remains prime in R if and only if the polynomial x2 — x + 41 is 
irreducible modulo p. This polynomial happens to be irreducible modulo each of the primes
2, 3, 5, and 7. So the class group is trivial, and R is a unique factorization domain. □

For the rest of this section, we consider cases in which d  =  2 or 3 modulo 4. In these 
cases, a prime p  splits if and only if x2 -  d  has a root in IFp. The table below tells us which 
primes need to be examined.

___________ P < ^
-d  S: .2  
-d  < 6 2
-d  S:. 17 2, 3
-d  S:. 35 2, 3, 5
-d  S:. 89 2 ,3 ,5 ,7
-d  S:. 123 2 ,3 ,5 ,7 ,1 1

(13.8.3) Primes Less Than JL, When d  =  2 or 3 Modulo 4

If d  =  -1 or -2, there are no primes less than /l, so the class group is trivial, and R is a unique 
factorization domain.

Let’s suppose that we have determined which of the primes that need to be examined 
split. Then we will have a set of generators for the class group. But to determine its structure 
we still need to determine the relations among these generators. It is best to analyze the 
prime 2 directly.

L e m m a  1 3 .8 .4  Suppose that d  =  2 or 3 modulo 4. The prime 2 ramifies in R. The prime 
divisor P  of the principal ideal (2) is

• P  =  (2,1 +  8), if d  =  3 modulo 4,
• P  = (2 ,8 ) ,  if d = 2  modulo 4.

The class (P) has order two in the class group unless d  =  -1 or -2. In those cases, P  is a 
principal ideal. In all cases, the given generators form a lattice basis of the ideal P.

Proof. Let P  be as in the statement of the lemma. We compute the product ideal P P . If 
d  =  3 modulo 4, P P  =  (2,1 -  8)(2, 1 +  8) =  (4,2 +28, 2 -  28, 1 -  d), and if d  =  2 modulo
4, P P  = (2, - 8) (2, 8) =  (4, 28, - d ). In both cases, P  P  =  (2). Theorem 15.10.1 tells us that
the ideal (2) is either a prime ideal or the product of a prime ideal and its conjugate, so P
must be a prime ideal.
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W e  n o t e  a l s o  th a t  P  =  P ,  s o  2  r a m if ie s ,  ( P )  =  ( P ) _ 1 , a n d  ( P )  h a s  o r d e r  l  o r  2  in  t h e  

c la s s  g r o u p . I t  w i l l  h a v e  o r d e r  1 i f  a n d  o n ly  if  it is  a  p r in c ip a l  id e a l .  T h is  h a p p e n s  w h e n  d  =  - 1  

o r - 2 .  I f  d  =  - 1 ,  P  =  ( 1  +  8 ) ,  a n d  i f  d  =  - 2 ,  P  =  ( 8 ) .  W h e n  d  <  - 2 ,  t h e  in t e g e r  2  h a s  n o  

p r o p e r  f a c to r  in  R , a n d  t h e n  P  is  n o t  a  p r in c ip a l  id e a l .  □

C o r o l la r y  1 3 .8 .5  If  d  =  2  o r  3  m o d u lo  4  a n d  d  <  - 2 ,  th e  c la s s  n u m b e r  is  e v e n .  □

E x a m p le  1 3 .8 .6  d  =  - 2 6 .  T a b le  1 3 .8  t e l l s  u s  to  in s p e c t  th e  p r im e s  p  =  2 ,  3 , a n d  5. T h e

p o ly n o m ia l  x 2 +  2 6  is  r e d u c ib le  m o d u lo  2 , 3 , a n d  5 , s o  a ll  o f  t h o s e  p r im e s  s p l i t .  L e t ’s s a y  th a t

( 2 )  =  P P ,  ( 3 )  =  Q Q ,  a n d  ( 5 )  =  5 S .

W e  h a v e  t h r e e  g e n e r a t o r s  ( P ) ,  ( Q ) ,  (S )  f o r  t h e  c la s s  g r o u p , a n d  ( P )  h a s  o r d e r  2 .  H o w  

c a n  w e  d e t e r m in e  t h e  o t h e r  r e la t io n s  a m o n g  t h e s e  g e n e r a t o r s ?  T h e  s e c r e t  m e t h o d  is  t o  

c o m p u t e  n o r m s  o f  a  f e w  e l e m e n t s ,  h o p in g  to  g e t  s o m e  in fo r m a t io n .  W e  d o n ’t h a v e  t o  l o o k  
far: N ( l  +  8 )  =  2 7  =  3 3 a n d  N ( 2  +  8 )  =  3 0  =  2  - 3  - 5 .

L e t  a  =  1 +  8. T h e n  C ia  =  3 3 . S in c e  (3 )  =  Q  Q ,  w e  h a v e  th e  id e a l  r e la t io n

(<*)(<*) =  ( ¾ ) 3.

B e c a u s e  id e a ls  f a c to r  u n iq u e ly ,  t h e  p r in c ip a l  id e a l  ( a )  is  t h e  p r o d u c t  o f  o n e  h a l f  o f  t h e  t e r m s  

o n  t h e  r ig h t , a n d  (Ci) is  t h e jp r o d u c t  o f  t h e  c o n j u g a t e s  o f  t h o s e  t e r m s . W e  n o t e  t h a t  3 d o e s n ’t 

d iv id e  a  in  R .  T h e r e f o r e  Q Q  =  ( 3 )  d o e s n ’t d iv id e  ( a ) .  It f o l lo w s  th a t  ( a )  is  e i t h e r  Q 3 o r
— 3
Q  . W h ic h  i t  is  d e p e n d s  o n  w h ic h  p r im e  f a c to r  o f  ( 3 )  w e  la b e l  a s  Q .

I n  e i t h e r  c a s e ,  ( Q ) 3 =  1 , a n d  ( Q )  h a s  o r d e r  1 o r  3  in  t h e  c la s s  g r o u p . W e  c h e c k  t h a t  3  

h a s  n o  p r o p e r  d iv i s o r  in  R . T h e n  s in c e  Q  d iv id e s  ( 3 ) ,  it  c a n n o t  b e  a  p r in c ip a l  id e a l .  S o  ( Q )  

h a s  o r d e r  3 . _
N e x t ,  l e t  fJ =  2  +  8 . T h e n  fJfJ =  2  - 3 5 , a n d  t h is  g iv e s  u s  t h e  id e a l  r e la t io n

( fJ ) ( fJ )  =  P P Q Q 5 S .

T h e r e f o r e  t h e  p r in c ip a l  id e a l  ( fJ )  is  t h e  p r o d u c t  o f  o n e  h a l f  o f  t h e  id e a l s  o n  t h e  r ig h t  a n d  (fJ )  

is  th e  p r o d u c t  o f  th e  c o n j u g a t e s  o f  t h o s e  id e a ls .  W e  k n o w  th a t  P  =  P .  I f  w e  d o n ’t c a r e  w h ic h  

p r im e  f a c to r s  o f  ( 3 )  a n d  ( 5 )  w e  la b e l  a s  Q  a n d  S ,  w e  m a y  a s s u m e  th a t  ( fJ )  =  P  Q S .  T h is  

g iv e s  u s  t h e  r e la t io n  ( P )  ( Q ) ( S )  =  1.

W e  h a v e  f o u n d  t h r e e  r e la t io n s :

( P ) 2 =  1 , ( Q ) 3 =  I,  a n d  ( P ) ( Q ) ( S )  =  1.

T h e s e  r e la t io n s  s h o w  th a t  ( Q )  =  ( S ) 2 , ( P )  =  ( S ) \  a n d  th a t  ( S )  h a s  o r d e r  6 .  T h e  c la s s  g r o u p  

is  a  c y c l i c  g r o u p  o f  o r d e r  6 ,  g e n e r a t e d  b y  a  p r im e  id e a l  d iv i s o r  o f  5.

T h e  n e x t  l e m m a  e x p la in s  w h y  t h e  m e t h o d  o f  c o m p u t in g  n o r m s  w o r k s .

L e m m a  1 3 .8 .7  L e t  P ,  Q ,  S  b e  p r im e  i d e a l s  o f  t h e  r in g  R  o f  im a g in a r y  q u a d r a t ic  i n t e 

g e r s ,  w h o s e  n o r m s  a r e  t h e  p r im e  in t e g e r s  p ,  q ,  s ,  r e s p e c t iv e ly .  S u p p o s e  t h a t  t h e  r e la t io n
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(P)i (Q)i(S)k = 1 holds in the class group C. Then there is an element a  in R with norm 
equal to p'q^s*.

Proof. By definition, (P ) 1 (Q)j(S)k =  (Pl Q j S k). If ( P  Q j Sk) =  1, the ideal P l QJSk is 
principal, say Pl Q j S k = (a). Then

(a) (a) =  ( P p ) !'(Q Q )j(S S )k  = ( pY(q) j ( s ) k = ( p V ^ ) .

Therefore N (a ) =  a a  =  p lq isk. □

We compute one more class group.

E x a m p l e  1 3 .8 .8  d  = -74. The primes to inspect are 2, _3, 5, and 7. Here_2 ramifies, 3 and 5
split, and 7 remains prime. Say that (2) =  P p , (3) =  Q Q , and (5) =  SS. Then (P), (Q),
and (S ) generate the class group, and (P) has order 2 (13.8.4). We note that

N(1 +  8) =  75 =  3 .52
N(4 +  8) =  90 =  2 . 32 -5
N(13 +  8) =  243 =  35 '
N(14 +  8) =  270 =  2 . 33 -5

The norm N(13 +  8) shows that (Q )5 =  1, so (Q) has order 1 or 5. Since 3 has no 
proper divisor in R,_Q isn’t a principal ideal. So (Q) has order 5. Next, N ( 1 +  8) shows 
that (S)2 =  (Q) or (Q), and therefore (S) has order 10. We eliminate (Q) from ou tse t of 
generators. Finally, N(4+8) gives us one of the relations (P)( Q)2(S) =  1 or (P) (Q )2 (S) =  1. 
Either one allows us to eliminate (P) from our list of generators. The class group is cyclic of 
order 10, generated by a prime ideal divisor of (5).

1 3 .9  R E A L Q U A D R A T IC  FIEL D S

We take a brief look at real quadratic number fields, fields of the form Q[-Jd], where d  is a 
square-free positive integer, and we use the field Q [J2] as an example. The ring of integers 
in this field is a unique factorization domain:

(13.9.1) R = Z[h ]  =  {a +  b h  | a , b E Z}.

It can be shown that unique factorization of ideals into prime ideals is true for the ring 
o f  integers in any real quadratic number field, and that the class number is finite [Cohn], 
[Hasse]. It is conjectured that there are infinitely many values of d  for which the ring of 
integers has unique factorization.

When d  is positive, Q[-Jd] is a subfield of the real numbers. Its ring of integers is not 
embedded as a lattice in the complex plane. However, we can represent R as a lattice in R2 
by associating to the algebraic integer a  +  b J d  the point (m, v) of R2, where

(13.9.2) m =  a  +  b-.Jd, v =  a  — b-.Jd.

The resulting lattice is depicted below for the case d  = 2. The reason that the hyperbolas 
have been put into the figure will be explained presently.
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R e c a l l  th a t  t h e  f ie ld  Q [ - .J d \  i s  i s o m o r p h ic  t o  t h e  a b s tr a c t ly  c o n s t r u c t e d  f ie ld

( 1 3 .9 .3 )  F  =  Q M / ( x 2 -  d ) .

I f  w e  r e p la c e  Q [-.J d ]  b y  F  a n d  d e n o t e  th e  r e s id u e  o f  x  in  F  b y  8, t h e n  8  is  a n  a b s tr a c t  s q u a r e  

r o o t  o f  d  r a t h e r  t h a n  t h e  p o s i t i v e  r e a l  s q u a r e  r o o t ,  a n d  F  i s  t h e  s e t  o f  e l e m e n t s  a  +  b 8 ,  w it h  

a  a n d  b  in  Q . T h e  c o o r d in a t e s  u ,  v  r e p r e s e n t  t h e  t w o  w a y s  th a t  t h e  a b s t r a c t ly  d e f in e d  f ie ld  

F  c a n  b e  e m b e d d e d  in to  t h e  r e a l  n u m b e r s ,  n a m e ly ,  u  s e n d s  8  . .  .Jd  a n d  v  s e n d s  8  . .  - - .J d .

F o r  a  =  a  +  b 8  e  Q  [ 8 \ ,  w e  d e n o t e  b y  a  th e  “ c o n j u g a t e ”  e l e m e n t  a  — b 8 .  T h e  n o r m  

o f  a  is

( 1 3 .9 .4 )  N( a )  =  a ' a  =  a 2 -  b 2 d.

I f  a  is  a n  a lg e b r a ic  i n t e g e r ,  t h e n  N ( a )  is  a n  o r d in a r y  in t e g e r .  T h e  n o r m  is  m u lt ip l i c a t iv e :

( 1 3 .9 .5 )  N ( a f J )  =  N ( a ) N ( f J ) .

H o w e v e r ,  N ( a )  is n o t  n e c e s s a r i ly  p o s i t i v e .  It i s n ’t e q u a l  to  | a ^

( 1 3 .9 .6 )  T h e  L a t t ic e  Z [ J 2 ] .

O n e  s ig n i f ic a n t  d i f f e r e n c e  b e t w e e n  r e a l  a n d  im a g in a r y  q u a d r a t ic  f i e ld s  i s  t h a t  th e  r in g  
o f  in t e g e r s  in  a  r e a l  q u a d r a t ic  f ie ld  a lw a y s  c o n t a in s  in f in i t e ly  m a n y  u n it s .  S in c e  t h e  n o r m  o f  

a n  a lg e b r a ic  i n t e g e r  is  a n  o r d in a r y  in t e g e r ,  a  u n it  m u s t  h a v e  n o r m  ± 1 ,  a n d  i f  N ( a )  =  ± l ,  

t h e n  th e  in v e r s e  o f  a  i s  ± a ' ,  s o  a  is  a  u n it .  F o r  e x a m p le ,

a r e  u n it s  in  t h e  r in g  R  =  Z [ J 2 ] .  T h e  e l e m e n t  a  h a s  in f in i t e  o r d e r  in t h e  g r o u p  o f  u n it s .
T h e  c o n d i t i o n  N ( a )  =  a 2  — 2 £ 2  =  ± 1  f o r  u n it s  t r a n s la t e s  in  ( u ,  v ) - c o o r d i n a t e s  t o

(13.9.8) u v  =  ± l .
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So the units are the points of the lattice that lie on one of the two hyperbolas u v =  1 and 
u v =  -1, the ones depicted in Figure 13.9.6. It is remarkable that the ring of integers in a real 
quadratic field always has infinitely many units or, what amounts to the same thing, that the 
lattice always contains infinitely many points on these hyperbolas. This is far from obvious, 
either algebraically or geometrically, but a few such points are visible in the figure.

T h e o r e m  1 3 .9 .9  Let R be the ring of integers in a real quadratic number field. The group of 
units in R is an infinite group.

We have arranged the proof as a sequence of lemmas. The first one follows from 
Lemma 13.10.8 in the next section.

L e m m a  1 3 .9 .1 0  For every 6.o  >  0, there exists an r  >  0 with the following property: Let L 
be a lattice in the (u, v)-plane P, let A (L ) denote the area of the parallelogram spanned 
by a lattice basis, and suppose that 6. ( L )  6. 0. Then L contains a nonzero element y with
Iy l <  r. □

Let 6. o  and r  be as above. For s >  0, we denote by D s the elliptical disk in the (u, v) 
plane defined by the inequality s' ~2 u 2 +  s2 v2 ?  . So D  is the circular disk of radius r. The
figure below shows three of the disks Ds.

(13.9.11) Elliptical Disks that Contain Points of the Lattice.
L e m m a  1 3 .9 .1 2  With notation as above, let L  be a lattice that contains no point on the 
coordinate axes except the origin, and such that 6. ( L )  6. 0-
( a )  For any s >  0, the elliptical disk D s contains a nonzero element of L.
( b )  For any point a  =  (u, v) in the disk D s, |uv | < ^ .

Proof, ( a )  The map q; : R 2 -+ R 2 defined by q ; ( x ,  y) =  ( s x ,  ^ - 1 y) maps Di to Ds. The 
inverse image L ' =  q ; - l  L  of L  contains no point on the axes except the origin. We note that 
q; is an area-preserving map, because it multiplies one coordinate by s and the other by s~ * .
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Therefore A ( L ' )  Ao- Lemma 13.9.10 shows that the circular disk D l contains a nonzero 
element of L ', say y. Then a  =  <p(y) is an element of L in the elliptical disk D s.

(b) The inequality is true for the circular disk D i. Let be the map defined above. If 
a  =  (u, v) is in Ds, then <p-'(a) =  ( s ^ u , sv) is in D i, so \uv\ =  \(s_ lu)(sv)| ^ . □

Lemma 13.9.13 With the hypotheses of the previous lemma, the lattice L  contains infinitely 
many points (t(, v) with |uv\ y .

Proof. We apply the previous lemma. For large s , the disk Ds is very narrow, and i t contains 
a nonzero element of L, say a 5. The elements a 5 cannot lie on the ei-axis but they must 
become arbitrarily close to that axis as s tends to infinity. It follows that there are infinitely 
many points among them, and if a? =  (us, v?), then |UsVsl y - □

Let R be the ring of integers in a real quadratic field, and let n be an integer. We call 
two elements fJ; of R congruent modulo n if n divides fJi — fJ2 in R. When d  == 2 or 3 modulo
4 and fJ; =  m, +  n ;8, this simply means that m l == m 2 and ni =  n  modulo n. The same is 
true when d  =  1 modulo 4, except that one has to write fJ(- =  m(- +  n (-'r/. In all cases, there are 
n2 congruence classes modulo n.

Theorem 13.9.9 follows from the next lemma.

Lemma 13.9.14 Let R be the ring of integers in a real quadratic number field.
(a) There is a positive integer n such that the set S of elements of R with norm n is infinite. 

Moreover, there are infinitely many pairs of elements of S that are congruent modulo n.
(b) If two elements fJi and fJ2 of R with norm n are congruent modulo n, then fJ2/fJi is a 

unit of R.

Proof (a) The lattice R contains no point on the axes other than the origin, because u and 
v aren’t zero unless both a  and b are zero. If a  is an element of R whose image in the 
plane is the point (u, v), then |N (a)| = uv. Lemma 13.9.13 shows that R contains infinitely 
many points with norm in a bounded interval. Since there are finitely many integers n in that 
interval, the set of elements of R with norm n is infinite for at least one of them. The fact 
that there are fi nitely many congruence classes modulo n proves the second assertion.

(b) We show that fJ2/fJi is in R. The same argument will show that fJi/fJ2 is in R, hence that 
Ih /fJi is a unit. Since fJi and fJ2 are congruent, we can write fJ2 =  fJi +  n y , with y  in R. Let 
f J  be the conjugate of fJi. So fJifJ =  n. Then fJ2/  fJi =  (fJi +  ny)/ fJi  =  1 +  fJ; y. This is an 
element of R, as claimed. □

1 3 . 1 0  A B O U T  LA T TIC ES

A lattice L  in the plane ]R2 is generated, or spanned by a set S if every element of L  can 
be written as an integer combination of elements of S. Every lattice L  has a lattice basis 
B =  (vi , V2) consisting of two elements. An element of L  is an integer combination of the 
lattice basis vectors in exactly one way (sec (6.5.5».
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S o m e  n o ta t io n :

( 1 3 .1 0 .1 )

n (B ) : t h e  p a r a l le lo g r a m  o f  l in e a r  c o m b in a t io n s  r i v i  +  r 2 V2  w i t h  0 : :  r ,  : : 1 .

I t s  v e r t i c e s  a r e  0 ,  v i ,  V2 , a n d  v i  +  V2 . 
n  (B) : th e  se t  o f  l in e a r  c o m b in a t io n s  r i  v i  +  r 2 V2  w i t h  0  : :  n  <  1 . I t  i s  o b t a in e d

b y  d e l e t in g  t h e  e d g e s  [ v i ,  v i  +  V2] a n d  [V2, v i  +  V2] f r o m  n (B) .

6 . ( L )  : th e  a r e a  o f  n  ( B) .

[ M :  L ]  : th e  in d e x  o f  a  s u b la t t i c e  L  o f  a  la t t i c e  M  -  th e  n u m b e r  o f  a d d i t iv e  c o s e t s  o f  L  in  M.

W e  w i l l  s e e  t h a t  6 .  ( L )  i s  in d e p e n d e n t  o f t h e  la t t ic e  b a s is ,  s o  th a t  n o t a t io n  i s n ’t a m b ig u 

o u s .  T h e  o t h e r  n o t a t io n  h a s  b e e n  in t r o d u c e d  b e f o r e .  F o r  r e f e r e n c e ,  w e  r e c a l l  L e m m a  6 .5 .8 :

Lemma 13.10.2 L e t  B =  ( u j ,  V2)  b e  a  b a s is  o f  R 2 , a n d  l e t  L  b e  t h e  l a t t i c e  o f  in t e g e r  

c o m b in a t io n s  o f  B. E v e r y  v e c t o r  v  in  R 2 c a n  b e  w r i t t e n  u n iq u e ly  in  t h e  f o r m  v  — w  +  Vo, 

w ith  w  in  L  a n d  Vo in  n '(B ) . □

Lemma 13.10.3 L e t  K  C  L  C  M  b e  la t t i c e s  in  th e  p la n e ,  a n d  le t  B b e  a  l a t t i c e  b a s is  f o r  L .  

T h e n

(a) [M :K ] =  [M :L][L :K ].
(b) F o r  a n y  p o s i t i v e  in t e g e r  n ,  [ L  : n L ]  =  n 2 .

(c) F o r  a n y  p o s i t i v e  r e a l  n u m b e r  r ,  [ M : L ]  =  [ r M : r L ] .

(d) [ M :  L ]  i s  f in i t e ,  a n d  i s  e q u a l  t o  t h e  n u m b e r  o f  p o in t s  o f  M  i n  t h e  r e g io n  n '  (B).
(e) T h e  la t t i c e  M  is  g e n e r a t e d  b y  L  t o g e t h e r  w i t h  th e  f in i t e  s c t  M  n  n '(B ).

Proof. (d),(e) W e  c a n  w r it e  a n  e l e m e n t  x  o f  M  u n iq u e ly  in  th e  f o r m  v  +  y ,  w h e r e  v  is  in  L  

a n d  y  is  in  n '(B ). T h e n  V is  in  M, a n d  s o  y  is  in  M  t o o .  T h e r e f o r e  x  is  in  th e  c o s e t  y  +  L. 
T h is  s h o w s  th a t  t h e  e l e m e n t s  o f  M  n  n '(B )  a r e  r e p r e s e n t a t iv e  e l e m e n t s  fo r  t h e  c o s e t s  o f  L  

in  M .  S in c e  t h e r e  is  o n ly  o n e  w a y  t o  w r i t e  x  =  v  +  y ,  t h e s e  c o s e t s  a r e  d is t in c t .  S in c e  M  is 
d is c r e t e  a n d  n '(B )  is  a  b o u n d e d  s e t ,  M  n  n '(B )  is  f in i t e .

■ *  •

*

(13.10.4) L  =  W  3 L  =  {*}.
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F o r m u la  (a )  is th e  m u l t ip l i c a t iv e  p r o p e r t y  o f  th e  in d e x  ( 2 .8 .1 4 ) .  (b )  f o l l o w s  f r o m  ( a ) ,  

b e c a u s e  th e  l a t t i c e  n L  i s  o b t a in e d  b y  s t r e t c h in g  L  b y  th e  fa c to r  n ,  a s  is  i l lu s t r a t e d  a b o v e  fo r  

th e  c a s e  th a t  n  =  3. (c )  is  tr u e  b e c a u s e  m u l t ip l i c a t io n  b y  r  s t r e t c h e s  b o t h  la t t i c e s  b y  th e  s a m e  

a m o u n t .  □

C o r o l la r y  1 3 .1 0 .5  L e t  L  C M  b e  la t t i c e s  in  K 2 . T h e r e  a r e  f in i t e ly  m a n y  la t t i c e s  b e t w e e n  L  

a n d  M .

Proof. L e t  B  b e  a  l a t t i c e  b a s is  f o r  L , a n d  l e t  N  b e  a  l a t t i c e  w i t h  L C N C M .  L e m m a  

1 3 .1 0 .3 ( e )  s h o w s  th a t  N  is  g e n e r a t e d  b y  L  a n d  b y  t h e  s e t  N  0  n ' ( B ) ,  w h ic h  i s  a  s u b s e t  o f  t h e  

f in i t e  s e t  M  0  n ' ( B ) .  A  f in i t e  s e t  h a s  f in i t e l y  m a n y  s u b s e t s .  □

P r o p o s i t io n  1 3 .1 0 .6  I f  L  C  M  a r e  la t t i c e s  in  th e  p la n e ,  [ M :  L ]  =  .

Proof S a y  th a t  C  is  t h e  l a t t i c e  b a s is  (u\ ,  u2) o f  M .  L e t  n  b e  a  la r g e  p o s i t i v e  in t e g e r ,  a n d  l e t  

M n  d e n o t e  t h e  l a t t i c e  w i t h  b a s is  C n =  ( ! iM j ,  ! i « 2 ) .  L e t  P  d e n o t e  t h e  s m a l l  r e g io n  n ' ( C n ) .  

I t s  a r e a  is  - - \ A ( M ) .  T h e  t r a n s la t e s  x  +  P ' o f  P  w ith  x  in  M n c o v e r  th e  p la n e  w i t h o u t  

o v e r la p ,  a n d  t h e r e  is  e x a c t ly  o n e  e l e m e n t  o f  in  e a c h  t r a n s la t e  x  +  P ,  n a m e ly  x .  ( T h i s  is  

L e m m a  1 3 .1 0 .2 .)

L e t  B  b e  a  la t t i c e  b a s is  f o r  L . W e  a p p r o x im a t e  t h e  a r e a  o f  n ( B )  in  t h e  w a y  

th a t  o n e  a p p r o x im a t e s  a  d o u b le  in t e g r a l ,  u s in g  t r a n s la t e s  o f  P .  L e t  r =  [ M  : L ] .  T h e n  
[ M n : L ]  =  [ M n  : M ] [ M : L ]  =  n 2 r .  L e m m a  1 3 .1 0 .3 ( d )  t e l l s  u s  th a t  t h e  r e g io n  n '(B )  c o n t a in s  

n 2r  p o in t s  o f  t h e  l a t t i c e  M n . S in c e  t h e  t r a n s la t e s  o f  P  c o v e r  t h e  p la n e ,  t h e  t r a n s la t e s  b y  

t h e s e  n 2 r  p o in t s  c o v e r  n ( B )  a p p r o x im a t e ly .

A ( L ) * n 2r A ( M n) = rA(M) = [M \L]A{Nf).

T h e  e r r o r  in  th is  a p p r o x im a t io n  c o m e s  f r o m  th e  f a c t  th a t  IT' ( B )  is  n o t  c o v e r e d  p r e c i s e ly  
a lo n g  i t s  b o u n d a r y .  O n e  c a n  b o u n d  th is  e r r o r  in  t e r m s  o f  t h e  l e n g t h  o f  t h e  b o u n d a r y  o f  n  ( B )  

a n d  t h e  d ia m e t e r  o f  P  ( i t s  la r g e s t  l in e a r  d im e n s io n ) .  T h e  d ia m e t e r  t e n d s  t o  z e r o  a s  n oo, 

a n d  s o  d o e s  t h e  e r r o r . □

C o r o l la r y  1 3 .1 0 .7  T h e  a r e a  A ( L )  o f  th e  p a r a l le lo g r a m  n ( B )  is  i n d e p e n d e n t  o f  th e  l a t t i c e  

b a s is  B .

T h is  f o l l o w s  w h e n  o n e  s e t s  M  =  L  in  t h e  p r e v io u s  p r o p o s i t i o n .  □

L e m m a  1 3 .1 0 .8  L e t  v  b e  a  n o n z e r o  e l e m e n t  o f  m in im a l  le n g t h  o f  a  l a t t i c e  L .  T h e n  

|v |2  ::  - | A ( L ) .

T h e  in e q u a l i t y  b e c o m e s  a n  e q u a l i t y  fo r  a n  e q u i la t e r a l  t r ia n g u la r  la t t ic e .

Proof W e  c h o o s e  a n  e l e m e n t  Vj o f  L  o f  m in im a l  l e n g t h .  T h e n  v i  g e n e r a t e s  th e  s u b g r o u p
L  n.e, w h e r e  .e is  t h e  l in e  s p a n n e d  b y  V b  a n d  t h e r e  is  a n  e l e m e n t  1¾ s u c h  t h a t  ( v i ,  V2)  i s  a
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lattice basis of L (see the proof of (6.5.5». A change of scale changes |v i |2 and A (L) by the 
same factor, so we may assume that |vi| =  1. We position coordinates so that vi =  (1. O)t

Say that V2 — (bi, b2) t  We may assume that b2 is positive. Then A (L ) =  b2. We may 
also adjust V2  by adding a multiple of vi, to make - |  : :  bi <  | ,  so that b2 : : ^. Since vi 
has minimal length among nonzero elements of L, |V2|2 =  b] +  bj 2: |v i |2 =  1. Therefore 
b2 2: | .  Thus A (L ) =  b2 2: , and |vi i2 =  1 : :  ^ A ( L ) .  □

Nul/um vero dubium nobis esse videtur, 
quin multa eaque egregia in hoc genere adhuc lateant 

in quibus alii vires suas exercere possint.

—Carl Friedrich Gauss

EXERCISES

Section 1 Algebraic Integers

1.1. Is ! (1 + ../5) an algebraic integer?

1.2. Prove that the integers in Q[VS] form a ring.
1.3. (a) Let a  be a complex number that is the root of a monic integer polynomial, not

necessarily an irreducible polynomial. Prove that a  is an algebraic integer.
(b) Let a  be an algebraic number that is the root of an integer polynomial f ( x )  =

anxn + an -ix”- 1 +------ + ao. Prove that a „a  is an algebraic integer.
(c) Let a  be an algebraic integer that is the root of a monic integer polynomial

x” + a n_in”_1 +------ + a \x  +  ao. Prove that a -1 is an algebraic integer if and only if
ao =  ±1.

1.4. Let d  and d' be integers. When are the fields Q (^S) and Q (^ ..)  distinct?

Section 2 Factoring Algebraic In t^ers
2.1. Prove that 2, 3, and 1 ±̂ ../=5 are irreducible elements of the ring R =  Z[̂ ../=5] and that the 

units of this ring are ±1.
2.2. For which negative integers d  == 2 modulo 4 is the ring of integers in Q[ Jd]  a unique 

factorization domain?

Section 3 Ideals in Z [^ N ]
3.1. Let a  be an element of R =  Z[I5], 15 = and let y  = i ( a  +  al5). Under what 

circumstances is the lattice with basis (a, y) an ideal?
3.2. Let 8 =  Decide whether or not the lattice of integer combinations of the given 

vectors is an ideal: (a) (5, 1 + 8) , (b) (7, 1 + 8 ) , (c) (4 — 28,2 + 28, 6  +  48).
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3 .3 . L e t  A  b e  a n  id e a l  o f  t h e  r in g  o f  in te g e r s  R  in  a n  im a g in a r y  q u a d r a tic  f ie ld . P r o v e  th a t  
t h e r e  is a  la t t ic e  b a s is  f o r  A, o n e  o f  w h o s e  e le m e n t s  is  a n  o r d in a r y  p o s i t iv e  in te g e r .

3 .4 . F o r  e a c h  r in g  R  l is t e d  b e lo w , u s e  t h e  m e th o d  o f  P r o p o s it io n  1 3 .3 .3  t o  d e s c r ib e  t h e  id e a ls  
in  R . M a k e  a  d r a w in g  s h o w in g  th e  p o s s ib le  s h a p e s  o f  th e  la t t ic e s  in  e a c h  c a s e .

( a )  R  =  Z [ J - 3 ] , (b) R  =  Z g ( 1  +  J - 3 ) ] . ( c )  R  =  Z [ v ' - 6 ] ,

(d )  R  =  Z[\(1 +  v G ) ] , ( e )  R  =  Z[^J=IO]

S e c t io n  4  I d e a l  M u lt ip lic a t io n

4 .1 . L e t  R  =  Z[-n^^]. F in d  a  la t t ic e  b a s is  fo r  th e  p r o d u c t  id e a l  AB,  w h e r e  A =  (2, 8 )  a n d  
B  =  ( 3 , 8 ) .

4 .2 . L e t  R  b e  th e  ri n g  Z [8 ] , w h e r e  8  =  a n d  le t  A  d e n o t e  t h e  id e a l  g e n e r a t e d  b y  th e  
e l e m e n t s  ( a )  3  +  58, 2 +  28 , (b )  4  +  8 ,  1 +  28.D e c i d e  w h e t h e r  o r  n o t t h e  g iv e n g e n e r a t o r s  

fo r m  a  la t t ic e  b a sis  fo r  A ,  a n d  id e n t ify  th e  id e a l AA.

4 .3 . L e t  R  b e  t h e  r in g  Z [8 ] , w h e r e  8  =  a n d  le t  A  a n d  B b e  id e a ls  o f  t h e  fo r m  

A  =  ( a ,  j  ( a  +  a 5 )  ) ,  B  =  (P , |  ( P  +  ( 8 ) ). P r o v e  th a t A B  is  a  p r in c ip a l id e a l  b y  f in d in g  a  

g e n e r a to r .

S e c t io n  5  F a d o r in g  Id e a ls

5 .1 . L e t  R  =  Z [ . ; : ] .

( a )  D e c id e  w h e th e r  o r  n o t  11 is  a n  ir r e d u c ib le  e le m e n t  o f  R  a n d  w h e t h e r  o r  n o t  ( 1 1 )  is  a 
p r im e  id e a l  o f  R .

( b )  F a c to r  t h e  p r in c ip a l id e a l  ( 1 4 )  in to  p r im e  id e a ls  in  Z [8 ] .

5 .2 . L e t  8  =  a n d  R  =  Z [8 ] . T h is  is n o t  th e  r in g  o f  in te g e r s  in  th e  im a g in a r y  q u a d r a tic  
n u m b e r  f ie ld  Q [8 ]. L e t  A  b e  t h e  id e a l (2 , 1 +  8 ) .

( a )  P r o v e  th a t  A  is  a  m a x im a l id e a l ,  a n d  id e n t ify  th e  q u o t ie n t  r in g  R / A .

(b) P r o v e  th a t  A A  i s  n o t  a  p r in c ip a l id e a l ,  a n d  th a t  t h e  M a in  L e m m a  i s  n o t  t r u e  f o r  th is  
rin g .

( c )  P r o v e  th a t  A  c o n ta in s  th e  p r in c ip a l id e a l ( 2 )  b u t  th a t  A  d o e s  n o t  d iv id e  ( 2 ) .

5 .3 . L e t  f  =  y 2 — x 3 — x .  Is  th e  r in g  C [ x ,  y ] / ( J )  a n  in te g r a l d o m a in ?

S e c t io n  6  P r im e  I d e a ls  a n d  P r im e  I n te g e r s

6 .1 . L e t  d  =  - 1 4 .  F o r  e a c h  o f  t h e  p r im e s  p  =  2 ,  3 ,  5 ,  7 , 1 1 ,  a n d  1 3 , d e c id e  w h e t h e r  o r  n o t  p  
s p lit s  o r  r a m if ie s  in R , a n d  if  so , f in d  a  la t t ic e  b a s is  f o r  a  p r im e  id e a l  f a c to r  o f  ( p ) .

6 .2 . S u p p o s e  th a t  d  i s  a  n e g a t iv e  in te g e r ,  a n d  th a t  d 1 m o d u lo  4 .  A n a ly z e  w h e t h e r  o r  n o t  2  
r e m a in s  p r im e  in  R  in  term s o f  c o n g r u e n c e  m o d u lo  8.

6 .3 . L e t  R  b e  t h e  r in g  o f  in te g e r s  in  a n  im a g in a r y  q u a d r a tic  f ie ld .

( a )  S u p p o s e  th a t  a n  in te g e r  p r im e  p  r e m a in s  p r im e  in  R . P r o v e  th a t  R / ( p )  is  a  f ie ld  w ith  
p 2 e le m e n ts .

(b) P r o v e  th a t  if  p  s p lit s  b u t  d o e s  n o t  r a m ify , th e n  R / ( p )  is i s o m o r p h ic  t o  th e  p r o d u c t
r in g  F p  X F p . -
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6 .4 . W h e n  d  is  c o n g r u e n t  2  o r  3  m o d u lo  4 , a n  in te g e r  p r im e  p  r e m a in s  p r im e  in  th e  r in g  o f  

in te g e r s  o f  Q [ \ / 5 ]  i f  t h e  p o ly n o m ia l  x 2 — d  is  ir r e d u c ib le  m o d u lo  p .

( a )  P r o v e  th a t  th is  i s  a ls o  tr u e  w h e n  d =  1 m o d u lo  4  a n d  p  of:. 2.

(b )  W h a t  h a p p e n s  t o  p  =  2  w h e n  d =  1 m o d u lo  4?

6 .5 . A s s u m e  th a t  d  is  c o n g r u e n t  2  o r  3 m o d u lo  4.

( a )  P r o v e  t h a t  a  p r im e  in te g e r  p  r a m ifie s  in  R i f  a n d  o n ly  i f  p  =  2 o r  p  d iv id e s  d .

(b) L e t  p  b e  a n  in te g e r  p r im e  th a t  r a m if ie s , a n d  sa y  th a t ( p )  =  P2 . F in d  a n  e x p l ic i t  la t t ic e  
b a s is  f o r  P .  In  w h ic h  c a s e s  is  P  a  p r in c ip a l id e a l?

6 .6 .  L e t  d  b e  c o n g r u e n t  t o  2 o r  3 m o d u lo  4 . A n  in te g e r  p r im e  m ig h t  b e  o f  t h e  f o r m  a2 — b2 d , 
w ith  a a n d  b  in  Z . H o w  is  th is  r e la t e d  to  th e  p r im e  id e a l  fa c to r iz a t io n  o f  ( p )  in  t h e  r in g  o f  
in te g e r s  R ?

6 .7 . S u p p o s e  th a t  d =  2  o r  3 m o d u lo  4 , a n d  th a t  a  p r im e  pof:. 2  d o e s  n o t  r e m a in  p r im e  in  R. L e t  
a b e  a n  in te g e r  su c h  th a t a 2 =  d  m o d u lo  p .  P r o v e  th a t  ( p ,  a +  5 )  i s  a  la t t ic e  b a s is  f o r  a  
p r im e  id e a l  th a t  d iv id e s  ( p ) .

S e c t io n  7  Id e a l C la s s e s

7.1. L e t  R  =  Z [^ .J-5], a n d  l e t  B  =  ( 3 , 1  +  8 ) .  F in d  a  g e n e r a to r  fo r  t h e  p r in c ip a l id e a l  B2.
7.2. P r o v e  th a t  tw o  n o n z e r o  id e a ls  A  a n d  A' in  th e  r in g  o f  in te g e r s  in  a n  im a g in a r y  q u a d r a t ic  

f ie ld  a r e  s im ila r  i f  a n d  o n ly  i f  th e r e  is  a  n o n z e r o  id e a l  C  su c h  th a t  b o t h  A  C  a n d  A'C  a r e  
p r in c ip a l  id e a ls .

7.3. L e t  d  =  - 2 6 .  W ith  e a c h  o f  th e  fo l lo w in g  in te g e r s  n ,  d e c id e  w h e th e r  n  is  t h e  n o r m  o f  an  
e le m e n t  ex o f  R . I f  i t  is ,  f in d  ex: n  =  7 5 , 2 5 0 , 3 7 5 , 5 6 .

7.4. L e t  R  =  Z [8 ] , w h e r e  8 2  =  - 6 .

( a )  P r o v e  t h a t t h e  la t t ic e s  P  =  ( 2 ,  8 )  a n d  Q  =  ( 3 ,  8 )  a r e  p r im e  id e a ls  o f  R .

( b )  F a c to r  t h e  p r in c ip a l id e a l  ( 6 )  i n t o  p r im e  id e a ls  e x p l ic i t ly  in  R .

( c )  D e t e r m in e  t h e  c la s s  g r o u p  o f  R .

S e c t io n  8  C o m p u t in g  t h e  C la ss  G r o u p

8 .1 . W ith  r e f e r e n c e  t o  E x a m p le  1 3 .8 .6 , s in c e  ( P )  =  (S)3 a n d  ( Q )  =  (S )2 , L e m m a  1 3 .8 .7  
p r e d ic t s  th a t  t h e r e  a r e  e le m e n t s  w h o s e  n o r m s  a r e  2  • 5 3 a n d  32 ■ 52 . F in d  su c h  e le m e n ts .

8.2. W ith  r e f e r e n c e  t o  E x a m p le  1 3 .8 .8 , e x p la in  w h y  N ( 4  +  5 )  a n d  N ( 1 4  +  8 )  d o n ’t  l e a d  to  
c o n tr a d ic to r y  c o n c lu s io n s .

8 .3 .  L e t  R  =  Z [ 8 ] , w ith  5  =  V - 2 9 .  In  e a c h  c a s e ,  c o m p u t e  t h e  n o r m , e x p la in  w h a t  c o n c lu s io n s  
o n e  c a n  d r a w  a b o u t  id e a ls  in  R  f r o m  th e  n o r m  c o m p u ta t io n , a n d  d e t e r m in e  t h e  c la s s  
g r o u p  o f  R : N ( l  +  5 ) ,  N ( 4  +  8 ) ,  N ( 5  +  8 ) ,  N ( 9  +  2 5 ) ,  N ( l l  +  2 5 ) .

8 .4 . P r o v e  th a t  t h e  v a lu e s  o f  d  l is t e d  in  T h e o r e m  1 3 .2 .5  h a v e  u n iq u e  fa c to r iz a t io n .

8 .5 .  D e t e r m in e  th e  c la s s  g r o u p  a n d  d r a w  th e  p o s s ib le  s h a p e s  o f  th e  la t t ic e s  in  e a c h  c a se :

(a )  d  =  - 1 0  , (b )  d  =  - 1 3  , ( c )  d  =  - 1 4  , (d )  d  =  - 2 l .

8 .6 . D e t e r m in e  th e  c la s s  g r o u p  in  e a c h  ca se:

(a )  d  =  - 4 1 ,  (b) d  =  - 5 7 ,  ( c )  d  =  - 6 1 ,  (d )  d  = - 7 7 ,  ( e )  d  =  - 8 9 .
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9.1. Prove that 1 +  . / 2  is an element of infinite order in the group of units of Z[./2].
9.2. Determine the solutions of the equation x2 — y2d  =  1 when d is a positive integer.
9.3. (a) Prove that the size function u (a) =  |N (a)| makes the ring Z[./2J into a Euclidean

domain, and that this ring has unique factorization.
(b) Make a sketch showing the principal ideal ( . / 2 )  of R = Z[./2], in the embedding 

depicted in Figure 13.9.6.
9.4. Let R be the ring of integers in a real quadratic number field.Whatstructures are possible 

for the group of units in R?
9.5. Let R be the ring of integers in a real quadratic number field, and let Uo denote the set 

of units of R that are in the first quadrant in the embedding (13.9.2).

(a) Prove that Uo is an infinite cyclic subgroup of the group of units.
(b) Find a generator for Uo when d =  3 and when d =  5.
( c) Draw a figure showing the hyperbolas and the units in a reasonable size range for 

d  =  3.

Section 10 About Lattices
10.1. Let M  be the integer lattice in R2, and let L be the lattice with basis ((2, 3)', (3, 6) '). 

Determine the index [M: L].
10.2. Let L C  M  be lattices with bases B and C, respectively, and let A be the integer matrix 

such that BA = C. Prove that [M: L] =  |detA|.

Miscellaneous Problems
M.l. Describe the subrings S of C that are lattices in the complex plane.

*M.2. Let R = Z[8], where 8 =  -^^ , and let p  be a prime integer.

(a) Prove that if p  splits in R, say (p) =  PP, then exactly one of the ellipses x2 +  5yz =  p  
or x2 + 5 ;  =  2p  contains an integer point.

(b) Find a property that determines which ellipse has an integer point.

M.3. Describe the prime ideals in (a) the polynomial ring C[x, y] in two variables,
(b) the ring Z[x] of integer polynomials.

M.4. Let L denote the integer lattice Z2 in the plane R2, and let P  be a polygon in the plane 
whose vertices are points of L. Pick's Theorem asserts that the area A (P )  is equal to 
a +  b /2 — 1, where a is the number of points of L in the interior of P, and b is the number 
of points of L on the boundary of P .

(a) Prove Pick’s Theorem.
(b) Derive Proposition 13.10.6 from Pick’s Theorem.

Section 9 Real Quadratic Fields



C H A P T E R  1 4

L i n e a r  A l g e b r a  i n  a  R i n g

Be wise! Generalize! 
—Picayune Sentinel

Solving linear equations is a basic problem of linear algebra. We consider systems AX =  B 
when the entries of A and B are in a ring R  here, and we ask for solutions X  =  (x i , . . .  , x„)' 
with Xi in R. This bccomes difficult when the ring R  is complicated, but we will sec how it 
can be solved when R is the ring of integers or a polynomial ring over a field.

14.1 MODULES

The analog for a ring R  of a vector space over a field is called a module.

• Let R  be a ring. An R-module V is an abelian group with a law of composition written +, 
and a scalar multiplication R X  V -+ V, written r, v rv, that satisfy these axioms:

(14.1.1) 1 v =  v, (rs)v  = r(sv),  (r +  s)v =  rv  +  sv, and r(v  +  v') =  r v  +  rv',

for all r  and s in R  and all v and v' in V.
These are precisely the axioms for a vector space (3.1.2). However, the fact that elements of 
a ring needn’t be invertible makes modules more complicated.

Our first examples arc the modules Rn of R-vectors, column vectors with entries in the 
ring. They are called free modules. The laws of composition for R-vectors are the same as 
for vectors with entries i n a field:

«1 b\ a x + b i a\ ra i

CLfj
+

. bn _
—

_an + b n _
and r

_an _ran _

But when R  isn’t a field, it is no longer true that they are the only modules. There will be 
modules that aren’t isomorphic to any free module, though they are spanned by a finite set.

An abelian group V, its law of composition written additively, can be made into 
a module over the integers in exactly one way. The distributive law forces us to set
2 v =  (1 +  1)v =  v + v, and so on:

nv =  v +  .. + v =  “n times v”

412
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and ( -n)v  = -(nv ), for any positive integer n. It is intuitively plausible this makes V into a 
Z-module, and also that it is the only way to do so. Let's not bother with a formal proof.

Conversely, any Z-module has the structure of an abelian group, given by keeping only 
the addition law and forgetting about its scalar multiplication.

(14.1.2) Abelian group and Z -  module are equivalent concepts.

We must use additive notation in the abelian group in order to make this correspondence 
seem natural, and we do so throughout the chapter.

Abelian groups provide examples to show that modules over a ring needn’t be free. 
Since Z" is infinite when n is positive, no finite abelian group except the zero group is 
isomorphic to a free module.

A submodule W of an R-module V is a nonempty subset that is closed under addition 
and scalar multiplication. The laws of composition on V make a submodule W into a module. 
We’ve seen submodules in one case before, namely submodules of the ring R, when it is 
thought of as the free R-module R1.

Proposition 14.1.3 The submodules of the R-module R are the ideals of R.

By definition, an ideal is a nonempty subset of R that is closed under addition and under
multiplication by elements of R. □

The definition of a homomorphism cp: V --+ W of R-modules copies that of a linear 
transformation of vector spaces. It is a map compatible with the laws of composition:

(14.1.4) cp(v +  V) =  cp(v) +  cp(v') and cp(rv) =  rcp(v) ,

for all v and v' in V and r  in R. An isomorphivm is a bijective homomorphism. The kernel of 
a homomorphism cp: V --+ W, the set of elements v in V such that cp( v) =  0, is a submodule 
of the domain V, and the image of cp is a submodule of the range W.

One can extend the quotient construction to modules. Let W be a submodule of an
R-module V. The quotient module V =  V/ W is the group of additive cosets V =  [v +  W]. 
It is made into an R-module by the rule

(14.1.5) rv  =  rv.

The main facts about quotient modules are collected together below.

Theorem 14.1.6 Let W be a submodule of an R-module V.
(a) The set V of additive cosets of W in V is an R-module, and the canonical map n\  V --+ V 

sending v V =  [v +  W] is a surjective homomorphism of R-modules whose kernel is 
W.

(b) Mapping property: Let f :  V  --+ V' be a homomorphism of R-modules whose kernel K ' 
contains W. There is a unique homomorphism: / :  V --+ V' such that f  =  J o n .

/
V-----f-----*V'

,/7
V
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(c) First Isomorphism Theorem: L e t  f  : V -+ V' b e  a  s u r j e c t iv e  h o m o m o r p h i s m  o f  

R - m o d u le s  w h o s e  k e r n e l  is  e q u a l  t o  W . T h e  m a p  f  d e f in e d  in  (b) is  a n  i s o m o r p h is m .

(d) Correspondence Theorem: L e t  f :  V  -+  V  b e  a  s u r j e c t iv e  h o m o m o r p h i s m  o f  R - m o d u l e s ,  

w i t h  k e r n e l  W . T h e r e  is  a  b i j e c t iv e  c o r r e s p o n d e n c e  b e t w e e n  s u b m o d u le s  o f  V  a n d  

s u b m o d u le s  o f  V  t h a t  c o n t a in  W . T h i s  c o r r e s p o n d e n c e  is  d e f in e d  a s  f o l lo w s :  I f  S  is  

a  s u b m o d u le  o f  V , t h e  c o r r e s p o n d in g  s u b m o d u le  o f  V  is  S  =  r ^ ( S )  a n d  i f  S  is  a  

s u b m o d u le  o f  V  th a t  c o n t a in s  W , th e  c o r r e s p o n d in g  s u b m o d u le  o f  W  is  S  =  f ( S ) .  I f  S  

a n d  S  a r e  c o r r e s p o n d in g  m o d u le s ,  t h e n  V /  S  i s  i s o m o r p h ic  t o  V / S .

W e  h a v e  s e e n  t h e  a n a lo g o u s  f a c t s  f o r  r in g s  a n d  i d e a l s ,  a n d  fo r  g r o u p s  a n d  n o r m a l  s u b g r o u p s .  

T h e  p r o o f s  f o l l o w  t h e  p a t t e r n  s e t  p r e v io u s ly ,  s o  w e  o m it  t h e m . □

1 4 .2  FREE M O D U L E S

F r e e  m o d u le s  f o r m  a n  im p o r t a n t  c la s s ,  a n d  w e  d is c u s s  t h e m  h e r e .  B e g in n i n g  in  S e c t i o n  1 4 .5 ,  

w e  l o o k  a t  o t h e r  m o d u le s  .

•  L e t  R  b e  a  r in g . A n  R-matrix is  a  m a tr ix  w h o s e  e n t r i e s  a r e  in  R . A n  invertible R-matrix 
is  a n  R - m a t r ix  t h a t  h a s  a n  i n v e r s e  th a t  is  a lso  a n  R - m a t r ix .  T h e  n x  n in v e r t ib l e  R - m a t r ic e s  

f o r m  a  g r o u p  c a l le d  t h e  general linear group over R :

( 1 4 .2 .1 )  G L n ( R )  =  {n X n  in v e r t ib le  R - m a t r ic e s } .

T h e  determinant o f  a n  R - m a t r ix  A  =  ( a , j )  c a n  b e  c o m p u t e d  b y  a n y  o n e  o f  th e  r u le s  

d e s c r ib e d  in  C h a p te r  1. T h e  c o m p l e t e  e x p a n s i o n  ( 1 .6 .4 ) ,  f o r  e x a m p le ,  e x h ib i t s  d e t A  a s  a 

p o ly n o m ia l  in  th e  n 2 m a tr ix  e n t r ie s ,  w i t h  c o e f f ic ie n t s  ± 1 .

A s  b e f o r e ,  th e  s u m  is  o v e r  a ll  p e r m u t a t io n s  p  o f  t h e  in d ic e s  { I ,  . . . ,  o  }, a n d  th e  s y m b o l  ±  

s t a n d s  fo r  th e  s ig n  o f  th e  p e r m u t a t io n .  W h e n  w e  e v a lu a t e  t h is  f o r m u la  o n  a n  R - m a t r ix ,  w e  

o b t a in  a n  e l e m e n t  o f  R . R u l e s  f o r  th e  d e t e r m in a n t ,  s u c h  as

c o n t in u e  t o  h o ld .  W e  h a v e  p r o v e d  t h is  r u le  w h e n  th e  m a tr ix  e n t r i e s  a r e  in  a  f ie ld  ( 1 .4 .1 0 ) ,  

a n d  w e  d is c u s s  t h e  r e a s o n  t h a t  s u c h  p r o p e r t ie s  a r e  t r u e  fo r  R - m a t r i c e s  in  t h e  n e x t  s e c t io n .  

L e t ’s  a s s u m e  f o r  n o w  t h a t  t h e y  a r e  t r u e .

Lemma 14.2.3 L e t  R  b e  a  r in g , n o t  th e  z e r o  r in g .

(a) A  s q u a r e  R - m a t r ix  A  is  in v e r t ib le  i f  a n d  o n ly  i f  it  h a s  e i t h e r  a  l e f t  in v e r s e  o r  a  r ig h t  

in v e r s e ,  a n d  a l s o  i f  a n d  o n ly  i f  i t s  d e t e r m in a n t  i s  a  u n it  o f  t h e  r in g .

(b) A n  in v e r t ib le  R - m a t r ix  is  s q u a r e .

Proof (a) I f  A  h a s  a  le f t  in v e r s e  L, th e  e q u a t io n  ( d e t  L) ( d e t  A )  =  d e t  I  =  1 s h o w s  t h a t  d e t  A  

h a s  a n  in v e r s e  in  R , s o  i t  is  a  u n it .  S im i la r  r e a s o n in g  s h o w s  th a t  d e t  A  is  a  u n it  i f  A  h a s  a  r ig h t  

in v e r s e .

( 1 4 .2 .2 )

p

( d e t A ) ( d e t B )  =  d e t  ( A B )  ,
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If A is an R-matrix whose determinant 8 is a unit, Cramer’s Rule: A-1 =  8_ lcof(A), 
where cof(A) is the cofactor matrix (1.6.7), shows that there is an inverse with coeffi
cients in R.

(b) Suppose that an m X n R-matrix P is invertible, i.e., that there is an n X m R-matrix Q 
such that PQ =  Im and also QP =  l n. Interchanging P and Q if necessary, we may suppose 
that m 2:  n. If m n, we make P and Q square by adding zeros:

” ~
" Q "

p 0 = Im
_ _ 0

This does not change the product PQ, but the determinants of these square matrices are 
zero, so they are not invertible. Therefore m =  n. □

When R has few units, the fact that the determinant of an invertible matrix must be 
a unit is a strong restriction. For instance, if R is the ring of integers, the determinant must 
be ±1. Most integer matrices are invertible when thought of as real matrices, so they are 
in G Ln  (JR). But unless the determinant is ±1, the entries of the inverse matrix won’t be 
integers: they won’t be elements of G Ln (Z). Nevertheless, when n > 1 , there are many 
invertible n x  n R-matrices. The elementary matrices E =  I +  ae (j, with i j  and a in R, 
are invertible, and they generate a large group.

We return to the discussion of modules. The concepts of basis and independence 
(Section 3.4) are carried over from vector spaces. An ordered set (vi, •. • , vk) of ele
ments of a module V  is said to generate V, or to span V  if every element v is a linear 
combination:

(14.2.4) rxv\ + ---- b rkvk,

with coefficients in R. If this is true, the elements v(- are called generators. A module V is 
finitely generated if there exists a finite set of generators. Most of the modules we study will 
be finitely generated.

A set of elements (v i, •••,  Vn) of a module V is independent if, whenever a linear 
combination r i  vi +  . . .  +  rn Vn with ri in R is zero, all of the coefficients ri are zero. A set 
(vi, . . . ,  Vn) that generates V  and is independent is a basis. As with vector spaces, the set 
(vi, . . .  , Vn) is a basis if every v in V  is a linear combination (14.2.4) in a unique way. The 
standard basis E =  (ei, . . . ,  ek) is a basis of Rn.

We may also speak of linear combinations and independence of infinite sets, using the 
terminology of Section 3.7. Even when S is infinite, a linear combination can involve only 
finitely many terms.

If we denote an ordered set (vi, . . . ,  Vn) of elements of V  by B, as in Chapter 3. Then 
multiplication by B,
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d e f in e s  a  h o m o m o r p h i s m  o f  m o d u le s  th a t  w e  m a y  a l s o  d e n o t e  b y  B:

( 1 4 .2 .5 )
B

A s  b e f o r e ,  t h e  s c a la r s  h a v e  m ig r a te d  t o  t h e  r ig h t  s i d e .  T h is  h o m o m o r p h i s m  is  s u r j e c t iv e  if  

a n d  o n ly  i f  B  g e n e r a t e s  V ,  in j e c t iv e  i f  a n d  o n ly  i f  B  is  i n d e p e n d e n t ,  a n d  b i j e c t iv e  i f  a n d  o n ly

w h i l e  f in i t e ,  n o n z e r o  a b e l ia n  g r o u p s  a r e  n o t  f r e e .
C o m p u t a t io n  w it h  b a s e s  o f  f r e e  m o d u le s  i s  d o n e  in  t h e  s a m e  w a y  a s  w i t h  b a s e s  o f  v e c t o r  

s p a c e s .  I f  B  is  a  b a s i s  o f  a  f r e e  m o d u le  V ,  t h e  coordinate vector o f  a n  e l e m e n t  v ,  w it h  r e s p e c t  

t o  B , is  t h e  u n iq u e  c o lu m n  v e c t o r  X  s u c h  th a t  v  =: B X .  I f  t w o  b a s e s  B  =: ( v i ,  . . .  v m )  a n d  

B ' =  ( v [ , . . . ,  v 'n) f o r  t h e  s a m e  f r e e  m o d u le  V  a r e  g iv e n ,  t h e  b a s e c h a n g e  m a tr ix  is  o b t a in e d  
a s  in  C h a p te r  3 ,  b y  w r i t in g  t h e  e l e m e n t s  o f  t h e  n e w  b a s is  a s  l in e a r  c o m b i n a t i o n s  o f  t h e  o ld  

b a s is :  B '  =  B P .

P r o p o s i t io n  1 4 .2 .6  L e t  R  b e  a  r in g  th a t  is  n o t  th e  z e r o  r in g .

( a )  T h e  m a tr ix  P  o f  a  c h a n g e  o f  b a s is  in  a  f r e e  m o d u le  is  a n  in v e r t ib le  R - m a t r ix .

( b )  A n y  t w o  b a s e s  o f  t h e  s a m e  f r e e  m o d u l e  o v e r  R  h a v e  t h e  s a m e  c a r d in a l i ty .

T h e  p r o o f  o f  ( a )  is  t h e  s a m e  a s  t h e  p r o o f  o f  P r o p o s i t io n  3 .5 .9 ,  a n d  ( b )  f o l l o w s  f r o m  ( a )

a n d  f r o m  L e m m a  1 4 .2 .3 . □

T h e  n u m b e r  o f  e l e m e n t s  o f  a  b a s is  f o r  a  f r e e  m o d u le  V  is  c a l l e d  th e  rank o f  V . T h e  

r a n k  is  a n a l o g o u s  t o  t h e  d i m e n s i o n  o f  a  v e c t o r  s p a c e .  ( M a n y  c o n c e p t s  h a v e  d i f f e r e n t  n a m e s  

w h e n  u s e d  f o r  m o d u le s  o v e r  r in g s .)

A s  is  t r u e  f o r  v e c t o r  s p a c e s ,  e v e r y  h o m o m o r p h i s m  f  b e t w e e n  f r e e  m o d u l e s  R n a n d  

R m  is  g iv e n  b y  l e f t  m u l t ip l i c a t io n  b y  a n  R - m a t r ix  A :

T h e  j t h  c o lu m n  o f  A  is  f ( e j ) .  S im i la r ly ,  i f  (p : V  - >  W  is  a  h o m o m o r p h i s m  o f  f r e e  

R - m o d u l e s  w it h  b a s e s  B  =: (vi , . . . ,  vn) a n d  C  =  (w i , . . . ,  wm), r e s p e c t iv e ly ,  t h e  m a t r ix  o f  
t h e  h o m o m o r p h i s m  w i t h  r e s p e c t  t o  B  is  d e f in e d  t o  b e  A  =: ( a , j ) , w h e r e

I f  X  is  th e  c o o r d in a t e  v e c t o r  o f  a  v e c t o r  v , i .e . ,  i f  V =  B X  t h e n  Y  =  A X  is  th e  c o o r d in a t e  

v e c t o r  o f  i t s  i m a g e ,  i .e . ,  ({J(v) =  C Y .

i f  B  is  a  b a s is .  T h u s  a  m o d u le  V  h a s  a  b a s is  i f  a n d  o n ly  i f  it is  i s o m o r p h ic  t o  o n e  o f  t h e  f r e e  

m o d u le s  R k , a n d  i f  s o ,  it  is  c a l l e d  a  free module t o o .  A  m o d u le  is  f r e e  i f  a n d  o n ly  i f  it h a s  a  

b a s is .

Most modules have no basis.

A  fr e e  Z - m o d u le  is  a l s o  c a l l e d  a  free abelian group. L a t t ic e s  in  ]R2 a r e  f r e e  a b e l ia n  g r o u p s ,

( 1 4 .2 .7 ) R n R m_A

( 1 4 .2 .8 )

(14.2.9) R n R™ X  Y

B C

V <p W  v <p(w)
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A s  is t r u e  fo r  l in e a r  t r a n s f o r m a t io n s ,  a  c h a n g e  o f  t h e  b a s e s  B  a n d  C  b y  in v e r t ib le  R - m a t r ic e s  

P  a n d  Q  c h a n g e s  t h e  m a tr ix  o f  cp t o  A ' =  Q _ 1 A P .

1 4 .3  ID E N T IT IES

In  th is  s e c t io n  w e  a d d r e s s  t h e  f o l lo w in g  q u e s t io n :  W h y  d o  c e r t a in  p r o p e r t ie s  o f  m a t r ic e s  w it h  

e n t r ie s  in  a  f ie ld  c o n t in u e  t o  h o ld  w h e n  t h e  e n t r ie s  a r e  in  a  r in g ?  B r ie f l  y , t h e y  c o n t i n u e  t o  h o ld  

i f  t h e y  a r e  id e n t it ie s ,  w h ic h  m e a n s  th a t  t h e y  a r e  t r u e  w h e n  t h e  m a tr ix  e n t r i e s  a r e  v a r ia b le s .  

T o  b e  s p e c i f ic ,  s u p p o s e  th a  t w e  w a n t  t o  p r o v e  a f o r m u la  s u c h  a s  t h e  m u l t ip l i c a t iv e  p r o p e r t y  

o f  t h e  d e t e r m in a n t ,  ( d c t A ) ( d c t  B )  =  d e t  ( A B ) ,  o r  C r a m e r ’s R u le .  S u p p o s e  w e  h a v e  a lr e a  d y  

p r o v e d  t h e  f o r m u la  fo r  m a tr ic e s  w it h  c o m p le x  e n t r ie s .  W e  d o n ’t w a n t  t o  d o  t h e  w o r k  a g a in , 

a n d  b e s id e s ,  w e  m a y  h a v e  u s e d  s p e c ia l  p r o p e r t ie s  o f  C , s u c h  a s  th e  f ie ld  a x io m s ,  t o  c h e c k  

t h e  fo r m u la  t h e r e .  W e  d id  u s e  th e  p r o p e r t ie s  o f  a f ie ld  t o  p r o v e  t h e  o n e s  m e n t i o n e d ,  s o  t h e  

p r o o f s  w c  g a v e  w ill n o t  w o r k  f o r  r in g s . W e  s h o w  h e r e  h o w  t o  d e d u c e  s u c h  f o r m u la s  f o r  a ll  

r in g s , o n c e  t h e y  h a v e  b e e n  s h o w n  fo r  t h e  c o m p le x  n u m b e r s .

T h e  p r in c ip le  i:o. q u i t e  g e n e r a l ,  b u t  in  o r d e r  t o  f o c u s  a t t e n t io n ,  w e  c o n s id e r  th e  

m u lt ip l i c a t iv e  p r o p e r t y  ( d e t  A )  ( d  e t  B )  =  d c t  ( A B ) ,  u s i n  g  t h e  c o m p l e t e  e x p a n s io n  ( 1 4 .2 .2 )  o f  

t h e  d e t e r m in a n t  a s  it s  d e f in i t io n .  W e  r e p la c e  t h e  m a tr ix  e n t r ie s  b y  v a r ia b le s .  D e n o t i n g  b y  

X  a n d  Y  in d e t e r m in a t e  n  X  n  m a tr ic e s ,  th e  v a r ia b le  id e n t i t y  is  ( d c t  X )  ( d e t  Y )  =  d e t  ( X Y ) . 

L e t ’s w r it e

( 1 4 .3 .1 ) f ( X ,  Y ) =  ( d e t  X )  ( d e t  Y )  -  d e t  ( X Y ) .

T h is  is  a  p o ly n o m ia l  in  th e  2 n 2 v a r ia b le  m a tr ix  e n t r i e s  x , j  a n d  V f  a n  e l e m e n t  o f  th e  r in g  

Z [ {Xjj),  {Vke}]  o f  in t e g e r  p o ly n o m ia l s  in  t h o s e  v a r ia b le s .
G iv e n  m a tr ic e s  A =  ( a , j )  a n d  B  =  (b^e) w it h  e n t r ie s  in  a  r in g  R, t h e r e  is a u n iq u e  

h o m  o m o r p h is m  '

( 1 4 .3 .2 )  c p : Z [ { x ( / } , { y ^ } ] --+ R ,

t h e  s u b s t i t u t io n  h o m o m o r p h is m ,  th a t  s e n d s  Xij a ij  a n d  b * f .
R e f e r r in g  b a c k  t o  t h e  d e f in i t io n  o f  t h e  d e t e r m in a n t ,  w e  s e e  th a t  b e c a u s e  cp is  a  

h o m o m o r p h is m ,  it w i l l  s e n d

f ( X ,  y ) . .  / ( A ,  B )  =  ( d e t A ) ( d e t B )  -  d e t  ( A B ) .

T o p r o v e  t h e  m u l t ip l i c a t iv e  p r o p e r t y  f o r  m a tr ic e s  in  a n  a r b itr a r y  r in g , i t  s u f f ic e s  t o  p r o v e  th a t  

f  is  t h e  z e r o  e l e m e n t  in  t h e  p o ly n o m ia l  r in g  Z [ { x j } ,  ( y ^ } ] .  T h a t  is  w h a t  it  m e a n s  t o  s a y  th a t  

t h e  fo r m u la  is  a  n  id e n t i t y .  I f  s o ,  t h e n  s i n c e  cp(O) =  0 , i t  w i l l  f o l lo w  t h a t  f ( A ,  B )  =  0  f o r  a n y  

m a tr ic e s  A  a n d  B  in  a n y  r in g .

N o w :  I f  w e  w e r e  t o  e x p a n d  f  a n d  c o l l e c t  t e r m s ,  t o  w r i t e  it  a s  a  l in e a r  c o m b in a t io n  o f  

m o n o m ia l s ,  a ll c o e f f ic ie n t s  w o u ld  b e  z e r o .  H o w e v e r ,  w e  d o n ’t k n o w  h o w  t o  d o  t h is ,  n o r  d o  

w e  w a n t  to . T o  i l lu s t r a te  th is  p o in t ,  w e  l o o  k  a t  t h e  2  X  2  c a s e .  In  t h a t  c a s e ,

f ( X ,  Y )  =  ( (X U X 2 2  -  X l2 X 2 l ) ( y i lY 2 2  -  Y12Y21»)

-  ( x n Y i i + x i 2 Y 2 i ) ( x 2 i Y i 2  +  ^ 22̂ 22)

+  (X11 y  12 +  Xi2Y22)(X2lYll +  * 2 2  Y22) .
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This is the zero polynomial, but it isn’t obvious that it is zero, and we wouldn’t want to make 
the computation for larger matrices.

Instead, we reason as follows: Our polynomial determines a function on the space of 
2n2 complex variables {x j, Ykd by evaluation: If A and B are complex matrices and if we 
evaluate f  at { a j, bki}, we obtain f(A , B) =  (detA)(detB) -  det(AB). We know that 
f(A , B) is equal to zero because our identity is true for complex matrices. So the function 
that f  determines is identically zero. The only (formal) polynomial that defines the zero 
function is the zero polynomial. Therefore f  is equal to zero.

It is possible to formalize this discussion and to prove a general theorem about the 
validity of identities in an arbitrary ring. However, even mathematicians occasionally feel 
that formulating a general theorem isn’t worthwhile -  that it is easier to consider each case 
as it comes along. This is one of those occasions.

1 4 . 4  D IA G O N A L IZ IN G  IN T E G E R  M A T R IC E S

We consider the problem mentioned at the beginning of the chapter: Given an m Xn integer 
matrix A (a matrix whose entries are integers) and a integer column vector B, find the integer 
solutions of the system of linear equations
(14.4.1) AX = B.

Left multiplication by the integer matrix A defines a map 7/., — — 7/.,m . Its kernel is the 
set of integer solutions of the homogeneous equation A X  =  0, and its image is the set of 
integer vectors B such that the equation AX =  B has a solution in integers. As usual, all 
solutions of the inhomogeneous equation AX = B can be obtained from a particular one by 
adding solutions of the homogeneous equation.

When the coefficients are in a field, row reduction is often used to solve linear equations. 
These operations are more restricted here: We should use them only when they are given 
by invertible integer matrices -  integer matrices that have integer matrices as their inverses. 
The invertible integer matrices form the integer general linear group G Ln (7/.,) .

The best results will be obtained when we use both row and column operations to 
simplify a matrix. So we allow these operations:

(14.4.2)
• add an integer multiple of one row to another, or add an integer multiple of one 

column to another;
• interchange two rows or two columns;
• multiply a row or column by - 1.

Any such operation can be made by multiplying A on the left or right by an elementary 
integer matrix -  an elementary matrix that is an invertible integer matrix. The result of a 
sequence of operations will have the form

(14.4.3) A' =  Q- l AP,
where Q and P are invertible integer matrices of the appropriate sizes.
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O v e r  a  f ie ld ,  a n y  m a tr ix  c a n  b e  b r o u g h t  in to  t h e  b lo c k  fo r m

' /A = 0

b y  r o w  a n d  c o lu m n  o p e r a t io n s  ( 4 .2 .1 0 ) .  W e  c a n ’t h o p e  fo r  su c h  a  r e s u l t  w h e n  w o r k in g  w it h  

in t e g e r s :  W e  c a n ’t d o  it  f o r  1 x  1 m a tr ic e s .  B u t  w e  c a n  d ia g o n a l iz e .

A n  e x a m p le :

A  =

( 1 4 .4 .4 )

' 1 2 3 ' row ' i 2 3 ' col 0 0 '

D 6 6_ oper 0 -  2 - 6 _ opers 0 _ 2 - 6 .

‘ 1 0 o ' row ’ i 0 0 ' col ’ i 0 0 '
0 _  2 - 6 _ oper 0 2 6 oper 0 2 0

=  A'

T h e  m a tr ix  o b t a i n e d  h a s  t h e  f o r m  A  =  Q  1A P ,  w h e r e  Q  a n d  P  a r e  in v e r t ib l e  in t e g e r  

m a tr ic e s :

(1 4 .4 .5 )

( I t  is  e a s y  t o  m a k e  a  m is t a k e  w h e n  c o m p u t in g  t h e s e  m a tr ic e s .  T o  c o m p u t e  Q _ l , t h e  

e l e m e n t a r y  m a tr ic e s  th a t  p r o d u c e  t h e  r o w  o p e r a t io n s  m u lt ip ly  in  r e v e r s e  o r d e r ,  w h i l e  t o  
c o m p u t e  P  o n e  m u s t  m u l t ip ly  in  t h e  o r d e r  th a t  t h e  o p e r a t io n s  a r e  m a d e . )

T h e o r e m  1 4 .4 .6  L e t  A  b e  a n  in t e g e r  m a tr ix .  T h e r e  e x i s t  p r o d u c t s  Q  a n d  P  o f  e l e m e n t a r y  

in t e g e r  m a tr ic e s  o f  a p p r o p r ia te  s i z e s ,  s o  th a t  A' =  Q~lAP  is  d ia g o n a l ,  sa y

d\

- d k _
0

w h e r e  t h e  d ia g o n a l  e n t r ie s  d ;  a r e  p o s i t i v e ,  a n d  e a c h  o n e  d iv id e s  th e  n e x t :  d\  | d 2  | • • •  | d k.

N o t e  t h a t  th e  d ia g o n a l  w il l  n o t  l e a d  t o  th e  b o t t o m  r ig h t  c o r n e r  u n le s s  A  is  a  s q u a r e  m a tr ix ,  

a n d  i f  k  is  l e s s  t h a n  b o t h  m  a n d  n ,  t h e  d ia g o n a l  w i l l  h a v e  s o m e  z e r o s  a t  t h e  e n d .
W e  c a n  s u m  u p  t h e  in f o r m a t io n  in h e r e n t  in  t h e  f o u r  m a t r ic e s  t h a t  a p p e a r  in  t h e  t h e o r e m  

b y  t h e  d ia g r a m

( 1 4 .4 .7 )
A'

P

z n

zm
Q

z m

w h e r e  t h e  m a p s  a r e  l a b e le d  b y  t h e  m a tr ic e s  t h a t  a r e  u s e d  t o  d e f in e  t h e m .
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P r o o f  W e  a s s u m e  A  =t= O. T h e  s t r a t e g y  i s  t o  p e r f o r m  a  s e q u e n c e  o f  o p e r a t io n s ,  s o  a s  t o  e n d  

u p  w i t h  a  m a tr ix

■ J , 0  • • • 0 "
0 -  -

M

_ 0 - -

in  w h ic h  d i  d iv id e s  e v e r y  e n tr y  o f  M . W h e n  th is  is  d o n e ,  w e  w o r k  o n  M . W e  d e s c r ib e  a  

s y s t e m a t ic  m e t h o d ,  t h o u g h  it m a y  n o t  b e  t h e  q u ic k e s t  w a y  to  p r o c e e d .  T h e  m e t h o d  is  b  a s e d  

o n  r e p e a t e d  d iv i s io n  w ith  r e m a in d e r .

S te p  1: B y  p e r m u t in g  r o w s  a n d  c o l u m n s , w e  m o v e  a  n o n z e r o  e n t r y  w it h  s m a l l e s t  a b s o lu t e  

v a lu e  t o  t h e  u p p e r  l e f t  c o r n e r . W e  m u lt ip  l y  t h e  f ir s t  r o w  b y  - 1  i f  n e c e s s a r y ,  s o  t h a t  t h is  u p p e  r 

l e f t  e n t r y  A n  b e c o m e s  p o s i t iv e .
N e x t ,  w e  try to  c le a r  o u t  th e  f ir s t  c o lu m n . W h e n e v e r  a n  o p e r a t io n  p r o d u c e s  a  n o n z e r o  

e n tr y  in  t h e  m a tr ix  w h o s e  a b s o lu t e  v a lu e  is s m a l le r  th a n  a n ,  w e  g o  b a c k  t o  S t e p  1 a n d  s ta r t  

th c  w h o l e  p r o c e s s  o v e r .  T h i s  w  ill s p o i  l t h e  w o r k  w e  h a v e  d o n e ,  b u t  p r o g r e s s  is  m a d e  b e c a u s e  

a n  d e c r e a s e s .  W e  w o n ’t n e e d  t o  r e tu r n  to  S t e p  1 in f in i t e ly  o f t e n .

S te p  2: I f  t h e  f ir s t  c o lu m n  c o n t a in s  a  n o n z e r o  e n t r y  a , i  w ith  i >  1 , w e  d iv id e  b y  a n :

a / i  =  a u q +  r,

w h e r e  q  an d  r  a re  in t e g e r s , a n d  th e  r e m a in d e r  r  is in  t h e  r a n g e  0  <  r  <  a ^ .  W e  s u b t r a c t  

q ( r o w  1 ) fr o m  ( r o w  <). T h is  c h a n g e s  a , i  t o  r . If r  =t= O, w e  g o  b a c k  to  S t e p  1. I f  r  =  0 , w e  h a v e  

p r o d u c e d  a  z e r o  in  t h e  fir st  c o lu m n .

F in i t e ly  m a n y  r e p e t i t i o n s  o f  S t e p s  1 a n d  2  r e s u lt  in  a  m a tr ix  in  w h ic h  a , i  =  0  f o r  a ll
i >  1. S im ila r ly ,  w e  m a y  u s c  c o lu m n  o p e r a t io n s  t o  c le a r  o u t  t h e  f ir s t  r o w ,  e v e n t u a l ly  e n d in g  

u p  w it h  a  m a tr ix  in  w h ic h  t h e  o n ly  n o n z e r o  e n tr y  in  t h e  fir st  r o w  a n d  t h e  f ir s t  c o lu m n  is a n .

S te p  3: A s s u m e  th a t  a n  is t h e  o n ly  n o n z e r o  e n t r y  in  t h e  f ir s t  r o w  a n d  c o lu m n ,  b u t  t h a t  s o m e  

e n t r y  b  o f  M  is  n o t  d iv i s ib le  b y  a ^ .  W e  a d d  t h e  c o lu m n  o f  A  th a t  c o n t a in s  b  t o  c o lu m n  1. 

T h is  p r o d u c e s  a n  e n tr y  b  in  th e  fir st  c o lu m n .  W e  g o  b a c k  t o  S t e p  2 .  D i v i s i o n  w i t h  r e m a in d e r  

p r o d u c e s  a  s m a l le r  n o n z e r o  m a tr ix  e  n tr y , s e n d i  n g  u s  b a c k  t o  S t e p  1 . □

W e  a re  n o w  r e a d y  to  s o lv e  th e  in t e g e r  l in e a r  s y s t e m  A X  =  B .

Proposition 14.4.9 L e t  A  b e  a n  m  X n  m a tr ix , a n d  l e t  P  a n d  Q  b e  in v e r t ib le  in t e g e r  m a t r ic e s  

s u c h  th  a t  A ' =  Q _ l  A P  h a s  t h e  d ia g o n  a l  f o r m  d e s c r ib e d  in T h e o r e m  1 4 .4 .6 .

(a) T h e  in t e g e r  s o lu t io n s  o f  t h e  h o m o g e n e o u s  e q u a t i o n  A 'X '  =  0  a r e  t h e  in t e g e r  v e c t o r s  X '  

w h o s e  first k  c o o r d in a t e s  a r c  z e r o .

(b) T h e  in t e g e r  s o lu  t io n s  o f  th e  h o m o g e n e o u s  e q  u a t io n  A X  =  0  a r e  t h o s e  o f  t h e  f o r m  

X  =  P X ' ,  w h e r e  A 'X '  =  0.
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( c) The image W'  of multiplication by A' consists of the integer combinations of the vectors 
d ie i, . . .  , dkek.

( d )  The image W  of multiplication by A consists of the vectors Y = QY',  where Y' is in W'. 

Proof, ( a )  Because A' is diagonal, the equation A 'X ' =  0 reads

d\x\ =  0, djx^  =  0, . . . ,  dkx'k = 0.

In order for X ’ to solve the diagonal system A'X' =  0, we must have x- =  () for i =  1, . . .  , r, 
and x\ can be arbitrary if i >  k,

( c )  The image of the map A' is generated by the columns of A', and because A' is diagonal, 
the columns are especially simple: A j  =  dje j  if j  :: k, an d A j  =  0 if j  >  k.

( b ) , ( d )  We regard Q and P as matrices of changes of basis in Zn and Zm, respectively. The 
vertical arrows in the diagram 14.4.7 are bijective, so P carries the kernel of A' bijectively to 
the kernel of A, and Q carries the image of A  bijectively to the image of A. □

We go back to example (14.4.4). Looking at the matrix A  we see that the solutions 
of A'X' =  0 are the integer multiples of c3. So the solutions of AX = 0 are the integer 
multiples of Pc3, which is the third column (3, -3, l )  of P. The image of A  consists of integer 
combinations of the vectors C] and 2c2, and the image of A is obtained by multiplying these 
vectors by Q. It happens in this example that Q = Q~x. So the image consists of the integer 
combinations of the columns of the matrix

QA' = '1 0 ' '1 0 ' '1  0 '
4 -1 _ 0 2 r - N> 1__

__
__

Of course, the image of A is also the set of integer combinations of the columns of A, but 
those columns do not form a Z-basis.

The solution we have found isn’t unique. A different sequence of row and column 
operations could produce different bases for the kernel and image. But in our example, the 
kernel is spanned by one vector, so that vector is unique up to sign.

Submodules of Free Modules

The theorem on diagonalization of integer matrices can be used to describe homomorphisms 
between free abelian groups.

C o r o l la r y  1 4 .4 .1 0  Let cp : V —► W be a homomorphism of free abelian groups. There 
exist bases of V and W such that the matrix of the homomorphism has the diagonal 
form (14.4.6). □

T h e o r e m  1 4 .4 .1 1  Let W be a free abelian group of rank m, and let U be a subgroup of W. 
Then U is a free abelian group, and its rank is less than or equal to m.

Proof We begin by choosing a basis C =: (w i, . . .  , w m) for W and a set of generators 
B =  (ui,  . . . ,  un) for U. We write u j  = L i  w iaij, and we let A =  (a,j). The columns of
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the matrix A are the coordinate vectors ofthe generators u j, when computed with respect to 
the basis C of W.  We obtain a commutative diagram of homomorphisms of abelian groups

(14.4.12) Z"

u

c

W

where i denotes the inclusion of U into W. Because C is a basis, the right vertical arrow is 
bijective, and because B generates U, the left vertical arrow is surjective.

We diagonalize A. With the usual notation A' = Q-1 AP,  we interpret P as the matrix 
of a change of basis for Z” , and Q as the matrix of a change of basis in Zm. Let the new bases 
be C' and B'. Since our original choices of basis C and the generating set B were arbitrary, 
we may replace C, B and A  by C', B' and A' in the above diagram. So we may assume that 
the matrix A has the diagonal form given in (14.4.6). Then u j =  djW j for j  =  1, . . .  , k.

Roughly speaking, this is the proof, but there are still a few points to consider. First, 
the diagonal matrix A may contain columns of zeros. A column of zeros corresponds to a 
generator u j whose coordinate vector with respect to the basis C of W is the zero vector. So 
u j  is zero too. This vector is useless as a generator, so we throw it out. When we have done 
this, all diagonal entries will be positive, and we will have k  =  n and n m.

If W is the zero subgroup, we will end up throwing out all the generators. As with 
vector spaces, we must agree that the empty set is a basis for the zero module, or else 
mention this exceptional case in the statement of the theorem.

We assume that the m X n matrix A is diagonal, with positive diagonal entries 
d i, . . . ,  dn and with n m, and we show that the set (mi, . . .  , un) is a basis of U. Since this 
set generates U, what has to be proved is that it is independent. We write a linear relation 
a i« i  +  . . . +  a„Un = 0 in the form a jd i wi +  . . .  +  flndnWn =  O. Since (w i, , . . ,  Wm) is a 
basis, ajdj =  0 for each i, and since di >  0, a; =  O.

The final point is more serious: We needed a finite set of generators of U to get started. 
How do we know that there is such a set? It is a fact that every subgroup of a finitely 
generated abelian group is finitely generated. We prove this in Section 14.6. For the moment, 
the theorem is proved only with the additional hypothesis that U is finitely generated. □

Suppose that a lattice L in ]R. 2 with basis B =  (vi, v2) is a sublattice of the lattice M  
with the basis C =  (ui ,  u2), and let A be the integer matrix such that B =  CA. If we change 
bases in L and M, the matrix A will be changed to a matrix A' =  Q ^A P, where P and Q are 
invertible integer matrices. According to Theorem 14.4.6, bases can be chosen so that A is 
diagonal, with positive diagonal entries di and d2. Suppose that this has been done. Then if 
B =  (vi, 1¾) and C =  (ui ,  u 2), the equation B =  CA reads vi =  d iu i and V2 =  d2U2.

Example 14.4.13 Let Q = ' 1 ' 2  - 1 ' '1 r

3  1 _ , A  =
1 2_

, P = 1 2  _
. A ' =  Q-1AP = 1

Let M  be the integer lattice with its standard basis C =  (ei, e2 ), and let L be the lattice 
with basis B =  ( v i , v 2)  =  ( (2, 1 ) t ,  (-1, 2 ) ') . Its coordinate vectors are the columns ofA. We

B
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in t e r p r e t  P  a s  t h e  m a tr ix  o f  a  c h a n g e  o f  b a s is  in  L ,  a n d  Q  a s  t h e  m a tr ix  o f  c h a n g e  o f  b a s is  

in  M .  In  c o o r d in a t e  v e c t o r  f o r m , th e  n e w  b a s e s  a r e  C ' =  {e\, e2)Q =  ( ( 1 , 3 ) 1, ( 0 ,  1 ) 1) a n d  

B ' =  (V 1, V2) P  =  ( (  1 ,  3 ) \  ( 0, 5 ) 1) .
T h e  l e f t - h a n d  f ig u r e  b e l o w  s h o w s  t h e  s q u a r e s  s p a n n e d  b y  t h e  t w o  o r ig in a l  b a s e s ,  

a n d  th e  f ig u r e  o n  th e  r ig h t  s h o w s  th e  p a r a l le lo g r a m s  s p a n n e d  b y  th e  t w o  n e w  b a s e s .  

T h e  p a r a l le lo g r a m  s p a n n e d  b y  t h e  n e w  b a s i s  f o r  L  is  f i l l e d  p r e c i s e ly  b y  f iv e  t r a n s la t e s  

o f  t h e  s h a d e d  p a r a l le lo g r a m , w h i c h  is  t h e  p a r a l l e lo g r a m  s p a n n e d  b y  t h e  n e w  b a s i s  f o r  

M . T h e  in d e x  is  5. N o t e  t h a t  th e r e  a r e  f iv e  la t t ic e  p o in t s  in  th e  r e g io n  n ' ( v i ,  V2) .  T h is  

a g r e e s  w it h  P r o p o s i t io n  1 3 .1 O .3 ( d ) .T h e  f ig u r e  o n  t h e  r ig h t  a l s o  m a k e s  it  c l e a r  t h a t  t h e  r a t io  

A ( L ) / A ( M )  is  5 . □

( 1 4 .4 .1 4 )  D ia g o n a l i z a t i o n ,  A p p l i e d  t o  a  S u b la t t i c e .

1 4 .5  G E N E R A T O R S  A N D  R E L A T IO N S

I n  th is  s e c t io n  w e  tu r n  o u r  a t t e n t io n  t o  m o d u le s  t h a t  a r e  n o t  f r e e .  W e  s h o w  h o w  t o  d e s c r ib e  

a la r g e  c la s s  o f  m o d u le s  b y  m e a n s  o f  m a tr ic e s  c a l l e d  p r e s e n ta t io n  m a tr ic e s .

L e f t  m u l t ip l i c a t io n  b y  a n  m  X  n  R - m a t r ix  A  d e f in e s  a  h o m o m o r p h i s m  o f  R - m o d u l e s

R "  — — R m . I t s  im a g e  c o n s i s t s  o f  a l l  l in e a r  c o m b in a t io n s  o f  t h e  c o lu m n s  o f  A  w i t h  

c o e f f ic ie n t s  in  t h e  r in g , a n d  w e  m a y  d e n o t e  th e  im a g e  b y  A R " .  W e  s a y  t h a t  t h e  q u o t i e n t  
m o d u le  V  =  R m / A  R "  is  presented b y  t h e  m a tr ix  A . M o r e  g e n e r a l ly ,  w e  c a l l  a n y  i s o m o r p h i s m  

c t: R m / A  R "  -»• V  a  p r e s e n ta t io n  o f  a  m o d u le  V, a n d  w e  s a y  th a t  t h e  m a tr ix  A  is  a  p r e s e n ta t io n  

m a tr ix  fo r  V  i f  t h e r e  is  s u c h  a n  i s o m o r p h is m .

F o r  e x a m p le ,  t h e  c y c l ic  g r o u p  C 5 o f  o r d e r  5  is  p r e s e n t e d  a s  a  Z - m o d u l e  b y  t h e  1 X  1 

in t e g e r  m a tr ix  [5 ] , b e c a u s e  C 5 is  i s o m o r p h ic  t o  71.,/571.,.

. W e  u s e  th e  c a n o n ic a l  m a p  iT: R m —> V =  R m / A R "  ( 1 4 .1 .6 )  t o  in t e r p r e t  th e  q u o t i e n t  

m o d u le  V  =  R m / A  R "  , a s  f o l lo w s :
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Proposition 14.5.1

(a) V is generated by a set of elements B =  (vi , . . . , vm), the images of the standard basis 
elements of Rm.

(b) If Y =  ( Y i , . . • , y m)1 is a column vector in Rm, the element BY =  v i Y i  +  ■ ■. +  vmy m 
of V is zero if and only if Y is a linear combination of the columns of A, with coefficients 
in R -  if and only if there exists a column vector X with entries in R  such that Y =  AX.

Proof  The images of the standard basis elements generate V because the map tc is 
surjective. Its kernel is the submodule A R n. This submodule consists precisely of the linear 
combinations of the columns of A. □

•  If a module V is generated by a set B =  ( v i , . . . ,  Vm), we call an element Y of Rm such 
that BY =  0 a relation vector, or simply a relation among the generators. We may also refer 
to the equation v i  Yi +  •■• + Vm Ym =  0 as a relation, meaning that the left side yields 0 
when it is evaluated in V. A set S of relations is a complete set if every relation is a linear 
combination of S with coefficients in the ring.

Example 14.5.2 The Z-module or an abelian group V that is generated by three elements 
Vi , V2, V3 with the complete set of relations

(14.5.3)

is presented by the matrix

(14.5.4)

Its columns arc the coefficients of the relations (14.5.3):

(vi, V2, V3) A =  (0, 0, 0, 0).

3vt + 2 V2 + V3 =  0

8vi + 4 V2 + 2V3 =  0

7 v i + 6V2 + 2V3 =  0

9 vi + 6 v 2 + V3 =  0

'3 8 7 9 '
A = 2 4 6  6

1 2 2 1

□

We now describe a theoretical method of finding a presentation of an R-module V. 
The method is very simple: We choose a set of generators B =  ( v i , • . . , vm) for V. These 
generators provide us with a surjective homomorphism Rm --+ V that sends a column vector
Y to the linear combination BY =  Viyi + • ■ ■ + VmYm. Let us denote the kernel of this map 
by W. It is the module ofrelations; its elements are the relation vectors.

We repeat the procedure, choosing a set of generators C =  ( w  1, . . . ,  Wm) for W , and 
we use these generators to define a surjective map Rn --+ W . But here the generators w j 
are elements of Rm. They are column vectors. We assemble the coordinate vectors A 
into an m X n matrix

(14.5.5)

j  of Wj
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T h e n  m u l t ip l i c a t io n  b y  A  d e f in e s  a  m a p

Rn A  Rm
t h a t  s e n d s  e j  A j  =  w  j . It is  t h e  c o m p o s i t io n  o f  th e  m a p  Rn - +  W  w it h  th e  in c lu s io n  

W  c  R m. B y  c o n s t r u c t io n ,  W  is  i t s  im a g e ,  an d  w e  d e n o t e  it  b y  A R n.
S in c e  th e  m a p  R'n - +  V  is s u r j e c t iv e ,  th e  F ir st  I s o  m o r p h  is m  T h e o r e m  t e l l s  u s  th a t  V  is  

i s o m o r p h ic  t o  R m /  W  =  R m/ A R ". T h e r e f o r e  t h e  m o d u l e  V  is  p r e s e n t e d  b y  t h e  m a tr ix  A . 

T h u s  t h e  p r e s e n t a t io n  m a tr ix  A  f o r  a  m o d u le  V  i s  d e t e r m in e d  b y

( 1 4 .5 .6 )

•  a  s e t  o f  g e n e r a t o r s  f o r  V , a n d

•  a  s e t  o f  g e n e r a  t o r s  f o r  t h e  m o d u l e  o f  r e l a t i o n s  W .

U n l e s s  t h e  s e t  o f  g e n e r a t o r s  f o r m s  a  b a s is  o f  V , in  w h ic h  c a s e  A  is  e m p t y ,  t h e  n u m b e r  o f  

g e  n e  r a to r s  w i l l  b e  e q u a l  t o  t h e  n u m b e r  o f  r o w s  o f  A .

T h is  c o n s t r u c t io n  d e p e n d s  o n  t w o  a s s u m p t io n s :  W e  m u s t  a s s u m e  th a t  o u r  m o d u l e  V  

h a s  a  f in i t e  s e t  o f  g e n e r a t o r s .  F a ir  e n o u g h : W e  c a n ’t e x p e c t  to  d e s c r ib e  a  m o d u l e  th a t  is t o o  

b ig , s u c h  a s  a n  in f in i t e  d im e n s io n a l  v e c t o r  s p a c e ,  in  th is  w a y . W e  m u s t  a l s o  a s  s u m e  th a t  t h e  

m o d u le  W  o f  r e la t io n s  h a s  a  f in i t e  s e t  o f  g e n e r a t o r s .  T h is  is  a  l e s s  d e s i r e a b le  a s s u m p t io n  

b e c a u s e  W  is  n o t  g iv e n ;  it i s  a n  a u x i l ia r y  m o d u le  th a t  w a s  o b t a in e d  in  t h e  c o u r s e  o f  t h e  

c o  n s tr u c t i  o n .  W e  n e e d  t o  e x a m in e  t h i s  p o in t  m o r e  c l o s e l y ,  a n  d  w e  d o  t h is  in  t h e  n e x t  s e c t io n  

( s e e  ( 1 4 .6 .5 ) ) .  B u t  e x c e p t  f o r  th  is  p o i n t ,  w e  c a n  n o w  s p e a k  o f  g e n e r a t o r s  a n d  r e la t io n s  f o r  a  

f in i t e ly  g e n e r a t e d  R - m o d u l e  V .

S in c e  t h e  p r e s e n t a t io n  m a tr ix  d e p e n d s  o n  th  e  c h o i c e s  ( 1 4 .5 .6 ) ,  m a n y  m  a  t r ic e s  p r e s e n t  

t h e  s a m e  m o d u le ,  o r  i s o m  o r p h ic  m o d u le s .  H e r e  a r e  s o m e  r u le s  f o r  m a n ip u la t in g  a  m a tr ix  A 
w it h o u t  c h  a n g in g  th e  i s o m o r p h i s m  c la s s  o f  th  e  m o d u le  it p r e s e n ts :

P r o ^ r e i t t o n  1 4 .5 .7  L e t  A b e  a n  m X  n  p r e s e n t a t io n  m a tr ix  f o r  a  m  o d  u le  V . T h e  f o l lo w in g  
m a t r ic e s  A' p r e s e n t  t h e  s a m e  m  o d  u le  V :

( i )  A '  =  Q ^ A ,  w ith  Q  in  G L m(R);
( i i )  A' =  A P ,  w i t h  P i n  G L n ( R ) ;

( i i i )  A '  i s  o b t a in e d  b y  d e l e t in g  a  c o lu m n  o f z e r o s ;

( i v )  t h e  j t h  c o l u m n  o f  A  i s  e , .  a n d  A '  is  o b t a in e d  f r o m  A  b y  d e le t in g  ( r o w  i )  a n d  

( c o lu m n  j )  .

T h e  o p e r a t io n s  ( i i i )  a n d  ( iv )  c a n  a l s o  b e  d o n e  in r e v e r s e .  O n e  c a n  a d d  a c o l  u m n  o f  z e r o s ,  o r  
o n e  c a n  a d d  a  n e w  r o w  a n d  c o lu m n  w ith  1 a s  th e ir  c o m m o n  e n t r y ,  a ll  o t h e r  e n t r i e s  b e i n g  z e r o .

Proof. W e  r e f e r  t o  t h e  m a p  R” — — R tn  d e f in e d  b y  th e  m a tr ix .

( i )  T h e  c h  a n g e  o f  A  t o  A  c o r r e s p o n d s  t o  a  c h a n g e  o f  b a s is  in  Rm.
( i i )  T h e  c h a n g e  o f  A  t o  A P  c o r r e s p o n d s  t o  a  c h a n g e  o f  b a s is  in  R " .

( i i i )  A  c o lu m n  o f  z e r o s  c o r r e s p o n d s  to  t h e  tr iv ia l  r e l a t i o n , w h ic h  c a n  b e  o m i t t e d .

( iv )  A  c o lu m n  o f  A  e q u a l  t o  ¢ ,  c o r r e s p o n d s  t o  t h e  r e la t io n  V; =  O. T h e  z e r o  e l e m e n t  is
u s e l e s s  a s  a  g e n e r a t o r ,  a n d  i t s  a p p e a r a n c e  in  a n y  o t h e r  r e la t io n  i s  i r r e le v a n t .  S o  w e  m a y  
d e l e t e  u ,  f r o m  th e  g e n e r a t in g  s e t  a n d  f r o m  t h e  r e la t io n s .  D o i n g  s o  c h a n g e s  th e  m a tr ix  

A  b y  d e l e t i n g  t h e  i t h  r o w  a n d  j t h  c o lu m n . 0
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It may be possible to simplify a matrix quite a lot by these rules. For instance, our 
original example of the integer matrix (14.5.4) reduces as follows:

00 7 9 ' '0 2 1 6 ' ‘2 1 6 ' 
0 2 4_A  = 2 4 6 6 0 0 2 4 --+ --+

_i 2 2 1 . _1 2 2 1_
--+[-4 '[ 4 8] [4 O] --+[4].

2
-4

6
-8

Thus A presents the abelian group 2 /42 .
By definition, an m x  n matrix presents a module by means of m generators and n 

relations. But as we see from this example, the numbers m and n depend on choices; they 
are not uniquely determined by the module.

~ 4~Another example: The 2 x 1 matrix 0 presents an abelian group V by means of two

generators (vi, V2 ) and one relation 4vi = O. We can’t simplify this matrix. The abelian 
group that it presents is the direct sum 2 /4 2  EB 2  of a cyclic group of order four and an 
infinite cyclic group (see Section 14.7). On the other hand, as we saw above, the matrix 
[4 0 J presents a group with one generator vi and two relations, the second of which is the 
trivial relation. It is a cyclic group of order 4.

1 4 .6  N O E T H E R IA N  R IN G S

In this section we discuss finite generation of the module of relations. For modules over a 
nasty ring, the module of relations needn’t be finitely generated, though V is. Fortunately 
this doesn’t occur with the rings we have been studying, as we show here.

P r o p o s i t io n  1 4 .6 .1  The following conditions on an R-module V are equivalent:

( i )  Every submodule of V is finitely generated;
( i i )  ascending chain condition: There is no infinite strictly increasing chain 

Wi < W 2 < . ■ • of submodules of V.

Proof. Assume that V satisfies the ascending chain condition, and let W be a submodule of 
V. We select a set of generators of W in the following way: If W = 0, then W is generated by 
the empty set. If not, we start with a nonzero element wi of W,  and we let Wi be the span of 
(w i). If W1 = W we stop. If not, we choose an element W2 of W not in Wj,  and we let W2 
be the span of (w \, W2 ). Then Wi <  W2. If W2 < W, we choose an element W3 not in W2, 
etc. In this way we obtain a strictly increasing chain Wi <  W2 <  • .. of submodules of W. 
Since V satisfies the ascending chain condition, this chain cannot be continued indefinitely. 
Therefore some Wk is equal to W, and then (w i, . . . ,  u>k) generates W.

The proof of the converse is similar to the proof of Proposition 12.2.13, which states that 
factoring terminates in a domain if and only if it has no strictly increasing chain of principal 
ideals. Assume that every submodule of V is finitely generated, and let W i  C W 2  C . . .  
be an infinite weakly increasing chain of submodules of V. We show that this chain is not 
strictly increasing. Let U denote the union of these submodules. Then U is a submodule of 
V. The proof is the same as the one given for ideals (12.2.15). So V is finitely generated. Let 
(u i, • ••, Ur) be a set of generators for U. Each u v is in one of the modules Wi and since the

--+
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c h a in  i s  in c r e a s in g ,  t h e r e  is  a n  i  s u c h  th a t  Wi c o n t a in s  a l l  o f  t h e  e l e m e n t s  u i ,  . . . ,  Ur. T h e n

Wi c o n  ta  in s  t h e  m o d u l e  U  g e n e r a  t e d  b y  ( w t ............ u * ) :  U  C  Wi C  W ,+ i C  U. T h is  s h o w s  th a t

U  =  Wi =  W ,+ i =  U ,  a n d  t h a t  t h e  c h a in  is  n o t  s t r ic t ly  in c r e a s in g .  □

D e f i n i t i o n  1 4 .6 .2  A  r in g  R  is  n o e t h e r ia n  i f  e v e r y  id e a l  o f  R  i s  f in i t e ly  g e n e r a t e d .

C o r o l la r y  1 4 .6 .3  A  r in g  is  n o e t h e r i a n  i f  a n d  o n ly  i f  i t  s a t i s f i e s  t h e  a s c e n d in g  c h a in  c o n d i t i o n : 

T h e r e  is n o  in f in i t e  s t r ic t ly  in c r e a s in g  c h a in  h  <  12 <  ■ •• o f  id e a l s  o f  R. □
4

P r in c ip a l  id e a l  d o m  a in s  a r e  n o e t h e r ia n  b e c a u s e  e v e r y  id e a l  in  su c h  a  r in g  is  g e n e r a t e d  

b y  o n e  e l e m e n t .  S o  t h e  r in g s  Z , Z[i], a n d  F [ x ] ,  w it h  F  a  f i e l d . a r e  n o e t h e r ia n .

C o r o l l a r y  1 4 .6 .4  L e t  R  b e  a  n o e t h e r ia n  r in g . E v e r y  p r o p e r  i d e a l  I  o f  R  i s  c o n t a in e d  in  a  

m a x im a l  id e a l .

Proof. I f  I  is  n o t  m a x im a l  i t s e l f .  t h e n  it  is  p r o p e r ly  c o n t a in e d  in  a  p r o p e r  i d e a l  h ,  a n d  i f  h  
is  n o t  m a x im a l ,  it i s  p r o p e r ly  c o n t a in e d  in  a  p r o p e r  id e a l  / 3, a n d  s o  o n . B y  t h e  a s c e n d in g  

c h a in  c o n d i t io n  ( 1 4 .6 .1 ) ,  th e  c h a in  I <  h  <  h -  • • m u s t  b e  f in i t e .  T h e r e f o r e  Ik  i s  m a x im a l  f o r  

s o m e  k  □

T h e  r e l e v a n c e  o f  t h e  c o n c e p t  o f  a  n o e t h e r ia n  r in g  t o  th e  p r o b le m  o f  f in i t e  g e n e r a t i o n  o f  a  

s u b m o d u le  is  s h o w n  b y  th e  f o l lo w in g  th e o r e m :

T h e o r e m  1 4 .6 .5  L e t  R  b e  a  n o e t h e r i a n  r in g . E v e r y  s u b m o d u le  o f  a  f in i t e ly  g e n e r a t e d  
R - m  o d u l e  V  is  f in i t e  ly  g e n e r a  t e d .

Proof Case I :  V =  R m . W e  u s e  in d u c t io n  o n  m .  A  s u b m o d u le  o f  R 1 i s  a n  id e a l  o f  R
( 1 4 .1 .3 ) .  S in c e  R  is  n o e t h e r i a n ,  t h e  t h e o r e m  is  tr u e  w h e n  m  =  1 . S u p p o s e  th a t  m  >  1. W e  

c o n s id e r  t h e  p  ro j e c t io n
n  :R m -+ Rm ~ 1

g iv e n  b y  d r o p p in g  t h e  la s t  e n tr y :  n ( a i ,  . . . . am) =  (a t ,  . . .  , a m- 1) . I t s  k e r n e l  is  th e  s e t  o f  
v e c t o r s  o f  R m w h o s e  f ir s t  m  — 1 c o o r d i n a t e s  a r e  z e r o .  L e t  W  b e  a  s u b m o d u l  e  o f  R m , a n d  l e t  
cp: W  -+ R m - 1. b e  t h e  r e s t r ic t io n  o f  n  t o  W. T h e  im a g e  cp( W )  i s  a  s u b m o d u le  o f  R m — . I t  is  

f in i t e ly  g e n e r a t e d  b y  i n d u c t i o n . A l s o ,  k e r c p  =  ( W  n  k e r n )  i s  a  s u b m o d u le  o f  k e r n ,  w h ic h  

is  a  m o d u l e  i s o m o r p h ic  t o  R 1. S o  k  e r  cp is  f in i t e ly  g e n e r a t e d .  L e ^ m a  1 4 .6 .6  s h o w s  th  a t  W  is  

f in it e  ly  g e n e r a t e  d .

C a s e  2 :  T h e  g e n e r a l  c a s e .  L e t  V  b e  a  f in i t e ly  g e n e  r a te d  R - m o d u l e .  T h e n  t h e r e  is  a  s u r j e c t iv e  
m a p  c p :R m -+  V  f r o m  a  f r e e  m o d u l e  t o  V . G i v e n  a  s u b m o d u le  W  o f  V ,  t h e  C o r r e s p o n d e n c e  

T h e o r e m  te l l s  u s  t h a t  U  =  cp-1 ( W )  i s  a  s u b m o d u le  o f  t h e  m o d u le  R m , s o  it  i s  f in i t e ly  

g e  n e r a t e  d ,  a n d  W  =  c p ( U ) .  T h e r e f o r e  W  is  f in i t e ly  g e n e  r a t e  d  ( 1 4 .6 .6 ) ( a ) .  □

L e ^ m a  1 4 .6 .6  L e t  cp: V  - +  V ' b e  a  h o m o m o r p h is m  o f  R - m o d u le s .

( a )  I f  V  is  f in it e ly  g e n e r a t e d  a n d  cp i s  s u r j e c t iv e , t h e n  V ' is  f in i t e ly  g e n e r a t e d .

( b )  I f  th e  k e r n e l  a n d  th e  im  a g e  o f  cp a r e  f in i t e ly  g e n e r a t e d , th e n  V  i s  fi n i t e ly  g e n e r a t e d .
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( c )  L e t  W  b e  a  s u b m o d u le  o f  a n  R - m o d u le  V . I f  b o t h  W  a n d  V =  V / W  a r e  f in i t e ly  

g e n e r a t e d ,  t h e n  V  is  f in i t e ly  g e n e r a t e d .  I f  V  is  f in i t e ly  g e n e r a t e d ,  s o  is  V .

Proof, ( a )  S u p p o s e  th a t  ({J is  s u r j e c t iv e  a n d  l e t  ( v i ,  . . . ,  v n )  b e  a  s e t  o f  g e n e r a t o r s  f o r  V .  

T h e  s e t  (v[, . . . ,  v '„ ) , w ith  v i  =  ({J( v ,-) , g e n e r a t e s  V '.

(b )  W e  f o l lo w  th e  p r o o f  o f  th e  d im e n s io n  f o r m u la  fo r  l in e a r  t r a n s f o r m a t io n s  ( 4 .1 .5 ) .  W e  

c h o o s e  a  s e t  o f  g e n e r a t o r s  ( U ] , . . . ,  U k )  fo r  th e  k e r n e l  a n d  a  s e t  o f  g e n e r a t o r s  ( v ^ , . . .  , v 'm ) 

fo r  th e  im a g e .  W e  a lso  c h o o s e  e l e m e n t s  v,- o f  V  s u c h  th a t  ( {J(v, )  =  v i , a n d  w e  s h o w  t h a t  t h e  

s e t  ( « i ,  . . . , u k; v i , . . . ,  v m )  g e n e r a t e s  V . L e t  v  b e  a n y  e l e m e n t  o f  V . T h e n  ({J(v) i s  a  l in e a r  

c o m b in a t io n  o f  ( v ; , " . . ,  v ^ ) ,  s a y  ({J(v) =  a i v'j +  • • •  +  a mv'm. L e t  x — a iv i  +  ■. .  +  a mvm . 

T h e n  ({J(x) =  ({J(v) ,  h e n c e  v  — x  is in  th e  k e r n e l  o f  ({J. S o  v  — x  is  a  l in e a r  c o m b i n a t i o n  o f  

( u i , . . .  , w d ,  s a y  v  — x  =  b] u i +  . • . +  b ^ w * , a n d

v — a]V\-\----------h a mvm +  b\U] H--------- \-bkUk.

S in c e  v  w a s  a r b itr a r y , t h e  s e t  ( u i , . . • , u ;̂ v i , . . . ,  v m ) g e n e r a t e s .

( c )  T h i s  f o l lo w s  f r o m  ( b )  a n d  ( a )  w h e n  w e  r e p la c e  ({J b y  t h e  c a n o n i c a l  h o m o m o r p h i s m

:r: V  - -  V . □

T h is  t h e o r e m  c o m p l e t e s  t h e  p r o o f  o f  T h e o r e m  1 4 .4 .1 1 .
S in c e  p r in c ip a l  id e a l  d o m a in s  a r e  n o e t h e r ia n ,  s u b m o d u le s  o f  f in i t e ly  g e n e r a t e d  m o d u le s  

o v e r  t h e s e  r in g s  a r e  f in i t e ly  g e n e r a t e d .  In  fa c t ,  m o s t  o f  t h e  r in g s  th a t  w e  h a v e  b e e n  s t u d y in g  

a r e  n o e t h e r ia n .  T h is  f o l lo w s  f r o m  a n o t h e r  o f  H i l b e r t ’s  t h e o r e m s :

T h e o r e m  1 4 .6 .7  H i lb e r t  B a s i s  T h e o r e m .  L e t  R  b e  a  n o e t h e r ia n  r in g . T h e  p o l y n o m i a l  r in g  

R [ x ]  is  n o e t h e r ia n .

T h e  p r o o f  o f  th is  t h e o r e m  is  b e lo w .  It s h o w s  b y  in d u c t io n  th a t  t h e  p o l y n o m i a l  r in g  

R [ x i ,  . . . .  x nJ in  s e v e r a l  v a r ia b le s  o v e r  a  n o e t h e r ia n  r in g  R  is  n o e t h e r ia n .  T h e r e f o r e  t h e  

r in g s  Z [ x | , . . . ,  x n ] a n d  F [ x i ,  . . .  , x „ ] , w ith  F  a  f ie ld ,  a r e  n o e t h e r ia n .  A l s o ,  q u o t i e n t s  o f  

n o e t h e r ia n  r in g s  a r e  n o e t h e r ia n :

P r o p o s i t io n  1 4 .6 .8  L e t  R  b e  a  n o e t h e r ia n  r in g , a n d  le t  I  b e  a n  id e a l  o f  R . A n y  r in g  th a t  is  

i s o m o r p h ic  t o  t h e  q u o t i e n t  r in g  R  =  R /  I  is  n o e t h e r ia n .

Proof  L e t  J  b e  a n  id e a l  o f  R , a n d  le t  :r : R  - -  R  b e  t h e  c a n o n ic a l  m a p . L e t  J  =  :r_ 1 ( J ) b e  
t h e  c o r r e s p o n d in g  id e a l  o f  R . S in c e  R  is  n o e t h e r ia n ,  J  is  f in ite ly  g e n e r a t e d ,  a n d  it  f o l lo w s  

t h a t  J  is  f in i t e ly  g e n e r a t e d  ( 1 4 .6 . 6 ) ( a ) . □

C o r o l la r y  1 4 .6 .9  L e t  P  b e  a  p o ly n o m ia l  r in g  in  a  f in i t e  n u m b e r  o f  v a r ia b le s  o v e r  th e  in t e g e r s  

o r  o v e r  a  f ie ld . A n y  r in g  R  th a t  is  i s o m o r p h ic  t o  a  q u o t i e n t  r in g  P / I  is  n o e t h e r ia n .  □

W e  tu r n  t o  th e  p r o o f  o f  th e  H i lb e r t  B a s i s  T h e o r e m  n o w .

L e m m a  1 4 .6 .1 0  L e t  R  b e  a  r in g  a n d  le t  I  b e  a n  id e a l  o f  t h e  p o ly n o m ia l  r in g  R [ x ) .  T h e  s e t  A  

w h o s e  e l e m e n t s  a r e  t h e  l e a d in g  c o e f f ic ie n t s  o f  th e  n o n z e r o  p o ly n o m ia l s  in  / ,  t o g e t h e r  w i t h  

t h e  z e r o  e l e m e n t  o f  R , is  a n  id e a l  o f  R , t h e  ideal o f  leading coefficients.
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Proof  We must show that if a  and fJ are in A, then a + fJ and r a  are also in A. Ifanyone of the 
three elements a, fJ, or a  +  fJ is zero, then a  +  fJ is in A ,so we may assume that these elements 
are not zero. Then a  is the leading coefficient of an element f  of I, and fJ is the leading 
coefficient of an element g of I. We multiply /  or g by a suitable power of x  so that their 
degrees become equal. The polynomial we get is also in I. Then a +  fJ is the leading coefficient 
of / +  g. Since I  is an ideal, / + g is in I  and a +  fJ is in A. The proof that r a  is in A is similar. □

Proof o f  the Hilbert Basis Theorem. We suppose that R is a noetherian ring, and we let I 
be an ideal in the polynomial ring R[x]. We must show that there is a finite subset S of I 
that generates this ideal -  a subset such that every element of I can be expressed as a linear 
combination of its elements, with polynomial coefficients.

Let A be the ideal of leading coefficients of /. Since R is noetherian, A has a finite set 
of generators, say (a i, . . . .  a*). We choose for each i =  1, . . . ,  k  a polynomial /  in I  with 
leading coefficient a,-, and we multiply these polynomials by powers of x  as necessary, so 
that their degrees become equal, say to n.

Next, let P  denote the set consisting of the polynomials in R[x] of degree less than 
n, together with O. This is a free R-module with basis (1, x, . . .  , x"~i). The subset P  n I, 
which consists of the polynomials of degree less than n that are in I  together with zero, is an 
R-submodule of P . Let’s call this submodule W. Since P  is a finitely generated R-module 
and since R  is noetherian, W is a finitely generated R-module. We choose generators 
(h\, . . . ,  he) for W. Every polynomial in I  of degree less than n is a linear combination of 
(hy, . . . ,  he), with coefficients in R.

We show now that the set ( / ,  . . .  , f \ \  h i , . . . ,  he) generates the ideal I. We use 
induction on the degree d of g.

Case 1: d  <  n. In this case, g is an element of W, so it is a linear combination of (h i, . . . ,  he) 
with coefficients in R. We don’t need polynomial coefficients here.

Case 2: d  2:  n. Let fJ be the leading coefficient of g, so g =  fJxd +  (lower degree terms). 
Then fJ is an element of the ideal A of leading coefficients, so it is a linear combination 
fJ =  r ia i  +  • • +  rka k of the leading coefficients a ,  of Ii, with coefficients in R. The 
polynomial

is in the ideal generated by ( 1 ,  . . . ,  fk). It has degree d, and its leading coefficient is fJ. 
Therefore the degree of g  — q is less than d. By induction, g — q is a polynomial combination 
of ( f i , . . . ,  /k; h \ , . . .  , he). Then g =  q +  (g -  q) is also such a combination. □

14.7 STRUCTURE OF ABELIAN GROUPS
The Structure Theorem for abelian groups, which is below, asserts that a finite abelian group
V is a direct sum of cyclic groups. The work of the proof has been done. We know that there 
exists a diagonal presentation matrix for V. What remains to do is to interpret the meaning 
of this matrix for the group.

The definition of a direct sum of modules is the same as that of a direct sum of vector 
spaces.
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•  L e t  W i ,  . . . ,  W k  b e  s u b m o d u le s  o f  a n  R - m o d u le  V. T h e ir  s u m  i s  t h e  s u b m o d u le  t h a t  t h e y  

g e n e r a t e .  I t  c o n s i s t s  o f  a l l  e l e m e n t s  th a t  a r e  su m s:

( 1 4 .7 .1 ) W i +  • . .  +  Wk =  {v E V  | v  =  w i  +  ■ • . +  wk, w i t h  W i  i n  W , }.

We say that V  is the d ir e c t  s u m  ofthe submodules W i, . . .  , Wk, and we write
V =  Wi E9 - • - E9 Wk, if

(14.7.2)
•  they g e n e r a te :  V  = Wi +  • .. +  Wk, and
•  they are in d e p e n d e n t :  If wi +  . ■. + Wk =  0, with Wi in W;, then w; =  0  for all i .

Thus V is the direct sum of the submodules W, if every element v  in V can be written 
uniquely in the form v = W\ +------ + Wk, with w, in W;. As is true for vector spaces, a module
V is the direct sum Wi E9 W2  of two submodules Wi and W2 if and only if Wi +  W2 =  V  
and Wi n W2 =  0 (see (3.6.6».

The same definitions are used for abelian groups. An abelian group V is the direct sum 
Wi E9  . •• E9  Wk of the subgroups Wj, . . . ,  Wk if:

•  Every element v  of V can be written as a sum v  =  Wi + ---- + Wk with w; in W;, i.e.,
V = Wi +  ■.. +  Wk .

•  If a sum wi +  •. • +  Wk, with Wi in W, is zero, then w; =  0 for all i.

T h e o r e m  1 4 .7 .3  S tr u c tu r e  T h e o r e m  f o r  A b e l i a n  G r o u p s .  A finitely generated abelian group
V is a direct sum of cyclic subgroups C^, , . . . ,  Cdk and a free abelian group L:

V =  Cdj E9 •■■ E9 Cdk E9 L, 

where the order di of Cd, is greater than 1, and di divides d i+i for i = 1, . . . ,  k — 1.

P r o o f o f  th e  S tr u c tu r e  T h e o r e m . We choose a presentation matrix A for V , determined by 
a set of generators and a complete set of relations. We can do this ‘because V is finitely 
generated and because Z  is a Noetherian ring. After a suitable change of generators and 
relations, A will have the diagonal form given in Theorem 14.4.6. We may eliminate any 
diagonal entry that is equal to 1, and any column of zeros (see (14.5.7». The matrix A will 
then have the shape

( 1 4 .7 .4 ) A  =

i

d k
0

w ith  d i  > 1  a n d  d i  |d 21 . • Id * . It w il l  b e  a n  m  X  k  m a tr ix , 0  k  m.  T h e  m e a n in g  o f  t h is  f o r  

o u r  a b e l ia n  g r o u p  is  th a t V  is  g e n e r a t e d  b y  a  s e t  o f  m  e l e m e n t s  B  =  ( v i ,  . . . ,  v m ) ,  a n d  th a t

( 1 4 .7 .5 )

f o r m s  a  c o m p l e t e  s e t  o f  r e la t io n s  a m o n g  t h e s e  g e n e r a t o r s .
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L e t  C j  d e n o t e  th e  c y c l ic  s u b g r o u p  g e n e r a t e d  b y  V j, f o r  j  =  1, . . . ,  m .  F o r  j  k, C j  
is  c y c lic  o f  o r d e r  d j ,  a n d  f o r  j  >  k , C j  is  in f in it e  c y c l ic .  W e  s h o w  th a t  V  is  th e  d ir e c t  s u m  

o f  t h e s e  c y c l ic  g r o u p s .  S i n c e  B  g e n e r a t e s ,  V  =  C i  + • • •  +  Cm. S u p p o s e  g iv e n  a  r e la t io n  

w i  +  ■ • ■ +  Wm =  0  w i t h  Wj in  C  j .  S in c e  Vj g e n e r a t e s  C  j ,  w j  =  VjYj  f o r  s o m e  in t e g e r  y j .  

T h e  r e la t io n  is  B Y  =  v i y i  + • ■ • +  VmYm =  O. S in c e  t h e  c o lu m n s  o f  A  f o r m  a  c o m p l e t e  s e t  
o f  r e la t io n s ,  Y =  A X  f o r  s o m e  in t e g e r  v e c t o r  X,  w h ic h  m e a n s  th a t  y j  is  a  m u l t ip l e  o f  d j  if  

j  k  a n d  y j  =  0  if  j  >  k . S in c e  Vjdj  =  0  i f  j  k ,  w  j  =  0  i f  j  k . T h e  r e la t io n  is  t r iv ia l ,  

s o  t h e  c y c l i c  g r o u p s  C j  a r e  i n d e p e n d e n t .  T h e  d ir e c t  s u m  o f  t h e  in f in i t e  c y c l ic  g r o u p s  C j  w i t h  

j  >  k  i s  t h e  f r e e  a b e l ia n  g r o u p  L .  □

A  f in i t e  a b e l ia n  g r o u p  is  f in i t e ly  g e n e r a t e d ,  s o  a s  s t a t e d  a b o v e ,  th e  S tr u c tu r e  T h e o r e m
d e c o m p o s e s  a  f in i t e  a b e l ia n  g r o u p  in to  a  d ir e c t  s u m  o f  f in i t e  c y c l ic  g r o u p s ,  in  w h ic h  t h e  o r d e r  

o f  e a c h  s u m m a n d  d iv id e s  t h e  n e x t .  T h e  f r e e  s u m m a n d  w i l l  b e  z e r o .

It  is  s o m e t i m e s  c o n v e n i e n t  t o  d e c o m p o s e  t h e  c y c l i c  g r o u p s  fu r th e r ,  in t o  c y c l i c  g r o u p s  

o f  p r im e  p o w e r  o r d e r .  T h is  d e c o m p o s i t i o n  is  b a s e d  o n  P r o p o s i t io n  2 .1 1 .3 :  I f  a  a n d  b  a r e  

r e la t iv e ly  p r im e  in t e g e r s ,  t h e  c y c l i c  g r o u p  Cab o f  o r d e r  a b  is  i s o m o r p h ic  t o  t h e  d i r e c t  s u m  

C a E9 C b  o f  c y c l i c  s u b g r o u p s  o f  o r d e r s  a  a n d  b .  C o m b in in g  th is  w it h  t h e  S tr u c tu r e  T h e o r e m  

y ie ld s  t h e  f o l lo w in g :

C o r o l la r y  1 4 .7 .6  S tr u c tu r e  T h e o r e m  ( A l t e r n a t e  F o r m ) .  E v e r y  f in i t e  a b e l ia n  g r o u p  is  a  d ir e c t  

s u m  o f  c y c l i c  g r o u p s  o f  p r im e  p o w e r  o r d e r s .  □

It is  a l s o  t r u e  th a t  th e  o r d e r s  o f  th e  c y c l i c  s u b g r o u p s  th a t  o c c u r  a r e  u n iq u e ly  d e t e r m in e d

b y  t h e  g r o u p . I f  t h e  o r d e r  o f  V  is  a  p r o d u c t  o f  d is t in c t  p r im e s ,  t h e r e  is  n o  p r o b le m .  F o r  

e x a m p le ,  i f  t h e  o r d e r  is  3 0 ,  t h e n  V  m u s t  b e  i s o m o r p h ic  t o  C 2 E9 C 3  E9 C 5 a n d  t o  C 30. 
B u t  is  C 2 ©  C 2 ©  C 4 i s o m o r p h ic  t o  C 4 E9 C 4? It i s n ’t d if f ic u lt  to  s h o w  th a t  it  is  n o t ,  b y  

c o u n t in g  e l e m e n t s  o f  o r d e r s  1 o r  2. T h e  g r o u p  C 4 E9 C 4 c o n t a in s  fo u r  su c h  e l e m e n t s ,  w h i l e  

C 2 E9 C 2 E9 C 4 c o n t a in s  e ig h t  o f  t h e m . T h is  c o u n t in g  m e t h o d  a lw a y s  w o r k s .

T h e o r e m  1 4 .7 .7  U n i q u e n e s s  f o r  t h e  S tr u c tu r e  T h e o r e m .  S u p p o s e  t h a t  a  f in i t e  a b e l ia n  g r o u p

V  is  a  d ir e c t  s u m  o f  c y c l i c  g r o u p s  o f  p r im e  p o w e r  o r d e r s  d j  =  p ? , T h e  in t e g e r s  d j  a r e  

u n iq u e ly  d e t e r m in e d  b y  t h e  g r o u p  V .

Proof. L e t  p  b e  o n e  o f  t h e  p r im e s  t h a t  a p p e a r  in  t h e  d ir e c t  s u m  d e c o m p o s i t i o n  o f  V , a n d  le t  
c ;- d e n o t e  t h e  n u m b e r  o f  c y c l ic  g r o u p s  o f  o r d e r  p l in  t h e  d e c o m p o s i t io n .  T h e  s e t  o f  e l e m e n t s  

w h o s e  o r d e r s  d iv id e  p '  is  a  s u b g r o u p  o f  V  w h o s e  o r d e r  is  a  p o w e r  o f  p ,  s a y  p £<. L e t  k  b e  t h e  

l a r g e s t  i n d e x  s u c h  t h a t  Ck >  O. T h e n

( l  =  C i  +  C2 +  C3 +------ + Ck

(2 =  Ci +  2C2 +  2C3 +  . . . +  2c b  

(3 =  q  +  2c 2 +  3c 3 +  ■ • ■ +  3 q

( k =  c i  +  2 c 2  +  3 q  +  . ■ ■ +  k q .  

T h e  e x p o n e n t s  • d e t e r m in e  th e  in t e g e r s  c ;  . □
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T h e  in t e g e r s  d i  a re  a l s o  u n iq u e ly  d e t e r m in e d  w h e n  t h e y  a re  c h o s e n ,  a s  in  T h e o r e m  1 4 .7 .3 ,  

s o  t h a t  d i  | • . • |dfc.

1 4 .8  A P P L IC A T IO N  T O  L IN E A R  O P E R A T O R S

T h e  c la s s i f ic a t io n  o f  a b e  l ia n  g r o u p s  h a s  a n  a n a lo g u e  f o r  t h e  p o ly  n o m ia l  r in g  R  =  F [ t ]  in  o n e  

v a r ia b le  o v e r  a  f ie ld  F .  T h e o r e m  1 4 .4 .6  a b o  u t d  ia g o n a l iz in g  in t e g e r  m a t r ic e s  c a r r ie s  o v e r  

b e c a u s e  t h e  k e y  i n g r e  d ie n t  in  th e  p r o o f  o f  T h e o r e m  1 4 .4 .6 ,  t h e  d iv i s io n  a lg o r i t h m ,  is  a v a i la b le  

in  F [ t ] .  A n d  s in c e  t h e  p o ly n o m ia l  r in g  is  n o e t h e r ia n ,  a n y  fin i t e ly  g e n e r a t e d  R - m o d u le  V  h a s  

a  p r e s  e n  ta t  io n  m a tr ix  ( 1 4 .2 .7 ) .

T h e o r e m  1 4 .8 .1  L e t  R  =  F [ t ]  b e  a  p o ly n o m ia l  r in g  in  o n  e  v a r ia b le  o v e r  a  f ie ld  F  a n d  le t  

A  b e  a n  m  X n  R - m a t r ix .  T h e r e  a r e  p r o d u c t s  Q  a n d  P  o f  e le m e n t a r y  R - m a t r i c e s  s u c h  th a t  

A ' =  Q - A P  is  d ia g o n a l ,  e a c h  n o n z e r o  d ia g o n a l  e n t r y  d ,  o f  A ' is  a  m o n i c  p o ly n o m ia l ,  a n d  

dl | d 2 | . . .  | d k . □

E x a m p le  1 4 .8 .2  D i a g o n a l iz a t io n  o f  a  m a tr ix  o f  p o ly n o m i  als:

A = r  -  3 t  +  1 

( t  - 1)3
t — 2 

t1 -  3 [  +  2
3r +  1 t -  2 

0[2 - 1
col

col - 1 t - 2 ' col ' -1 0 row _ 1 0
10t12[1 [2 — t [ 3 — 3 t + 2t - + 12+3-

ro

01

2t

N o t e :  It is  n o t  s u r p r is in  g  th a t  w e  e n d e d  u p  w it h  1 in  th e  u p p e r  l e f t  c o r n e r  in  th is  e x a m p le .  

T h is  w il l  h a p p e  n  w h e n e v e r  th e  g r e a t e s t  c o m m o n  d iv is o r  o f  th e  m a tr ix  e n t r i e s  i s  1. □

A s  is  t r u e  fo r  t h e  r in g  o f  in t e g e r s ,  T h e o r e m  1 4 .8 .1  p r o v id e s  u s  w i t h  a  m e t h o d  t o  
d e t e r m in e  t h e  p o ly n o m ia l  s o lu t io n s  o f  a  s y s t e m  A X  =  B, w h e n  t h e  e n t r i e s  o f  A  a n d  B a r e  

p o ly n o m i  a l m a tr ic e s  ( s e e  P r o p o s i t io n  1 4 .4 .9 ) .

W e  e x t e n d  t h e  s t r u c t u r e  t h e o r e m  t o  p o ly n o m i  a l  r in  g s  n e x t .  T o  c a r r y  a l o n g  t h e  a n  a  lo g y  

w it h  a b e l ia n  g r o u p s ,  w e  d e f in e  a  c y c l i c  R - m o d u le  C , w h e r e  R  is  a n y  r in g , to  b e  a  m o d u le  

th a t  is  g e n e r a t e d  b y  a  s in g le  e l e m e n t  v .  T h e n  t h e r e  is  a  s u r j e c t iv e  h o m o m o r p h i s m  q;: R  —► C  
th a t  s e n d s  r ~ ~ > r v . T h e  k e r n e l  o f  q;, th e  m o d u le  o f  r e la t io n s ,  is  a  s u b m o d u le  o f  R , a n  id e a l  [ .  

B y  th e  F ir s t  I s o m o r p h is m  T h e o r e m ,  e  is  i s o m o r p h ic  t o  th e  R - m o d u le  R /  [ .
W h e n  R  =  F [ t ) ,  t h e  id e a l  I  w i l l  b e  p r in c ip a l ,  a n d  e  w il l  b e  i s o m o r p h ic  t o  R / ( d )  fo r  

s o m e  p o ly n o m ia l  d .  T h e  m o d u le  o f  r e la t io n s  w il l  b e  g e n e r a t e d  b y  a  s in g le  e l e m e n t .

T h e o r e m  1 4 .8 .3  S tr u c tu r e  T h e o r e m  f o r  M o d u l e s  o v e r  P o ly n o m ia l  R in g s .  L e t  R  =  F [ t )  b e  

t h e  r in g  o f  p o ly n o m ia l s  in  o n e  v a r ia b le  w it h  c o e f f ic ie n t s  in  a  f ie  ld  F .

( a )  L e t  V  b e  a  f in i t e ly  g e n e r a t e d  m o d u le  o v e r  R . T h e n  V  is  a  d ir e c t  s u m  o f  c y c l i c  m o d u le s  

C i  , e 2 , . . . , Cfc a n d  a  f r e e  m o d u l e  L , w h e r e  C  is  i s o m o r p h ic  t o  R / ( d j ) ,  t h e  e l e m e n t s  

d i ,  . . .  , dk a r e  m o n ic  p o ly n o m ia l s  o f  p o s i t i v e  d e g r e e ,  a n d  d i  | d 2 | . . .  | d ^ .

( b )  T h e  s a m e  a s s e r t io n  a s  ( a ) ,  e x c e p t  th a t  th e  c o n d i t io n  th a t  d ,  d iv id e s  d , + i  is  r e p l a c e d  b y :
E a c h  d,- is  a  p o w e r  o f  a  m o n i c  i r r e d u c ib le  p o ly n o m ia l .  □
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It  is  a l s o  t r u e  th a t  t h e  p r im e  p o w e r s  o c c u r r in g  in  ( b )  a r e  u n iq u e ,  b u t  w e  w o n ’t t a k e  t h e  t im e  

t o  p r o v e  th is .

F o r  e x a m p le ,  l e t  R  =  lR.[t ] , a n d  t h e  R - m o d u le  V - p r e s e n t e d  b y  t h e  m a tr ix  A  o f  E x a m p le

1 4 .8 .2 . I t  is  a l s o  p r e s e n t e d  b y  t h e  d ia g o n a l  m a tr ix

1 0
0 P  — 3 12 +  2t

a n d  w e  c a n  d r o p  th e  first r o w  a n d  c o lu m n  f r o m  t h is  m a tr ix  ( 1 4 .5 .7 ) .  S o  V  is  p r e s e n t e d  b y  

t h e  1 X  1 m a tr ix  [ g ] ,  w h e r e  g ( 0  =  t3 — 3t2  +  2 t  =  t(t — l ) ( t  — 2 ) .  T h is  m e a n s  th a t  V  is  a  

c y c l ic  m o d u le ,  i s o m o r p h ic  t o  C  =  R /(g ) .  S in c e  g  h a s  t h r e e  r e la t iv e ly  p r im e  f a c t o r s ,  V  c a n  

b e  fu r th e r  d e c o m p o s e d .  I t  is  i s o m o r p h ic  t o  a  d ir e c t  s u m  o f  c y c l i c  R - m o d u le s :

(1 4 .8 .4 ) R / ( g )  *  ( R / ( t ) )  ED ( R / ( t  -  1 ) )  ED ( R / ( t  -  2 ) ) .

W e  n o w  a p p ly  t h e  t h e o r y  w e  h a v e  d e v e l o p e d  t o  s t u d y  l in e a r  o p e r a t o r s  o n  v e c t o r  s p a c e s  

o v e r  a  f ie ld .  T h is  a p p l i c a t io n  p r o v id e s  a  g o o d  e x a m p le  o f  h o w  a b s t r a c t io n  c a n  l e a d  t o  n e w  

in s ig h t s .  T h e  m e t h o d  d e v e lo p e d  fo r  a b e l ia n  g r o u p s  is  e x t e n d e d  f o r m a l ly  t o  m o d u le s  o v e r  

p o ly n o m ia l  r in g s , a n d  is  t h e n  a p p l ie d  in  a  c o n c r e t e  n e w  s it u a t io n .  T h is  w a s  n o t  t h e  h is t o r ic a l  

d e v e lo p m e n t .  T h e  t h e o r i e s  f o r  a b e l ia n  g r o u p s  a n d  f o r  l in e a r  o p e r a t o r s  w e r e  d e v e l o p e d  

i n d e p e n d e n t ly  a n d  w e r e  t i e d  t o g e t h e r  la t e r .  B u t  it  is  s t r ik in g  t h a t  t h e  t w o  c a s e s ,  a b e l ia n  
g r o u p s  a n d  l in e a r  o p e r a t o r s ,  c a n  e n d  u p  l o o k i n g  s o  d i f f e r e n t  w h e n  t h e  s a m e  t h e o r y  is  a p p l ie d  

t o  th e m .
T h e  k e y  o b s e r v a t io n  th a t  a l lo w s  u s  t o  p r o c e e d  is  th a t  i f  w e  a r e  g i v e n  a  l in e a r  o p e r a t o r

( 1 4 .8 .5 )  T : V - + V

o n  a  v e c t o r  s p a c e  o v e r  a  f ie ld  F,  w e  c a n  u se  th is  o p e r a t o r  to  m a k e  V  in to  a  m o d u l e  o v e r  th e  
p o ly n o m ia l  r in g  F [ t ] . T o  d o  s o ,  w e  m u s t  d e f in e  m u l t ip l i c a t io n  o f  a  v e c t o r  v  b y  a  p o ly n o m ia l  

f ( t )  =  a ntn +----------+ a \ t  +  a o . W e  s e t

T h e  r ig h t  s i d e  c o u ld  a l s o  b e  w r i t t e n  a s  [ / ( n ] ( v ) ,  w h e r e  f (  n  d e n o t e s  th e  l in e a r  o p e r a t o r
a n T n +  a n- i  T n ~1 +------ +  a i  T +  a o I .  ( T h e  b r a c k e t s  h a v e  b e e n  a d d e d  t o  m a k e  i t  c l e a r  th a t

it  is  t h e  o p e r a t o r  f ( n  th a t  a c ts  o n  v.) W it h  th is  n o t a t io n ,  w e  o b t a in  th e  f o r m u la s

( 1 4 .8 .7 )  t v  =  T (  v )  a n d  f ( t ) v  =  [ J ( n ] ( v ) .

T h e  fa c t  th a t  r u le  ( 1 4 .8 .6 )  m a k e s  V  in t o  a n  F [ t ] - m o d u l e  is  e a s y  t o  v e r i f y ,  a n d  t h e  f o r m u la s
( 1 4 .8 .7 )  m a y  a p p e a r  t a u t o lo g ic a l .  T h e y  r a is e  t h e  q u e s t i o n  o f  w h y  w e  n e e d  a  n e w  s y m b o l  t . 

B u t  f ( t )  is  a  p o ly n o m ia l ,  w h i l e  f ( n  is  a  l in e a r  o p e r a t o r .

C o n v e r s e ly ,  i f  V  is  a n  F [ t ] - m o d u l e ,  s c a la r  m u l t ip l i c a t io n  o f  e l e m e n t s  o f  V  b y  a  

p o ly n o m ia l  is  d e f in e d .  In  p a r t ic u la r ,  w e  a r e  g iv e n  a  r u le  f o r  m u l t ip ly in g  b y  th e  c o n s t a n t  

p o ly n o m ia l s ,  t h e  e l e m e n t s  o f  F. I f  w e  k e e p  th e  r u le  f o r  m u l t ip ly in g  b y  c o n s t a n t s  b u t  f o r g e t
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fo r  t h e  m o m e n t  a b o u t  m u l t ip l i c a t io n  b y  n o n c o n s t a n t  p o ly n o m ia ls ,  t h e n  t h e  a x io m s  fo r  a  

m o d u le  s h o w  th a t  V  b e c o m e s  a  v e c t o r  s p a c e  o v e r  F  ( 1 4 .1 .1 ) .  N e x t ,  w e  c a n  m u l t ip ly  e l e m e n t s  

o f  V  b y  th e  p o ly n o m ia l  t. L e t  u s  d e n o t e  th e  o p e r a t io n  o f  m u l t ip l i c a t io n  b y  t  o n  V  a s  T. S o  T  

is  th e  m a p

( 1 4 .8 .8 )  V  - - - +  V , d e f in e d  b y  T (  v )  =  t v .

T h is  m a p  is  a  l in e a r  o p e r a t o r  w h e n  V  i s  c o n s id e r e d  a s  a  v e c t o r  s p a c e  o v e r  F .  B y  t h e  

d is t r ib u t iv e  la w , t(v  +  v ')  =  t v  +  t v ' ,  t h e r e f o r e  T ( v  +  v ' )  =  T ( v )  +  T ( v ' ) .  I f  c  is  a  s c a la r ,  
t h e n  tcv  =  ctv,  a n d  t h e r e f o r e  T ( c v )  =  c T ( v ) .  S o  a n  F [ t ] - m o d u l e  V  p r o v id e s  u s  w i t h  a  

l in e a r  o p e r a t o r  o n  a  v e c t o r  s p a c e .  T h e  r u le s  w e  h a v e  d e s c r ib e d ,  g o in g  f r o m  l in e a r  o p e r a t o r s  

t o  m o d u le s  a n d  b a c k , a r e  i n v e r s e  o p e r a t io n s .

(14 8 9) L in e a r  o p e r a t o r  o n  a n  F - v e c t o r  s p a c e  a n d
( . .  ) F [ t ] - m o d u l e  a r e  e q u iv a le n t  c o n c e p t s .

W e  w i l l  w a n t  t o  a p p ly  t h is  o b s e r v a t io n  t o  f in i t e - d im e n s io n a l  v e c t o r  s p a c e s ,  b u t  w e  n o t e  

in  p a s s in g  t h e  l in e a r  o p e r a t o r  th a t  c o r r e s p o n d s  t o  t h e  f r e e  F [ t ] - m o d u l e  o f  r a n k  1 . W h e n  F [ t ]  

is  c o n s id e r e d  a s  a  v e c t o r  s p a c e  o v e r  F ,  t h e  m o n o m ia l s  ( 1 ,  t, t 2 , • • . )  f o r m  a  b a s is ,  a n d  w e  

c a n  u s e  th is  b a s is  t o  id e n t i f y  F [ t ]  w ith  th e  in f in i t e - d im e n s io n a l  s p a c e  Z ,  th e  s p a c e  o f  in f in i t e  

r o w  v e c t o r s  (aQ , a i ,  a 2, . . . )  w it h  f in i t e ly  m a n y  e n t r i e s  d i f f e r e n t  f r o m  z e r o  th a t  w a s  d e f in e d  

in  ( 3 .7 .2 ) .  M u l t ip l i c a t io n  b y  t  o n  F [ t ]  c o r r e s p o n d s  t o  t h e  shift operator T :

(aQ . a i ,  a 2, . . . )  . .  ( 0, aQ , a i ,  a 2, . ,  . ) .

T h e  sh if t  o p e r a t o r  o n  th e  s p a c e  Z  c o r r e s p o n d s  t o  th e  f r e e  F [ t ] - m o d u l e  o f  r a n k  1.

W e  n o w  b e g in  o u r  a p p l ic a t io n  t o  l in e a r  o p e r a t o r s .  G i v e n  a  l in e a r  o p e r a t o r  T  o n  a  

v e c t o r  s p a c e  V  o v e r  F ,  w e  m a y  a lso  v ie w  V  a s  a n  F [ t ] - m o d u l e .  W e  s u p p o s e  t h a t  V  is  

f in i t e - d im e n s io n a l  a s  a  v e c t o r  s p a c e ,  s a y  o f  d im e n s io n  n . T h e n  it  is  f in it e ly  g e n e r a t e d  a s  a  

m o d u le ,  a n d  it  h a s  a  p r e s e n t a t io n  m a tr ix . T h e r e  is  s o m e  d a n g e r  o f  c o n f u s io n  h e r e ,  b e c a u s e  

t h e r e  a r e  t w o  m a t r ic e s  a r o u n d :  t h e  p r e s e n t a t io n  m a tr ix  f o r  t h e  m o d u l e  V ,  a n d  t h e  m a tr ix  o f  
t h e  l in e a r  o p e r a t o r  T . T h e  p r e s e n t a t i o n  m a t r ix  i s  a n  r  x  s  m a tr ix  w i t h  p o l y n o m i a l  e n t r i e s ,  

w h e r e  r  is  th e  n u m b e r  o f  c h o s e n  g e n e r a t o r s  fo r  th e  m o d u le  a n d  s  is  th e  n u m b e r  o f  r e la t io n s .  
T h e  m a tr ix  o f  t h e  l in e a r  o p e r a t o r  is  a n  n  x  n  m a tr ix  w h o s e  e n t r i e s  a r e  s c a la r s ,  w h e r e  n  is  t h e  

d im e n s io n  o f  V  . B o t h  m a t r ic e s  c o n t a in  t h e  in f o r m a t io n  n e e d e d  t o  d e s c r ib e  t h e  m o d u l e  a n d  

t h e  l in e a r  o p e r a t o r .

R e g a r d in g  V  a s  a n  F [ t ] - m o d u l e ,  w e  c a n  a p p ly  T h e o r e m  1 4 .8 .3  t o  c o n c l u d e  th a t  V  is  a  

d ir e c t  su m  o f  c y c lic  s u b m o d u le s ,  s a y

V  =  W i E9 - - . 0  Wk,

w h e r e  W i is  i s o m o r p h ic  to  F \ t ] / ( f ) ,  f i  b e in g  a  m o n ic  p o ly n o m ia l  in  F \ t ] .  W h e n  V  is  

f in i t e - d im e n s io n a l ,  t h e  f r e e  s u m m a n d  is  z e r o .

T o  in t e r p r e t  t h e  m e a n in g  o f  t h e  d i r e c t  s u m  d e c o m p o s i t io n  f o r  t h e  l in e a r  o p e r a t o r  T ,  w e  

c h o o s e  b a s e s  B,- f o r  t h e  s u b s p a c e s  Wi. T h e n  w it h  r e s p e c t  t o  t h e  b a s is  B  =  ( B l ,  . . . ,  B k ) ,  th e  

m a tr ix  o f  T  h a s  a  b lo c k  f o r m  ( 4 .4 .4 ) ,  w h e r e  t h e  b lo c k s  a r e  t h e  m a t r ic e s  o f  T  r e s t r ic t e d  t o  th e  

in v a r ia n t  s u b s p a c e s  W ,-. P e r h a p s  it  w i l l  b e  e n o u g h  t o  e x a m in e  t h e  o p e r a t o r  t h a t  c o r r e s p o n d s  

t o  a  c y c l ic  m o d u le .
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L e t  W  b e  a  c y c l ic  F [ t ] - m o d u l e ,  g e n e r a t e d  a s  a  m o d u le  b y  a  s in g le  e l e m e n t  t h a t  w e  

la b e l  a s  W o. S in c e  e v e r y  id e a l  o f  F [ t ]  is  p r in c ip a l ,  W  w i l l  b e  i s o m o r p h ic  t o  F [ t ] / ( j ) ,  

w h e r e  f  =  tn +  an_itn~l +  • • ■ +  a i t  +  ao is  a  m o n ic  p o ly n o m ia l  in  F [ t ] .  T h e  i s o m o r p h is m  

F [ t ] / ( j )  - -  W  w i l l  s e n d  1 wo. T h e  s e t  ( 1 ,  t , . . . ,  f 1 - i )  is  a  b a s is  o f  F [ t ] / ( j )  ( 1 1 .5 .5 ) ,  so  

th e  se t  ( w o , two, t2 wo, . . .  tn - *  w o )  is  a  b a s is  o f  W  a s  v e c t o r  s p a c e .
T h e  c o r r e s p o n d in g  l in e a r  o p e r a t o r  T :  W  -*■ W  is  m u l t ip l ic a t io n  b y  t. W r i t t e n  in  t e r m s  

o f  T ,  t h e  b a s is  o f  W  is  ( w o ,  w 1 , . . .  w n - i ) ,  w i t h  w j  =  T j wo . T h e n

T ( w o )  =  W I, T ( w i )  =  W 2 , . . . ,  T ( w n - 2)  =  W n - i ,  a n d

[ J ( 1)] w o  =  T n w o  +  a n _ i T n - J w o  +-------+  a i T w o  +  a o w o  =  0.

=  T W n - i  +  a n _ i W n - i  +--------- + a i  W i +  a o w o  =  O.

T h i s  d e t e r m in e s  t h e  m a tr ix  o f  T . I t  h a s  t h e  f o r m  i l lu s t r a te d  b e l o w  f o r  s m a l l  v a lu e s  o f  n :

( 1 4 .8 .1 0 )

T h e  c h a r a c t e r is t ic  p o ly n o m ia l  o f  t h is  m a tr ix  is  f( t) .

T h e o r e m  1 4 .8 .1 1  L e t  T  b e  a  l in e a r  o p e r a t o r  o n  a  f in i t e - d im e n s io n a l  v e c t o r  s p a c e  V  o v e r  a  

f ie ld  F .  T h e r e  i s  a  b a s is  f o r  V  w i t h  r e s p e c t  t o  w h ic h  th e  m a tr ix  o f  T  is  m a d e  u p  o f  b lo c k s  o f  

th e  ty p e  s h o w n  a b o v e .  □

T h is  f o r m  f o r  th e  m a tr ix  o f  a  l in e a r  o p e r a t o r  is  c a l l e d  a  rational canonical form.  It is  t h e  b e s t  

a v a i la b le  f o r  a n  a r b itr a r y  f ie ld .

E x a m p le  1 4 .8 .1 2  L e t  F  =  R. T h e  m a t r ix  A  s h o w n  b e l o w  is  in  r a t io n a l  c a n o n ic a l  f o r m . I ts  

c h a r a c t e r is t ic  p o ly n o m ia l  is  t3 — 1. S i n c e  t h i s  is  a  p r o d u c t  o f  r e la t iv e ly  p r i m e  p o ly n o m ia ls :  

r3 -  1 ;= ( t  — 1)  ( t 2 +  t +  1) ,  t h e  c y c l ic  lR .[t] -m o d u le  th a t  it  p r e s e n t s  i s  a  d i r e c t  s u m  o f  c y c l i c  

m o d u le s .  T h e  m a tr ix  A ' is  a n o th e r  r a t io n a l  c a n o n ic a l  f o r m  th a t  d e s c r ib e s  t h e  s a m e  m o d u le .  

O v e r  th e  c o m p le x  n u m b e r s ,  A  is  d ia g o n a l iz a b le .  Its d ia g o n a l  f o r m  is  A " , w h e r e  w  =  e 27r'/3 ^

'0 0 r " l

( 1 4 .8 .1 3 ) A  = 1 0 0 , A ' = 0 -1
0 1 0 1 -1

A "  = co
CO

□

V a r io u s  r e la t io n s  b e t w e e n  p r o p e r t ie s  o f  a n  F [ t ] - m o d u l e  a n d  th e  c o r r e s p o n d in g  l in e a r  

o p e r a t o r  a r e  s u m m e d  u p  in  t h e  t a b le  b e lo w .

( 1 4 .8 .1 4 )  F [ t ] - m o d u l e
m u lt ip l i c a t io n  b y  t  
f r e e  m o d u le  o f  r a n k  1 
s u b m o d u le

d ir e c t  s u m  o f  s u b m o d u le s

L in e a r  o p e r a t o r  T
o p e r a t io n  o f  T

sh if t  o p e r a t o r

T - in v a r ia n t  s u b s p a c e

d ir e c t  s u m  o f  T - in v a r ia n t  s u b s p a c e s

c y c l i c  m o d u le  g e n e r a t e d  b y  w  s u b s p a c e  s p a n n e d  b y  w ,  T ( w ) , T  ( w ) ,  . . .
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1 4 .9  P O L Y N O M IA L  R IN G S IN  SE V E R A L  V A R IA B L E S

M o d u le s  o v e r  a  r in g  b e c o m e  in c r e a s in g ly  c o m p l ic a t e d  w it h  in c r e a s in g  c o m p l ic a t io n  o f  th e  

r in g , a n d  it  c a n  b e  d if f ic u lt  t o  d e t e r m in e  w h e t h e r  o r  n o t  a n  e x p l ic i t ly  p r e s e n t e d  m o d u le  is  

f r e e .  In  th is  s e c t io n  w e  d e s c r ib e ,  w i t h o u t  p r o o f ,  a  t h e o r e m  th a t  c h a r a c t e r iz e s  f r e e  m o d u le s  

o v e r  p o l y n o m i a l  r in g s  in  s e v e r a l  v a r ia b le s .  T h is  t h e o r e m  w a s  p r o v e d  b y  Q u i l l e n  a n d  S u s l in  

in  1 9 7 6 .

L e t  R  =  C [ x i ,  . . . ,  Xk] b e  th e  p o ly n o m ia l  r in g  in  k  v a r ia b le s ,  a n d  le t  V  b e  a  f in i t e ly  

g e n e r a t e d  R - m o d u le .  L e t  A  b e  a  p r e s e n t a t io n  m a tr ix  f o r  V . T h e  e n t r i e s  o f  A  w i l l  b e  

p o ly n o m ia l s  atj(x), a n d  i f  A  is  a n  m  X n  m a tr ix ,  t h e n  V  is  i s o m o r p h ic  t o  t h e  c o k e r n e l  

R m / A R ” o f  m u l t ip l i c a t io n  b y  A  o n  R - v e c t o r s .
W h e n  w e  e v a lu a t e  t h e  m a tr ix  e n t r ie s  a t / x )  a t  a  p o in t  ( c i , . . . , ck) o f  C k , w e  o b t a in  a  

c o m p l e x  m a tr ix  A ( c )  w h o s e  i ,  j - e n t r y  is  atj(c).

T h e o r e m  1 4 .9 .1  L e t  V  b e  a  f in i t e ly  g e n e r a t e d  m o d u le  o v e r  th e  p o ly n o m ia l  r in g  C [ x i , . . . ,  X k], 
a n d  le t  A  b e  a n  m  X n p r e s e n t a t io n  m a tr ix  fo r  V .  D e n o t e  b y  A ( c )  t h e  e v a lu a t io n  o f  A  a t  a  

p o in t  c  o f  Ck. T h e n  V  is  a  f r e e  m o d u le  o f  ra n k  r  i f  a n d  o n ly  i f  th e  m a tr ix  A  ( c )  h a s  r a n k  m  -  r  

a t  e v e r y  p o in t  c .

T h e  p r o o f  o f  t h is  t h e o r e m  r e q u ir e s  t o o  m u c h  b a c k g r o u n d  to  g iv e  h e r e .  H o w e v e r ,  w e  c a n  u s e  

it  t o  d e t e r m in e  w h e t h e r  o r  n o t  a  g i v e n  m o d u l e  is  f r e e .  F o r  e x a m p le ,  l e t  V  b e  t h e  m o d u le  

o v e r  C [ x ,  y ]  p r e s e n t e d  b y  t h e  4  X  2  m a tr ix

( 1 4 .9 .2 )

S o  V  h a s  f o u r  g e n e r a t o r s ,  s a y  V], . • . , v4, a n d  t w o  r e la t io n s :

Vi +  y v 2  +  XV3 +  x2v4 =  0 a n d  xvj +  ( x  +  3)v2 +  y v  3  +  y2v4 =  O.

I t  i s n ’t v e r y  h a r d  t o  s h o w  th a t  A ( c )  h a s  r a n k  2  fo r  e v e r y  p o in t  c  i n  C 2 . T h e o r e m  1 4 .9 .1  t e l l s  

u s  th a t  V  is  a  f r e e  m o d u le  o f  r a n k  2 .

O n e  c a n  g e t  a n  in t u i t iv e  u n d e r s t a n d in g  f o r  t h i s  t h e o r e m  b y  c o n s id e r in g  t h e  v e c t o r  

s p a c e  W(c) s p a n n e d  b y  t h e  c o lu m n s  o f  th e  m a tr ix  A ( c ) .  I t  is  a  s u b s p a c e  o f  C m . A s  c  v a r ie s  

in  t h e  s p a c e  Ck, t h e  m a tr ix  A ( c )  v a r ie s  c o n t in u o u s ly .  T h e r e f o r e  t h e  s u b s p a c e  W ( c )  w i l l  a ls o  
v a r y  c o n t in u o u s ly ,  p r o v id e d  th a t  i t s  d im e n s io n  d o e s  n o t  j u m p  a r o u n d . C o n t in u o u s  f a m i l i e s  

o f  v e c t o r  s p a c e s  o f  c o n s t a n t  d im e n s io n ,  p a r a m e tr iz e d  b y  a  t o p o l o g i c a l  s p a c e  C k , a r e  c a l le d  

vector bundles o v e r  C k . T h e  m o d u le  V  is  f r e e  i f  a n d  o n ly  i f  t h e  f a m i ly  o f  v e c t o r  s p a c e s  W ( c )  

f o r m s  a  v e c t o r  b u n d le .

"Par une deformation coutumiere aux mathematicians, 
je me'en tenais au point de vue trop restreint.

— J e a n -L o u is  V e r d ie r
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E X E R C ISE S

1 .1 . L e t  R  b e  a  r in g , a n d  le t  V  d e n o t e  t h e  R - m o d u le  R . D e t e r m in e  a ll h o m o m o r p h is m s  
cp: V - -  V .

1.2. L e t  V  b e  a n  a b e lia n  g r o u p . P r o v e  th a t  i f  V  h a s  a  s tr u c tu r e  o f  Q - m o d u le  w it h  its  g iv e n  la w  
o f  c o m p o s i t io n  as a d d it io n ,  th e n  th a t  s tr u c tu r e  is u n iq u e ly  d e te r m in e d .

1 .3 . L e t  R  =  Z[a] b e  t h e  r in g  g e n e r a te d  o v e r  Z  b y  a n  a lg e b r a ic  in te g e r  a.  P r o v e  th a t  fo r  a n y  
in te g e r  m,  R / m  R  is  f in ite , a n d  d e te r m in e  it s  o r d e r .

1.4. A  m o d u le  is  c a lle d  simple i f  it is  n o t  th e  z e r o  m o d u le  a n d  i f  it h a s  n o  p r o p e r  su b m o d u le .

( a )  P r o v e  th a t an y  s im p le  R - m o d u le  is  is o m o r p h ic  to  a n  R - m o d u le  o f  th e  fo r m  R / M ,  
w h e r e  M  is  a  m a x im a l id e a l.

( b )  P r o v e  Schur’s Lemma: L e t  cp:S - >  S' b e  a  h o m o m o r p h is m  o f  s im p le  m o d u le s .  T h e n  
cp is  e i th e r  z e r o ,  o r  a n  iso m o r p h ism .

S e c t io n  2 F r e e  M o d u le s

2.1. L e t  R  =  C [ x ,  y ] ,  a n d  le t  M  b e  t h e  id e a l o f  R  g e n e r a te d  b y  t h e  tw o  e le m e n ts  x  a n d  y. Is 
M  a f r e e  R -m o d u le ?

2.2. P r o v e  t h a t  a  r in g  R  h a v in g  t h e  p r o p e r ty  t h a t  e v e r y  f in ite ly  g e n e r a t e d  R - m o d u le  i s  f r e e  is  
e ith e r  a  f ie ld  o r  t h e  z e r o  r in g .

2.3. L e t  A b e  th e  m a tr ix  o f  a  h o m o m o r p h is m  cp: Z ” —*■ Zm o f  f r e e  Z -m o d u le s .

( a )  P r o v e  t h a t  cp is  in je c t iv e  i f  a n d  o n ly  i f  t h e  r a n k  o f  A, a s  a  r e a l  m a tr ix , is  n .

(b )  P r o v e  th a t  cp i s  su r je c t iv e  i f  a n d  o n ly  i f  th e  g r e a te s t  c o m m o n  d iv is o r  o f  th e  
d e te r m in a n t s  o f  th e  m  X m  m in o r s  o f  A is  1.

2.4. L e t  I  b e a n  id e a l  o f  a  r in g  R .

( a )  U n d e r  w h a t  c ir c u m s ta n c e s  is  /  a  f r e e  R -m o d u le ?

( b )  U n d e r  w h at c ir c u m sta n c e s  is  th e  q u o t ie n t  r in g  R /  I  a  f r e e  R -m o d u le ?

S e c t io n  3 I d e n t it ie s

3 .1 . L e t  J  d e n o t e  th e  fu n c t io n  o n  C ” d e f in e d  b y  e v a lu a t io n  o f  a  ( fo r m a l)  c o m p le x  p o ly n o m ia l  

f ( x \ , . . . ,  X n ) . P r o v e  th a t  i f  J  is  th e  z e r o  fu n c t io n , th e n  f  is  th e  z e r o  p o ly n o m ia l .

3.2. I t  m ig h t  b e  c o n v e n ie n t  t o  v e r ify  a n  id e n t ity  o n ly  f o r  th e  r e a l n u m b e r s . W o u ld  th is  

su ff ic e ?

3 .3 .  L e t  A  a n d  B b e  m X m a n d  n X n  R -m a tr ic e s , r e s p e c t iv e ly .  U s e  p e r m a n e n c e  o f  id e n t i t ie s  
to  p r o v e  th a t  t r a c e  o f  t h e  l in e a r  o p e r a t o r  f ( M )  =  AMB  o n  th e  sp a c e  R m xn is  th e  p r o d u c t  
( tr a c e  A)  ( t r a c e  B ) .

3 .4 . In  e a c h  c a s e , d e c id e  w h e th e r  o r  n o t p e r m a n e n c e  o f  id e n t it ie s  a l lo w s  th e  r e s u lt  t o  b e  
c a r r ie d  o v e r  fr o m  th e  c o m p le x  n u m b e r s  to  a n  a rb itra ry  c o m m u ta t iv e  r in g .

( a )  t h e  a s s o c ia t iv e  la w  f o r  m a tr ix  m u lt ip l ic a t io n ,

(b )  th e  C a y le y -H a m ilto n  T h e o r e m ,

Section 1 Modules
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(c) Cramer’s Rule,
(d) the product rule, quotient rule, and chain rule for differentiation of polynomials,
(e) the fact that a polynomial of degree n has at most n roots,
(f) Taylor expansion of a polynomial.

3 r '4 7 2
-1 2 _ 5 _ 1 4 n >

S e c t io n  4  D ia g o n a l iz in g  I n t e g e r  M a tr ic e s

4 .1 . (a )  Reduce each matrix to diagonal form by integer row and column operations.
3 1 - 4 '
2 -3 1

-4 6 -2
( b )  For the first matrix, let V =  7/.,2 and let L = A V. Draw the sublattice L, and find 

bases of V and L that exhibit the diagonalization.
( c )  Determine integer matrices Q— and P that diagonalize the second matrix.

4 .2 . Let db  di, . . .  be the integers referred to in Theorem 14.4.6. Prove that di is the greatest 
common divisor of the entries a ,j of A.

4 .3 . Determine all integer solutions to the system of equations AX = 0, when 
'4  7 2'

A  =  .2 4 6 
has a solution.

Find a basis for the space of integer column vectors B such that AX = B

4 .4 . Find a basis for the 7/.,-module of integer solutions of the system of equations 
x + 2y + 3 z =  0, x  +  4y + 9 z =  0.

4 .5 . Let a , fJ, y be complex numbers. Under what conditions is the set of integer linear 
combinations {£a +  mfJ + ny | £, m, n,  e 7/.,} a lattice in the complex plane?

4 .6 . Let qJ be a homomorphism given by multiplication by an integer matrix A.
Show that the image of qJ is of finite index if and only if A is nonsingular and that if so, 
then the index is equal to |detA|.

4 .7 . Let A = (ai, . . . ,  an)1 be an integer column vector, and let d  be the greatest common 
divisor of a\, . . . ,  an. Prove that there is a matrix P e G L n (7/.,) such that PA = 
(d, 0, . . . ,  O)t.

4 .8 . Use invertible row and column operations inthe ring 7/.,[i] ofGauss integers to diagonalize
3 2+rthe matrix 2 -  i

4 .9 . Use diagonalization to prove that if L C M  are lattices, then [M: L] =
A(L)  
A (A/)'

Section 5 Generators and Relations
5 .1 . Let R =  7/.,[c5], where =  ^ ^ .  Determine a presentation matrix as R-module for the 

ideal (2, 1 + c5).
"3 1 2 '

5.2. Identify the abelian group presented by the matrix 1 1 1
2 3 6



Exercises 439

6 .1 . L e t  V  C C n b e  th e  lo c u s  o f  c o m m o n  z e r o s  o f  a n  in f in ite  se t  o f  p o ly n o m ia ls  f ,  fa, 1 3 ,____
P r o v e  th a t  t h e r e  is  a  f in ite  s u b s e t  o f  t h e s e  p o ly n o m ia ls  w h o s e  z e r o s  d e f in e  th e  s a m e  lo c u s .

6 .2 .  F in d  a n  e x a m p le  o f  a  r in g  R  a n d  a n  id e a l I  o f  R th a t  is  n o t  f in it e ly  g e n e r a te d .

S e c t io n  7  S tr u c tu r e  o f  A b e l ia n  G r o u p s

7 .1 . F in d  a  d ir e c t  su m  o f  c y c l ic  g r o u p s  is o m o r p h ic  to  th e  a b e lia n  g ro u p  p r e s e n te d  b y  th e  m a tr ix  

2 2 2

Section 6 Noetherian Rings

7 .2 . W r ite  th e  a b e lia n  g r o u p  g e n e r a te d  b y  x  a n d  y ,  w ith  th e  r e la t io n  3 x  +  4 y  =  0  as a  d ir e c t  
su m  o f  c y c l ic  g r o u p s .

7 .3 . F in d  a n  is o m o r p h ic  d ir e c t  p r o d u c t  o f  c y c l ic  g r o u p s , w h e n  V  is th e  a b e lia n  g r o u p  g e n e r a te d  
b y  x ,  y, z, w ith  th e  g iv e n  r e la t io n s .

( a )  3 x  +  2 y  +  8z  =  0 , 2x +  4z = 0

(b )  x  +  y  =  0 , 2 x  =  0 , 4 x  +  2  z  =  0 , 4 x  +  2  y  +  2 z  =  0

( c )  2x  +  y  =  0, x  -  y  +  3 z  =  0

(d ) 7 x  +  5 y  +  2 z  =  0 ,  3 x  +  3 y  =  0, 1 3 x  +  l l y  +  2 z  =  0

7 .4 . In  e a c h  c a s e ,  id e n t ify  th e  a b e lia n  g r o u p  th a t  h as th e  g iv e n  p r e s e n ta t io n  m a tr ix :

' 2' ' 0'
1 ’ 5_

[2 0 0 ] , 2 3 2  4 2  4 4  6

1
<N , J ’ 1 i

’ 1

SO1 ’ 2  3

7 .5 . D e t e r m in e  th e  n u m b e r  o f  is o m o r p h is m  c la s s e s  o f  a b e l ia n  g r o u p s  o f  o r d e r  4 0 0 .

7 .6 .  ( a ) L e t  a  a n d  b  b e  r e la t iv e ly  p r im e  p o s it iv e  in te g e r s . B y  m a n ip u la t in g  th e  d ia g o n a l  m a tr ix
w ith  d ia g o n a l e n tr ie s  a  a n d  b,  p r o v e  th a t  th e  c y c l ic  g r o u p  Cab is  i s o m o r p h ic  t o  th e  
p r o d u c t  Ca EB Cb.

(b )  W h a t c a n  y o u  sa y  i f  th e  a s s u m p t io n  th a t a a n d  b  a r e  r e la t iv e ly  p r im e  is d r o p p e d ?

7 .7 . L e t  R  =  Z [ i]  a n d  le t  V  b e  t h e  R - m o d u le  g e n e r a te d  b y  e le m e n t s  a n d  1¾ w it h  r e la t io n s  
(1 +  i ) v i  +  ( 2  — i ) i >2 =  0 , 3 u i +  5i v 2 =  0 . W r ite  th is  m o d u le  a s  a  d ir e c t  s u m  o f  c y c l ic  
m o d u le s .

7 .8 . L e t  F  =  Fp. F o r  w h ic h  p r im e  in te g e r s  p  d o e s  th e  a d d it iv e  g r o u p  F 1 h a v e  a  s tr u c tu r e  o f  

Z [ i] -m o d u le ?  H o w  a b o u t  F 2?

7 .9 . S h o w  that th e  fo l lo w in g  c o n c e p t s  a r e  e q u iv a le n t:

•  R - m o d u le ,  w h e r e  R  =  Z [ i ] ,

•  a b e lia n  g r o u p  V , w ith  a  h o m o m o r p h is m  cp: V -+ V su c h  th a t  cp a cp =  -identity.

S e c t io n  8 A p p l ic a t io n  to  L in e a r  O p e r a to r s
2

8 .1 . L e t  T b e  th e  l in e a r  o p e r a to r  o n  C 2 w h o s e  m a tr ix  is I ;   ̂ . I  s th e  c o r r e s p o n d in g  

< C [/]-m o d u le  c y c lic ?
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8 .2 . L e t  M  b e  a C [ t ] -m o d u le  th e  fo r m  C [ t ] /  (t  -  a ) n. S h o w  th a t  t h e r e  is  a  C -b a s is  fo r  M ,  s u c h  
th a t  t h e  m a tr ix  o f  t h e  c o r r e s p o n d in g  lin e a r  o p e r a to r  is  a J o r d a n  b lo c k .

8 .3 . L e t  R  =  F [ x ]  b e  th e  p o ly n o m ia l  r in g  in  o n e  v a r ia b le  o v e r  a f ie ld  F ,  a n d  le t  V  b e  th e  
R -m o d u le  g e n e r a te d  b y  an  e le m e n t  v  th a t  s a t is f ie s  th e  r e la t io n  (r3 +  3 1 +  2 ) v  =  O. C h o o s e  
a  b a s is  fo r  V  as F - v e c t o r  s p a c e , a n d  d e te r m in e  t h e  m a tr ix  o f  t h e  o p e r a t o r  o f  m u lt ip l ic a t io n  
b y  t w ith  r e s p e c t  to  th is  b a s is .

8 .4 . L e t  V  b e  a n  F [ t ] - m o d u le ,  a n d  l e t  B  =  (vi, . . .  , v n ) b e  a b a s is  f o r  V  a s  F - v e c t o r  sp a c e .  
L e t  B  b e  th e  m a tr ix  o f  T  w ith  r e s p e c t  t o  th is  b a s is . P r o v e  th a t  A  =  t l  — B  is  a  p r e s e n ta t io n  
m a tr ix  fo r  th e  m o d u le .

8 .5 . P r o v e  th a t  th e  c h a r a c te r is t ic  p o ly n o m ia l  o f  th e  m a tr ix  (1 4 .8 .1 0 )  is  J ( t ) .

8.6. C la s s ify  f in ite ly  g e n e r a t e d  m o d u le s  o v e r  th e  r in g  C [e ] ,  w h e r e  e 2 =  O.

S e c t io n  9  P o ly n o m ia l  R in g s  in  S e v e r a l V a r ia b le s

9 .1 . D e t e r m in e  w h e th e r  or  n o t  t h e  m o d u le s  o v e r  C [ x ,  y ]  p r e s e n te d  b y  t h e  f o l lo w in g  m a tr ic e s  
a re  fr e e .

(a) x 2  +  1  x
x 2y  +  x  +  y  x y  +  1

_ x y  -  1
, ( b ) x 2 — y 2 , ( c )

y

x  — 1 X
y  y  +  i
x y

x 2 2y

9 .2 . P r o v e  th a t  th e  m o d u le  p r e s e n te d  b y  (1 4 .9 .2 )  is f r e e  b y  e x h ib it in g  a  b a s is .

9 .3 .  F o llo w in g  t h e  m o d e l  o f  t h e  p o ly n o m ia l  r in g  in  o n e  v a r ia b le , d e s c r ib e  m o d u le s  o v e r  th e  
r in g  C [ x ,  y ]  in  te r m s  o f  c o m p le x  v e c to r  s p a c e s  w ith  a d d it io n a l  s tr u c tu r e .

9 .4 . P r o v e  th e  e a sy  h a l f  o f  t h e  t h e o r e m  o f  Q u il le n  a n d  S u slin : I f  V  is  f r e e ,  th e n  th e  ran k  o f  
A ( c )  is  c o n s ta n t .

2
9 .5 . L e t  R  =  Z[^.J=5], a n d  le t  V  b e  t h e  m o d u le  p r e s e n te d  b y  t h e  m a tr ix  A  =

1 +  5
. P r o v e

th a t  t h e  r e s id u e  o f  A  in  R / P  h a s  ra n k  1 fo r  e v e r y  p r im e  id e a l  P  o f  R, b u t  th a t  V  is  n o t  a  
f r e e  m o d u le .

M is c e l la n e o u s  P r o b le m s

M . l .  In  h o w  m a n y  w a y s  c a n  t h e  a d d it iv e  g r o u p  Z / 5 Z  b e  g iv e n  t h e  s tr u c tu r e  o f  a  m o d u le  o v e r  
t h e  G a u ss  in te g e r s?

M .2 . C la s s ify  f in ite ly  g e n e r a te d  m o d u le s  o v e r  t h e  r in g  Z / ( 6) .

M .3 . L e t  A  b e  a  f in ite  a b e lia n  g r o u p , a n d  le t  cp :A  ^  C x b e  a  h o m o m o r p h is m  th a t  is  n o t  th e
tr iv ia l h o m o m o r p h is m . P r o v e  th a t  cp(a) =  O.

M .4 . W h e n  a n  in te g e r  2  X 2  m a tr ix  A  is  d ia g o n a liz e d  b y  Q -1 AP,  h o w  u n iq u e  a r e  th e  m a tr ic e s
P  a n d  Q ?

M .S . W h ic h  m a tr ic e s  A in  G L 2 (JR) s ta b i l iz e  s o m e  la t t ic e  L in  1
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M .6. ( a )  Describe the orbits of right multiplication by G =  G L 2 (Z) on the space of 2 X 2 
integer matrices.

( b )  Show that for any integer matrix A, there is an invertible integer matrix P  such that 
A P  has the following Hermitian normal form:

dx 0 0 0
a2 di 0 0
«3 bi d3 0

where the entries are nonnegative, «2 <  d2, «3, £3 < d3, etc.
M .7 . Let S  be a subring of the polynomial ring R =  C[r] that contains C and is not equal to C.

Prove that R is a finitely generated S-module.
* M .8. ( a )  Let a  be a complex number, and let Z[a] be the subring of C generated by a. Prove 

that a  is an algebraic integer if and only if Z[a] is a finitely generated abelian group.
(b ) Prove that if a  and fJ are algebraic integers, then the subring Z[a, fJ] o f  C that they 

generate is a finitely generated abelian group.
( c )  Prove that the algebraic integers form a subring of C.

* M .9 . Consider the Euclidean space JR*, with dot product (v ■ w ) .  A  lattice L  in V is a
discrete subgroup of V+ that contains k  independent vectors. If L  is a lattice, define
L * =  (w  | (v • w) e Z for all v e L}.

( a )  Show that L has a lattice basis B  = (vi, . . . ,  Vk), a set of k vectors that spans L as 
Z-module.

(b )  Show that L * is a lattice, and describe how one can determine a lattice basis for L * 
i n  terms of B .

( c )  Under what conditions is L a  sublattice of L  * ?
(d )  Suppose that L  C  L *. Find a formula for the index [L  * : L].

* M .1 0 . ( a )  Prove that the multiplicative group Q x of rational numbers is isomorphic to the 
direct sum of a cyclic group of order 2 and a free abelian group with countably many 
generators.

(b )  Prove that the additive group IQ+ of rational numbers is not a direct sum of two 
proper subgroups.

( c )  Prove that the quotient group IQ+ /Z+ is not a direct sum of cyclic groups.



C H A P T E R  1 5

Fields

Our difficulty is not in the proofs, but in learning what to prove.

— Em il A rtin

1 5 .1  E X A M P L E S  O F  FIEL D S

M u c h  o f  t h e  t h e o r y  o f  f i e ld s  h a s  t o  d o  w i t h  a  p a ir  F C K  o f  f ie ld s ,  o n e  c o n t a in e d  in  t h e  o t h e r .  

G i v e n  s u c h  a  p a ir ,  K  i s  c a l l e d  a  field extension o f  F ,  o r  a n  extension field. T h e  n o t a t i o n  K  /  F  
w ill  in d ic a t e  th a t  K  is  a  f ie ld  e x t e n s i o n  o f  F .

H e r e  a r e  th e  t h r e e  m o s t  im p o r ta n t  c la s s e s  o f  f ie ld s .

N u m b e r  F ie ld s

A  n u m b e r  f i e ld  K  is  a  s u b f ie ld  o f  C .

A n y  s u b f ie ld  o f  C  c o n ta in s '  t h e  f ie ld  Q  o f  r a t io n a l  n u m b e r s ,  s o  it  i s  a  f ie ld  e x t e n s i o n  o f  Q .  T h e  

n u m b e r  f ie ld s  m o s t  c o m m o n ly  s t u d ie d  a r e  algebraic number fields, a ll  o f  w h o s e  e l e m e n t s  a r e  

a lg e b r a ic  n u m b e r s .  W e  s t u d ie d  q u a d r a t ic  n u m b e r  f i e ld s  in  C h a p t e r  13 .

F in i t e  F ie ld s

A  f in i t e  f ie ld  is  a  f ie ld  t h a t  c o n t a in s  f in i t e ly  m a n y  e l e m e n t s .

A  f in i t e  f ie ld  c o n t a i n s  o n e  o f  t h e  p r im e  f ie ld s  IFp, a n d  t h e r e f o r e  it  is  a n  e x t e n s i o n  o f  t h a t  f ie ld .  

F in i t e  f ie ld s  a r e  d e s c r ib e d  in  S e c t io n  1 5 .7 .

F u n c t i o n  F ie ld s

E x t e n s io n s  o f  t h e  f i e ld  F  =  C ( t )  o f  r a t io n a l  f u n c t io n s  a r e  c a l l e d  f u n c t io n  f ie ld s .

A  f u n c t io n  f ie ld  c a n  b e  d e f in e d  b y  a n  e q u a t io n  f ( t ,  x )  =  0 ,  w h e r e  f  is  a n  i r r e d u c ib le  c o m p l e x  
p o ly n o m ia l  in  t h e  v a r ia b le s  t  a n d  x ,  s u c h  a s  f ( t ,  x )  =  x 2 -  t3 +  t , f o r  e x a m p le .  W e  m a y  u s e  

t h e  e q u a t io n  f ( t ,  x )  =  0 t o  d e f in e  x  “ im p l ic i t ly ”  a s  a  f u n c t io n  x ( t )  o f  t, a s  w e  l e a r n  t o  d o  in  

c a lc u lu s .  I n  o u r  e x a m p le ,  th is  f u n c t io n  is  x ( t )  =  y  f3 -  t. T h e  c o r r e s p o n d in g  f u n c t io n  f ie ld  

K  c o n s i s t s  o f  t h e  c o m b in a t io n s  p  +  w h e r e  p  a n d  q  a r e  r a t io n a l  f u n c t io n s  in  t . O n e

442



Section 15.2 Algebraic and Transcendental Elements 443

can work in this field just as one would in a field such as Q(^(J-3). For most polynomials 
f ( t , x ), there won’t be an explicit expression for the implicitly defined function x(t), but 
by definition, it satisfies the equation f ( t ,  x(/)) =  O. We will see in Section 15.9 that x (t) 
d efines an extension field of F.

1 5 . 2  A L G E B R A IC  A N D  T R A N S C E N D E N T A L  E L E M E N T S

Let K be an extension of a field F, and let ex be an element of K. By analogy with the 
definition of algebraic numbers (11.1), ex is algebraic over F  if it is a root of a monic 
polynomi al with coefficients in F, say

(15.2.1) f ( x  ) =  xn + a„_ ix"-1 +----+ Cl{), wi th a; in F,

and /(ex) =  O. An element is transcendental over F  i f  it is not algebraic over F  -  if it is not a 
root of any such polynomial.

These properties, algebraic and transcendental, depend on F. The complex number 
27r i  is algebraic over the field of real numbers but transcendental over the field of rational 
numbers. Every element ex of a field K  is algebraic over K, because it is the root of the 
polynomial x  — ex, which has coefficients in K.

The two possibilities for ex can be described in terms of the substitution homomorphism

(15.2.2) p :F [x ] -+ K, defined by x""ex.

A n element ex is transcendental over F  if <p is injective, and algebraic over F  if p  is not 
injective, that is, if the kernel of p  is not zero. We won’t have much to say about the case 
that a  is transcendental.

Suppose that a  is algebraic over F. Since F[x] is a principal ideal domain, the kernel 
of p  is a principal ideal, generated by a monic polynomial / (x )  with coefficien ts in F . This 
polynomial can be described in various ways.

P r o p o s i t io n  15.2.3 Let a  be an element of an extension field K  of a field F  that is 
algebraic over F. The following conditions on a monic polynomial /  with coefficients in 
F  are equivalent. The unique monic polyn omial that satisfies these conditions is called the 
irreducible polynomial for  ex over F  .

• f  is the monic polynomial of lowest degree in F[x] that has ex as a root.
• /  is an irreducible element of F[x], and ex is a root of f .
• j  has coefficients in F , ex is a root of j ,  and the principal ideal of F[x] that is 

generated by j  is a maximal ideal.
• ex is a root of f ,  and if g  is any polynomial in F[x] that has ex as a root, then f  

divides g. □

The degree of the irreducible polynomial for ex over F  is called the degree o f  ex over F.

It is important to keep in mind that the irreducible polynomial f  depends on F  as 
well as on ex, because irreducibility of a polynomial depends on the field. The irreducible



444 Chapter 15 Fields

p o ly n o m ia l  f o r  o v e r  Q  i s  x 4 +  1, b u t  t h is  p o ly n o m ia l  f a c to r s  in  t h e  f ie ld  Q ( i ) .  T h e  

ir r e d u c ib le  p o ly n o m ia l  f o r  o v e r  Q ( i )  is  x 2 — i .  W h e n  t h e r e  a r e  s e v e r a l  f i e ld s  a r o u n d ,  it  is  

a m b ig u o u s  t o  s a y  th a t  a  p o ly n o m ia l  is  ir r e d u c ib le .  I t  is  b e t t e r  t o  s a y  th a t  f  is  i r r e d u c ib le  o v e r  

F ,  o r  th a t  it  is  a n  ir r e d u c ib le  e le m e n t  o f  F [ x ] .

L e t  K  b e  a n  e x t e n s io n  f ie ld  o f  F .  T h e  s u b f ie ld  o f  K  g e n e r a t e d  b y  a n  e l e m e n t  a  o f  K  

w ill  b e  d e n o t e d  b y  F ( a ) :

( 1 5 .2 .4 )  F ( a )  is  t h e  s m a l le s t  s u b f ie ld  o f  K  t h a t  c o n t a in s  F  a n d  a.

S im ila r ly ,  i f  a \ ,  . . . ,  a k a r e  e l e m e n t s  o f a n  e x t e n s i o n  f ie ld  K  o f  F , t h e  n o t a t io n  F ( a } , . . . ,  a ^ )  

w il l  s t a n d  f o r  th e  s m a l le s t  s u b f ie ld  o f  K  th a t  c o n t a in s  t h e s e  e l e m e n t s  a n d  F .

A s  in  C h a p te r  1 1 , w e  d e n o t e  th e  r in g  g e n e r a t e d  b y  a  o v e r  F  b y  F [ a ] . It is  th e  im a g e  

o f  t h e  m a p  cp: F [ x ]  —> K  d e f in e d  a b o v e ,  a n d  it c o n s i s t s  o f  t h e  e l e m e n t s  o f  K  th a t  c a n  b e  

e x p r e s s e d  a s  p o ly n o m ia l s  in  a  w it h  c o e f f ic ie n t s  in  F :

( 1 5 .2 .5 )  =  b n a n + -------+ b i a  +  b o ,  bi in  F .

T h e  f ie ld  F ( a )  is  i s o m o r p h ic  t o  th e  f ie ld  o f  f r a c t io n s  o f  F [ a ] .  I t s  e l e m e n t s  a r e  r a t io s  o f  

e l e m e n t s  o f  th e  f o r m  ( 1 5 .2 .5 )  ( s e e  S e c t io n  1 1 .7 ) .

S im ila r ly ,  i f  a i ,  . . . ,  a ^  a r e  e l e m e n t s  o f  K ,  t h e  s m a l le s t  s u b r in g  o f  K  t h a t  c o n t a in s  F  

a n d  t h e s e  e l e m e n t s  is  d e n o t e d  b y  F  [ a i , . . . , a ^ ] .  It c o n s i s t s  o f  th e  e l e m e n t s  o f  K  t h a t  c a n  

b e  e x p r e s s e d  a s  p o l y n o m i a l s  in  t h e  a ,• w i t h  c o e f f i c ie n t s  in  F .  T h e  f ie ld  F ( a  1, . . . ,  ak) is  t h e  

f ie ld  o f  f r a c t io n s  o f  t h e  r in g  F  [ a i ,  . . . ,  a * ] .

I f a n e l e m e n t  a  o f  F  is  t r a n s c e n d e n t a l  o v e r  F ,  t h e  m a p  F [ x ]  - »  F [ a ]  i s a n i s o m o r p h i s m .  
In  t h a t  c a s e  F ( a )  is  i s o m o r p h ic  t o  t h e  f i e ld  F ( x )  o f  r a t io n a l  f u n c t io n s .  T h e  f ie ld  e x t e n s i o n s ,  
F ( a )  a r e  i s o m o r p h ic  fo r  a ll  t r a n s c e n d e n t a l  e l e m e n t s  a .

T h in g s  a r e  d i f f e r e n t  w h e n  a  i s  a lg e b r a ic :

P r o p o s i t i o n  1 5 .2 .6  L e t  a  b e  a n  e l e m e n t  o f  a n  e x t e n s i o n  f ie ld  K /  F  w h ic h  is  a lg e b r a ic  o v e r  

F ,  a n d  l e t  f  b e  t h e  i r r e d u c ib le  p o ly n o m ia l  f o r  a  o v e r  F .

( a )  T h e  c a n o n i c a l  m a p  F [ x ] / ( f )  -»• F [ a ]  is  a n  i s o m o r p h is m ,  a n d  F [ a ]  is  a  f ie ld .  T h u s  

F [ a ]  =  F ( a ) .

( b )  M o r e  g e n e r a l ly ,  l e t  a j ,  . . . ,  a ^  b e  e l e m e n t s  o f  a n  e x t e n s i o n  f ie ld  K /  F ,  w h ic h  a r e  

a lg e b r a ic  o v e r  F .  T h e  r in g  F [ a j ,  . . . ,  a ^ j  is  e q u a l  t o  t h e  f ie ld  F ( a j ,  . . .  , a * ) .

P r o o f  ( a )  L e t  cp : F [ x ]  —► K  b e  t h e  m a p  ( 1 5 .2 .2 ) .  S in c e  t h e  id e a l  ( f )  is  m a x im a l ,  f ( x )  

g e n e r a t e s  t h e  k e r n e l ,  a n d  F [ x ] / ( f )  is  i s o m o r p h ic  t o  th e  im a g e  o f  cp, w h ic h  is  F [ a ] .  

M o r e o v e r ,  F [ x ] / ( f )  i s  a  f ie ld ,  a n d  t h e r e f o r e  F [ a ]  i s  a  f ie ld .  S in c e  F ( a )  i s  t h e  f r a c t io n  f ie ld  

o f  F [ a ] ,  it is  e q u a l  t o  F [ a ] .

( b )  T h is  f o l lo w s  b y  in d u c t io n :

F [ a i ,  . . . ,  a k ]  =  F [ a i ,  . . . ,  a k_ i ]  [ a k ]  =  F ( a i , . . .  , a * _ i )  [ a d  =  F ( a i ,  . . . ,  a n ) .  □  

T h e  n e x t  p r o p o s i t i o n  is  a  s p e c ia l  c a s e  o f  P r o p o s i t io n  1 1 .5 .5 .

P r o p o s i t io n  1 5 .2 .7  L e t  a  b e  a n  a lg e b r a ic  e l e m e n t  o v e r  F ,  a n d  le t  f ( x )  b e  t h e  ir r e d u c ib le  

p o ly n o m ia l  f o r  a  o v e r  F .  I f  f ( x )  h a s  d e g r e e  n ,  i .e . ,  i f  a  h a s  d e g r e e  n  o v e r  F ,  t h e n  

( 1 ,  a ,  . . . ,  a n - i )  is  a  b a s is  f o r  F ( a )  a s  a  v e c t o r  s p a c e  o v e r  F . -  □
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F o r  in s t a n c e ,  t h e  i r r e d u c ib le  p o ly n o m ia l  f o r  w  =  e 27f'/3 o v e r  Q  is  x 2 +  x  +  1 . T h e  d e g r e e  o f  

w  o v e r  Q  is  2 ,  a n d  ( 1 ,  w )  is  a  b a s i s  f o r  Q ( w )  o v e r  Q .

I t  m a y  n o t  b e  e a s y  t o  t e l l  w h e t h e r  t w o  a lg e b r a ic  e l e m e n t s  a  a n d  fJ g e n e r a t e  i s o m o r p h ic  

f ie ld  e x t e n s i o n s , t h o u g h  P r o p o s i t io n  1 5 .2 .7  p r o v id e s  a  necessary c o n d i t io n :  T h e y  m u s t  h a v e  

t h e  s a m e  d e g r e e  o v e r  F ,  b e c a u s e  t h e  d e g r e e  o f  a  o v e r  F  i s  t h e  d im e n s io n  o f  F ( a )  a s  a n  

F - v e c t o r  s p a c e .  T h i s  is  o b v io u s ly  n o t  a  s u f f i c e  n t  c o n d i t io n .  A l l  o f  t h e  im a g in a r y  q u a d r a t ic  

f ie ld s  s t u d ie d  in  C h a p te r  13  a r e  o b t a in e d  b y  a d j o in in g  e l e m e n t s  o f  d e g r e e  2  o v e r  Q ,  b u t  t h e y  

a r e n ’t i s o m o r p h ic .

O n  t h e  o t h e r  h a n d , i f  a  is  a  c o m p l e x  r o o t  o f  x 3 — x  +  1, t h e n  fJ =  a  +  1 is  a  r o o t  o f  

x 3 -  3 x 2 +  2 x  +  1. T h e  f i e ld s  Q ( a )  a n d  Q ( fJ )  a r e  t h e  s a m e .  I f  w e  w e r e  p r e s e n t e d  o n ly  w it h  

t h e  t w o  p o ly n o m ia l s ,  i t  m ig h t  ta k e  s o m e  t im e  t o  n o t i c e  h o w  t h e y  a r e  r e la t e d .

W h a t  w e  c a n  d e s c r ib e  e a s i ly  a r e  t h e  c ir c u m s t a n c e s .u n d e r  w h ic h  t h e r e  i s  a n  i s o m o r p h i s m  

F ( a ) - - F ( f J )  th a t  f ix e s  F  a n d  s e n d s  a  t o  fJ. T h e  n e x t  p r o p o s i t i o n , t h o u g h  v e r y  s im p le ,  is  

f u n d a m e n t a l  t o  o u r  u n d e r s t a n d in g  o f  f ie ld  e x t e n s io n s .

P r o p o s i t io n  1 5 .2 .8  L e t  F  b e  a  f i e ld , a n d  le t  a  a n d  fJ b e  e l e m e n t s  o f  f ie ld  e x t e n s i o n s  K /  F  

a n d  L /  F. S u p p o s e  th a t  a  a n d  fJ a re  a lg e b r a ic  o v e r  F .  T h e r e  is  an  i s o m o r p h i s m  o f  f i e ld s  

a :  F ( a ) - -  F ( f J )  t h a t  is  t h e  id e n t i t y  o n  F  a n d  t h a t  s e n d s  a  . .  fJ i f  a n d  o n ly  i f  t h e  i r r e d u c ib le  
p o ly n o m ia l s  f o r  a  a n d  fJ o v e r  F  a r e  e q u a l .

Proof. S in c e  a  is a lg e b r a ic  o v e r  F, F[a]  =  F ( a ) ,  a n d  s im i la r ly ,  F [ f J ]  =  F ( f J ) .  S u p p o s e  th a t  
t h e  i r r e d u c ib le  p o ly n o m ia l s  f o r  a  a n d  f o r  fJ o v e r  F  are  b o t h  e q u a l  t o  f .  P r o p o s i t io n  1 5 .2 .6  

t e l l s  u s  t h a t  t h e r e  a r e  i s o m o r p h is m s

F [ x ] / ( f )  - -  F [ a ]  a n d  F [ x ] / ( f )  - -  F [fJ 1 .

T h e  c o m p o s e d  m a p  a  =  l/fcp~J is  t h e  r e q u ir e d  i s o m o r p h is m  F ( a )  - -  F ( f J ) .  C o n v e r s e ly ,  i f  

t h e r e  is  a n  i s o m o r p h is m  a  th a t  is  t h e  i d e n t i t y  o n  F  a n d  th a t  s e n d s  a  t o  fJ, a n d  i f  f ( x )  i s  a  

p o ly n o m ia l  w ith  c o e f f i c ie n t s  in  F  su c h  th a t  f ( a )  =  0, t h e n  f ( f J )  =  0  t o o .  ( S e e  P r o p o s i t io n  

1 5 .2 .1 0  b e l o w . )  S o  t h e  i r r e d u c ib le  p o ly n o m ia ls  f o r  t h e  t w o  e le m e n t s  a r e  e q u a l .  □

F o r  in s t a n c e ,  le t  a i  d e n  o t e  t h e  r e a l  c u b e  r o o t  o f  2 , a n d  l e t  w  =  e21r'/3 b e  a  c o m p le x  

c u b e  r o o t  o f  1. T h e  t h r e e  c o m p l e x  r o o t s  o f  x 3  — 2  a r e  a I ,  a 2 =  <wa a n d  a 3 =  W2a .  T h e r e f o r e  

t h e r e  is  a n  i s o m o r p h i s m  Q ( a j )  - -  Q ( a i )  th a t  s e n d s  a i  t o  a 2. In  t h i s  c a s e  t h e  e l e m e n t s  o f  

Q ( a O  a r e  r e a l  n u m b e r s ,  b u t  a 2 is  n o t  a  r e a l  n u m b e r .  T o  u n d e r s t a n d  t h is  i s o m o r p h i s m ,  w e  

m u s t  lo o k  o n ly  a t  t h e  in te r n a l  a lg e b r a ic  s t r u c t u r e  o f  t h e  f ie ld s .

D e f i n i t i o n  1 5 .2 .9  L e t  K  a n d  K '  b e  e x t e n s i o n s  o f  t h e  s a m e  f ie ld  F. A n  i s o m o r p h is m  

cp: K  - -  K '  t h a t  r e s t r ic t s  t o  t h e  id e n t i t y  o n  t h e  s u b f ie ld  F  is  c a l l e d  ' a n  F-isomorphism, o r  a n  

isomorphism offield extensions. I f  t h e r e  e x is t s  a n  F - i s o m o r p h i s m  cp: K  - -  K ,  K  a n d  K '  a r e  

isomorphic e x t e n s i o n  f i e ld s .

T h e  n e x t  p r o p o s i t i o n  w a s  p r o v e d  f o r  c o m p l e x  c o n j  u g a t io n  b e f o r e  ( 1 2 .2 .1 9 ) .

P r o p o s i t io n  1 5 .2 .1 0  L e t  cp: K  - -  K ’ b e  a n  i s o m o r p h is m  o f  f ie ld  e x t e n s i o n s  o f  F ,  a n d  l e t  f  
b e  a  p o l y n o m i a l  w ith  c o e f f i c ie n t s  in F .  L e t  a  b e  a  r o o t  o f  f  in  K , a n d  le t  a '  =  c p ( a )  b e  it s  

im a g e  in  K ' .  T h e n  a '  is  a l s o  a  r o o t  o f  f .



P r o o f  S a y  th a t  f ( x )  =  +  • • +  a ]_x  +  a o .  S in c e  q; i s  a n  F - i s o m o r p h i s m  a n d  s in c e  a ,

a re  in  F ,  q ; ( a , )  =  a,-. S in c e  q; is  a  h o m o m o r p h is m ,

0  =  q;(O ) =  q ; ( f ( a )  )  =  q ; ( a n a ” +--------- + a i a  +  a o )

=  q ; ( a n ) q ; ( a ) ” + -------+ q ; ( a i ) q ; ( a )  +  q ; ( a o )  =  a n a ' ” + -------+ a i a '  +  a o .

T h e r e f o r e  a '  is  a  r o o t  o f  f .  □

1 5 .3  TH E  D EG R E E O F  A  FIELD E X T E N S IO N

A  f ie ld  e x t e n s io n  K  o f  F  c a n  a lw a y s  b e  r e g a r d e d  a s  a n  F - v e c t o r  s p a c e .  A d d i t i o n  is  t h e  

a d d i t io n  la w  in  K ,  a n d  s c a la r  m u l t ip l i c a t io n  o f  a n  e l e m e n t  o f  K  b y  a n  e l e m e n t  o f  F  is

o b t a in e d  b y  m u l t ip ly in g  t h e s e  t w o  e l e m e n t s  in  K .  T h e  d im e n s io n  o f  K ,  w h e n  r e g a r d e d  a s  a n

F - v e c t o r  s p a c e ,  is  c a l l e d  t h e  d e g r e e  o f  t h e  f ie ld  e x t e n s io n .  T h is  d e g r e e ,  w h ic h  is  d e n o t e d  b y  

[ K :  F ] ,  is  a  b a s ic  p r o p e r t y  o f  a  f ie ld  e x t e n s io n .

( 1 5 .3 .1 )  [ K : F ]  i s  t h e  d im e n s io n  o f  K ,  a s  a n  F - v e c t o r  s p a c e .

F o r  e x a m p le ,  C  h a s  th e  lR -b a s is  ( 1 ,  i ) ,  s o  th e  d e g r e e  [C  :lR] is  2 .

A  f ie ld  e x t e n s i o n  K /  F  is  a  f in i t e  e x t e n s io n  i f  i t s  d e g r e e  is  f in i t e .  E x t e n s i o n s  o f  d e g r e e  2  

a r e  q u a d r a t ic  e x t e n s i o n s ,  t h o s e  o f  d e g r e e  3  a r e  c u b ic  e x t e n s i o n s ,  a n d  s o  o n .

L e m m a  1 5 .3 .2

( a )  A  f ie ld  e x t e n s i o n  K /  F  h a s  d e g r e e  1 i f  a n d  o n ly  i f  F  =  K .

( b )  A n  e l e m e n t  a  o f  a  f ie ld  e x t e n s i o n  K  h a s  d e g r e e  l  o v e r  F  i f  a n d  o n l y  i f  a  is  a n  e l e m e n t  

o f  F .

P r o o f  ( a )  I f  t h e  d im e n s io n  o f  K  a s  v e c t o r  s p a c e  o v e r  F  is  1, a n y  n o n z e r o  e l e m e n t  o f  K ,  
in c lu d in g  1, w i l l  b e  a n  F - b a s i s ,  a n d  i f  1 is  a  b a s i s ,  e v e r y  e l e m e n t  -of K  is  in  F .

( b )  B y  d e f in i t io n ,  t h e  d e g r e e  o f  a  o v e r  F  is  t h e  d e g r e e  o f  t h e  ( m o n i c )  i r r e d u c ib le  p o ly n o m ia l  

f o r  a  o v e r  F .  I f  a  h a s  d e g r e e  1, t h e n  th is  p o ly n o m ia l  m u s t  b e  x  -  a ,  a n d  i f  x  -  a  h a s  

c o e f f i c ie n t s  in  F ,  t h e n  a  is  in  F .  □

P r o p o s i t io n  1 5 .3 .3  A s s u m e  th a t  th e  f ie ld  F  d o e s  n o t  h a v e  c h a r a c t e r is t ic  2, t h a t  is, 1 +  1 0  

in  F .  T h e n  a n y  e x t e n s i o n  K  o f  d e g r e e  2  o v e r  F  c a n  b e  o b t a in e d  b y  a d j o in in g  a  s q u a r e  
r o o t :  K  =  F (  8) , w h e r e  82 =  d  is  a n  e l e m e n t  o f  F .  C o n v e r s e ly ,  i f  8 is  a n  e l e m e n t  o f  a  f ie ld  

e x t e n s i o n  o f  F ,  a n d  i f  82 is  in  F  b u t  8 is  n o t  in  F ,  t h e n  F ( 8)  is  a  q u a d r a t ic  e x t e n s i o n  o f  F .

I t  is  n o t  t r u e  th a t  a l l  c u b ic  e x t e n s io n s  c a n  b e  o b t a in e d  b y  a d j o in in g  a  c u b e  r o o t .  W e  

l e a r n  m o r e  a b o u t  th is  p o in t  in  t h e  n e x t  c h a p t e r  ( s e e  S e c t io n  1 6 .1 1 ) .

P r o o f  W e  f ir s t  s h o w  th a t  e v e r y  q u a d r a t ic  e x t e n s i o n  K  c a n  b e  o b t a in e d  b y  a d jo in in g  a  r o o t  

o f  a  q u a d r a t ic  p o l y n o m i a l  f ( x )  w i t h  c o e f f ic ie n t s  in  F. W e  c h o o s e  a n  e l e m e n t  a  o f  K  t h a t  

is  n o t  in  F .  T h e n  ( 1 ,  a )  is  a  l in e a r ly  i n d e p e n d e n t  s e t  o v e r  F .  S i n c e  K  h a s  d i m e n s i o n  2  a s  a  

v e c t o r  s p a c e  o v e r  F ,  th is  s e t  is  a  b a s is  f o r  K .  It f o l lo w s  th a t  a 2 is  a  l in e a r  c o m b in a t io n  o f
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( 1 ,  a )  w it h  c o e f f i c ie n t s  in  F .  W e  w r it e  th is  l in e a r  c o m b in a t io n  a s  a 2 =  - b a  -  c .  T h e n  a  is  a  

r o o t  o f  / ( x )  =  x 2 +  bx  +  c ,  a n d  s in c e  a  is  n o t  in  F ,  th is  p o ly n o m ia l  is  i r r e d u c ib le  o v e r  F .  

T h is  m u c h  is  a l s o  t r u e  w h e n  t h e  c h a r a c t e r is t ic  is  2 .
T h e  d is c r im in a n t  o f t h e  q u a d r a t ic  p o ly n o m ia l  f  is  D  =  b 2  - 4 c .  In  a  f i e l d o f  c h a r a c t e r i s t i c  

n o t  2 , t h e  q u a d r a t ic  f o r m u la  |  ( - b  +  s o l v e s  t h e  e q u a t io n  x 2 +  bx  +  c  =  O. T h is  i s  p r o v e d  

b y  s u b s t i t u t in g  in t o  t h e  p o ly n o m ia l .  T h e r e  a r e  t w o  c h o i c e s  f o r  t h e  s q u a r e  r o o t ,  l e t  8 b e  o n e  

o f  t h e m . T h e n  8 is  in  K ,  82 is  in  F ,  a n d  b e c a u s e  a  is  in  t h e  f ie ld  F ( 8) ,  8 g e n e r a t e s  K  o v e r  

F .  C o n v e r s e ly ,  i f  82 is  in  F  b u t  8 is  n o t  in  F ,  t h e n  ( 1 ,  8)  w i l l  b e  a n  F - b a s i s  f o r  F ( 8) ,  s o  

[ F ( 8)  : F ]  =  2 . □

T h e  t e r m  d e g r e e  c o m e s  f r o m  th e  c a s e  th a t  K  is  g e n e r a t e d  b y  o n e  a lg e b r a ic  e l e m e n t  a :  

K  =  F ( a ) .  T h is  i s  t h e  f ir s t  im p o r ta n t  p r o p e r t y  o f  t h e  d e g r e e :

P r o p o s i t io n  1 5 .3 .4

( a )  I f  a n  e l e m e n t  a  o f  a n  e x t e n s i o n  f ie ld  is  a lg e b r a ic  o v e r  F ,  t h e  d e g r e e  [ F ( a ) : F ]  o f  F ( a )  

o v e r  F  is  e q u a l  t o  t h e  d e g r e e  o f  a  o v e r  F .

( b )  A n  e l e m e n t  a  o f  a n  e x t e n s i o n  f ie ld  i s  a lg e b r a ic  o v e r  F  i f  a n d  o n ly  i f  t h e  d e g r e e  [ F ( a ) :  F ]  

is  f in it e .

P r o o f .  I f  a  is  a lg e b r a ic  o v e r  F ,  t h e n  b y  d e f in i t io n ,  its d e g r e e  o v e r  F  is  e q u a l  t o  th e  d e g r e e  

o f  it s  i r r e d u c ib le  p o ly n o m ia l  f  o v e r  F .  A n d  i f  f  h a s  d e g r e e  n , t h e n  F ( a )  h a s  t h e  F - b a s i s  
( 1 ,  a ,  . . . , a ” - 1)  ( P r o p o s i t i o n  1 5 .2 .7 ) ,  s o  [ F ( a ) :  F ]  =  n .  I f  a  is  n o t  a lg e b r a ic ,  t h e n  F [ a ]  a n d  

F(a)  h a v e  in f in i t e  d im e n s io n  o v e r  F .  □

T h e  s e c o n d  im p o r ta n t  p r o p e r t y  r e la t e s  d e g r e e s  in  c h a in s  o f  f ie ld  e x t e n s i o n s .

T h e o r e m  1 5 .3 .5  M u lt ip l i c a t iv e  P r o p e r t y  o f  t h e  D e g r e e .  L e t  F  C  K  C  L  b e  f ie ld s .  T h e n  

[ L :  F ]  =  [ L :  K ] [ K :  F ] .  T h e r e f o r e  b o t h  [ L : K ]  a n d  [ K : F ]  d iv id e  [ L : F ] .

P r o o f .  L e t  B  =  ( f i  . . . . ,  fJn )  b e  a  b a s is  f o r  L  a s  a  K - v e c t o r  s p a c e ,  a n d  le t  A  =  ( a i , . . . ,  a m) 
b e  a  b a s is  f o r  K  a s  F - v e c t o r  s p a c e .  S o  [L  : K ]  =  n  a n d  [ K :  F ]  =  m .  T o  p r o v e  th e  t h e o r e m ,  

w e  s h o w  th a t  t h e  s e t  o f  m n  p r o d u c t s  P  =  { a ,f J j }  is  a  b a s i s  o f  L  a s  F - v e c t o r  s p a c e .  T h e  

r e a s o n in g  in  c a s e  o n e  o f  t h e  d e g r e e s  is  in f in i t e  is  s im ila r .

L e t  y  b e  a n  e l e m e n t  o f  L .  S in c e  B  is  a  b a s is  f o r  L  o v e r  K ,  y  c a n  b e  e x p r e s s e d  u n iq u e ly

a s  a  l in e a r  c o m b in a t io n  b f J  i + -------+ b n fJn , w ith  c o e f f ic ie n t s  b j  in  K .  S jn c e  A  is  a  b a s i s  f o r
K  o v e r  F ,  e a c h  b j  c a n  b e  e x p r e s s e d  u n iq u e ly  a s  a  l in e a r  c o m b in a t io n  a i j a i  +  . . .  +  a m y a m , 

w ith  c o e f f ic ie n t s  a , j  in  F .  T h e n  y  =  L i  j  a , j a , f J j .  T h is  s h o w s  th a t  P  s p a n s  L  a s  a n  F - v e c t o r  

s p a c e .  I f  a  l in e a r  c o m b in a t io n  L i  j O i j a i f J j  is  z e r o ,  t h e n  b e c a u s e  B  is  a  b a s i s  f o r  L  a s  

K - v e c t o r  s p a c e ,  t h e  c o e f f ic ie n t  L i  O j a ,  o f  fJ j  is  z e r o  f o r  e v e r y  j .  T h is  b e in g  s o ,  a , j  is  z e r o  

f o r  e v e r y  i  a n d  e v e r y  j  b e c a u s e  A  is  a  b a s i s  f o r  K  o v e r  F .  T h e r e f o r e  P  is  i n d e p e n d e n t ,  a n d  

h e n c e  it  is  a  b a s is  f o r  L  o v e r  F .  □

C o r o l la r y  1 5 .3 .6

( a )  L e t  F  C  K  b e  a  f in i t e  f ie ld  e x t e n s io n  o f  d e g r e e  n ,  a n d  le t  a  b e  a n  e l e m e n t  o f  K .  T h e n  a  

is  a lg e b r a ic  o v e r  F ,  c n d  its d e g r e e  o v e r  F  d iv id e s  n .
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( b )  L e t  F  e  F '  C  L  b e  f ie ld s .  I f  a n  e l e m e n t  a  o f  L  i s  a lg e b r a ic  o v e r  F,  it is  a lg e b r a ic  o v e r  

F ' .  I f  a  h a s  d e g r e e  d  o v e r  F ,  it s  d e g r e e  o v e r  F '  is  a t  m o s t  d .

( c )  A  f ie ld  e x t e n s i o n  K  t h a t  is  g e n e r a t e d  o v e r  F  b y  f in i t e ly  m a n y  a lg e b r a ic  e l e m e n t s  is  a  

f in i t e  e x t e n s io n .  A  f in i t e  e x t e n s i o n  is  g e n e r a t e d  b y  f in i t e ly  m a n y  e l e m e n t s .

(d )  I f  K  is  a n  e x t e n s i o n  f ie ld  o f  F ,  th e  s e t  o f  e l e m e n t s  o f  K  t h a t  a r e  a lg e b r a ic  o v e r  F  is a  

s u b f ie ld  o f  K .

Proof, ( a )  T h e  e l e m e n t  a  g e n e r a t e s  a n  in t e r m e d ia t e  f i e ld  F  C  F(a)  C  K , a n d  t h e  m u l t i 

p l i c a t iv e  p r o p e r t y  s t a t e s  th a t  [ K :  F ]  =  [ K :  F ( a ) ] [ F ( a )  : F ] .  T h e r e f o r e  [ F ( a )  : F ]  is  f in i t e ,  

a n d  it  d iv id e s  [ K :  F ] .

(b )  L e t  f  d e n o t e  t h e  i r r e d u c ib le  p o ly n o m ia l  fo r  a  o v e r  F .  S in c e  F C  F ' ,  f  is  a l s o  a n  e l e m e n t  

o f  F '  [ x ] . S in c e  a  is  a  r o o t  o f  f ,  t h e  ir r e d u c ib le  p o ly n o m ia l  g  f o r  a  o v e r  F '  d iv id e s  f .  S o  th e  

d e g r e e  o f  g  is  a t  m o s t  e q u a l  t o  t h e  d e g r e e  o f  f .

( c )  L e t  a i ,  . . . ,  a k  b e  e l e m e n t s  th a t  g e n e r a t e  K  a n d  a r e  a lg e b r a ic  o v e r  F ,  a n d  l e t  F ;  d e n o t e  

t h e  f ie ld  F ( a i ,  . . . ,  a , )  g e n e r a t e d  b y  t h e  f ir s t  i  o f  t h e  e l e m e n t s .  T h e s e  f i e ld s  f o r m  a  c h a in  
F  =  F o  C  F i  C  . . .  C  F k  =  K .  S in c e  a ;  is  a lg e b r a ic  o v e r  F ,  it  is  a l s o  a lg e b r a ic  o v e r  th e  

la r g e r  f ie ld  F , _ ] .  T h e r e f o r e  t h e  d e g r e e  [ F  : F , - i ]  is  f in i t e  f o r  e v e r y  i. B y  t h e  m u l t ip l i c a t iv e  

p r o p e r t y ,  [ K :  F ]  is  f in i t e .  T h e  s e c o n d  a s s e r t io n  is  o b v io u s .

( d )  W e  m u s t  s h o w  th a t  i f  a  a n d  {3 a r e  e l e m e n t s  o f  K  th a t  a r e  a lg e b r a ic  o v e r  F ,  t h e n  a  +  (3 ,
a { 3 , e t c . ,  a r e  a lg e b r a ic  o v e r  F .  T h i s  f o l lo w s  f r o m  ( a )  a n d  ( c )  b e c a u s e  t h e y  a r e  e l e m e n t s  o f  

t h e  f ie ld  F ( a ,  f3 ). □

C o r o l la r y  1 5 .3 .7  L e t  K  b e  a n  e x t e n s i o n  f ie ld  o f  F  o f  p r im e  d e g r e e  p .  I f  a n  e l e m e n t  a  o f  K  

i s  n o t  in  F ,  t h e n  a  h a s  d e g r e e  p  o v e r  F  a n d  K  =  F ( a ) .  □

C o r o l la r y  1 5 .3 .8  L e t  K  b e  a n  e x t e n s i o n  f ie ld  o f  a  f ie ld  F ,  le t  K  a n d  F '  b e  s u b f ie ld s  o f  K  th a t  

a r e  f in i t e  e x t e n s i o n s  o f  F ,  a n d  le t  /('  d e n o t e  t h e  s u b f ie ld  o f  K  g e n e r a t e d  b y  t h e  t w o  f i e ld s  K  

a n d  F '  t o g e t h e r .  L e t  [ K '  : F ]  =  N, [ K :  F ]  =  m  a n d  [ F ' : F ]  =  n .  T h e n  m  a n d  n  d iv id e  N ,  

a n d  N :: m n .

Proof  T h e  m u l t ip l i c a t iv e  p r o p e r t y  s h o w s  t h a t  m  a n d  n  d iv id e  N .  N e x t ,  s u p p o s e  t h a t  F '  

is  g e n e r a t e d  o v e r  F  b y  o n e  e le m e n t :  F '  =  F ( f 3 )  f o r  s o m e  e l e m e n t  (3. T h e n  K '  =  K ( f 3 ) .  

C o r o l la r y  1 5 .3 .6 ( b )  s h o w s  t h a t  th e  d e g r e e  o f  o v e r  K ,  w h ic h  is  e q u a l  t o  [ K ' : K),  is  a t  m o s t  

e q u a l  t o  t h e  d e g r e e  o f  o v e r  F ,  w h ic h  is  n .  T h e  m u l t ip l ic a t iv e  p r o p e r t y  s h o w s  th a t  N :: m n .  

T h e  c a s e  th a t  F  i s  g e n e r a t e d  b y  s e v e r a l  e l e m e n t s  f o l lo w s  b y  in d u c t io n ,  w h e n  o n e  a d jo in s  o n e  

e l e m e n t  a t  a  t im e . □

T h e  d ia g r a m  b e l o w  s u m s  u p  th e  c o r o l la r y :

(15.3.9) <n
/

K  N F '

m
F
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I t  f o l l o w s  f r o m  t h e  c o r o l la r y  t h a t  t h e  d e g r e e  N  o f  K '  o v e r  F  is  d iv is ib le  b y  t h e  l e a s t  c o m m o n

m u lt ip le  o f  m  a n d  n ,  a n d  t h a t  if  m  a n d  n  a r e  r e la t iv e ly  p r im e , t h e n  N  =  m n .

I t  m ig h t  b e  t e m p t in g  t o  g u e s s  th a t  N  d iv id e s  m n ,  b u t  th is  i s n ’t a lw a y s  t r u e .

E x a m p le s  1 5 .3 .1 0

( a )  T h e  t h r e e  c o m p le x  r o o t s  o f  x 3 -  2  a r e  a i  =  a, a 2  =  w a , a n d  a 3 =  w 2 a ,  w h e r e  a  =  ..yz 
a n d  w  =  e 2 n ' / 3 . E a c h  o f  th e  r o o t s  a ;  h a s d e g r e e  3  o v e r  1Ql, b u t lQ l(a i ,  ( 2)  =  lQ l(a , w ) ,  

a n d  s in c e  co h a s  d e g r e e  2 o v e r  1Ql, [1Ql ( a l , a 2) : IQll =  6.

( b )  L e t  a  =  ..yz a n d  le t  fJ b e  a  r o o t  o f  t h e  i r r e d u c ib le  p o ly n o m ia l  x 4  +  x  +  1 o v e r  1Ql. B e c a u s e

3 a n d  4  a r e  r e la t iv e ly  p r im e ,  Q ( a ,  fJ) h a s  d e g r e e  1 2  o v e r  1Ql. T h e r e f o r e  a  i s  n o t  in  t h e  

f ie ld  lQl(fJ). O n  t h e  o t h e r  h a n d , s in c e  i  h a s  d e g r e e  2  o v e r  1Ql, it  is  n o t  s o  e a s y  t o  d e c id e  

w h e t h e r  o r  n o t  i is  in  lQl(fJ). ( I t  is  n o t . )

( c )  L e t  K  =  1 Q l(V i, i )  b e  t h e  f ie ld  g e n e r a t e d  o v e r  IQl b y  ..yz a n d  i. B o t h  i a n d  ..yz h a v e  d e g r e e
2 o v e r  1Ql, a n d  s in c e  i is  c o m p l e x ,  it  is  n o t  in  1Ql(..yz). S o  [ Q ( ..yz, i):  1Ql] =  4 . T h e r e f o r e  t h e  

d e g r e e  o f  i o v e r  1 Q l(V i)  is  2 . S in c e  a n d  i a l s o  g e n e r a t e  K, i is  n o t  in  t h e  f ie ld  Q [^ yC 2]  

e i t h e r .  □

1 5 . 4  F IN D IN G  T H E  IR R E D U C IB L E  P O L Y N O M IA L

L e t  y  b e  a n  e l e m e n t  o f  a n  e x t e n s io n  f i e ld  K  o f  F, a n d  a s s u m e  t h a t  y  is  a lg e b r a ic  o v e r  
F. T h e r e  a r e  t w o  g e n e r a l  m e t h o d s  t o  f in d  th e  i r r e d u c ib le  p o ly n o m ia l  f ( x )  f o r  y  o v e r  

F. O n e  is t o  c o m p u t e  t h e  p o w e r s  o f  y  a n d  t o  l o o k  f o r  a  l in e a r  r e la t io n  a m o n g  t h e m .  

S o m e t im e s ,  t h o u g h  n o t  v e r y  o f t e n ,  o n e  c a n  g u e s s  t h e  o t h e r  r o o t s  o f  f ,  s a y  y i , . . . ,  y k .  w i t h

Y  =  Y l -  T h e n  e x p a n d in g  t h e  p r o d u c t  w i l l  (x — Y i )  . . ( x  — Yk) p r o d u c e  t h e  p o ly n o m ia l .  
W e ’ll g iv e  a n  e x a m p le  t o  i l lu s t r a te  t h e  t w o  m e t h o d s ,  in  w h ic h  F  is  t h e  f ie ld  IQl o f  r a t io n a l  

n u m b e r s .

E x a m p le  1 5 .4 .1  L e t  y  =  ..yz +  ..yz. W e  c o m p u t e  p o w e r s  o f  y ,  a n d  s im p l i fy  w h e n  p o s s ib le :  
y 2 =  5 +  2 .J 6 ,  y 4 =  49 +  2 0 .J 6 .  W e  w o n ’t n e e d  t h e  o t h e r  p o w e r s  b e c a u s e  w e  c a n  e l im in a t e  

.J6  f r o m  t h e s e  t w o  e q u a t io n s ,  o b t a in in g  t h e  r e la t io n  y 4 -  l O y 2 +  1 =  O. T h u s  y  is  a  r o o t  o f  

th e  p o ly n o m ia l  g ( x )  =  x 4 — lO x 2 +  1 . □

T w o  im p o r ta n t  e le m e n t a r y  o b s e r v a t io n s  a r e  im p l ic i t  h e r e :

L e m m a  1 5 .4 .2

( a )  A  l in e a r  d e p e n d e n c e  r e la t io n  c n y n + --------- +  c i  y  +  C o  =  0  a m o n g  p o w e r s  o f  a n  e l e m e n t  y
m e a n s  th a t  y  is  a  r o o t  o f  th e  p o ly n o m ia l  cnx n +  . . .  +  c \x  +  Co.

( b )  L e t  a  a n d  fJ b e  a lg e b r a ic  e l e m e n t s  o f  a n  e x t e n s i o n  f ie ld  o f  F, a n d  l e t  t h e ir  d e g r e e s  o v e r  

F  b e  d \ a n d  d2, r e s p e c t iv e ly .  T h e  d \d 2  m o n o m ia l s  a 1 fJl, w it h  0 . :  i < di  a n d  0 . :  j  < d 2, 
s p a n  F(a,  fJ) a s  F - v e c t o r  s p a c e .

Proof. T h o u g h  im p o r ta n t ,  (a )  is tr iv ia l.  T o  p r o v e  ( b ) ,  w e  n o t e  t h a t  b e c a u s e  a  a n d  fJ a r e  

a lg e b r a ic  o v e r  F ,  F ( a ,  fJ) =  F  [ a , fJ] ( 1 5 .2 .6 ) .  T h e  m o n o m ia l s  l i s t e d  s p a n  F [ a ,  fJ]. □
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E x a m p le  1 5 .4 .3  T h e  a l t e r n a t e  a p p r o a c h  t o  E x a m p le  1 5 .4 .1  is  t o  g u e s s  t h a t  t h e  r o o t s  o f  g  

m ig h t  b e  Y i =  +  J 3 ,  Y2 =  - , J 2  -  J 3 ,  Y3 =  - , J 2  +  J 3 ,  a n d  Y4 =  -  .J 3 .  E x p a n d in g
t h e  p o l y n o m i a l  w i t h  t h e s e  r o o t s ,  w e  f in d

( x  -  Y i ) ( x  -  Y2 ) ( x  -  Y3 ) ( x  -  Y4)

=  (X 2 -  ( .J 2  +  J 3 ) 2) ( x 2  -  ( .J 2  -  J 3 ) 2 )  =  x 4 -  lO x 2 +  1 .

T h is  is  t h e  p o ly n o m ia l  th a t  w e  o b t a in e d  b e f o r e .  □

T h e  le m m a  s h o w s  t h a t  o n e  c a n  a lw a y s  p r o d u c e  a  p o ly n o m ia l  h a v in g  a n  e l e m e n t  s u c h  

a s  y  — a  +  a s  a  r o o t ,  p r o v id e d  th a t  t h e  i r r e d u c ib le  p o l y n o m i a l s  f o r  a  a n d  a r e  k n o w n .  

S a y  th a t  a  a n d  h a v e  d e g r e e s  d i  a n d  d 2 o v e r  F ,  r e s p e c t iv e ly .  G i v e n  a n y  e l e m e n t  y  o f  

F ( a ,  f3 ), w e  w r i t e  it s  p o w e r s  1, y ,  y Z, . . . , y n  a s  l in e a r  c o m b in a t io n s  o f  t h e  m o n o m i a l s  

a ! w it h  0  : :  i  <  d i  a n d  0  : :  j  <  d 2. W h e n  n  =  d i d 2, w e  g e t  n  +  1 p o w e r s  y v th a t  

a r e  l in e a r  c o m b in a t io n s  o f  n  m o n o m i a l s .  S o  t h e  p o w e r s  a r e  l in e a r ly  d e p e n d e n t .  A  l in e a r  
d e p e n d e n c e  r e la t io n  d e t e r m in e s  a  p o ly n o m ia l  w i t h  c o e f f ic ie n t s  in  F  w i t h  y  a s  a  r o o t .  
H o w e v e r ,  t h e r e  i s  a  p o in t  th a t  c o m p l ic a t e s  m a t t e r s .  T h e  p o l y n o m i a l  w i t h  r o o t  y  t h a t  w e  

f in d  in  t h i s  w a y  m a y  b e  r e d u c ib le .  T h e  i r r e d u c ib le  p o ly n o m ia l  f o r  y  o v e r  F  is  t h e  lowest 
degree p o ly n o m ia l  w it h  r o o t  y .  T o  d e t e r m in e  it b y  th is  m e t h o d ,  w e  w o u ld  n e e d  a  basis f o r  K  

o v e r  F .

E x a m p le s  1 5 .4 .4

( a )  I n  E x a m p le  1 5 .4 .1 ,  w h e r e  a  =  ,J 2 ,  =  . J j  a n d  d i  =  d 2 =  2 ,  t h e  e l e m e n t s  a ! w it h
i, j  < 2  a r e  1 , , J 2 ,  . J j ,  a n d  ../6 . T h e s e  e l e m e n t s  d o  f o r m  a  b a s is  o f  K  o v e r  Q . T h e  

p o l y n o m i a l  x 4 -  lO x 2 +  1 is  ir r e d u c ib le .

( b )  W e  g o  b a c k  t o  E x a m p l e  1 5 .3 .1 0 ( a ) ,  in  w h ic h  t h e  t h r e e  r o o t s  o f  t h e  p o ly n o m ia l  x 3 — 2

a r e  la b e le d  a (-, i  =  1 , 2 ,  3 . L e t  F  =  Q , L  =  Q ( a i )  a n d  K  =  Q ( a i ,  a 2) .  E a c h  o f  t h e

r o o t s  a ;  h a s  d e g r e e  3  o v e r  F .  A c c o r d i n g  t o  t h e  l e m m a , t h e  n in e  m o n o m ia l s  a ^ a ^  w i t h  
0 : :  i, j  <  3  s p a n  K  o v e r  F .  H o w e v e r ,  t h e s e  m o n o m ia l s  a r e n ’t in d e p e n d e n t .  S in c e  f  h a s  

a  r o o t  a i  in  t h e  f ie ld  L ,  i t f a c t o r s  in  L [ x ] ,  s a y  f ( x )  =  ( x  -  a i ) q ( x ) .  T h e n  a 2 is  a  r o o t  o f  
q ( x ) ,  s o  a 2 h a s  d e g r e e  a t  m o s t  2 o v e r  L . T h e  s e t  ( 1 ,  a z )  is  a  b a s is  f o r  K  o v e r  t h e  f ie ld  

L ,  s o  t h e  s ix  m o n o m ia ls  a ^ a ^  w i t h  0  ::  i < 3  a n d  0  : :  j  < 2  f o r m  a  b a s i s  f o r  K  o v e r  F .  

I f  w e  w a n t  a  b a s is  o f  m o n o m ia l s ,  w e  s h o u ld  u s e  t h is  o n e .  □

1 5 .5  R U LER  A N D  C O M P A S S  C O N S T R U C T IO N S

F a m o u s  t h e o r e m s  a s s e r t  t h a t  c e r t a in  g e o m e t r i c  c o n s t r u c t io n s  c a n n o t  b e  d o n e  w i t h  r u le r  a n d  

c o m p a s s  a lo n e .  T o  i l lu s t r a te  t h e s e  t h e o r e m s ,  w e  u s e  t h e  c o n c e p t  o f  d e g r e e  o f  a  f i e ld  e x t e n s i o n  

to  p r o v e  t h e  im p o s s ib i l i t y  o f  t r i s e c t io n  o f  a n  a n g le .

Here are the rules for ruler and compass construction:

•  T w o  p o in t s  in  t h e  p la n e  a r e  g iv e n  t o  s ta r t  w i t h .  T h e s e  p o in t s  a r e  constructed.

(15.5.1)
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•  I f  t w o  p o in t s  po, p i  h a v e  b e e n  c o n s t r u c t e d ,  w e  m a y  d r a w  t h e  l in e  t h r o u g h  t h e m ,  o r  

d r a w  a  c ir c le  w it h  c e n t e r  a t  p o  a n d  p a s s in g  t h r o u g h  p l . S u c h  l in e s  a n d  c ir c le s  a r e  

t h e n  constructed.
•  T h e  p o in t s  o f  in t e r s e c t io n  o f  c o n s t r u c t e d  l in e s  a n d  c ir c le s  a r e  constructed.

P o in t s ,  l in e s ,  a n d  c ir c le s  w i l l  b e  c a l le d  constructible i f  th e y  c a n  b e  o b ta in e d  in  f in it e ly  m a n y  

s t e p s .  u s in g  t h e s e  r u le s .

N o t i c e  th a t  o u r  r u le r  m a y  b e  u s e d  o n l y  t o  d r a w  l in e s  t h r o u g h  c o n s t r u c t e d  p o in t s .  

W e  a r e  n o t  a l lo w e d  t o  u se  it  fo r  m e a s u r e m e n t .  S o m e t i m e s  th e  r u le r  is  r e f e r r e d  t o  a s  a 

“ s t r a ig h t - e d g e ”  t o  e m p h a s iz e  th is  p o in t .

W e  b e g in  w i t h  s o m e  f a m i l ia r  c o n s t r u c t io n s .  I n  e a c h  f ig u r e , t h e  l in e s  a n d  c ir c le s  a r e  t o  

b e  d r a w n  in  th e  o r d e r  in d ic a t e d .  T h e  first t w o  c o n s t r u c t io n s  m a k e  u se  o f  a  p o in t  q  o n  .e w h o s e  

o n ly  r e s t r ic t io n  is  th a t  it  is  n o t  o n  t h e  p e r p e n d ic u la r .  W h e n e v e r  w e  n e e d  a n  a r b itr a r y  p o in t ,  
w e  w i l l  c o n s t r u c t  a  p a r t ic u la r  o n e  f o r  t h e  p u r p o s e .  W e  c a n  d o  th is  b e c a u s e  a  c o n s t r u c t e d  l in e  

.e c o n t a in s  in f in i t e ly  m a n y  p o in t s  th a t  c a n  b e  c o n s t r u c t e d .

C o n s t r u c t io n  1 5 .5 .2  C o n s t r u c t  a  l in e  t h r o u g h  a  c o n s t r u c t e d  p o in t  p  a n d  p e r p e n d ic u la r  t o  a  

c o n s t r u c t e d  lin e  .e.
Case l: p  £ t

Case 2 : p  E .e

i
I
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C o n s t r u c t io n  1 5 .5 .3  C o n s t r u c t  a  l in e  p a r a l le l  t o  a  c o n s t r u c t e d  l in e  l  a n d  p a s s in g  t h r o u g h  a  

c o n s t r u c t e d  p o i n t  p .
A p p ly  C a s e s  1 a n d  2  a b o v e :

I

l -  -P
i

I
I

C o n s t r u c t io n  1 5 .5 .4  M a r k  o f f  a  l e n g t h  d e f in e d  b y  t w o  p o in t s  o n t o  a  c o n s t r u c t e d  l in e  1 ,  w it h  

e n d p o i n t  p.
U s e  th e  c o n s t r u c t io n  o f  p a r a lle ls :

i

W e  in t r o d u c e  C a r t e s ia n  c o o r d in a t e s  in to  th e  p la n e  s o  th a t  th e  p o in t s  t h a t  a r e  g iv e n  at

th e  s ta r t  h a v e  c o o r d in a t e s  ( 0, 0)  a n d  ( 1, 0) .

P r o p o s i t io n  1 5 .5 .5

( a )  L e t  po =  (ao, bo) a n d  pi =  (a\, b\)  b e  p o in t s  w h o s e  c o o r d in a t e s  a,- a n d  bi a r e  in  a  

s u b f ie ld  F  o f  th e  f ie ld  o f  r e a l n u m b e r s .  T h e  l in e  th r o u g h  p o  a n d  p i  is  d e f in e d  b y  a  l in e a r  

e q u a t io n  w it h  c o e f f i c ie n t s  in  F .  T h e  c i r c l e  w it h  c e n t e r  p o  a n d  p a s s in g  t h r o u g h  p i  is  

d e f in e d  b y  a  q u a d r a t ic  e q u a t io n  w it h  c o e f f ic ie n t s  in  F .

(b )  L e t  A  a n d  B  b e  l in e s  o r  c ir c le s  d e f in e d  b y  l in e a r  o r  q u a d r a t ic  e q u a t i o n s ,  r e s p e c t iv e ly ,  
th a t  h a v e  c o e f f i c ie n t s  in  a  s u b f ie ld  F  o f  t h e  r e a l  n u m b e r s .  T h e n  t h e  p o in t s  o f  in t e r s e c t io n  

o f  A  a n d  B  h a v e  c o o r d in a t e s  in  F ,  o r  in  a  r e a l  q u a d r a t ic  f ie ld  e x t e n s i o n  F '  o f  F .

Proof, ( a )  T h e  l i n e  t h r o u g h  ( a o ,  b o )  a n d  ( a i ,  b i )  is  t h e  l o c u s  o f  t h e  l in e a r  e q u a t io n

(ai -  ao)(y -  bo) =  (bi -  bo)(x -  ao).
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T h e  c ir c le  w i t h  c e n t e r  (a(), bo) a n d  p a s s in g  th r o u g h  (a\, by) is  t h e  lo c u s  o f  t h e  q u a d r a t ic  

e q u a t io n

(x -  ao ) 2  +  ( v  -  bo ) 2  =  ( a i  - a Q ) 2 +  (b { -  bo)2.

T h e  c o e f f i  c i e n t s  o f  t h e s e  e q  u a t io n s  a r e  in  F .

( b )  T h e  p o in t  o f  in t e r s e c t io n  o f  t w o  l in e s  is  f o u n d  b y  s o lv in g  t w o  l in e a r  e q u a t i o n s  w it h  

c o e f f ic ie n t s  in  F ,  s o  it s  c o o r d i n a t e s  a r e  in  F .  T o  f in d  t h e  in t e r s e c t io n  o f  a  li n e  a n d  a  c ir c le ,  

w e  u s e  t h e  e q u a t io n  o f  t h e  l i n e  t o  e l im in a t e  o n e  v a r ia b le  f r o m  t h e  e q u a t io n  o f  t h e  c ir c l e , 

o b t a in in g  a  q u a d r a t ic  e q u a t io n  in  o n e  u n k n o w n . T h is  q u a d r a t ic  e q u a t io n  h a s  s o lu t io n s  in  

t h e  f i e l d  F '  =  F (^ D ),  w h e  r e  D  is  it s  d is c r im in a n t .  T h e  d is c r im  in a n t  is  a n  e l e m e n t  o f  F .  I f  

F '  '*  F ,  t h e n  t h e  d e g r e e  o f  F '  o v e r  F  is  2 . I f  D  is  n e g a t i v e , t h e r e  is  n o  r e a l  s o lu t io n  t o  t h e  

e q u a t io n s .  T h e n  t h e  l in e  a n d  c ir c le  d o  n o t  in t e r s e c t .

C o n s id e r  th e  i n t e r s e c t io n  o f  t w o  c i r c le s ,  s a y

(x -  a \ ) 2 +  ( y  -  b \ ) 2 -  c\  a n d  (x -  o 2)2 +  ( y  -  b 2)2 =  c 2 ,

w h e r e  ai, bi, a n d  Cj a r e  in  F .  In  g e n e r a l , t h e  s o lu t io n  o f  a  p a ir  o f  q u a d r a t ic  e q u a t io n s  in  t w o  

v a r ia b le s  r e q u ir e s  s o lv in g  a n  e q u a t io n  o f  d e g r e e  4 . In  t h is  c a s e  w e  a r e  lu c k y :  T h e  d i f f e r e n c e  

o f  th e  t w o  q u a d r a t ic  e q u a t io n s  is  a l in e a r  e q u a t io n .  W e  c a n  u s e  th a t  l in e a r  e q u a t io n  to  

e l im in a t e  o n e  v a r ia b le ,  a s  b e f o r e .  T h e  lu c k y  e v e n t  r e f le c t s  t h e  fa c t  th a t , w h e r e a s  a  p a ir  o f  

c o n ic s  m a y  in t e r s e c t  in  f o u r  p o in t s ,  t w o  c ir c le s  in t e r s e c t  in  a t  m o s t  t w o  p o i n t s . □

T h e o r e m  1 5 .5 .6  L e t  p  b e  a  c o n s t r u c t i v e  p o in t . F o r  s o m e  in t e g e r  n ,  t h e r e  is  a  c h a in  o f  f ie ld s

Q  =  F o  C  F i  C  F 2 C  •■• C  Fn =  K,  s u c h  th a t

•  K  is  a  s u b f ie ld  o f  t h e  f ie ld  o f  r e a l  n u m b e r s ;

•  t h e  c o o r d in a t e s  o f  p  a r e  in  K ;

•  f o r  e a c h  i  — 0, . . . ,  n — 1, t h e  d e g r e e  [ F + t : F ]  is  e q u a l  to 2.

T h e r e f o r e  t h e  d e g r e e  [ K :  Q ]  is  a  p o w e r  o f  2 .

Proof. W e  in t r o d u c e d  c o o r d i n a t e s  s o  th a t  t h e  p o in t s  o r ig in a l ly  g iv e n  a r e  ( 0 ,  0 )  a n d  ( 1 , 0 ) .  

T h e s e  p o in t s  h a v e  c o o r d i n a t e s  in  Q . T h e  p r o c e s s  o f  c o n s t r u c t in g  t h e  p o in t  p  i n v o l v e s  a 

s e q u e n c e  o f  s t e p s , e a c h  o n e  o f  w h ic h  d r a w s  a  l in e  o r  a  c ir c le .

S u p p o s e  t h a t  a l l  p o in  ts  c o n s t r u c t e d  b y  t h e  t im e  w e  a r e  a t  t h e  k th  s t e p  h  a v e  c o o r d in a t e s  

in  a  f ie ld  F .  T h e  n e x t  s t e p  c o n s t r u c t s  a  l in e  o r  c ir c le  t h r o u g h  t w o  o f  t h e s e  p o in t s ,  a n d  
a c c o r d in g  t o  P r o p o s i  ti o n  1 5 .5 .5 ( a ) ,  t h e  l in e  o r  c ir c le  h a s  a n  e q  u a t i  o n  w ith  c o e f f i c ie n t s  in  F .  
T h e  f ie ld  d o e s  n o t  c h a n g e .  T h e n  a c c o r d in g  t o  P r o p o s i t io n  1 5 .5 .5 ( b ) ,  a n y  p o in t  o f  i n t e r s e c t io n  

o f  t h e  l in e s  a n d  c ir c le s  c o n s t r u c t e d  s o  fa r  w il l  h a v e  c o o r d in a t e s ,  e i t h e r  in  F ,  o r  in  a  r e a l  

q u a d r a t ic  e x t e n s i o n  o f  F .  T h e  a s s e r t io n  f o l lo w s  b y  in d u c t io n  f r o m  P r o p o s i t io n  1 5 .5 .5  a n d  

f r o m  t h e  m u l t ip l i c a t iv e  p r o p e r t y  o f  t h e  d e g r e e .  □

•  W e  c a ll  a  r e a l  n u m b e r  a  c o n s tr u c t ib le  i f  th e  p o in t  ( a ,  O) is  c o n s t r u c t ib le .  S in c e  w e  

c a n  c o n s t r u c t  p e r p e n d ic u la r s ,  th is  is  t h e  s a m e  th in g  a s  s a y in g  th a t  a  is  th e  x - c o o r d i n a t e  

o f  a  c o n s t r u c t ib l e  p o in t .  A n d  s in c e  w e  c a n  m a r k  o f f  le n g t h s ,  a  p o s i t iv e  r e a l  n u m b e r  a  is  
c o n s t r u c t ib le  i f  a n d  o n ly  i f  t h e r e  is  a  p a ir  p ,  q  o f  c o n s t r u c t ib le  p o in t s  w h o s e  d i s t a n c e  a p a r t  is  a.
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C o r o l la r y  1 5 .5 .7  L e t  a  b e  a  c o n s t r u c t ib le  r e a l  n u m b e r .  T h e n  a i s  a n  a lg e b r a ic  n u m b e r ,  a n d  

i t s  d e g r e e  o v e r  Q  is  a  p o w e r  o f  2.

S in c e  a  is  in  a  f ie ld  K  th a t  is  t h e  e n d  o f  a  c h a in  o f  f ie ld s  a s  in  t h e  t h e o r e m ,  a n d  s i n c e  [ K :  Q ]  

is  a  p o w e r  o f  2, t h e  d e g r e e  o f  a  is  a l s o  a  p o w e r  o f  2 ( 1 5 .3 .6 ) .  □

T h e  c o n v e r s e  o f  th is  c o r o l la r y  is  f a ls e .  T h e r e  e x i s t  r e a l  n u m b e r s  o f  d e g r e e  4  o v e r  Q  th a t  

a r e n ’t c o n s t r u c t ib le .  G a l o i s  t h e o r y  p r o v id e s  a  w a y  t o  u n d e r s t a n d  th is .  ( T h is  is  E x e r c i s e  9 .1 7  

o f  C h a p te r  1 6 .)
W e  c a n  n o w  p r o v e  t h e  im p o s s ib i l i t y  o f  c e r t a in  g e o m e t r i c  c o n s t r u c t io n s .  T h e  m e t h o d  

i s  t o  s h o w  th a t  i f  a  c e r t a in  c o n s t r u c t io n  w e r e  p o s s ib le ,  t h e n  it  w o u ld  a l s o  b e  p o s s i b le  t o  

c o n s t r u c t  a n  a lg e b r a ic  n u m b e r  w h o s e  d e g r e e  o v e r  Q  is  n o t  a  p o w e r  o f  2. T h i s  w o u l d  c o n t r a d ic t  

t h e  c o r o l la r y .  O u r  e x a m p le  is  th e  im p o s s ib i l i t y  o f  t r i s e c t io n  o f  t h e  a n g le ,  w h ic h  a s k s  f o r  a  

c o n s t r u c t io n  o f  th e  a n g le  \ 6  w h e n  0  is  g iv e n . N o w  m a n y  a n g le s ,  4 5 °  f o r  in s t a n c e ,  c a n  b e  

t r is e c t e d .  T h e  t r i s e c t io n  p r o b le m  a s k s  fo r  a  g e n e r a l  m e t h o d  o f  c o n s t r u c t io n  th a t  w ill  w o r k  

f o r  a n y  “ g iv e n "  a n g le .
S in c e  it  is  e a s y  t o  c o n s t r u c t  a n  a n g le  o f  6 0 ° ,  w e  c a n  g iv e  t h i s  a n g le  t o  o u r s e lv e s ,  u s in g  

r u le r  a n d  c o m p a s s  c o n s t r u c t io n s .  I f  t r i s e c t io n  w e r e  p o s s ib le ,  w e  c o u ld  c o n s t r u c t  a n  a n g le  o f  

20°. W e  w i l l  s h o w  th a t  it  is  im p o s s ib l e  t o  c o n s t r u c t  th a t  p a r t ic u la r  a n g le ,  a n d  t h e r e f o r e  th a t  

t h e r e  is  n o  g e n e r a l  m e t h o d  o f  t r is e c t io n .

W e ’ll  s a y  th a t  a n  a n g le  9  is  c o n s t r u c t ib le  i f  it  is  p o s s ib le  t o  c o n s t r u c t  a  p a ir  o f  l in e s  

m e e t in g  w it h  a n g le  0 . I f  w e  m a r k  o f f  a  u n it  l e n g t h  o n  o n e  o f  t h e  l in e s  a n d  d r o p  a  p e r p e n d ic u la r  

t o  t h e  o t h e r  l in e ,  w e  w i l l  h a v e  c o n s t r u c t e d  t h e  r e a l  n u m b e r  c o s  0 .  C o n v e r s e ly ,  i f  c o s  0  is  a  

c o n s t r u c t ib le  r e a l  n u m b e r ,  w e  c a n  r e v e r s e  th is  p r o c e s s  t o  c o n s t r u c t  a  p a ir  o f  l in e s  m e e t in g  

w it h  a n g le  ().
T h e  n e x t  l e m m a  s h o w s  th a t  2 0 °  =  11:/9 c a n n o t  b e  c o n s t r u c t e d .

L e m m a  1 5 .5 .8  T h e  r e a l  n u m b e r  c o s  20° is  a lg e b r a ic  o v e r  Q  a n d  i t s  d e g r e e  o v e r  Q  is  3. 

T h e r e f o r e  c o s  2 0 °  is  n o t  a  c o n s t r u c t ib l e  n u m b e r .

Proof. L e t  ex =  2 c o s  0  =  e iO +  e~'9 , w h e r e  0  =  11:/ 9. T h e n  e 3'°  +  e - 3 ' °  =  2  c o s ( 11:/ 3 )  =  1, 

a n d
ex3 =  ( e iO +  e -iO)3 =  e 3iO +  3 e iO +  3 e -iO  +  e -3 iO  =  1 +  3ex.

s o  ex is  a  r o o t  o f  th e  p o ly n o m ia l  x 3 -  3 x  -  1. T h is  p o ly n o m ia l  is  ir r e d u c ib le  o v e r  Q  b e c a u s e  it  

h a s  n o  in t e g e r  r o o t .  I t  is  t h e r e f o r e  t h e  i r r e d u c ib le  p o ly n o m ia l  f o r  ex o v e r  Q .  S o  ex h a s  d e g r e e

3  o v e r  Q , a n d  s o  d o e s  c o s  9 . □

O n e  m o r e  e x a m p le :  T h e  r e g u la r  7 - g o n  c a n n o t  b e  c o n s t r u c t e d .  T h is  is  s im i la r  t o  t h e  

a b o v e  p r o b le m ,  b e c a u s e  c o n s t r u c t in g  20° is  e q u i v a l e n t  t o  c o n s t r u c t in g  t h e  1 8 - g o n .  W e ’l l  v a r y  

t h e  a p p r o a c h  s l ig h t ly .  L e t  0  =  211:/7 a n d  le t  l; =  e iO. T h e n  l; is  a  s e v e n t h  r o o t  o f  u n i ty ,  a  

r o o t  o f  th e  i r r e d u c ib le  p o ly n o m ia l  e q u a t io n  x 6 +  x 5 +  . . .  +  1 ( T h e o r e m  1 2 .4 .9 ) ,  s o  l; h a s  

d e g r e e  6 o v e r  Q . I f  t h e  7 - g o n  w e r e  c o n s t r u c t ib le ,  t h e n  c o s  d a n d  s in  d w o u ld  b e  c o n s t r u c t ib l e  
n u m b e r s .  T h e y  w o u ld  l ie  in  a  r e a l  f ie ld  e x t e n s io n  K  w h o s e  d e g r e e  o v e r  Q  is  a  p o w e r  o f  2, s a y  

2k. C a ll t h is  f ie ld  K ,  a n d  c o n s i d e r  t h e  e x t e n s i o n  K ( i )  o f  K .  T h i s  e x t e n s i o n  h a s  d e g r e e  2 ,  s o  

[ K ( 0  : Q ] =  2k+i . B u t  l; =  c o s  e  +  i s in  0  is  in  K  ( i ) .  T h is  c o n t r a d ic t s  t h e  f a c t  t h a t  t h e  d e g r e e  
o f  l; is  6.
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T h e  a r g u m e n t  w e  h a v e  u s e d  is  n o t  s p e c ia l  t o  t h e  n u m b e r  7 . I t  a p p l ie s  t o  a n y  p r im e  

in t e g e r  p ,  p r o v id e d  th a t  p  — 1, t h e  d e g r e e  o f  t h e  ir r e d u c ib le  p o l y n o m ia l  x p _ l  +  . • . +  x  +  1, 

is  n o t  a  p o w e r  o f  2.

C o r o l la r y  1 5 .5 .9  L e t  p  b e  a  p r im e  in t e g e r .  I f  t h e  r e g u la r  p - g o n  c a n  b e  c o n s t r u c t e d  w it h  r u le r  

a n d  c o m p a s s ,  t h e n  p  =  2 r +  1 f o r  s o m e  in t e g e r  r .  □

G a u s s  p r o v e d  th e  c o n v e r s e :  I f  a  p r im e  h a s  th e  f o r m  2 r +  1 , th e n  th e  r e g u la r  p - g o n  c a n  b e  

c o n s t r u c t e d .  T h e  r e g u la r  1 7 - g o n ,  f o r  e x a m p le ,  c a n  b e  c o n s t r u c t e d  b y  r u le r  a n d  c o m p a s s .  W e  

w i l l  l e a r n  h o w  t o  p r o v e  t h is  in  t h e  n e x t  c h a p t e r  ( s e e  C o r o l la r y  1 6 .1 0 .5 ) .

T o  c o m p l e t e  t h e  d i s c u s s io n ,  w e  p r o v e  a  c o n v e r s e  t o  T h e o r e m  1 5 .5 .6 .

T h e o r e m  1 5 .5 .1 0  L e t  IQ =  F o  C  F\ C - - C F n =  K  b e  a  c h a in  o f  s u b f ie ld s  o f  t h e  f i e l d  IR 

o f  r e a l n u m b e r s  w it h  th e  p r o p e r t y  th a t  fo r  e a c h  i  =  0 ,  . . . ,  n-1,  [ F + i  : F , ]  =  2. T h e n  e v e r y  

e l e m e n t  o f  K  is  c o n s t r u c t ib le .

S i n c e  a n y  e x t e n s io n  o f  d e g r e e  2  c a n  b e  o b t a in e d  b y  a d jo in in g  a  s q u a r e  r o o t ,  t h e  t h e o r e m  
f o l lo w s  f r o m  t h e  n e x t  le m m a .

L e m m a  1 5 .5 .1 1

( a )  T h e  c o n s t r u c t ib le  n u m b e r s  f o r m  a  s u b f ie ld  o f  lR.

(b )  I f  a  is  a  p o s i t i v e  c o n s t r u c t ib le  n u m b e r ,  th e n  s o  is  F a .

Proof  (a )  W e  m u s t  s h o w  th a t  i f  a  a n d  b  a r e  p o s i t i v e  c o n s t r u c t ib le  n u m b e r s ,  t h e n  a  +  b , - a ,  
ab,  a n d  a~1 ( i f  a=i=O) a r e  a l s o  c o n s t r u c t ib le .  T h e  c lo s u r e  in  c a s e  a  o r  b  is  n e g a t iv e  f o l lo w s  

e a s i ly .  A d d i t io n  a n d  s u b t r a c t io n  a r e  d o n e  b y  m a r k in g  le n g t h s  o n  a  l in e .  F o r  m u l t ip l i c a t io n  

a n d  d iv i s io n , w e  u s e  s im ila r  r ig h t  t r ia n g le s .

G iv e n  o n e  t r ia n g le  a n d  o n e  s id e  o f  a  s e c o n d  t r ia n g le ,  t h e  s e c o n d  t r ia n g le  c a n  b e  c o n s t r u c t e d  

b y  p a r a l le ls .  T o  c o n s t r u c t  t h e  p r o d u c t  ab,  w e  t a k e  r  =  1, s  =  a, a n d  r ' =  b .  T h e n  s' =  ab. T o  

c o n s t r u c t  a _ l , w e  t a k e  r  =  a, s =  1, a n d  r '  =  1. T h e n  s '  =  a - 1 .

(b )  W e  u se  s im i la r  t r ia n g le s  a g a in . W e  m u s t  c o n s t r u c t  t h e m  s o  th a t  r  =  a ,  r ' =  s ,  a n d  

s ' =  1. T h e n  s  =  F a .  H o w  t o  m a k e  t h e  c o n s t r u c t io n  is  l e s s  o b v io u s  th is  t im e ,  b u t  w e  c a n  
u s e  in s c r ib e d  t r ia n g le s  in  a  c ir c le .  A  t r ia n g le  in s c r ib e d  in to  a  c ir c le ,  w it h  a  d ia m e t e r  a s  it s  

h y p o t e n u s e ,  i s  a  r ig h t  t r ia n g le .  T h i s  is  a  t h e o r e m  o f  h ig h  s c h o o l  g e o m e t r y ,  a n d  it c a n  b e  

c h e c k e d  u s in g  t h e  e q u a t i o n  f o r  a  c ir c le  a n d  P y th a g o r a s ! s  t h e o r e m .  S o  w e  c o n s t r u c t  a  c ir c le  

w h o s e  d ia m e t e r  is  1 +  a  a n d  p r o c e e d  a s  in  t h e  f ig u r e  b e lo w .
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U p  t o  th is  p o in t ,  w e  h a v e  u s e d  s u b f ie ld s  o f  th e  c o m p l e x  n u m b e r s  a s  o u r  e x a m p le s .  A b s t r a c t  

c o n s t r u c t io n s  a r e  n o t  n e e d e d  t o  c r e a t e  t h e s e  f ie ld s ,  e x c e p t  th a t  t h e  c o n s t r u c t io n  o f  t h e  

c o m p le x  n u m b e r  f ie ld  a s  a n  e x t e n s i o n  o f  t h e  r e a l  n u m b e r  f ie ld  is  a b s tr a c t .  W e  s im p ly  a d jo in  

c o m p le x  n u m b e r s  t o  t h e  r a t io n a l  n u m b e r s  a s  d e s ir e d ,  a n d  w o r k  w i t h  t h e  s u b f ie ld  t h e y  

g e n e r a t e .  B u t  f in i t e  f ie ld s  a n d  f u n c t i o n  f ie ld s  a r e  n o t  s u b f ie ld s  o f  a  f a m il ia r ,  a l l - e n c o m p a s s in g  

f ie ld  a n a lo g o u s  t o  C, s o  t h e s e  f ie ld s  m u s t  b e  c o n s t r u c t e d .  T h e  f u n d a m e n t a l  t o o l  f o r  t h e ir  

c o n s t r u c t io n  is  t h e  a d j u n c t io n  o f  e l e m e n t s  t o  a  r in g , w h ic h  w a s  d e s c r ib e d  in  C h a p te r  1 1 . I t  is  

a p p l ie d  h e r e  t o  t h e  c a s e  th a t  th e  r in g  w e  s ta r t  w i t h  i s  a  f ie ld .
W e  r e v i e w  t h e  c o n s t r u c t io n .  G i v e n  a  p o ly n o m ia l  f ( x )  w i t h  c o e f f i c ie n t s  in  a  fi e ld  F ,  w e  

m a y  a d jo in  a  r o o t  o f  f  t o  F .  T h e  p r o c e d u r e  is  t o  fo r m  t h e  q u o t i e n t  r in g

( 1 5 .6 .1 )  K  =  F [ x ] / ( f )

o f  th e  p o ly n o m ia l  r in g  F [x ] .  T h is  c o n s t r u c t io n  a lw a y s  y ie ld s  a  r in g  K  a n d  a  h o m o m o r p h i s m  

F  —► K , s u c h  t h a t  t h e  r e s id u e  x  o f  x  s a t is f ie s  t h e  r e la t io n  f ( x )  =  0  ( 1 1 .5 .2 ) .  H o w e v e r ,  w e  
w a n t  t o  c o n s t r u c t  n o t  o n ly  a  r in g , b u t  a  f ie ld . H e r e  t h e  t h e o r y  o f  p o ly n o m ia l s  o v e r  a  f ie ld  

c o m e s  in t o  p la y . I t  t e l l s  u s  t h a t  t h e  p r in c ip a l  id e a l  ( f )  in  t h e  p o ly n o m ia l  r in g  F [ x ]  is  a  
m a x im a l  id e a l  i f  a n d  o n ly  if  f  is  a n  i r r e d u c ib le  p o ly n o m ia l  ( 1 2 .2 .8 ) .  T h e r e f o r e  K  w i l l  b e  a  

f ie ld  i f  a n d  o n ly  if  f  is  i r r e d u c ib le  ( 11.8.2).

L e m m a  1 5 .6 .2  L e t  F  b e  a  f i e ld ,  a n d  l e t  f  b e  a n  ir r e d u c ib le  p o ly n o m ia l  in  F [ x ] .  T h e n  t h e  

r in g  K  =  F [ x ] / ( f )  is  a n  e x t e n s i o n  f i e ld  o f  F ,  a n d  t h e  r e s id u e  x  o f  x  i s  a  r o o t  o f  f ( x )  in  K .

Proof  T h e  r in g  K  is a  f ie ld  b e c a u s e  ( f )  is  a  m a x im a l  id e a l ,  a n d  t h e  h o m o m o r p h i s m  
F  - >  K ,  w h ic h  s e n d s  t h e  e l e m e n t s  o f  F  to  t h e  r e s id u e s  o f  t h e  c o n s t a n t  p o ly n o m ia l s ,  is  

in j e c t iv e  b e c a u s e  F  is  a  f ie ld  ( 1 1 .3 .2 0 ) .  S o  w e  m a y  id e n t i f y  F  w it h  it s  im a g e ,  a  su b f ie ld  o f  K .  

T h e  f ie ld  K  b e c o m e s  a n  e x t e n s i o n  o f  F  b y  m e a n s  o f  th is  id e n t i f i c a t io n .  F in a l ly ,  x  s a t i s f i e s  

t h e  e q u a t io n  f ( x )  =  O. I t  is  a  r o o t  o f  f  ( s e e  ( 1 1 . 5 . 2 » .  □

•  A  p o ly n o m ia l  f  splits completely in  a  f ie ld  K  i f  it  f a c to r s  in to  l in e a r  f a c t o r s  in  K .

P r o p o s i t io n  1 5 .6 .3  L e t  F  b e  a  f ie ld ,  a n d  l e t  f  ( x )  b e  a  m o n ic  p o ly n o m ia l  in  F  [ x ]  o f  p o s i t i v e  
d e g r e e .  T h e r e  e x i s t s  a  f ie ld  e x t e n s i o n  K  o f  F  s u c h  t h a t  f ( x )  s p l i t s  c o m p l e t e l y  in  K .

P r o o f  W e  u s e  in d u c t io n  o n  t h e  d e g r e e  o f  f .  T h e  f ir s t  c a s e  is  t h a t  f  h a s  a  r o o t  a  in  F ,  s o  

t h a t  f ( x )  =  ( x  — a ) q ( x )  f o r  s o m e  p o ly n o m ia l  q . I f  s o ,  w e  r e p la c e  f  b y  q ,  a n d  w e  a r e  d o n e  

b y  in d u c t io n .  O t h e r w is e ,  w e  c h o o s e  a n  ir r e d u c ib le  fa c to r  g  o f  f .  B y  L e m m a  1 5 .6 .2 ,  t h e r e  is
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a  f ie ld  e x t e n s i o n  F i o f  F  in  w h i c h  g  h a s  a  r o o t  ex. T h e n  ex is  a  r o o t  o f  f  t o o .  W e  r e p l a c e  F  

b y  F i , a n d  th is  r e d u c e s  u s  to  th e  fir st  c a s e .  □

A s  w e  s e e ,  th e  p o ly n o m ia l  r in g  F [ x ]  is  a n  im p o r ta n t  t o o l  fo r  s t u d y in g  e x t e n s i o n s  o f  

a  f ie ld  F .  W h e n  w e  a r e  w o r k in g  w it h  f ie ld  e x t e n s i o n s ,  t h e r e  is  a n  in t e r p la y  b e t w e e n  th e  

p o ly n o m ia l  r in g s  o v e r  t h e  f ie ld s .  T h is  in t e r p la y  d o e s n ’t p r e s e n t  s e r io u s  d i f f ic u l t ie s ,  b u t  in s t e a d  

o f  s c a t t e r in g  t h e  p o in t s  th a t  s h o u ld  b e  m e n t io n e d  a b o u t  in  t h e  t e x t ,  w e  h a v e  c o l l e c t e d  t h e m  

i n t o  t h e  n e x t  p r o p o s i t io n .

P r o p o s i t i o n  1 5 .6 .4  L e t  f  a n d  g  b e  p o ly n o m ia l s  w it h  c o e f f ic ie n t s  in  a  f ie ld  F ,  w i t h  f  0 , a n d  

l e t  K  b e  a n  e x t e n s i o n  f ie ld  o f  F .

(a )  T h e  p o ly n o m ia l  r in g  K |x ]  c o n t a in s  F [ x ]  a s  s u b r in g ,  s o  c o m p u t a t io n s  m a d e  in  t h e  r in g  

F [ x ]  a r e  a l s o  v a l id  in  K [ x ] .

( b )  D i v i s i o n  w ith  r e m a in d e r  o f  g  b y  f  g iv e s  th e  s a m e  a n s w e r , w h e t h e r  c a r r ie d  o u t  in  F [ x ]  

o r  in  K [ x ] .

( c )  f  d iv id e s  g  in  K [ x ]  i f  a n d  o n ly  i f  f  d iv id e s  g  in  F [ x ] .

(d )  T h e  ( m o n ic )  g r e a t e s t  c o m m o n  d iv is o r  d  o f  f  a n d  g  is  th e  s a m e ,  w h e t h e r  c o m p u t e d  in  

F [ x ]  o r  in  K [ x ] .

( e )  I f  f  a n d  g  h a v e  a  c o m m o n  r o o t  in  K , t h e y  a r e  n o t  r e la t iv e ly  p r im e  in  F [ x ] .  I f  f  a n d

g  a r e  n o t  r e la t iv e ly  p r im e  in  F [ x ] ’ t h e r e  e x i s t s  a n  e x t e n s io n  f ie ld  in  w h ic h  t h e y  h a v e  a  
c o m m o n  r o o t .  ’

( f )  I f  f  is  a n  i r r e d u c ib le  e l e m e n t  o f  F [ x ]  a n d  i f  f  a n d  g h a v e  a  c o m m o n  r o o t  in  K ,  t h e n  f  

d iv id e s  g  in  F [ x ] .

Proof  (a )  T h is  is  o b v io u s .

( b )  C a r r y  o u t  t h e  d iv i s io n  in  F |x ] :  g  =  f q  +  r. T h is  e q u a t io n  r e m a in s  tr u e  in  t h e  b ig g e r  r in g  

K [ x ] , a n d  s in c e  d iv i s io n  w it h  r e m a in d e r  in  K [ x ]  is  u n iq u e ,  c a r r y in g  th e  d iv i s io n  o u t  in  K [ x ]  

l e a d s  t o  t h e  s a m e  r e s u lt .

( c )  T h i s  is  (b )  in  t h e  c a s e  th a t  t h e  r e m a in d e r  is  z e r o .

( d )  L e t  d  a n d  d '  d e n o t e  th e  g r e a t e s t  c o m m o n  d iv i s o r s  o f  f  a n d  g  in  F [ x ]  a n d  K [ x ] ,  
r e s p e c t iv e ly .  T h e n  d  i s a  c o m m o n  d iv i s o r  in  K [ x ] ,  a n d  s in c e  d ' is  t h e  g r e a t e s t  c o m m o n  d iv i s o r  

in  K [ x ] ,  d  d iv id e s  d'. In  a d d i t io n ,  w e  k n o w  th a t  d  h a s  t h e  f o r m  d  =  p f  + qg, f o r  s o m e  

e l e m e n t s  p  a n d  q  in  F [ x ) .  S in c e  d' d iv id e s  f  a n d  g ,  d '  d i v i d e s  d .  T h u s  d  a n d  d '  a r e  a s s o c ia t e s  

in  K [ x ] ,  a n d  s in c e  t h e y  a r e  m o n i c  p o ly n o m ia l s ,  t h e y  a r e  e q u a l .

( e )  L e t  ex b e  a  c o m m o n  r o o t  o f  f  a n d  g  in  K .  T h e n  x  -  ex is  a  c o m m o n  d iv i s o r  o f  f  a n d  

g  in  K [ x ] .  S o  t h e  g r e a t e s t  c o m m o n  d iv is o r  o f  f  a n d  g  in  K [ x ]  i s n ’t 1. B y  ( d ) ,  it i s n ’t 1 in  
F [ x ]  e i th e r . C o n v e r s e ly ,  i f  f  a n d  g  h a v e  a  c o m m o n  d iv is o r  d  o f  p o s i t i v e  d e g r e e ,  t h e r e  is  a n  
e x t e n s io n  f ie ld  o f  F  in  w h ic h  d  h a s  a  r o o t .  T h is  r o o t  w il l  b e  a  c o m m o n  r o o t  o f  f  a n d  g .

( f )  I f  f  i s  i r r e d u c ib le ,  i t s  o n l y  m o n ic  d iv is o r s  in  F [ x ]  a r e  1 a n d  f .  P a r t  ( e )  t e l l s  u s  th a t  t h e

g r e a t e s t  c o m m o n  d iv i s o r  o f  f  a n d  g  in  F [ x ]  is n  ’ t 1. T h e r e f o r e  it  is  f .  □

T h e  f in a l  t o p ic  o f  th is  s e c t io n  is th e  d e r iv a t iv e  f ' ( x )  o f  a  p o ly n o m ia l  f ( x ) .  T h e  

d e r iv a t iv e  is  c o m p u t e d  u s in g  t h e  r u le s  f r o m  c a lc u lu s  f o r  d i f f e r e n t ia t in g  p o l y n o m i a l  f u n c t io n s .
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In  o t h e r  w o r d s ,  i f  f ( x )  =  anx n +  a n_ \x n 1 +  . +  a i x  +  a o ,  t h e n

( 1 5 .6 .5 )  / ' ( x ) =  n a n x n _ 1 +  ( n  -  1 ) a n _ i x n-2 +----------+ a i .

T h e  in t e g e r  c o e f f ic ie n t s  in  th is  f o r m u la  a r e  in t e r p r e t e d  a s  t h e  e l e m e n t s  1 +  . .  ■ +  1 o f  F .  S o  if  

/  h a s  c o e f f ic ie n t s  in  a  f ie ld  F ,  it s  d e r iv a t iv e  d o e s  t o o .  It c a n  b e  s h o w n  t h a t  f a m il ia r  r u le s  o f  
d i f f e r e n t ia t io n ,  s u c h  a s  t h e  p r o d u c t  r u le ,  h o ld .  ( T h is  is  E x e r c i s e  3 .5 . )

T h e  d e r iv a t iv e  c a n  b e  u s e d  t o  r e c o g n iz e  m u l t ip le  r o o t s  o f  a  p o ly n o m ia l .

L e m m a  1 5 .6 .6  L e t  f  b e  a  p o ly n o m ia l  w it h  c o e f f ic ie n t s  in  a  f ie ld  F .  A n  e l e m e n t  ot in  a n  

e x t e n s i o n  f ie ld  K  o f  F  is  a  multiple root, m e a n in g  th a t  ( x  -  ot)2 d iv id e s  / ,  i f  a n d  o n ly  i f  it  is  

a  r o o t  o f  /  a n d  a l s o  a  r o o t  o f  f .

Proof. I f  ot is  a  r o o t  o f  f ,  th e n  x  -  ot d iv id e s  f ,  sa y  / ( x )  =  ( x  — o t ) g ( x ) .  T h e n  ot is  a  m u l t ip le  

r o o t  o f  /  i f  a n d  o n ly  i f  it  is  a  r o o t  o f  g .  B y  t h e  p r o d u c t  r u le  f o r  d i f f e r e n t ia t io n ,

f ' ( x )  =  ( x  -  o t ) g ' ( x )  +  g ( x ) .

S u b s t i tu t in g  x  =  o t, o n e  s e e s  th a t  / '  (o t)  =  0  i f  a n d  o n ly  i f  g ( o t )  =  0 . □

P r o p o s i t io n  1 5 .6 .7  L e t  / ( x )  b e  a  p o ly n o m ia l  w ith  c o e f f ic ie n t s  in  F .  T h e r e  e x i s t s  a  f ie ld  

e x t e n s io n  K  o f  F  in  w h ic h  f  h a s  a  m u l t ip le  r o o t  i f  a n d  o n l y  i f  /  a n d  / '  a r e  n o t  r e la t iv e ly  

p r im e .

Proof  I f  f  h a s  a  m u l t ip le  r o o t  in  K ,  t h e n  /  a n d  f '  h a v e  a  c o m m o n  r o o t  in  K ,  s o  t h e y  a r e  

n o t  r e la t iv e ly  p r im e  in  K  o r  in  F .  C o n v e r s e ly ,  i f  /  a n d  f  a r e  n o t  r e la t iv e ly  p r im e ,  t h e n  th e y  

h a v e  a  c o m m o n  r o o t  in  s o m e  f ie ld  e x t e n s i o n  K ,  h e n c e  f  h a s  a  m u l t ip le  r o o t  t h e r e .  □

H e r e  is  o n e  o f  th e  m o s t  im p o r ta n t  a p p l ic a t io n s  o f  th e  d e r iv a t iv e  t o  f ie ld  th e o r y :  

P r o p o s i t io n  1 5 .6 .8  L e t  f  b e  a n  irreducible p o l y n o m ia l  in  F [ x ] .

( a )  f  h a s  n o  m u l t ip le  r o o t  in  a n y  f ie ld  e x t e n s io n  o f  F  u n le s s  th e  d e r iv a t iv e  f  is  th e  z e r o  

p o ly n o m ia l .

( b )  I f  F  is  a  f ie ld  o f  c h a r a c t e r is t ic  z e r o ,  t h e n  f  h a s  n o  m u l t ip le  r o o t  in  a n y  f ie ld  e x t e n s i o n  o f  

F .

Proof  ( a )  W e  m u s t  s h o w  t h a t  f  a n d  f  a r e  r e la t iv e ly  p r im e  u n le s s  f  is  t h e  z e r o  p o ly n o m ia l .  

S in c e  it  is  i r r e d u c ib le ,  f  w il l  h a v e  a  n o n c o n s t a n t  f a c to r  in  c o m m o n  w it h  a n o t h e r  p o ly n o m ia l  

g  o n ly  i f  f  d iv id e s  g .  A n d  i f  f  d iv id e s  g, t h e n  u n le s s  g  =  0 ,  t h e  d e g r e e  o f  g  w i l l  b e  a t  l e a s t  

a s  l a r g e  a s  t h e  d e g r e e  o f  f .  I f  t h e  d e r iv a t iv e  f  i s n ’t z e r o ,  i t s  d e g r e e  is  l e s s  t h a n  t h e  d e g r e e  

o f  / ,  a n d  t h e n  f  a n d  f '  h a v e  n o  c o m m o n  n o n c o n s t a n t  f a c to r .

( b )  In  a  f ie ld  o f  c h a r a c t e r i s t i c  z e r o ,  t h e  d e r iv a t iv e  o f  a  n o n c o n s t a n t  p o l y n o m i a l  i s n ’t z e r o .  □

T h e  d e r iv a t iv e  o f  a  n o n c o n s t a n t  p o ly n o m ia l  /  m a y  b e  z e r o  w h e n  F  h a s  p r im e  
c h a r a c t e r i s t i c  p .  T h is  h a p p e n s  w h e n  t h e  e x p o n e n t  o f  e v e r y  m o n o m i a l  th a t  o c c u r s  in  f  is  

d iv i s ib le  b y  p .  A  t y p ic a l  p o ly n o m ia l  w h o s e  d e r iv a t iv e  is  z e r o  in  c h a r a c t e r i s t i c  5  is

/ (x )  =  x 15 +  a x iO +  bx s +  c,
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w h e r e  a, b, c  c a n  b e  a n y  e l e m e n t s  o f  F .  S in c e  t h e  d e r iv a t iv e  o f  t h i s  p o ly n o m ia l  is  id e n t ic a l ly  

z e r o ,  a l l  o f  i t s  r o o t s  in  a n  e x t e n s io n  f ie ld  w i l l  b e  m u l t ip le  r o o t s .

1 5 .7  FINITE FIEL D S

I n  th is  s e c t io n ,  w e  d e s c r ib e  t h e  f i e ld s  o f  f in i t e  o r d e r .  T h e  c h a r a c t e r is t ic  o f  a  f in i t e  f i e l d  K  

c a n n o t  b e  z e r o ,  s o  it  is  a  p r im e  in t e g e r  ( 3 .2 .1 0 ) ,  an d  t h e r e f o r e  K  w ill  c o n t a in  o n e  o f  th e  p r im e  

f ie ld s  F  =  IF p . S in c e  K  is  f in i t e ,  i t  w i l l  b e  f in i t e - d im e n s io n a l  w h e n  c o n s id e r e d  a s  a  v e c t o r  

s p a c e  o v e r  th is  f ie ld .
L e t  r  d e n o t e  t h e  d e g r e e  [ K : F ] .  A s  a n  F - v e c t o r  s p a c e ,  K  is  i s o m o r p h ic  t o  t h e  s p a c e  

F r o f  c o lu m n  v e c t o r s ,  w h ic h  c o n t a in s  p r e l e m e n t s .  S o  t h e  order  o f  a  f in i t e  f ie ld ,  t h e  n u m b e r  

o f  its  e l e m e n t s ,  is  a  p o w e r  o f  a  p r im e . I t  is  c u s t o m a r y  t o  u s e  t h e  l e t t e r  q  f o r  t h is  o r d e r :

( 1 5 .7 .1 )  |K |  =  p r =  q .

I n  t h is  s e c t io n ,  q  w il l  d e n o t e  a  p o s i t i v e  p o w e r  o f  a  p r im e  in t e g e r  p .  F ie ld s  o f  o r d e r  q  a r e  

o f t e n  d e n o t e d  b y  lFq. W e  a r e  g o in g  t o  s h o w  th a t  a ll  f in i t e  f ie ld s  o f  o r d e r  q  a r e  i s o m o r p h ic ,  s o  

t h is  n o t a t io n  i s n ’t t o o  a m b ig u o u s ,  t h o u g h  w h e n  r >  1 t h e  i s o m o r p h is m  b e t w e e n  t w o  o f  th e m  

w il l  n o t  b e  u n iq u e .
T h e  s im p le s t  e x a m p le  o f  a  f in i t e  f ie ld  o t h e r  th a n  a  p r im e  f ie ld  is  th e  f ie ld  IF4 o f  o r d e r  4 . 

L e t  K  d e n o t e  th is  f ie ld ,  a n d  le t  F  =  lF2. T h e r e  is  j u s t  o n e  i r r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  2  

in  F [ x ] ,  n a m e ly  x 2 +  x + 1 ( 1 2 .4 .4 ) ,  a n d  K  is o b t a in e d  b y  a d jo in in g  a  r o o t  ex o f  t h is  p o ly n o m ia l  

to  F :

K  «  F [ x ] / ( x 2 +  x  +  1 ) .

B e c a u s e  t h e  e l e m e n t  ex, t h e  r e s id u e  o f  x ,  h a s  d e g r e e  2 ,  t h e  s e t  ( 1 ,  ex ) f o r m s  a  b a s i s  o f  K  o v e r  
F  ( 1 5 .2 .7 ) .  T h e  e l e m e n t s  o f  K  a r e  t h e  f o u r  l in e a r  c o m b in a t io n s  o f  t h e  b a s is ,  w i t h  c o e f f i c ie n t s  

m o d u l o  2:

( 1 5 .7 .2 )  K  =  { 0 , 1 , ex, 1 +  ex}.

T h e  e l e m e n t  1 +  ex is  t h e  o t h e r  r o o t  o f  f ( x )  i n  K .  C o m p u t a t io n  in  lF4 i s  m a d e  u s in g  t h e  
r e la t io n s  1 +  1 =  0 a n d  ex2 +  ex +  1 =  0.

T r y  n o t  t o  c o n f u s e  t h e f i e l d  IF4 w ith  th e  r in g  Z  /  ( 4 ) ,  w h ic h  i s n ’t a  field.

H e r e  a r e  t h e  m a in  f a c t s  a b o u t  f in ite  f ie ld s :

T h e o r e m  1 5 .7 .3  L e t  p  b e  a  p r im e  in t e g e r ,  a n d  l e t  q  =  p r b e  a  p o s i t i v e  p o w e r  o f  p.

( a )  L e t  K  b e  a  f ie ld  o f  o r d e r  q . T h e  e l e m e n t s  o f  K  a r e  r o o t s  o f  t h e  p o ly n o m ia l  x q — x.
( b )  T h e  i r r e d u c ib le  f a c to r s  o f  t h e  p o l y n o m i a l  xq — x  o v e r  t h e  p r im e  f ie ld  F  =  IFp a r e  t h e  

ir r e d u c ib le  p o ly n o m ia l s  in  F [ x ]  w h o s e  d e g r e e s  d iv id e  r .

(c) L e t  K  b e  a  f ie ld  o f  o r d e r  q .  T h e  m u l t ip l i c a t iv e  g r o u p  K X o f  n o n z e r o  e l e m e n t s  o f  K  is  a  

c y c l ic  g r o u p  o f  o r d e r  q  -  1.

( d )  T h e r e  e x i s t s  a  f ie ld  o f  o r d e r  q .  a n d  a ll  f ie ld s  o f  o r d e r  q  a r e  i s o m o r p h ic .

( e )  A  f ie ld  o f  o r d e r  p r c o n t a in s  a  s u b f ie ld  o f  o r d e r  p k i f  a n d  o n ly  i f  k  d iv id e s  r.
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C o r o l la r y  1 5 .7 .4  F o r  e v e r y  p o s i t iv e  in t e g e r  r ,  t h e r e  e x i s t s  a n  i r r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  

r  o v e r  t h e  p r im e  f ie ld  F p .

P r o o f  A c c o r d in g  t o  ( d ) ,  t h e r e  is  a  f ie ld  K o f o r d e r  q  =  p r. I ts  d e g r e e  [ K :  F ]  o v e r  F  =  lfi'p is  

r. A c c o r d in g  to  ( c ) ,  th e  m u l t ip l i c a t iv e  g r o u p  K x is  c y c l ic .  I t  is  o b v io u s  t h a t  a  g e n e r a t o r  a  f o r  

th is  c y c l i c  g r o u p  w i l l  g e n e r a t e  K  a s  e x t e n s io n  f ie ld , i . e . ,  th a t  K  =  F ( a ) .  S i n c e  [ K :  F ]  =  r , a  

h a s  d e g r e e  r  o v e r  F .  S o  a  is th e  r o o t  o f  a n  ir r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  r .  □

W e  e x a m in e  a  f e w  e x a m p le s  in  w h ic h  q  is a  p o w e r  o f  2. T h e  ir r e d u c ib le  p o l y n o m i a l s  o f  

d e g r e e  a t  m o s t  4  o v e r  lfi'2 a r e  l is t e d  in  ( 1 2 .4 .4 ) .

E x a m p le s  1 5 .7 .5

( i )  T h e  f ie ld  F 4 h a s  d e g r e e  2  o v e r  lfi'2. Its  e l e m e n t s  a r e  t h e  r o o t s  o f  t h e  p o ly n o m ia l

( 1 5 .7 .6 )  X 4 -  x  =  x ( x  -  l ) ( x 2 +  x  +  l ) .

N o t e  th a t  th e  f a c to r s  o f  x 2 — x  a p p e a r ,  b e c a u s e  lfi'4 c o n t a in s  lfi'2.

S in c e  w e  a re  w o r k in g  in  c h a r a c t e r is t ic  2 ,  s ig n s  a re  ir r e le v a n t :  x  — I  =  x  +  1 .

( i i)  T h e  f ie ld  lfi'g o f  o r d e r  8  h a s  d e g r e e  3  o v e r  t h e  p r im e  f ie ld  lfi'2. I t s  e l e m e n t s  a r e  t h e  e ig h t  

r o o t s  o f  t h e  p o ly n o m ia l  x 8 -  x. T h e  f a c t o r iz a t io n  o f  t h is  p o ly n o m ia l  in  lfi'2 is

( 1 5 .7 .7 )  x 8 -  x  =  x ( x  -  1 ) ( x 3 +  x  +  1 ) ( x 3 +  x 2 +  1 ) .

T h e  c u b ic  f a c to r s  a re  th e  t w o  ir r e d u c ib le  p o ly n o m ia l s  o f  d e g r e e  3  in  lfi'2[ x ] .

T o  c o m p u t e  in  th e  f ie ld  lfi's, w e  c h o o s e  a n  e l e m e n t  fJ in  th a t  f ie ld ,  a  r o o t  o f  o n e  o f  
t h e  i r r e d u c ib le  c u b ic  f a c to r s ,  s a y  o f  x 3 +  x  +  l .  I t  w i l l  h a v e  d e g r e e  3  o v e r  lfi'2. T h e n  

( 1 ,  fJ, fJ2 ) is  a  b a s is  o f  lfi'g a s  a  v e c t o r  s p a c e  o v e r  lfi'2. T h e  e l e m e n t s  o f  lfi'8 a r e  t h e  e ig h t  
l in e a r  c o m b in a t io n s  o f  t h is  b a s is  w i t h  c o e f f ic ie n t s  0  a n d  1 :

( 1 5 .7 .8 )  F 8 =  {0 , 1 , fJ, 1 +  fJ, fJ2 , 1 +  fJ2 , fJ +  fJ2 , 1 +  fJ +  fJ2 }.

C o m p u t a t io n  in  IF's is  d o n e  u s in g  t h e  r e la t io n s  1 +  1 = 0  a n d  fJ3 +  fJ +  1 =  O.

N o t e  t h a t  x 2 +  x  +  1 is  n o t  a  fa c to r  o f  x 8  -  x ,  a n d  t h e r e f o r e  lfi's d o e s  n o t  c o n t a in  lfi'4 . It  

c o u l d n ’t , b e c a u s e  [ F § : F 2 ] =  3 , [lfi'4 :lfi'2] =  2 ,  a n d  2  d o e s  n o t  d iv id e  3 .

( i i i )  T h e  f ie ld  lfi'16 o f  o r d e r  1 6  h a s  d e g r e e  4  o v e r  lfi'2. I t s  e l e m e n t s  a r e  r o o t s  o f  t h e  p o l y n o m i a l  

x 16 — x . T h is  p o ly n o m ia l  f a c to r s  in  lfi'2[x ]  a s

T h e  t h r e e  i r r e d u c ib le  p o ly n o m ia l s  o f  d e g r e e  4  in  lfi'2[ x ]  a p p e a r  h e r e .  T h e  f a c t o r s  o f  
x 4 — x  a r e  a ls o  a m o n g  t h e  f a c to r s ,  b e c a u s e  F ^  c o n t a in s  lfi'4 . □

W e  n o w  b e g in  t h e  p r o o f  o f  T h e o r e m  ( 1 5 .7 .3 ) .  W e  l e t  F d e n o t e  th e  p r im e  f ie ld  F  p .

Proof o f  T h e o r e m  15. 7 .3  (a). ( th e  elements o f  K  are roots o fx 9  -  x )  L e t  K  b e  a  f ie ld  o f  o r d e r  

q .  T h e  m u lt ip l i c a t iv e  g r o u p  K X h a s  o r d e r  q  -  1. T h e r e f o r e  t h e  o r d e r  o f  a n y  e l e m e n t  a  o f  K X
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d iv id e s  q  — 1, s o  a ^ - 1) -  1 =  0, w h ic h  m e a n s  th a t  a  is  a  r o o t  o f  th e  p o ly n o m ia l  x ^ - 1 ) — 1. 

T h e  r e m a in in g  e l e m e n t  o f  K ,  z e r o ,  is  t h e  r o o t  o f  t h e  p o ly n o m ia l  x .  S o  e v e r y  e l e m e n t  o f  K  is  

a  r o o t  o f  x ( x ( q - l )  -  1)  =  x q -  x .  □

P roofof Theorem 15.7.3(c). (the multiplicative group is cyclic) T h e  p r o o f  is  b a s e d  o n  t h e  

S t r u c tu r e  T h e o r e m  1 4 .7 .3  fo r  a b e l ia n  g r o u p s ,  w h ic h  t e l l s  u s  th a t  K X is  a  d ir e c t  s u m  o f  c y c l ic  

g r o u p s .

T h e  S tr u c tu r e  T h e o r e m  w a s  s t a t e d  w i t h  a d d i t iv e  n o ta t io n :  A  f in i t e  a b e l ia n  g r o u p  V  is  a  

d ir e c t  su m  C \ ®  ---0 C k  o f  c y c l i c  s u b g r o u p s  o f  o r d e r s  d i ,  • • • , d b  s u c h  th a t  e a c h  d ,  d iv id e s  

t h e  n e x t :  d i | d 2 | • ■ ■ |dfc. L e t  d  =  dk. I f  W i is  a  g e n e r a t o r  f o r  C , ,  t h e n  d ,-w ,- =  0 ,  a n d  s in c e  d j  
d iv id e s  d ,  d w ;  =  0. T h e r e f o r e  d v  =  0  fo r  e v e r y  e l e m e n t  v  o f  V . T h e  o r d e r  o f  e v e r y  e l e m e n t  

o f  V  d iv id e s  d .
G o i n g  o v e r  t o  m u l t ip l i c a t iv e  n o t a t io n ,  K x  is  a  d ir e c t  s u m  o f  c y c l i c  s u b g r o u p s ,  s a y  

H i  $  . . .  $  Hk. w h e r e  Hi  h a s  o r d e r  di,  a n d  d i  \d 2\ " •• I dk. W it h  d  =  dk  a s  b e f o r e ,  t h e  o r d e r  

o f  e v e r y  e l e m e n t  a  o f  K X d i v i d e s  d ,  w h i c h  m e a n s  th a t  a d =  1. T h e r e f o r e  e v e r y  e l e m e n t  o f  

K x is  a  r o o t  o f  t h e  p o ly n o m ia l  x d -  1. T h is  p o ly n o m ia l  h a s  a t  m o s t  d  r o o t s  in  K  (12.2.20), 
a n d  t h e r e f o r e  | K X | =  q — 1 : :  d .  O n  t h e  o t h e r  h a n d , | K X | =  |H i  E9 . . .  E9 Hk I =  d i  •••dk.  S o  

d i  . . .d k  =  | K X | =  q  - 1 : :  d .  S in c e  d  =  dk, t h e  o n ly  p o s s ib l i l i t y  is  t h a t  k  =  1 a n d  q - 1  =  d .  
T h e r e f o r e  K x =  H i , a n d  K x is  c y c l ic .  □

Proof o f  Theorem 15.7.3 (d). (existence o f  a field with q elements) S in c e  w e  h a v e  p r o v e d  ( a ) ,  

w e  k n o w  th a t  th e  e l e m e n t s  o f  a  f ie ld  o f  o r d e r  q  w i l l  b e  r o o t s  o f  th e  p o l y n o m i a l  x q — x .  

T h e r e  e x i s t s  a  f i e ld  e x t e n s i o n  L  o f  F  in  w h ic h  th is  p o ly n o m ia l  s p l i t s  c o m p l e t e l y  ( 1 5 .6 .3 ) .  

T h e  n a tu r a l  t h in g  t o  t r y  is  t o  t a k e  s u c h  a  f i e l d  L  a n d  h o p e  fo r  t h e  b e s t ,  t h a t  t h e  r o o t s  o f  

x q -  x  in  L  f o r m  t h e  s u b f ie ld  K  th a t  w e  a r e  lo o k in g  fo r . T h is  is  s h o w n  b y  L e m m a  15.7.11 
b e lo w .

L e m m a  1 5 .7 .1 0  L e t  F  b e  a  f ie ld  o f  p r im e  c h a r a c t e r is t ic  p ,  a n d  le t  q  =  p r b e  a  p o s i t i v e  p o w e r  

o f  p .

( a )  T h e  p o ly n o m ia l  x q -  x  h a s  n o  m u l t ip le  r o o t  in  a n y  f ie ld  e x t e n s i o n  o f  F .

( b )  In  t h e  p o ly n o m ia l  r in g  F [ x ,  y ] ,  ( x  +  y)q =  xq +  y q .

Proof, (a )  T h e  d e r iv a t iv e  o f  x q —x  is  qx^q-^ — 1. In  c h a r a c t e r is t ic  p ,  t h e  c o e f f i c ie n t  q 
is  e q u a l  t o  0 , s o  th e  d e r iv a t iv e  is  - 1 .  S in c e  th e  c o n s t a n t  p o ly n o m ia l  -1  h a s  n o  r o o t ,  x q  — x  
a n d  its d e r iv a t iv e  h a v e  n o  c o m m o n  r o o t ,  a n d  t h e r e f o r e  x q -  x  h a s  n o  m u l t ip l e  r o o t  ( L e m m a  

1 5 .6 .6 ) .

( b )  W e  e x p a n d  ( x  +  y )p in  Z [ x ,  y ]:

( x  +  y ) p = x P  +  ( f ) x P - ! y  +  ( f ) x P - 2-T  + -------+ ( / ! _ 1) x y P -1 +  yP.

L e m m a  1 2 .4 .8  t e l l s  u s  th a t  t h e  b in o m ia l  c o e f f ic ie n t s  ( £ )  a r e  d iv i s ib le  b y  p  f o r  r  i n  t h e  r a n g e  
1 <  r <  p .  S in c e  F  h a s  c h a r a c t e r i s t i c  p ,  t h e  m a p  Z [ x ,  y ]  - -  F [ x ,  y ]  s e n d s  t h e s e  c o e f f ic ie n t s  

t o  z e r o ,  a n d  ( x  +  y ) p =  x p +  y p in  F [ x ,  y ] .  T h e  fa c t  th a t  ( x  +  y ) q =  xq +  ^  w h e n  q  =  p r 

f o l lo w s  b y  in d u c t io n .  □
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Lemma 15.7.11 L e t  p  b e  a  p r im e  a n d  l e t  q  =  p r b e  a  p o s i t i v e  p o w e r  o f  p .  L e t  L  b e  a  f ie ld  

o f  c h a r a c t e r is t ic  p ,  a n d  l e t  K  b e  t h e  s e t  o f  r o o t s  o f  x ?  -  x  in  L .  T h e n  K  is  a  s u b f ie ld  o f  L .

Proof L e t  a  a n d  fJ b e  r o o t s  o f t h e  p o ly n o m ia l  x ?  -  x  in  L .  W e h a v e  t o  s h o w  t h a t  a  +  fJ, - a ,  

afJ, a - 1 ( i f  a , * O ) ,  a n d  1 a r e  r o o t s  o f  t h e  s a m e  p o ly n o m ia l .  S o  w e  a s s u m e  t h a t  a q =  a  a n d  

fJq =  fJ. T h e  p r o o f s  t h a t  a f J ,  a _ 1 , a n d  1 a r e  r o o t s  a r e  o b v i o u s  e n o u g h  th a t  w e  o m i t  th e m .  

S u b s t i t u t io n  in to  L e m m a  1 5 .7 .1 0 ( b )  s h o w s  th a t  ( a  +  f3)q =  a ?  +  fJ? =  a  +  fJ.

F in a l ly ,  w e  v e r ify  th a t  - 1  is  a  r o o t  o f  x ?  -  x .  S in c e  p r o d u c t s  o f  r o o t s  a re  r o o t s ,  it  w i l l  

f o l l o w  t h a t  - a  is  a  r o o t .  I f  p  2 , t h e n  q  is  a n  o d d  in te g e r ,  a n d  i t  is  t r u e  th a t  (-1)q =  - 1 .  

I f  p  =  2 ,  q  is  e v e n ,  a n d  ( - 1 )  =  1. B u t  in  t h is  c a s e ,  t h e  c h a r a c t e r is t ic  o f  L  i s  2 ,  s o  

1 =  - 1  in  L .  □

W e  m u s t  s t i l l  s h o w  t h a t  t w o  f i e ld s  K  a n d  K '  o f  th e  s a m e  o r d e r  q  =  p r a r e  i s o m o r p h ic .  

L e t  a  b e  a  g e n e r a t o r  f o r  t h e  c y c l i c  g r o u p  K x . T h e n  K  =  F ( a ) ,  s o  t h e  i r r e d u c ib le  p o ly n o m ia l  

f  f o r  a  o v e r  F  h a s  d e g r e e  e q u a l  t o  [ K :  F ]  =  r . T h e n  f  g e n e r a t e s  t h e  id e a l  o f  p o ly n o m ia l s  

in  F [ x ]  w i t h  r o o t  a ,  a n d  s in c e  a  is  a l s o  a  r o o t  o f  x ^  — x ,  f  d iv id e s  x q -  x .  S in c e  x ^  -  x  s p l i t s  

c o m p l e t e l y  in  K ' ,  f  h a s  a  r o o t  a '  in  K '  t o o .  T h e n  F ( a )  a n d  F ( a ' )  a r e  b o t h  i s o m o r p h i c  t o  

F [ x ] / ( f ) ,  h e n c e  t o  e a c h  o th e r . C o u n t in g  d e g r e e s  s h o w s  th a t  F(a') =  K ' ,  s o  K  a n d  K '  a r e  

i s o m o r p h ic .  □

Proofof Theorem 15.73(e). (subfields o f  Vg) L e t  q  =  p r a n d  q '  =  p k. T h e n  

[F q : IFp] =  r  a n d  [F q, : IFp] =  k , w e  c a n ’t h a v e  IFp C  F q, C  F q u n le s s  k  d iv id e s  r .  S u p 

p o s e  th a t  k  d i v i d e s  r ,  s a y  r  =  ks. S u b s t i t u t io n  o f  y  =  p k in t o  t h e  e q u a t i o n  y  — 1 =  

(y  — 1) ( / -1 +  . . .  +  y  +  1 )  s h o w s  t h a t  q '  -  1 d iv id e s  q  -  1. S in c e  th e  m u l t ip l i c a t iv e  g r o u p  
K x  is  c y c l i c  o f  o r d e r  q  -  1, a n d  s in c e  q '  - 1  d iv id e s  q  -  1, K x c o n t a in s  a n  e l e m e n t  fJ o f  o r d e r  

q '  -  1. T h e  q '  -  1 p o w e r s  o f  th is  e l e m e n t  a r e  r o o t s  o f  x ^ - 1 )  -  1 in  K .  T h e r e f o r e  x t  -  x  

s p l i t s  c o m p l e t e l y  in  K . L e m m a  1 5 .7 .1 1  s h o w s  t h a t  th e  r o o t s  f o r m  a  f ie ld  o f  o r d e r  q ' .  □

Proofof Theorem 15.7.3 (b). (the irreducible factors o f  x q -  x )  L e t  g  b e  a n  i r r e d u c ib le  

p o ly n o m ia l  o v e r  F  o f  d e g r e e  k . T h e  p o ly n o m ia l  x ?  -  x  f a c to r s  in t o  l in e a r  f a c to r s  in  K  

b e c a u s e  it  h a s  q  r o o t s  in  K.  I f  g  d iv id e s  x ?  -  x ,  i t  w il l  a lso  f a c t o r  in to  l in e a r  f a c t o r s ,  s o  it 

w il l  h a v e  a  r o o t  fJ in  K . T h e  d e g r e e  o f  fJ o v e r  F  d iv id e s  [ K :  F ]  =  r ,  a n d  is  e q u a l  t o  k . S o  k  

d iv id e s  r . C o n v e r s e ly ,  s u p p o s e  t h a t  k  d iv id e s  r . L e t  fJ b e  a  r o o t  o f  g in  a n  e x t e n s i o n  f ie ld  o f  
F .  T h e n  [ F ( f J )  : F ]  =  k , a n d  b y  (e), K  c o n t a in s  a  s u b f ie ld  i s o m o r p h ic  t o  F (  f J ) . T h e r e f o r e  g  

h a s  a  r o o t  in  K ,  a n d  s o  g  d iv id e s  x ?  -  x .

T h is  c o m p l e t e s  t h e  p r o o f  o f  T h e o r e m  1 5 .7 .3 . □

1 5 .8  PR IM ITIV E E L E M E N T S

L e t  K  b e  a  f ie ld  e x t e n s i o n  o f  a  f ie ld  F .  A n  e l e m e n t  a  t h a t  g e n e r a t e s  K /  F, i . e . ,  s u c h  t h a t  

K  =  F ( a ) ,  is  c a l l e d  a  primitive element f o r  t h e  e x t e n s io n .  P r im it iv e  e l e m e n t s  a r e  u s e f u l  

b e c a u s e  c o m p u t a t io n  in  F ( a )  c a n  b e  d o n e  e a s i ly ,  p r o v id e d  th a t  t h e  i r r e d u c ib le  p o l y n o m ia l  

f o r  a  o v e r  F  is  k n o w n .

Theorem 15.8.1 Primitive Element Theorem. E v e r y  f in i t e  e x t e n s i o n  K  o f  a  f ie ld  F  o f  

c h a r a c t e r is t ic  z e r o  c o n t a in s  a  p r im it iv e  e l e m e n t .
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T h e  s t a t e m e n t  is  t r u e  a l s o  w h e n  F  is  a  f in i t e  f ie ld , t h o u g h  t h e  p r o o f  is  d i f f e r e n t .  F o r  a n  

in f in i t e  f ie ld  o f  c h a r a c t e r is t ic  p  01= 0 , th e  t h e o r e m  r e q u ir e s  a n  a d d it io n a l  h y p o t h e s i s .  S in c e  w e  

w o n ’t b e  s t u d y in g  s u c h  f ie ld s ,  w e  w o n ’t c o n s id e r  th a t  c a s e .

Proof o f  the Primitive Element Theorem. S in c e  th e  e x t e n s i o n  K /  F  is  f in i t e ,  K  is  g e n e r a t e d  

b y  a  f in i t e  s e t .  F o r  e x a m p le ,  a  b a s i s  f o r  K  a s  F - v e c t o r  s p a c e  w i l l  g e n e r a t e  K  o v e r  F .  S a y  

th a t  K  =  F (a i,  . . . ,  a k). W e  u s e  in d u c t io n  o n  k . T h e r e  is  n o t h in g  t o  p r o v e  w h e n  k =  1. F o r  

k  >  1, in d u c t io n  a l lo w s  u s  t o  a s s u m e  t h e  t h e o r e m  tr u e  f o r  t h e  f ie ld  K i  =  F (a i,  . . .  , a ^ _ i )  

g e n e r a t e d  b y  th e  f ir s t  k  -  1 e l e m e n t s  a,.  S o  w e  m a y  a s s u m e  t h a t  K i  is  g e n e r a t e d  b y  a  

s in g le  e l e m e n t  fJ. T h e n  K  w i l l  b e  g e n e r a t e d  b y  th e  tw o  e l e m e n t s  a k a n d  fJ. T h e  p r o o f  o f  

th e  t h e o r e m  is  t h e r e b y  r e d u c e d  to  th e  c a s e  th a t  K  is  g e n e r a t e d  b y  t w o  e l e m e n t s .  T h e  n e x t  

l e m m a  t a k e s  c a r e  o f  t h is  c a s e .  □

L e m m a  1 5 .8 .2  L e t  F  b e  a  f ie ld  o f  c h a r a c t e r is t ic  z e r o ,  a n d  le t  K  b e  a n  e x t e n s i o n  f ie ld  t h a t  is  

g e n e r a t e d  o v e r  F  b y  tw o  e l e m e n t s  a  a n d  fJ. F o r  a ll b u t  f in i t e ly  m a n y  c  in  F ,  y  =  fJ +  c a  is a  

p r im it iv e  e l e m e n t  fo r  K  o v e r  F .

Proof L e t  f ( x )  a n d  g ( x )  b e  th e  i r r e d u c ib le  p o ly n o m ia l s  f o r  a  a n d  fJ, r e s p e c t iv e ly ,  o v e r  

F ,  a n d  le t  K  b e  a  f ie ld  e x t e n s i o n  o f  K  in  w h ic h  f  a n d  g  s p l i t  c o m p le t e ly .  C a l l  t h e ir  r o o t s  

a j ,  . . . ,  am a n d  f Ji ,  . . . ,  f Jn,  r e s p e c t iv e ly ,  w it h  a  =  a i  a n d  fJ =  fJ i.
S in c e  th e  c h a r a c t e r is t ic  is  z e r o ,  th e  r o o t s  a ;  a r e  d is t in c t ,  a s  a re  th e  r o o t s  fJ j ( 1 5 .6 .8 ) ( b ) .  

L e t  y i j  =  fJ j  +  c a ; ,  w ith  i =  1, . . . , m  a n d  j  =  1,  . . . ,  n. W h e n  ( i ,  j )  01=( k ,  .f.), t h e  e q u a t io n  

y ;y  =  y k i  h o ld s  f o r  a t m o s t  o n e  c . S o  fo r  a ll b u t  f in i t e ly  m a n y  e l e m e n t s  c  o f  F ,  t h e  y ; j  w i l l  

b e  d is t in c t . W e  w i l l  s h o w  th a t  i f  c  a v o id s  t h e s e  “ b a d ”  v a lu e s ,  t h e n  y i i  =  fJi +  c a i  w il l  b e  a  

p r im it iv e  e l e m e n t .  W e  d r o p  th e  s u b s c r ip t ,  a n d  w r ite  y  =  fJi +  c a i .
L e t  L = F(y). T o  s h o w  th a t  y  is  a  p r im it iv e  e l e m e n t , i t  w i l l  b e  e n o u g h  t o  s h o w  t h a t  a i  

i s  in  L .  T h e n  fJ i =  y  — c a i  w i l l  b e  in  L  t o o ,  a n d  t h e r e f o r e  L  w i l l  b e  e q u a l  t o  K .  T o  b e g in  

w it h ,  a i  is  a  r o o t  o f  f i x '). T h e  tr ic k  is  t o  u s e  g  t o  c o o k  u p  a  s e c o n d  p o ly n o m ia l  w i t h  a i  a s  a 

r o o t ,  n a m e ly  h ( x )  =  g (y  -  c x ) .  T h is  p o ly n o m ia l  d o e s n ’t h a v e  c o e f f ic ie n t s  in  F ,  b u t  b e c a u s e  

g is  in  F [ x ] ,  c  is  in  F ,  a n d  y  is  in  L ,  t h e  c o e f f ic ie n t s  o f  g  a r e  in  L .

W e  in s p e c t  t h e  g r e a t e s t  c o m m o n  d iv i s o r  d  o f  /  a n d  h .  I t  i s  t h e  s a m e ,  w h e t h e r  c o m p u t e d  

in  L [ x ]  o r  in  t h e  e x t e n s io n  f ie ld  K [ x ]  ( 1 5 .6 .4 ) .  S i n c e  f ( x )  =  ( x  — a i )  • ■ ( x  — a m )  in  K , d  

is  th e  p r o d u c t  o f  th e  f a c to r s  x  — a ;  t h a t  a l s o  d iv id e  h ,  i . e . ,  t h o s e  su c h  th a t  a ;  is  a  c o m m o n  

r o o t  o f  h  a n d  f .  O n e  c o m m o n  r o o t  is  a i .  I f  w e  s h o w  th a t  th is  is  t h e  o n ly  c o m m o n  r o o t ,  it 

w il l  f o l l o w  th a t  d  =  x  — a i ,  a n d  b e c a u s e  t h e  g r e a t e s t  c o m m o n  d iv i s o r  is  a n  e l e m e n t  o f  L [ x ]
( 1 5 .6 .4 ) ( d ) ,  th a t  a i  is  a n  e l e m e n t  o f  L .

S o  a ll  w e  h a v e  t o  d o  is  c h e c k  t h a t  a ;  is  n o t  a  r o o t  o f  h  w h e n  i  >  1 . W e  s u b s t i t u te :  

h ( a ; )  =  g (y  — c a ; ) .  T h e  r o o t s  o f  g  a r e  fJ i ,  . . . ,  fJn , s o  w e  m u s t  c h e c k  th a t  y  — c a ; 01=f J /  

f o r  a n y  j ,  o r  t h a t  f J  +  c a i  01= fJj  +  c a ; . T h is  is  tr u e  b e c a u s e  c  h a s  b e e n  c h o s e n  so  t h a t  t h e  

e l e m e n t s  y ; j  a r e  d is t in c t .  □

1 5 . 9  F U N C T IO N  FIEL D S

I n  t h is  s e c t io n  w e  l o o k  a t  function fields, t h e  th ir d  c la s s  o f  f i e ld  e x t e n s i o n s  m e n t i o n e d  a t  t h e  

b e g in n in g  o f  t h e  c h a p te r .  T h e  f i e ld  C ( t )  o f  r a t io n a l  f u n c t io n s  in  t  w i l l  b e  d e n o t e d  b y  F .  I t s
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e l e m e n t s  a r e  f r a c t io n s  p / g  o f  c o m p l e x  p o ly n o m ia ls ,  w it h  q  =1= 0 . F u n c t io n  f i e ld s  a r e  f in i t e  

f ie ld  e x t e n s io n s  o f  F .

L e t  a  b e  a  p r im it iv e  e l e m e n t  fo r  a n  e x t e n s i o n  f ie ld  K  o f  F  d e g r e e  n ,  a n d  l e t  f  b e  t h e  

ir r e d u c ib le  p o ly n o m ia l  f o r  a  o v e r  F ,  s o  th a t  K  =  F ( a )  is  i s o m o r p h ic  to  t h e  f ie ld  F [ x ] / ( / ) ,  

w ith  a  c o r r e s p o n d in g  t o  th e  r e s id u e  o f  x .  B y  c le a r in g  d e n o m in a t o r s ,  w e  m a k e  f  in t o  a  

p r im it iv e  p o ly n o m ia l  th a t  w e  w r i t e  a s a  p o ly n o m ia l  in  x :

( 1 5 .9 .1 )  f ( t , x )  =  an(t)xn -1------ 1- ai (t)x + a0(t).

T h e  h y p o t h e s i s  th a t  f  is  a  p r im it iv e  p o ly n o m ia l  m e a n s  th a t  th e  c o e f f ic ie n t s  at  ( t )  a r e  

p o ly n o m ia l s  in  t  w it h  g r e a t e s t  c o m m o n  d iv is o r  1 , a n d  th a t  ( t )  is  m o n ic  ( 1 2 .3 .9 ) .  T h e  

Riemann surface X  o f  s u c h  a  p o ly n o m ia l  w a s  d e f in e d  in  S e c t io n  1 1 .9 , a s  t h e  l o c u s  o f  z e r o s  

{ f  =  0} in  c o m p le x  ( t ,  x ) - s p a c e  C 2 . It w a s  s h o w n  t h e r e  th a t  X  is  a n  n - s h e e t e d  b r a n c h e d  

c o v e r i n g  o f  t h e  c o m p le x  t - p la n e  T  ( 1 1 .9 .1 6 ) .  T h e  b r a n c h  p o in t s  a r e  t h e  p o in t s  t  =  to  o f  T  

a t w h ic h  th e  o n e - v a r ia b le  p o ly n o m ia l  f(to,  x )  h a s  f e w e r  th a n  n  r o o t s ,  w h ic h  h a p p e n s  w h e n  

/ ( t o ,  x )  h a s  a  m u l t ip le  r o o t ,  o r  w h e n  to is  a  r o o t  o f  t h e  le a d in g  c o e f f i c ie n t  (t) o f  f  ( 1 1 .9 .1 7 ) .

A s  b e f o r e ,  w e  u s e  th e  n o t a t io n  X ' fo r  a  se t o b t a in e d  b y  d e l e t in g  a n  u n s p e c i f i e d  f in i t e  

s u b s e t  f r o m  X ,  a n d  in s t e a d  o f  s a y in g  th a t  s o m e  s t a t e m e n t  is  t r u e  e x c e p t  a t a  f in i t e  s e t  o f  
p o in t s  o f  X ,  w e  w il l  s a y  th a t  it  is  t r u e  o n  X ' .

A n  isomorphism o f  extension fields K  a n d  L  o f  F  w a s  d e f in e d  in  ( 1 5 .2 .9 ) .  I t  i s  a n  

i s o m o r p h is m  o f  f ie ld s  cp: K  —► L  th a t  r e s tr ic t s  t o  t h e  id e n t i t y  o n  F :

( 1 5 .9 .2 )  K  — - -  L

F  ^ =  F

T h e  v e r t ic a l  a r r o w s  in  th is  d ia g r a m  a r e  th e  in c lu s io n s  o f  F  a s  a  s u b f ie ld  in t o  K  a n d  L ,  a n d  

t h e  l o n g  e q u a l i t y  s y m b o l  s t a n d s  f o r  t h e  id e n t i t y  m a p .

•  A n  isomorphism o f  branched coverings X  a n d  Y  o f  T  is  a  c o n t in u o u s ,  b i j e c t iv e  m a p  

T] : X '  —> Y ' th a t  is  c o m p a t ib l e  w it h  t h e  p r o j e c t io n s  o f  t h e s e  s u r f a c e s  t o  T :

( 1 5 .9 .3 )  X '  Y

T  T ' .

T h e  p r im e s  in d ic a t e  th a t  w e  e x p e c t  t o  d e l e t e  f in i t e  s e t s  o f  p o in t s  f r o m  X  a n d  Y  in  o r d e r  th a t  

t h e  m a p  11 b e  d e f in e d  a n d  b i j e c t iv e .

S p e a k in g  a  b it  l o o s e ly ,  w e  c a l l  a  b r a n c h e d  c o v e r in g  n:  X  - >  T  path connected i f  X '  is  

p a t h  c o n n e c t e d ,  b y  w h ic h  w e  m e a n  th a t  f o r e v e r y  f in i t e  s u b s e t  A  o f  X ,  t h e  s e t  X  — A  is  p a th  

c o n n e c t e d .

T h e  o b je c t  o f  t h i s  s e c t io n  is  t o  e x p la in  t h e  n e x t  t h e o r e m ,  w h ic h  d e s c r ib e s  f u n c t io n  f ie ld s  

in  t e r m s  o f  t h e ir  R i e m a n n  s u r fa c e s .
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T h e o r e m  1 5 .9 .4  R ie m a n n  E x i s t e n c e  T h e o r e m .  T h e r e  is  a  b i j e c t iv e  c o r r e s p o n d e n c e  b e t w e e n  

i s o m o r p h is m  c l a s s e s  o f  f u n c t io n  f ie ld s  o f  d e g r e e  n  o v e r  F  a n d  i s o m o r p h is m  c l a s s e s  o f  c o n 
n e c t e d ,  n - s h e e t e d  b r a n c h e d  c o v e r in g s  o f  T, s u c h  th a t  t h e  c la s s  o f  t h e  f ie ld  e x t e n s i o n  K  d e f in e d  

b y  a n  ir r e d u c ib le  p o ly n o m ia l  f ( t ,  x )  c o r r e s p o n d s  t o  t h e  c la s s  o f  it s  R ie m a n n  s u r f a c e  X .

T h is  t h e o r e m  g iv e s  u s  a  w a y  t o  d e c i d e  w h e n  t w o  p o ly n o m ia l s  o f  t h e  s a m e  d e g r e e  in  

x  d e f in e  i s o m o r p h ic  f ie ld  e x t e n s io n s .  A  s im p le  c r it e r io n  th a t  c a n  o f t e n  b e  u s e d  is  th a t  th e  

b r a n c h  p o in t s  o f  th e ir  R ie m a n n  s u r fa c e s  m u s t  m a tc h  u p . H o w e v e r ,  t h e  t h e o r e m  f a i ls  t o  t e l l  

u s  h o w  to  f in d  a  p o ly n o m ia l  w it h  a  g iv e n  b r a n c h e d  c o v e r  a s  it s  R ie m a n n  s u r f a c e .  I t  c a n n o t  d o  

t h is .  M a n y  p o l y n o m ia l s  d e f in e  i s o m o  r p h ic  f ie ld  e x t e n s i o n s ,  a n d  f in d in g  s o m e t h in g  is  d if f ic u lt  

w h e n  t h e r e  a r e  m a n y  c h o ic e s .

T h e  p r o o f  o f  t h e  t h e o r e m  is  t o o  lo n g  t o  in c lu d e ,  b u t  o n e  p a r t  is  r a t h e r  e a s y  t o  v e r ify :

P r o p o s i t io n  1 5 .9 .5  L e t  f i t , x )  a n d  g(t,  y )  b e  ir r e d u c ib le  p o ly n o m ia ls  in  C [ t ,  x ]  a n d  C f t ,  y ] ,  
r e s p e c t iv e ly .  L e t  K  =  F [ x ] / ( J )  a n d  L  =  F [  y ]  /  ( g )  b e  th e  f ie ld  e x t e n s io n s  t h e y  d e f in e ,  a n d  

l e t  X  a n d  Y  b e  t h e  R ie m a n n  s u r f a c e s  I f  =  0} an d  {g  =  O}. l f  K /  F  a n d  L / F  a r e  i s o m o r p h ic  

f ie ld  e x t e n s io n s ,  t h e n  X  a n d  Y  a r e  i s o m o r p h ic  b r a n c h e d  c o v e r in g s  o f  T.

Proof. T h e  r e s id u e  o f  y  in  L =  F [ y ] / ( g ) ,  l e t ’s  c a l l  it  fJ, is  a  r o o t  o f  g ,  i . e . ,  g ( t ,  fJ) =  0 , a n d  

a n  F - i s o m o r p h i s m  < p :K  —> L  g iv e s  u s  a  r o o t  o f  g  in  K ,  n a m e ly  y  =  <p- l ( fJ ) .  S o  g ( t ,  y )  =  O. 

A s  is  t r u e  fo r  a n y  e l e m e n t  o f  K  =  F [ x ] / ( f ) ,  y  c a n  b e  r e p r e s e n t e d  a s  t h e  r e s id u e  m o d u lo  

( J )  o f  a n  e l e m e n t  o f  F [ x ] .  W e  le t  u  b e  s u c h  a n  e l e m e n t ,  a n d  w e  d e f in e  t h e  i s o m o r p h is m  

T I:X  Y b y  TI(t, x )  =  ( t ,  u  ( t ,  x » .

W e  m u s t  s h o w  th a t  i f  ( t ,  x )  i s  a  p o in t  o f  X ,  t h e n  ( t ,  u )  i s  a  p o in t  o f  Y . S in c e  g ( t ,  y)  =  0  

in  K  a n d  s in c e  u  is  a n  e l e m e n t  o f  F [ x ]  th a t  r e p r e s e n t s  y ,  g ( t ,  u )  is  in  th e  id e a l  ( J ) .  T h e r e  

is  a n  e l e m e n t  h  o f  F [ x ]  s u c h  th a t
g ( t ,  u )  =  fh .

If  ( t ,  x )  is  a  p o in t  o f  X,  t h e n  f ( t ,  x )  =  0 , a n d  s o  g ( t ,  u )  =  0  t o o .  T h e r e f o r e  ( t ,  u )  is  i n d e e d  

a  p o in t  o f  Y . H o w e v e r ,  s i n c e  u  a n d  h  a r e  e l e m e n t s  o f  F [ x ] ,  th e ir  c o e f f ic ie n t s  a r e  r a t io n a l  

f u n c t io n s  in  t  th a t  m a y  h a v e  d e n o m in a t o r s .  S o  TI m a y  b e  u n d e f in e d  a t  a  f in i t e  s e t  o f  p o in t s .

T h e  in v e r s e  f u n c t io n  to  TI is o b t a i n e d  b y  in t e r c h a n g in g  t h e  r o l e s  o f  K  a n d  L .  □

C u t  a n d  P a s t e

“ C u t  a n d  p a s t e ”  is  a  p r o c e d u r e  t o  c o n s t r u c t  o r  d e c o n s t r u c t  a  b r a n c h e d  c o v e r in g .

W e  g o  b a c k  t o  o u r  e x a m p l e  o f  t h e  R ie m a n n  s u r f a c e  X  o f  t h e  p o ly n o m ia l  x 2 — t, a n d  

w r it e  x  =  x o  +  x i i  a s  b e f o r e .  I f  w e  c u t  X  o p e n  a lo n g  t h e  d o u b le  l o c u s  o f  F ig u r e  1 1 .9 .1 5 ,  t h e  

n e g a t iv e  r e a l  t -a x is ,  it  d e c o m p o s e s  in t o  t h e  t w o  p a r ts  Xo >  0  a n d  Xo <  O. E a c h  o f  t h e s e  p a r t s  
p r o j e c t s  b i j e c t iv e ly  t o  T, p r o v id e d  t h a t  w e  d i s r e g a r d  w h a t  h a p p e n s  a l o n g  t h e  c u t .

T u r n in g  th is  p r o c e d u r e  a r o u n d , w e  ca n  c o n s t r u c t  a  b r a n c h e d  c o v e r in g  i s o m o r p h ic  t o  
X  in  t h e  f o l lo w in g  w a y :  W e  s t a c k  t w o  c o p i e s  S i ,  S 2 o f  t h e  c o m p l e x  p la n e  o v e r  T  a n d  c u t  

t h e m  o p e n  a lo n g  t h e  n e g a t iv e  r e a l a x is . T h e s e  c o p ie s  o f  T  w i l l  b e  c a l l e d  sheets. T h e n  w e  g lu e  

sideA  o f  t h e  c u t  o n  S i  t o  s i d e B  o f  t h e  c u t  o n  S 2 a n d  v i c e  v e r s a .  ( T h i s  c a n n o t  b e  d o n e  in  

t h r e e - d im e n s io n a l  s p a c e .)
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side A
s id e  B

(15.9.6) S id e s  A  a n d  B .

Suppose we are given an n-sheeted branched covering X T, and let fj. = 
{ p i , . . .  , Pk} be the set of its branch points in T. For v =  1, . . . ,  k, we choose nonin
tersecting half lines C v that lead from p p to infatity. We cut T  open along these half lines, 
and we also cut X open at all points that lie over them.

We should be specific about what we mean by cutting. Let’s agree that cutting T open 
means removing all points of the half lines C v, including p u, and that cutting X  open means 
removing all points that lie over those half lines.

L e^m a 15.9.7 When X  is cut open above the half lines Cv, it decomposes as a union of n 
“sheets” Si, . . . ,  Sn, which can be numbered arbitrarily. Each sheet projects bijectively to 
the cut plane T.

This is true because the cut surface X  is an unbranched covering space of the cut plane T, 
which is a simply-connected set: Any loop. in the cut plane can be contracted continuously 
to a point. It is intuitively plausible that every unbranche d covering of a simply connected 
space decomposes completely. The sheet that contains a point p  of X  consists of all points 
that can be joined to p  by a path without crossing the cuts. (This is an exercise in [Munkres],

Now to reconstruct the surface ,X we take n copies of the cut plane T, we caU them 
“sheets” and label them as Si, • • • , Sn. We stack them up over T. Except for the cuts, the 
union of these sheets is our branched Covering. We must describe the rule for gluing the 
sheets back together along the cuts. On T, we make a loop t v that circles a branch point 
Pv in the counterclockwise direction, and we call the side of C v we pass through before 
crossing C v as “side A ” and the side we pass through after crossing as “side B.” We label 
the corresponding sides of the sheet Si as side A, and side Bj, respectively. Then the rule

p. 342). □

(15.9.8) The Cut Plane T.
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f o r  g lu in g  X  a m o u n t s  t o  in s t r u c t io n s  th a t  side Ai is  g lu e d  t o  side B j  f o r  s o m e  j .  T h is  r u le  is  

d e s c r ib e d  b y  t h e  p e r m u t a t io n  o f  t h e  in d ic e s  1, . . . ,  n  th a t  s e n d s  i  -*+ j .

I', i t :r m s  c le a r  th a t  w e  c a n  c o n s t r u c t  a  c o v e r in g  u s in g  a n  a r b itr a r y  s e t  o f  p e r m u t a t io n s  

O"v, e x c e p t  th a t  w h a t  s h o u ld  h a p p e n  a b o v e  t h e  b r a n c h  p o in t s  t h e m s e lv e s  is  n o t  c le a r .  T o  

a v o id  a m b ig u it y ,  w e  s im p ly  d e l e t e  a ll  b r a n c h  p o in t s  a n d  a l l  p o in t s  th a t  l i e  o v e r  t h e m .

•  Branching Data: F o r  v  =  1,  . . . ,  r ,  a  p e r m u t a t io n  O"v o f  t h e  in d ic e s  1 , . . . ,  n •

•  Gluing Instructions: I f  O"v(i) =  j ,  g lu e  side Ai to  side B j  a lo n g  th e  c u t C y .

W h e n  t h e  g lu in g  i s  d o n e  n o  c u t s  r e m a in ,  a n d  t h e  u n io n  o f  t h e  s h e e t s  is  o u r  c o v e r in g .  A s  is  

t r u e  o f  th e  R ie m a n n  s u r f a c e  d e p ic t e d  in  F ig u r e  1 1 . 9 . 1 5 ,  f o u r  d im e n s io n s  w i l l  b e  n e e d e d  to  

d o  th e  g lu in g  w i t h o u t  s e l f  c r o s s in g s .
I f  is  t h e  t r iv ia l  p e r m u t a t io n ,  t h e n  e a c h  s h e e t  is  g lu e d  t o  i t s e l f  a b o v e  C y. T h e n  th a t  

c u t  i s n ’t n e e d e d ,  a n d  w e  s a y  t h a t  p v is  n o t  a  true b r a n c h  p o in t .
T h e  n e x t  c o r o l la r y  r e s t a t e s  t h e  a b o v e  d is c u s s io n .

L e m m a  1 5 .9 .9  E v e r y  n - s h e e t e d  b r a n c h e d  c o v e r in g  X  —> T  is  i s o m o r p h ic  t o  o n e  c o n s t r u c t e d  

b y  t h e  c u t - a n d - p a s t e  p r o c e s s .  □

Note: T h e  n u m b e r in g  o f  th e  s h e e t s  is  a r b itr a r y , a n d  th e  c o n c e p t  o f  a  “ t o p  s h e e t ”  h a s  n o  

in tr in s ic  m e a n in g  f o r  a  R ie m a n n  s u r f a c e .  I f  t h e r e  w e r e  a  t o p  s h e e t ,  o n e  c o u ld  d e f in e  x  a s  a  

s in g le  v a lu e d  f u n c t io n  o f  t b y  c h o o s in g  th e  v a lu e  o n  th a t  s h e e t .  O n e  c a n  d o  th is  o n ly  a f t e r  

t h e  R ie m a n n  s u r f a c e  h a s  b e e n  c u t  o p e n .  W a n d e r in g  a r o u n d  o n  X  l e a d s  f r o m  o n e  s h e e t  t o  

a n o th e r .  □

E x c e p t  f o r  th e  a r b itr a r y  n u m b e r in g  o f  th e  s h e e t s ,  th e  p e r m u t a t io n s  0" a r e  u n iq u e ly  

d e t e r m in e d  b y  t h e  b r a n c h e d  c o v e r in g  X .  A  c h a n g e  o f  n u m b e r in g  b y  a  p e r m u t a t io n  p  w i l l  

c h a n g e  e a c h  t o  t h e  c o n j u g a t e  p - 10" yp .

L e m m a  1 5 .9 .1 0  L e t  X  a n d  Y  b e  b r a n c h e d  c o v e r in g s  c o n s t r u c t e d  b y  c u t  a n d  p a s t e ,  u s in g  t h e  

s a m e  p o i n t s  p y a n d  h a l f  l i n e s  C y . L e t  t h e  p e r m u t a t io n s  d e f in in g  t h e ir  g lu in g  d a ta  b e  O" a n d  

t u, r e s p e c t iv e ly .  T h e n  X  a n d  Y  a r e  i s o m o r p h ic  b r a n c h e d  c o v e r in g s  i f  a n d  o n ly  i f  t h e r e  is  a  
p e r m u t a t io n  p  s u c h  th a t  rv =  p _ 10" y p  f o r  e a c h  v. . □

L e m m a  1 5 .9 .1 1  T h e  b r a n c h e d  c o v e r in g  X  c o n s t r u c t e d  b y  c u t a n d  p a s t e  is  p a th  c o n n e c t e d  i f  

a n d  o n ly  i f  t h e  p e r m u t a t io n s  0"i ,  • • • , O" g e n e r a t e  a  s u b g r o u p  H  o f  t h e  s y m m e tr ic  g r o u p  th a t  
o p e r a t e s  t r a n s i t iv e ly  o n  t h e  in d i c e s  1, . . . ,  n .

Proof. E a c h  s h e e t  i s  p a th  c o n n e c t e d .  I f  t h e  p e r m u t a t io n  O"v s e n d s  t h e  in d e x  i  t o  j ,  t h e  s h e e t s

Si a n d  S j  a r e  g lu e d  t o g e t h e r  a l o n g  t h e  c u t  C y . T h e n  t h e r e  w i l l  b e  a  s h o r t  p a t h  a c r o s s  t h e  c u t  

th a t  l e a d s  f r o m  a  p o in t  o f  S ,  t o  a  p o in t  o f  Sj, a n d  b e c a u s e  t h e  s h e e t s  t h e m s e l v e s  a r e  p a th  

c o n n e c t e d ,  a l l  p o i n t s  o f  Sj U Sj  c a n  b e  c o n n e c t e d  b y  p a th s .  S o  X  is  p a th  c o n n e c t e d  i f  a n d  
o n ly  i f ,  f o r  e v e r y  p a ir  o f  in d ic e s  i, j ,  t h e r e  is  a  s e q u e n c e  o f  t h e  p e r m u t a t io n s  a v th a t  c a r r ie s
i  =  io  i l  * * * '—* id  =  j. T h is  w i l l  b e  tr u e  i f  a n d  o n l y  i f  H  o p e r a t e s  t r a n s i t iv e ly .  □
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E x a m p le  1 5 .9 .1 2  T h e  s im p le s t  k - s h e e t e d  p a th  c o n n e c t e d  b r a n c h e d  c o v e r in g s  o f  T  a r e  

b r a n c h e d  a t  a  s in g le  p o in t .  L e t  Y  b e  s u c h  a  c o v e r in g ,  b r a n c h e d  o n ly  a t  t h e  o r ig in  t  =  O. 

T h e  b r a n c h in g  d a ta  f o r  Y  c o n s i s t s  o f  a  s in g le  p e r m u t a t io n  (J', t h e  o n e  th a t  c o r r e s p o n d s  t o  a  

l o o p  a r o u n d  th e  o r ig in . T h e  p r e v io u s  l e m m a  t e l l s  u s  t h a t ,  s in c e  Y  is  p a th  c o n n e c t e d ,  (J' m u s t  

o p e r a t e  t r a n s i t iv e ly  o n  t h e  k  in d ic e s ,  a n d  t h e  o n ly  p e r m u t a t io n s  t h a t  o p e r a t e  t r a n s i t iv e ly  a r e  

t h e  c y c l i c  p e r m u t a t io n s  o f  o r d e r  k . S o  w i t h  s u i t a b le  n u m b e r in g  o f  t h e  s h e e t s ,  (J' =  ( 1 2  . . .  k ) .  

T h e r e  i s ,  u p  t o  i s o m o r p h is m ,  e x a c t ly  o n e  k - s h e e t e d  b r a n c h e d  c o v e r in g  b r a n c h e d  o n ly  a t  t h e  

o r ig in .  T h e  R i e m a n n  E x i s t e n c e  T h e o r e m  t e l l s  u s  th a t  t h e r e  is ,  u p  to  i s o m o r p h is m ,  a  u n iq u e  

f ie ld  e x t e n s i o n  w i t h  t h is  R ie m a n n  s u r f a c e .  I t  is  n o t  h a r d  t o  g u e s s  t h is  f ie ld  e x t e n s io n :  i t  is  t h e  

o n e  d e f in e d  b y  t h e  p o ly n o m ia l  y k -  t , i . e . ,  K  =  F ( y ) ,  w h e r e  y =  ,ifi. T h e  R ie m a n n  s u r f a c e

Y  h a s  k  s h e e t s .  I t  is  b r a n c h e d  o n ly  a t  t h e  o r ig in  b e c a u s e  e a c h  t d i f f e r e n t  f r o m  z e r o  h a s  k  

c o m p le x  k th  r o o t s .
T h e r e  a r e  t w o  m o r e  t h in g s  to  b e  s a id  h e r e .  F ir s t ,  t h e  t h e o r e m  a s s e r t s  t h a t  th is  is  t h e  only 

f ie ld  e x t e n s i o n  o f  d e g r e e  k  b r a n c h e d  a t  th e  s in g le  p o in t  t =  O. T h is  i s n ’t o b v io u s .  S e c o n d ,  

t h e  s a m e  f ie ld  e x t e n s i o n  K  =  F ( y )  c a n  b e  g e n e r a t e d  b y  m a n y  e l e m e n t s .  F o r  m o s t  c h o i c e s  o f  

g e n e r a t o r s ,  it  w o u l d  n o t  b e  o b v io u s  th a t  t h e r e  is  o n ly  o n e  true b r a n c h  p o in t .  □

C o m p u t i n g  t h e  P e r m u t a t i o n s

G i v e n  a  p o ly n o m ia l  f ( t ,  x),  o n e  w is h e s  to  d e t e r m in e  t h e  p e r m u t a t io n s  (J'v t h a t  d e f in e  t h e  

g lu in g  d a ta  o f  it s  R ie m a n n  s u r f a c e .  T w o  p r o b le m s  p r e s e n t  t h e m s e lv e s .  F ir s t ,  t h e  “ lo c a l  

p r o b le m : ”  A t  e a c h  b r a n c h  p o in t  p  o n e  m u s t  d e t e r m in e  t h e  p e r m u t a t io n  (J' o f  t h e  s h e e t s  t h a t  

o c c u r s  w h e n  o n e  c i r c l e s  t h a t  p o in t .  A s  w e  h a v e  s e e n ,  (J' d e p e n d s  o n  t h e  n u m b e r in g  o f  t h e  

s h e e t s .  S e c o n d ,  o n e  m u s t  t a k e  c a r e  t o  u s e  t h e  s a m e  n u m b e r in g  f o r  e a c h  b r a n c h  p o in t .  T h is  

is  t h e  m o r e  d if f ic u lt  p r o b le m . A  c o m p u t e r  h a s  n o  p r o b le m  w it h  it, b u t  e x c e p t  in  v e r y  s im p le  

c a s e s ,  i t  is  d if f ic u l t  t o  d o  b y  h a n d . •

T o  c o m p u t e  t h e  p e r m u t a t io n s ,  t h e  c o m p u t e r  c h o o s e s  a  “ b a s e  p o in t "  b  in  t h e  c u t  p la n e  
T  a n d  c o m p u t e s  t h e  n r o o t s  o f  t h e  p o ly n o m ia l  f (b , x) n u m e r ic a l ly ,  w it h  a  s u i t a b le  a c c u r a c y .  
It n u m b e r s  t h e s e  r o o t s  a r b it r a r i ly , sa y  y i , . . . ,  y n , a n d  la b e l s  th e  s h e e t s  b y  c a l l in g  S, t h e  

s h e e t  t h a t  c o n t a in s  t h e  r o o t  y;. T h e n  it  w a lk s  t o  a  p o in t  b v in  t h e  v i c in i t y  o f  a  b r a n c h  p o in t  

P v . t a k in g  c a r e  n o t  t o  c r o s s  a n y  o f  t h e  c u t s .  T h e  r o o t s  y ,  v a r y  c o n t in u o u s ly ,  a n d  t h e  c o m p u t e r  

c a n  f o l l o w  t h is  v a r ia t io n  b y  r e c o m p u t in g  r o o t s  e v e r y  t im e  i t  t a k e s  a  s m a l l  s t e p .  T h is  t e l l s  it  

h o w  t o  la b e l  th e  s h e e t s  a t  t h e  p o in t  b v  T h e n  t o  d e t e r m in e  t h e  p e r m u t a t io n  (J'v, t h e  c o m p u t e r  

f o l l o w s  a  c o u n t e r c lo c k w is e  l o o p  i v a r o u n d  p v , a g a in  r e c o m p u t in g  r o o t s  a s  it  g o e s  a lo n g .  
B e c a u s e  t h e  l o o p  c r o s s e s  t h e  c u t  C v, t h e  r o o t s  w i l l  h a v e  b e e n  p e r m u t e d  b y  <j v w h e n  t h e  p a th  

r e tu r n s  t o  b y  In  th is  w a y ,  t h e  c o m p u t e r  d e t e r m in e s  a v. A n d  b e c a u s e  t h e  n u m b e r in g  h a s  

b e e n  e s t a b l i s h e d  a t  t h e  b a s e  p o in t  b ,  it  w i l l  b e . t h e  s a m e  f o r  a l l  o f  t h e  b r a n c h  p o in t s .

N e e d l e s s  to  s a y ,  d o in g  t h is  b y  h a n d  is  in c r e d ib ly  t e d io u s .  W e  f in d  w a y s  t o  g e t  a r o u n d  

th e  p r o b le m  in  t h e  e x a m p le s  w e  p r e s e n t  b e lo w .

T h e  lo c a l  p r o b le m  c a n  b e  s o l v e d  b y  a n a ly t ic  m e t h o d s ,  a n d  w e  g iv e  a n  i n c o m p le t e  

a n a ly s i s  h e r e .  T h e  m e t h o d  is  t o  r e la t e  t h e  R ie m a n n  s u r f a c e  t o  o n e  th a t  w e  k n o w ,  n a m e ly  to  

t h e  R ie m a n n  s u r f a c e  Y  o f  t h e  p o ly n o m ia l  yk — t. L e t  to  b e  a  b r a n c h  p o i n t  o f  t h e  R ie m a n n
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s u r fa c e  X :  ( J ( t ,  x )  =  O}, w h e r e  f  is  a  p o ly n o m ia l  o f  t h e  f o r m  ( 1 5 .9 .1 ) .  S u b s t i t u t in g  t =  to , 

w e  o b t a in  th e  o n e - v a r ia b le  p o l y n o m i a l  D ( x )  =  / ( t o ,  x ) .

L e m m a  1 5 .9 .1 3  L e t  x o  b e  a  r o o t  o f  D ( x ) .  S u p p o s e  th a t

•  Xo is  a  k - f o ld  r o o t  o f  D ( x ) ,  a n d

•  t h e  p a r t ia l  d e r iv a t iv e  ^  is  n o t  z e r o  a t  t h e  p o i n t  ( to ,  x o ) .

T h e n  th e  p e r m u t a t io n  o f  th e  s h e e t s  a t  th e  p o in t  to c o n t a in s  a  k -c y c le .

Proof. W e  c h a n g e  v a r ia b le s  t o  m o v e  t h e  p o i n t  ( to ,  x o )  t o  t h e  o r ig in  ( 0 , 0 ) ,  s o  t h a t  D ( x )  — 

/ ( 0 ,  x ) ,  a n d  w e  w r it e  / ( t ,  x )  =  D ( x )  -  t v ( t ,  x ) .  T h e n  ( 0 ,  0 )  =  - v ( O ,  0 ) .  O u r  h y p o t h e s e s  

t e l l  u s  th a t  v ( 0 ,  0 )  * 0 .  A l s o ,  s in c e  x  =  0  is  a  k - fo ld  r o o t  o f  D ( x ) ,  th a t p o l y n o m i a l  h a s  th e  

f o r m  x fcM ( x )  w h e r e  m ( x )  is  a  p o ly n o m ia l  in  x  a n d  u  (O ) *  0 . T h e n  / ( f ,  x )  =  x fcw ( x )  - f v ( f ,  x ) .  

L e t  c  =  m ( 0 ) / u ( 0 ,  0 ) .  W e  r e p la c e  t  b y  c"1 t. T h e  r e s u l t  is  th a t  n o w  m ( 0 ) / u ( 0 ,  0 )  =  l .

W e  r e s tr ic t  a t t e n t io n  t o  a  s m a l l  n e ig h b o r h o o d  U  o f  t h e  o r ig in  ( 0 ,  0 )  in  ( t ,  x ) - s p a c e ,  a n d  w r it e  

t h e  e q u a t io n  /  =  0 a s

x k m / v  =  t.

F o r  ( t ,  x )  in  U ,  m / v  is  n e a r  t o  1. A m o n g  t h e  k th  r o o t s  o f  u / v ,  o n e  w i l l  b e  n e a r  t o  1, a n d  th a t  

r o o t ,  c a l l  it  w ,  d e p e n d s  c o n t in u o u s ly  o n  t h e  p o in t  ( f ,  x )  in  U. T h e  o t h e r  k th  r o o t s  w i l l  b e  

Svw,  w h e r e  S  =  e 2 m /k .

L e t  y  =  xw .  T h e n  in  o u r  n e ig h b o r h o o d  U ,  th e  e q u a t io n  / ( t ,  x )  =  0  is  e q u iv a le n t  w it h  

y k =  t. T h e r e f o r e  t h e r e  a r e  k  s h e e t s  o f  o u r  R i e m a n n  s u r f a c e  X  t h a t  in t e r s e c t  U ,  a n d  w h e n  

w e  m a k e  a  l o o p  a r o u n d  t h e  p o in t  t  =  0, t h o s e  k  s h e e t s  w il l  b e  p e r m u t e d  in  t h e  s a m e  w a y  a s  

t h e  s h e e t s  o f  t h e  R ie m a n n  s u r f a c e  Y , i .e . ,  c y c l ic a l ly .  □

W e  n o w  d e s c r ib e  th e  b r a n c h in g  d a ta  f o r  a  f e w  s im p le  p o ly n o m ia ls .  W e  t a k e  p o l y n o m ia l s  

th a t  a r e  m o n ic  in  x .  T h e  b r a n c h  p o in t s  w i l l  b e  t h e  p o in t s  to  a t  w h ic h  / ( t o ,  x )  h a s  m u l t ip l e
d /*

r o o t s  -  t h e  p o in t s  a t  w h ic h  / ( t o ,  x )  a n d  ( to ,  x )  h a v e  a  c o m m o n  r o o t .  P r o p o s i t io n  1 5 .9 .1 3  

w il l  b e  o u r  m a in  t o o l .

E x a m p le s  1 5 .9 .1 4  ( a )  J ( t ,  x )  =  x 2 -  t3 +  t ,  =  2 x ,  ^  =  - 3t  +  1.

H e r e  X  is  a  t w o - s h e e t e d  c o v e r in g  o f  T . T h e r e  a r e  t h r e e  b r a n c h  p o in t s  t  =  0 ,  t  =  1, 

a n d  t  =  - 1 ,  a n d  - ^  *  0  a t  a ll o f  t h e m . S o  th e  p e r m u t a t io n  o f  th e  s h e e t s  a t  e a c h  o f  t h e s e  p o in t s  

c o n t a in s  a  t w o - c y c le .  S in c e  t h e r e  a r e  t w o  s h e e t s ,  e a c h  o f  t h e  p e r m u t a t io n s  is  t h e  t r a n s p o s i t i o n

( 1 2 ) .  W e  d o n ’t n e e d  t o  b e  c a r e f u l  a b o u t  t h e  n u m b e r in g  w h e n  t h e r e  a r e  t w o  s h e e t s .

( b )  W e  a s k  fo r  a  p a th  c o n n e c t e d ,  t h r e e - s h e e t e d  b r a n c h e d  c o v e r in g  X  o f  T  b r a n c h e d  a t  t w o  

p o in t s  p i  a n d  p 2, a n d  s u c h  th a t  th e  p e r m u t a t io n  07 a t  t h e  p o in t  pi  is  a  t r a n s p o s i t io n .
W e  m a y  la b e l  t h e  s h e e t s  s o  t h a t  a i  =  ( 1 2 ) .  T h e n  b e c a u s e  X  is  p a t h  c o n n e c t e d ,  

t h e  p e r m u t a t io n  m u s t  b e  e i t h e r  ( 2 3 )  o r  ( 1 3 )  ( 1 5 .9 .1 1 ) .  S w it c h in g  t h e  s h e e t s  c a l l e d  Sl 
a n d  S2 d o e s n ’t a f fe c t  (1"i ,  b u t  it  in t e r c h a n g e s  th e  t w o  o t h e r  t r a n s p o s i t io n s ,  s o  w i t h  s u i t a b le



470 Chapter 15 Fields

n u m b e r in g  o f  th e  s h e e t s ,  0' =  ( 1 2 )  a n d  0 '  =  ( 2 3 ) .  T h e r e  is  j u s t  o n e  i s o m o r p h i s m  c la s s  o f  

su c h  c o v e r in g s .
T h e  R ie m a n n  E x i s t e n c e  t h e o r e m  t e l l s  u s  th a t  t h e r e  is ,  u p  t o  i s o m o r p h i s m ,  a  u n iq u e  

f ie ld  e x t e n s i o n  K  o f  F  w i t h  th is  c o v e r in g  a s  it s  R ie m a n n  s u r f a c e .  O f  c o u r s e  K  w i l l  d e p e n d  

o n  t h e  l o c a t i o n  o f  t h e  t w o  b r a n c h  p o i n t s  b u t  t h e y  c a n  b e  m o v e d  t o  a n y  p o s i t i o n  b y  a  l in e a r  

c h a n g e  o f  v a r ia b le  in  t.
H o w  d o  w e  f in d  a  p o ly n o m ia l  f ( t ,  x )  w h o s e  R i e m a n n  s u r f a c e  h a s  t h is  f o r m ?  T h e r e  is  

n o  g e n e r a l  m e t h o d ,  s o  o n e  h a s  t o  g u e s s ,  a n d  th is  c a s e  is  s im p le  e n o u g h  t h a t  it  c a n  b e  g u e s s e d  

f a ir ly  e a s i ly .  S i n c e  t h e r e  is  v e r y  m in im a l  b r a n c h in g ,  w e  lo o k  f o r  a  v e r y  s i m p l e  p o l y n o m i a l  

t h a t  is  c u b ic  in  x .  I t  t a k e s  a  b it  o f  c o u r a g e  t o  s ta r t  l o o k in g ,  b u t  o n e  o f  t h e  f ir s t  a t t e m p t s  m ig h t  

b e  a  p o ly n o m ia l  o f  t h e  f o r m  x 3 +  x  +  t. T h is  w i l l  w o r k ,  b u t  l e t ’s  t a k e  f ( t ,  x )  =  x 3 — 3 x  +  t  

in s t e a d . T h e n  ^  =  3 x 2 -  3  a n d  =  1 . S u b s t i t u t in g  t h e  r o o t s  x  =  ± 1  o f  ^  i n t o  f ,  o n e  f in d s  

th a t  t h e  b r a n c h  p o in t s  a r e  t h e  p o in t s  t  =  ± 2 . S in c e  ~  is  n o w h e r e  z e r o ,  P r o p o s i t io n  1 5 .9 .1 3  

a p p l ie s .

T h e r e  is  a  d o u b le  r o o t  a t  t h e  p o in t  p i  =  ( 2 ,  - 1 ) .  S o  0' c o n t a in s  2 - c y c l e .  a  t r a n s p o s i t io n .  

S im ila r ly ,  0'  is  a  t r a n s p o s i t io n .  S o  a p a r t  f r o m  t h e  lo c a t io n  o f  t h e  t w o  b r a n c h  p o in t s ,  t h e  

R ie m a n n  s u r f a c e  X  o f  t h e  p o l y n o m i a l  J  =  x 3  -  3 x  +  t  h a s  t h e  d e s ir e d  p r o p e r t i e s ,  a n d  

F [ x ] / ( f )  d e f in e s  t h e  f ie ld  e x t e n s i o n  w i t h  th a t  b r a n c h in g .

( c )  f ( t ,  x )  =  x 3 -  t3 +  {2, ^  =  3 x 2 ,  ^  =  - 3 t 2  +  t.

H e r e  X  is a  t h r e e - s h e e t e d  c o v e r in g  o f  T . T h e  b r a n c h  p o in t s  a r e  a t  t  =  0  a n d  t  =  1 , a n d  

b o t h  J (O , x )  a n d  f ( l ,  x )  h a v e  t r ip le  r o o t s .  L e t  0'o  a n d  0' d e n o t e  t h e  p e r m u t a t io n s  o f  t h e  

s h e e t s  a t  t h e  b r a n c h  p o in t s .  T h e  p a r t ia l  d e r iv a t iv e  is  n o t  z e r o  a t  t  =  1 , s o  t h e  t h r e e  s h e e t s  

a r e  p e r m u t e d  c y c l ic a l ly  t h e r e .  W i t h  s u i t a b le  n u m b e r in g ,  w i l l  b e  ( 1 2  3 ) .

T h e  p o in t  t  =  0  p r e s e n t s  p r o b le m s .  F ir s t .  v a n is h e s  t h e r e .  S e c o n d ,  h o w  c a n  w e  m a k e  

s u r e  t o  u s e  t h e  s a m e  n u m b e r in g  o f  t h e  s h e e t s  a t  t h e  t w o  p o in t s ?  In  t h e  p r e v io u s  e x a m p le ,  

k n o w in g  th a t  th e  R ie m a n n  s u r f a c e  m u s t  b e  p a th  c o n n e c t e d  w a s  e n o u g h  t o  d e t e r m in e  t h e  
b r a n c h in g .  T h is  f a c t  g iv e s  u s  n o  in f o r m a t io n  h e r e  b e c a u s e  0'  o p e r a t e s  t r a n s i t iv e ly  o n  t h e  

s h e e t s  b y  i t s e l f .
W e  u s e  a  t r ic k  th a t  w o r k s  o n ly  in  t h e  s im p le s t  c a s e s .  T h a t  is  t o  c o m p u t e  t h e  p e r m u t a t io n  

th a t  w e  g e t  b y  w a lk in g  a r o u n d  a  la r g e  c i r c l e  T . A  la r g e  c ir c u la r  p a th  w i l l  c r o s s  e a c h  o f  th e  
c u t s  o n c e  ( s e e  F ig u r e  1 5 .9 .8 ) ,  s o  th e  s h e e t s  w il l  b e  p e r m u t e d  b y  t h e  p r o d u c t  p e r m u t a t io n  

0'00' 1, o r  b y  0 'i0 'o , d e p e n d in g  o n  w h e r e  w e  sta r t. I f  w e  c a n  d e t e r m in e  th a t  p e r m u t a t io n ,  t h e n  

s in c e  w e  k n o w  0'i ,  w e  w i l l  b e  a b l e  t o  r e c o v e r  0'o .
T h e  s u b s t i t u t io n  t  =  u  —  m a p s  T  b i j e c t iv e ly  t o  th e  c o m p le x  w - p la n e  U ,  e x c e p t  th a t  it 

is  u n d e f in e d  a t t h e  p o in t s  t  =  0  a n d  u  =  O. B e c a u s e  u  - >  0  a s  t -*■ o o , t h e  p o in t  w =  0  o f  U  is 

c a l le d  th e  point at infinity o f  T. O u r  la r g e  c ir c le  T  in  T  c o r r e s p o n d s  to  a  s m a l l  c ir c le ,  w e ’ll c a l l  

i t  L ,  th a t  c i r c l e s  t h e  o r ig in  in  U. H o w e v e r ,  a  c o u n t e r c lo c k w is e  w a lk  a r o u n d  T  c o r r e s p o n d s  

t o  a  c lo c k w is e  w a lk  a r o u n d  L : I f  t =  re1®, t h e n  u  =  r~l e~l°.
W e  m a k e  th e  s u b s t i t u t io n  t  =  u~l in to  t h e  p o ly n o m ia l  f  =  x 3 — t 3  +  t  a n d  c le a r  

d e n o m in a t o r s ,  o b t a in in g  x 3 u 3  — 1 +  w . W h e n  a n a ly z in g  s u c h  a  s u b s t i t u t io n ,  o n e  u s u a l ly  h a s  

t o  s u b s t i t u t e  f o r  x  a s  w e l l .  I t  s e e m s  c le a r  h e r e  th a t  w e  s h o u ld  s e t  y  =  u x .  T h is  g i v e s  u s

l  -  l  +  u.



'Section 15.10 The Fundamental Theorem of Algebra 471

L e t ’s  ca ll th is  p o ly n o m ia l  g(u ,  y ) .  T h e  R ie m a n n  s u r f a c e s  X  a n d  Y  : {g  =  0} c o r r e s p o n d  v ia  

t h e  s u b s t i t u t io n  ( x ,  t)  -o- ( y ,  u ) ,  w h ic h  is  d e f in e d  a n d  i n v e r t ib l e  e x c e p t  a b o v e  t h e  o r ig in s  in  

t h e  p la n e s  T  a n d  U .  T h e r e f o r e  t h e  p e r m u t a t io n  o f  s h e e t s  o f  X  d e f in e d  b y  a  c o u n t e r c lo c k w is e  

w a lk  a r o u n d  r  w i l l  b e  t h e  s a m e  a s  t h e  p e r m u t a t io n  o f  s h e e t s  o f  Y  d e f in e d  b y  a  c lo c k w is e  

w a lk  a r o u n d  L . T h a t  p e r m u t a t io n  is  t r iv ia l ,  b e c a u s e  t h e  R ie m a n n  s u r f a c e  Y  is  n o t  b r a n c h e d  

a t  u  =  O. T h e r e f o r e  0"o0"i =  1, a n d  s in c e  0"i  =  ( 1 2 3 ) , 0"o =  ( 3  2 1 ) .  □

1 5 . 1 0  TH E  F U N D A M E N T A L  T H E O R E M  O F A L G E B R A

A  f ie ld  F  is  algebraically closed i f  e v e r y  p o ly n o m ia l  o f  p o s i t i v e  d e g r e e  w it h  c o e f f i c ie n t s  in  
F  h a s  a  r o o t  in  F .  T h e  F u n d a m e n t a l  T h e o r e m  o f  A lg e b r a  a s s e r t s  t h a t  t h e  f ie ld  o f  c o m p l e x  

n u m b e r s  is  a lg e b r a ic a l ly  c lo s e d .

T h e o r e m  1 5 .1 0 .1  F u n d a m e n t a l  T h e o r e m  o f  A lg e b r a .  E v e r y  n o n c o n s t a n t  p o l y n o m i a l  w it h  

c o m p le x  c o e f f ic ie n t s  h a s  a  c o m p le x  r o o t .

T h e r e  a r e  s e v e r a l  p r o o f s  o f  th is  t h e o r e m ,  a n d  o n e  o f  t h e m  is  p a r t ic u la r ly  a p p e a l in g .  

W e  p r e s e n t  it  in  o u t l in e .  W e  m u s t  p r o v e  t h a t  a  n o n c o n s t a n t  p o ly n o m ia l

( 1 5 .1 0 .2 )  f ( x )  =  x n +  a n - i x n-1 +----------+ a i x  +  a o

w ith  c o m p le x  c o e f f ic ie n t s  h a s  a  c o m p le x  r o o t .  I f  a o  =  0 , th e n  0  is  a  r o o t ,  s o  w e  m a y  a s s u m e  

t h a t  a o  * 0.
T h e  r u le  y  =  J ( x )  d e f in e s  a  f u n c t io n  f r o m  th e  c o m p l e x  x - p l a n e  t o  th e  c o m p l e x  y - p la n e .  

L e t  Cr  d e n o t e  a  c ir c le  o f  r a d iu s  r  a b o u t  t h e  o r ig in  in  t h e  c o m p le x  x - p l a n e ,  p a r a m e t r iz e d  a s  

x  =  re10, w i t h  0 : :  () <  2Jl'. W e  in s p e c t  t h e  im a g e  / ( C r )  o f  C r .
T o  w a r m  u p , w e  c o n s id e r  th e  f u n c t io n  d e f in e d  b y  th e  p o ly n o m ia l  y  =  x n =  * e n i0 . A s  

() ru n s f r o m  0  t o  2 n ,  t h e  p o in t  x  t r a v e ls  o n c e  a r o u n d  th e  c ir c le  o f  r a d iu s  r . A t  th e  s a m e  t im e ,  

n ( )  r u n s  f r o m  0  t o  2 n n .  T h e  p o i n t  y  w in d s  n  t im e s  a r o u n d  t h e  c i r c l e  o f  r a d iu s  r'1.
N o w  l e t  J  b e  t h e  p o l y n o m ia l  ( 1 5 .1 0 .2 ) .  F o r  s u f f ic ie n t ly  la r g e  r , x n is  t h e  d o m in a n t  t e r m  

in  J ( x ) .  T o  m a k e  th is  p r e c i s e ,  l e t  M  b e  t h e  m a x im u m  a b s o lu t e  v a lu e  o f  t h e  c o e f f i c ie n t s  a,- o f  

J .  T h e n  i f  | x |  =  r  2: lO n M ,

J ( x )  -  x n | =  | a n _ i x n' 1 +-------- + a 1x  +  a o |  ::  n M |x |n“1 : :  ^ r" .

I t  f o l lo w s  f r o m  th is  in e q u a l i t y  th a t , a s  () r u n s f r o m  0  t o  2 n  a n d  x n w in d s  n  t im e s  a r o u n d  

th e  c ir c le  o f  r a d iu s  * ,  J ( x )  a l s o  w in d s  a r o u n d  t h e  o r ig in  n  t im e s .  A  g o o d  w a y  t o  v i s u a l iz e  

th is  c o n c lu s io n  is  w it h  t h e  d o g - o n - a - le a s h  m o d e l .  I f  s o m e o n e  w a lk s  a  d o g  n  t im e s  a r o u n d  a  

la r g e  c ir c u la r  p a t h ,  t h e  d o g  a ls o  g o e s  a r o u n d  n  t im e s ,  t h o u g h  p e r h a p s  f o l lo w in g  a  d i f f e r e n t  
p a th . T h is  w i l l  b e  t r u e  p r o v id e d  t h a t  t h e  l e a s h  is  s h o r t e r  t h a n  t h e  r a d iu s  o f  t h e  p a th .  H e r e  x n 

r e p r e s e n t s  th e  p o s i t i o n  o f  th e  p e r s o n  a t  th e  t im e  (), a n d  J ( x )  r e p r e s e n t s  th e  p o s i t i o n  o f  t h e  
d o g . T h e  r a d iu s  o f  t h e  p a th  is  ^  a n d  t h e  l e n g t h  o f  t h e  l e a s h  is  f o ^ .

W e  v a r y  t h e  r a d iu s  r . S in c e  J  i s  a  c o n t in u o u s  f u n c t io n ,  t h e  im a g e  / ( C r )  w i l l  v a r y  

c o n t in u o u s ly  w it h  r . W h e n  t h e  r a d iu s  r  is  v e r y  s m a l l ,  f ( C r )  m a k e s  a  s m a l l  l o o p  a r o u n d  t h e
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c o n s t a n t  t e r m  ao o f  J .  T h is  s m a ll  l o o p  w o n ’t w in d  a r o u n d  t h e  o r ig in  a t  a l l .  B u t  a s  w e  j u s t  

s a w ,  / ( C r)  w in d s  n  t im e s  a r o u n d  t h e  o r ig in  i f  r  is  la r g e  e n o u g h .  T h e  o n l y  e x p la n a t io n  fo r  

th is  is  th a t  fo r  s o m e  in t e r m e d ia t e  r a d iu s  r ', J (  C r' )  p a s s e s  t h r o u g h  t h e  o r ig in .  T h is  m e a n s  

th a t  f o r  s o m e  p o in t  a  o n  t h e  c i r c l e  C r ',  / ( a ) =  O. T h e n  a  is  a  r o o t  o f  J .

I don't consider this algebra, 
but this doesn't mean that algebraists can't d o  it.

— G a r r e tt  B ir k h o ff

EX E R C ISE S  

S e c t io n  1  E x a m p le s  o f  F ie ld s

1 .1 . L e t R b e  a n  in te g r a l d o m a in  that c o n ta in s  a  fie ld  F  as su b r in g  a n d  th a t  is  f in it e -d im e n s io n a l  
w h e n  v ie w e d  as v e c to r  s p a c e  o v e r  F. P r o v e  th a t  R is  a  f ie ld .

1 .2 . L e t  F  b e  a  f ie ld , n o t  o f  c h a r a c te r is t ic  2 , a n d  le t  x 2 +  bx +  c =  0  b e  a  q u a d r a tic  e q u a t io n  
w ith  c o e f f ic ie n ts  in  F. P r o v e  tha t i f  5  is a n  e le m e n t  o f  F  su c h  th a t  5 2 =  b2 -  4 c ,  
x  =  ( - b  +  5 ) / 2 a  s o lv e s  th e  q u a d r a tic  e q u a t io n  in  F .  P r o v e  a ls o  th a t  i f  th e  d is c r im in a n t  
b2 -  4 c  is n o t  a  sq u a r e , th e  p o ly n o m ia l  h a s  n o  r o o t  in  F .

1 .3 . W h ic h  su b f ie ld s  o f  C  a r e  d e n s e  s u b s e t s  o f  C ?

S e c t io n  2  A lg e b r a ic  a n d  T r a n s c e n d e n ta l  E le m e n ts

2 .1 . L e t  a  b e  a  c o m p le x  r o o t  o f  th e  p o ly n o m ia l  x 3 — 3 x  +  4. F in d  th e  in v e r s e  o f  a 2  +  a  +  1 in  
th e  f o r m  a  +  hex +  c a 2, w ith  a, b, c in  IQI.

2 .2 .  L e t  f(x )  =  xn — a „ _ i x " “ 1 +------ ± a o  b e  a n  ir r e d u c ib le  p o ly n o m ia l  o v e r  F ,  a n d  le t  a  b e
a  r o o t  o f  f  in  a n  e x t e n s io n  f ie ld  K . D e t e r m in e  t h e  e le m e n t  a -1 e x p l ic i t ly  in  te r m s  o f  a  
a n d  o f  th e  c o e f f ic ie n t s  a,-.

2 .3 . L e t  fJ =  w - / 2 ,  w h e r e  w  =  e 21f'/3 , a n d  le t  K  =  lQI(fJ). P r o v e  th a t  th e  e q u a t io n  x j  +-------- h x |  =
- 1  h as n o  s o lu t io n  w ith  x , in  K .

S e c t io n  3  T h e  D e g r e e  o f  a  F ie ld  E x t e n s io n

3 .1 . L e t  F  b e  a  f ie ld , a n d  le t  a  b e  a n  e le m e n t  th a t g e n e r a te s  a  f ie ld  e x te n s io n  o f  F  o f  d e g r e e  5 . 
P r o v e  that a 2  g e n e r a te s  th e  sa m e  e x t e n s io n .

3 .2 . P r o v e  th a t  th e  p o ly n o m ia l  x 4 +  3 x  +  3 is  ir r e d u c ib le  o v e r  th e  f ie ld  1Qi[ - /2 ] .

3 .3 . L e t /;n =  e2m/n. P r o v e  that /;5 fj. 1QI(/;7 ) .  *

3 .4 . L e t /;n =  e21f'/n . D e t e r m in e  th e  ir r e d u c ib le  p o ly n o m ia l  o v e r  IQI an d  o v e r  1QI(/;3) o f

(a ) /;4, (b ) /;6, (c )  /;8, (d ) /;9, (e )  /;io , ( f )  /;n-
3 .5 . D e t e r m in e  th e  v a lu e s  o f  n  su c h  that h a s  d e g r e e  at m o s t  3 o v e r  IQI.
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3 .6 .  L e t  a  b e  a  p o s i t iv e  r a t io n a l  n u m b e r  th a t  is  n o t  a  sq u a r e  in  Ql. P r o v e  th a t  h a s  d e g r e e  4 
o v e r  Ql.

3 .7 . ( a )  Is i  in  th e  f ie ld  Ql( ^ ) ?  (b )  Is . . /2  in  th e  f ie ld  Ql( . . /2 ) ?

3 .8 . L e t  a  a n d  f3 b e  c o m p le x  n u m b e r s . P r o v e  th a t i f  a  +  f3 an d  af3 a r e  a lg e b r a ic  n u m b e r s ,  
th e n  a  a n d  f3 a r e  a ls o  a lg e b r a ic  n u m b e r s .

3 .9 . L e t  a  a n d  b e  c o m p le x  r o o ts  o f  ir r e d u c ib le  p o ly n o m ia ls  f ( x )  a n d  g ( x )  in  Q l[x ]. L e t  
K  =  Q l(a )  a n d  L  =  Q l(f3). P r o v e  th a t  f ( x )  is  ir r e d u c ib le  in  L [ x ]  i f  a n d  o n ly  i f  g ( x )  is  
ir r e d u c ib le  in  K [ x ] .

3 .1 0 . A  f ie ld  e x t e n s io n  K /  F  is  a n  algebraic extension i f  e v e r y  e le m e n t  o f  K  is  a lg e b r a ic  
o v e r  F. L e t  K /  F  a n d  L  /  K  b e  a lg e b r a ic  f ie ld  e x t e n s io n s .  P r o v e  th a t  L  /  F  is  a n  a lg e b r a ic  
e x te n s io n .

S e c t io n  4  F in d in g  th e  I r r e d u c ib le  P o ly n o m ia l

4 .1 . L e t  K  =  Q l(a ) ,  w h e r e  a  is a  r o o t  o f  x 3 — x  — 1. D e t e r m in e  t h e  ir r e d u c ib le  p o ly n o m ia l  fo r  
y  =  1 + a 2 o v e r  Ql.

4 .2 . D e t e r m in e  th e  ir r e d u c ib le  p o ly n o m ia l  fo r  a  =  . . /2  + . . /2  o v e r  t h e  f o l lo w in g  f ie ld s .

(a )  Q l, (b )  Ql(../5 ) ,  ( c )  Q l ( M ) ,  (d )  Ql( v 'I S ) .

4 .3 . W ith  r e f e r e n c e  t o  E x a m p le  l5 .4 .4 ( b ) ,  d e t e r m in e  th e  ir r e d u c ib le  p o ly n o m ia l  f o r  y  =  
a j  + a 2 o v e r  Ql.

S e c t io n  5  C o n s tr u c t io n s  w ith  R u le r  a n d  C o m p a ss

5 .1 . E x p r e s s  c o s  15° in  te r m s  o f  r e a l sq u a r e  r o o ts .

5 .2 .  P r o v e  th a t  th e  r e g u la r  p e n ta g o n  c a n  b e  c o n s tr u c te d  b y  r u le r  a n d  c o m p a s s

(a )  b y  f ie ld  th e o r y ,  (b )  b y  f in d in g  a n  e x p l ic i t  c o n s tr u c t io n .

5 .3 . D e c id e  w h e th e r  o r  n o t  th e  r e g u la r  9 -g o n  is  c o n s tr u c t ib le  b y  r u le r  a n d  c o m p a s s .

5 .4 . Is it p o s s ib le  t o  c o n s tr u c t  a  sq u a r e  w h o s e  a rea  is  e q u a l  t o  that o f  a  g iv e n  tr ia n g le ?

5 .5 . R e fe r r in g  t o  t h e  p r o o f  o f  P r o p o s it io n  1 5 .5 .5 , s u p p o s e  th a t  t h e  d is c r im in a n t  D  is  n e g a t iv e .  
D e t e r m in e  th e  l in e  th a t  a p p e a r s  a t  th e  e n d  o f  t h e  p r o o f  g e o m e tr ic a lly .

5 .6 .  T h in k in g  o f  th e  p la n e  a s  th e  c o m p le x  p la n e , d e s c r ib e  th e  s e t  o f  c o n s tr u c t ib le  p o in t s  a s  
c o m p le x  n u m b e r s .

S e c t io n  6 A d j o in in g  R o o t s

6 .1 . L e t  F  b e  a  f ie ld  o f  c h a r a c te r is t ic  z e r o , le t  f  d e n o t e  th e  d e r iv a t iv e  o f  a  p o ly n o m ia l  f  in  
F [ x ] ,  a n d  le t  g  b e  an  ir r e d u c ib le  p o ly n o m ia l  th a t is  a  c o m m o n  d iv iso r  o f  f  a n d  / ' .  P r o v e  
th a t  g 2  d iv id e s  f .

6 .2 . ( a )  L e t  F  b e  a  f ie ld  o f  c h a r a c te r is t ic  z e r o .  D e t e r m in e  a ll  sq u a r e  r o o t s  o f  e l e m e n t s  o f  F
th a t a  q u a d r a tic  e x t e n s io n  o f  th e  fo r m  F ( . / i )  c o n ta in s .

( b )  C la s s ify  q u a d r a tic  e x t e n s io n s  o f  Ql.
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6 .3 .  D e t e r m in e  th e  q u a d r a tic  n u m b e r  f ie ld s  Q [ .J d ]  th a t  c o n ta in  a  p r im it iv e  n t h  r o o t  o f  u n ity ,  
fo r  s o m e  in te g e r  n .

S e c t io n  7  F in it e  F ie ld s

7 .1 . I d e n t ify  th e  g r o u p  F ^ .

7 .2 . D e t e r m in e  th e  ir r e d u c ib le  p o ly n o m ia l  o f  e a c h  o f  th e  e le m e n t s  o f  Fg in  th e  l is t  1 5 .7 .8

7 .3 . F in d  a  1 3 th  r o o t  o f  2  in  th e  f ie ld  F 13.

7 .4 . D e t e r m in e  th e  n u m b e r  o f  ir r e d u c ib le  p o ly n o m ia ls  o f  d e g r e e  3  o v e r  F 3 a n d  o v e r  F 5.

7 .5 . F a c to r  x 9 — x  a n d  x 27 — x  in  F 3.

7 .6 . F a c to r  t h e  p o ly n o m ia l  x 16 — x  o v e r  th e  f ie ld s  1F4 a n d  Fg.

7 .7 . L e t  K  b e  a  f in ite  f ie ld . P r o v e  th a t  th e  p r o d u c t  o f  th e  n o n z e r o  e le m e n t s  o f  K  is  - 1 .

7 .8 . T h e  p o ly n o m ia ls  / ( x )  =  x 3 +  x  +  1 a n d  g ( x )  =  x 3 +  x 2 +  1 a r e  ir r e d u c ib le  o v e r  lF2. L e t  
K  b e  t h e  f ie ld  e x t e n s io n  o b ta in e d  b y  a d jo in in g  a  r o o t  o f  / ,  a n d  l e t  L  b e  t h e  e x t e n s io n  
o b ta in e d  b y  a d jo in in g  a  r o o t  o f  g .  D e s c r ib e  e x p l ic i t ly  a n  is o m o r p h is m  fr o m  K  t o  L , a n d  
d e t e r m in e  t h e  n u m b e r  o f  su c h  iso m o r p h ism s .

7 .9 . W o r k  th is  p r o b le m  w ith o u t  a p p e a l in g  t o  T h e o r e m  ( 1 5 .7 .3 ) .  L e t  F  =  F p .

( a )  D e t e r m in e  t h e  n u m b e r  o f  m o n ic  ir r e d u c ib le  p o ly n o m ia ls  o f  d e g r e e  2  in  F [ x ] .

(b) L e t  / ( x )  b e  a n  ir r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  2  in  F [ x ] .  P r o v e  th a t  K  =  F [ x ]  / ( / )  
is  a  f ie ld  o f  o r d e r  p 2 , a n d  th a t its e le m e n t s  h a v e  th e  f o r m  a +  bex, w h e r e  a  a n d  b  a r e  
in  F  a n d  ex is  a  r o o t  o f  /  in  K .  M o r e o v e r ,  e v e r y  su c h  e le m e n t  w ith  b=t-Q is  t h e  r o o t  
o f  a n  ir r e d u c ib le  q u a d r a tic  p o ly n o m ia l  in  F [ x ] .

( c )  S h o w  th a t  e v e r y  p o ly n o m ia l  o f  d e g r e e  2  in  F [x ]  h a s a  r o o t  in  K .

(d )  S h o w  th a t all t h e  f ie ld s  K  c o n s tr u c te d  a s  a b o v e  fo r  a  g iv e n  p r im e  p  a r e  is o m o r p h ic .

* 7 .1 0 . L e t  F  b e  a  f in ite  f ie ld , a n d  l e t  / ( x )  b e  a  n o n c o n s t a n t  p o ly n o m ia l  w h o s e  d e r iv a t iv e  is  th e  
z e r o  p o ly n o m ia l .  P r o v e  th a t  /  c a n n o t  b e  ir r e d u c ib le  o v e r  F .

7 .1 1 .  L e t  /  =  a x 2 +  b x  +  c  w ith  a ,  b ,  c  in  a  r in g  R . S h o w  th a t  t h e  id e a l  o f  t h e  p o ly n o m ia l  r in g  
R [ x ]  th a t  is  g e n e r a t e d  b y  /  a n d  / '  c o n t a in s  t h e  d is c r im in a n t , t h e  c o n s t a n t  p o ly n o m ia l  
b 2 — 4 a c .

7 .1 2 . L e t  p  b e  a  p r im e  in te g e r ,  a n d  le t  q  =  p r a n d  q ' =  p k . F o r  w h ic h  v a lu e s  o f  r  a n d  k  d o e s  

x<q — x  d iv id e  x ^  — x  in  Z [x ]?

7 .1 3 . P r o v e  th a t  a  f in ite  s u b g r o u p  o f t h e  m u lt ip lic a t iv e  g r o u p  o f  a n y  f ie ld  F  is  a  c y c l ic  g r o u p .

7 .1 4 .  F in d  a  fo r m u la  in  t e r m s  o f  t h e  E u le r  0  fu n c t io n  f o r  th e  n u m b e r  o f  ir r e d u c ib le  p o ly n o m ia ls  
o f  d e g r e e  n  o v e r  th e  f ie ld  F p .

S e c t io n  8 P r im it iv e  E le m e n t s

8 .1 . P r o v e  th a t  e v e r y  f in ite  e x te n s io n  o f  a  f in ite  f ie ld  h a s  a  p r im it iv e  e le m e n t .

8 .2 .  D e t e r m in e  a ll p r im it iv e  e le m e n t s  f o r  t h e  e x t e n s io n  K  =  Q ( . / 2 ,  .J 3 )  o f  Q .
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9 .1 . L e t  J ( x )  b e  a  p o ly n o m ia l  w ith  c o e f f ic ie n ts  in  a  f ie ld  F .  P r o v e  th a t  i f  th e r e  is  a  r a t io n a l  
fu n c t io n  r ( x )  su c h  th a t  =  J ,  t h e n  r  is a  p o ly n o m ia l .

9 .2 .  D e t e r m in e  th e  b r a n c h  p o in ts  a n d  th e  g lu in g  d a ta  fo r  t h e  R ie m a n n  s u r f a c e s  o f  th e  
fo l lo w in g  p o ly n o m ia ls .

( a )  x 2 - 12  +  1 , (b )  x 4 -  t -  1 , ( c )  x 3 -  3 t x  -  4 t , (d )  x 3 -  3 x 2  -  t ,
( e )  x3  -  t ( t  -  1) , ( f )  x 3  -  3 t x 2 +  t , (g )  x 4 +  4 x  +  t, (h )  x 3  -  3 t x  -  t -  t2.

9 .3 . ( a )  D e t e r m in e  th e  n u m b e r  o f  is o m o r p h is m  c la s s e s  o f  fu n c t io n  f ie ld s  K  o f  d e g r e e  3 o v e r
F  =  C ( t )  th a t  a r e  r a m ifie d  o n ly  a t th e  p o in ts  1 a n d  - 1 .

(b )  D e s c r ib e  g lu in g  d a ta  fo r  th e  R ie m a n n  su r fa c e  c o r r e s p o n d in g  t o  e a c h  is o m o r p h is m  
c la s s  o f  f ie ld s  a s a  p a ir  o f  p e r m u ta t io n s .

( c )  F o r  e a c h  is o m o r p h is m  c la s s , f ind  a  p o ly n o m ia l  f(t ,  x) su c h  th a t K  =  F [ t ] / ( f )  
r e p r e s e n ts  th e  is o m o r p h is m  c la ss .

* 9 .4 . P r o v e  th e  R ie m a n n  E x is t e n c e  T h e o r e m  fo r  q u a d r a tic  e x t e n s io n s .

H in t:  S h o w  th a t  u p  t o  is o m o r p h is m , a  q u a d r a tic  e x t e n s io n  o f  F  is  d e s c r ib e d  b y  th e  f in ite  
s e t  {pi, . . . , p k l  o f  its  tr u e  b r a n c h  p o in ts .

* 9 .5 . W r ite  a c o m p u te r  p r o g r a m  th a t d e te r m in e s  th e  b r a n c h  p o in ts  pv an d  th e  p e r m u ta t io n s  
gv f o r  th e  R ie m a n n  su r fa c e  o f  a g iv e n  p o ly n o m ia l.

S e c t io n  10  T h e  F u n d a m e n ta l T h e o r e m  o f  A lg e b r a

10 .1 . P r o v e  th a t th e  s u b s e t  o f  C c o n s is t in g  o f  th e  a lg e b r a ic  n u m b e r s  is  a lg e b r a ic a lly  c lo s e d .

10 .2 . C o n str u c t  a n  a lg e b r a ic a lly  c lo s e d  f ie ld  th a t  c o n ta in s  th e  p r im e  fie ld  IFp.

* 1 0 .3 . W ith  n o ta t io n  a s  a t  th e  e n d  o f  t h e  s e c t io n ,  a  c o m p a r is o n  o f t h e  im a g e s  J (  C r )  fo r  v a r y in g  
rad ii sh o w s  a n o th e r  in te r e s t in g  g e o m e tr ic  f e a tu r e :  F o r  la r g e  r , th e  c u r v e  J ( C r )  m a k e s  n  
l o o p s  a r o u n d  the o r ig in . Its t o ta l  c u r v a tu r e  is  2 n n .  A s s u m in g  th a t th e  c o e f f ic ie n t  a\ is n o t  
z e r o , th e  l in e a r  te r m  a i z  +  a o  d o m in a te s  J ( z )  f o r  sm a ll  z . T h e n  f o r  s m a ll  r , J ( C r )  m a k e s  
a  s in g le  lo o p  a r o u n d  a o . Its to ta l  c u r v a tu r e  is o n ly  2 n .  S o m e th in g  h a p p e n s  t o  t h e  l o o p s  a s  
r  v a r ie s . E x p la in .

* 1 0 .4 . W r ite  a c o m p u te r  p r o g r a m  to  i l lu s t r a te  th e  v a r ia t io n  o f  / ( C r)  w ith  r.

M is c e l la n e o u s  E x e r c is e s

M .I .  L e t  K  =  F(a) b e  a  f ie ld  e x t e n s io n  g e n e r a te d  b y  a  tr a n s c e n d e n ta l  e le m e n t  a ,  a n d  le t  
b e  an  e le m e n t  o f  K  th a t  is n o t  in  F .  P r o v e  t h a t  a  is  a lg e b r a ic  o v e r  t h e  f ie ld  F ( f 3 ) .

M .2 . F a c to r  x 7 +  x  +  1 in  F y [x ] .

* M .3 . L e t  J ( x )  b e  a n  ir r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  6 o v e r  a  f ie ld  F ,  a n d  le t  K  b e  a  q u a d r a tic  
e x t e n s io n  o f  F .  W h a t  ca n  b e  sa id  a b o u t  th e  d e g r e e s  o f  th e  ir r e d u c ib le  f a c to r s  o f  J  in  
K [ x ]?

Section 9 Function Fields
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M.4. (a) L e t  p  b e  a n  o d d  p r im e . P r o v e  th a t  e x a c t ly  h a l f  o f  th e  e le m e n t s  o f  F *  a r e  s q u a r e s  a n d  

th a t  i f  a  an d  a r e  n o n sq u a r e s , th e n  is  a  sq u a r e .

(b) P r o v e  th e  s a m e  a s s e r t io n  fo r  a n y  f in ite  f ie ld  o f  o d d  o r d e r .

(c) P r o v e  th a t  in  a  f in ite  f ie ld  o f  e v e n  o r d e r , e v e r y  e le m e n t  is  a  sq u a r e .

(d) P r o v e  th a t  th e  ir r e d u c ib le  p o ly n o m ia l  fo r  y  =  . f i  + o v e r  Q  is  r e d u c ib le  m o d u lo  
p  f o r  e v e r y  p r im e  p .

*M.S. P r o v e  t h a t  a n y  e le m e n t  o f  G  L 2( Z )  o f  f in ite  o r d e r  h a s  o r d e r  1 , 2 , 3 , 4, o r  6
(a) b y  u s in g  f ie ld  th e o r y .

(b) b y  a p p ly in g  t h e  C r y s ta llo g r a p h ic  R e s tr ic t io n .

*M.6. (a) P r o v e  th a t  a  r a t io n a l fu n c t io n  J ( t )  th a t  g e n e r a te s  th e  f ie ld  C ( t )  o f  a ll r a t io n a l  
f u n c t io n s  d e f in e s  a  b ije c t iv e  m a p  T  -+ T '.

(b) P r o v e  a  r a t io n a l f u n c t io n  J ( x )  g e n e r a te s  th e  f ie ld  o f  r a t io n a l f u n c t io n s  C ( x )  i f  a n d
o n ly  i f  it  is  o f  t h e  f o r m  ( a x  + b ) /  ( c x  + d), w ith  ad  -  bc=l=O.

(c) I d e n t ify  th e  g ro u p  o f  a u to m o r p h ism s  o f  C ( x )  th a t a r e  th e  id e n t ity  o n  C .

*M.7. P r o v e  th a t  th e  h o m o m o r p h is m  S L 2( Z )  - -  S L 2(lF p ) o b ta in e d  b y  r e d u c in g  t h e  m a tr ix
e n tr ie s  m o d u lo  p  is  su r je c t iv e .



C H A P T E R  1 6

Galois Theory

En un mot les ca/culs sont impraticables.

— E v a r is te  G a lo is

W e  h a v e  s e e n  th a t  c o m p u t a t io n  i n  a n  e x t e n s io n  f ie ld  g e n e r a t e d  b y  a  s in g le  a lg e b r a ic  e l e m e n t  
a  c a n  b e  m a d e  s im p ly ,  b y  id e n t i f y in g  it  w i t h  t h e  f o r m a l ly  c o n s t r u c t e d  f ie ld  F [ x ] / ( j ) ,  

w h e r e  f  i s  t h e  i r r e d u c ib le  p o ly n o m o m ia l  f o r  a  o v e r  F .  B u t  s u p p o s e  th a t  f  f a c t o r s  in to  

l in e a r  f a c t o r s  in  a n  e x t e n s i o n  f ie ld  K .  I t  i s n ’t c le a r  h o w  t o  c o m p u t e  w it h  a l l  o f  t h e  r o o t s  

a t th e  s a m e  t im e .  T o  d o  th a t  w e  n e e d  t o  k n o w  h o w  t h e y  a r e  r e la t e d ,  a n d  th a t  d e p e n d s  
o n  t h e  p a r t ic u la r  c a s e .  T h e  f u n d a m e n t a l  d i s c o v e r y  th a t  a r o s e  t h r o u g h  t h e  w o r k  o f  s e v e r a l  

p e o p l e ,  e s p e c ia l ly  o f  L a g r a n g e  a n d  G a lo i s ,  is  th a t  t h e  r e la t io n s h ip s  b e t w e e n  t h e  r o o t s  

a r e  b e s t  u n d e r s t o o d  in d ir e c t ly ,  in  t e r m s  o f  s y m m e tr y .  T h a t  s y m m e t r y  is  t h e  t o p i c  o f  th is  

c h a p te r .
B e g in n in g  in  S e c t io n  1 6 .4 , w e  a s s u m e  th a t  t h e  f ie ld s  w e  a r e  w o r k in g  w it h  h a v e  

c h a r a c t e r is t ic  z e r o .  T h e  m o s t  im p o r t a n t  c o n s e q u e n c e s  o f  t h i s  a s s u m p t io n  a re :

•  T h e  r o o t s  o f  a n  i r r e d u c ib le  p o ly n o m ia l  o v e r  a  f ie ld  F  a r e  d is t in c t  ( 1 5 .6 .8 ) .

•  A  f in i t e  e x t e n s io n  f ie ld  K /  F  h a s  a  p r im it iv e  e l e m e n t  ( 1 5 .8 .1 ) .

1 6 .1  S Y M M E T R IC  F U N C T IO N S

L e t  R [ u ]  d e n o t e  t h e  p o ly n o m ia l  r in g  R [ u  1, . . . ,  un] in  n  v a r ia b le s  o v e r  a  r in g  R .  
A  p e r m u t a t io n  a  o f  t h e  in d ic e s  {1 , . . .  , n )  o p e r a t e s  o n  p o ly n o m ia l s  b y  p e r m u t in g  t h e  

v a r ia b le s :

( 1 6 .1 .1 )  f  =  f ( u i ,  . . .  , u n) f ( u a i ,  . . . ,  u cm ) =  ( J ' ( j ) .

In  th is  w a y , a  d e f in e s  a n  a u t o m o r p h is m  o f  R [u ]  th a t  w e  d e n o t e  b y  o  t o o .  B e c a u s e  a  a c t s  
a s  t h e  id e n t i t y  o n  t h e  c o n s t a n t  p o ly n o m ia l s ,  it  is  c a l l e d  a n  R-automorphism. T h e  s y m m e t r ic  

g r o u p  Sn o p e r a t e s  b y  R - a u t o m o r p h is m s  o n  th e  p o ly n o m ia l  r in g . A  symmetric p o ly n o m ia l  

is  o n e  th a t  is  f ix e d  b y  e v e r y  p e r m u t a t io n .  T h e  s y m m e tr ic  p o ly n o m ia l s  f o r m  a  s u b r in g  o f  t h e  

p o ly n o m ia l  r in g  R [ u  ].

A  p o ly n o m ia l  g  is  s y m m e tr ic  if  t w o  m o n o m ia l s  th a t  a re  in  th e  s a m e  o r b it ,  s u c h  a s  u x u |  

a n d  U2U 3, h a v e  th e  s a m e  c o e f f ic ie n t  in  g .  W e  c a l l  th e  su m  o f  th e  m o n o m ia l s  in  a n  o r b it  a n

477
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orbit sum. T h e  o r b i t  s u m s  f o r m  a  b a s is  f o r  t h e  s p a c e  o f  s y m m e tr ic  p o ly n o m ia l s .  T h e  o r b it  

s u m s  o f  d e g r e e  a t  m o s t  3 in  t h r e e  v a r ia b le s  a r e

1 , « /  + " 2  +  « 3 ,  U\ +  U2 +  U3 , U / « 2  +  U / U 3  +  « 2 « 3 ,

U3 +  U3 +  u\ , UiU‘2 + U2U2 +  U)U2 +  U3U2 +  M2M3 +  « 3 « 2  ’

T h e  elementary symmetric functions are s o m e  s p e c ia l  s y m m e t r ic  p o ly n o m ia l s .  W h e n  

t h e r e  a r e  n  v a r ia b le s ,  t h e y  a r e

=  Ui +  M2 +  . . .  +  UnS1 = J 2 Ui

S2 =
i

L u <u ;
i<J

S3 = L  u u

.
( < j < k

Sn = UjW2‘" • U =  U 1M2"’ ' U n .

I n d ic e s  h a v e  b e e n  c h o s e n  s o  t h a t  s ;  i s  t h e  o r b it  s u m  o f  t h e  m o n o m ia l  U\U2  - U j . T h e  

e l e m e n t a r y  s y m m e tr ic  f u n c t io n s  in  t h r e e  v a r ia b le s  a r e  s h o w n  a b o v e  in  b o ld f a c e .
T h e  e l e m e n t a r y  s y m m e t r ic  f u n c t io n s  a r e  t h e  c o e f f i c ie n t s  o f  t h e  p o l y n o m i a l  w i t h  v a r ia b le  

r o o t s  U i  , •  • • , u n :

( 1 6 .1 .2 )  

W h e n  n  =  2 ,

P ( x )  = ( x  -  U i ) ( x  -  U 2)  ' • • ( x  -  U n )

=  x ” -  S ]X n-1 +  S2X n-2 -  ±  Sn.

P(x) =  (x -  Ul)(x -  M2) =  x2 -  (U1 + U2)X  + (U 1«2).
and when n =  3,

P(x) =  X3 -  (Ui +  U2 +  U3) X2 + (M1M2 +  M1U3 +  U2U3) X -  (U1U2M3).

The order of the indices in (16.1.2) is the reverse of the one we have used for the coefficients 
of a polynomial previously, and the signs alternate. Because of the way these indices and 
signs appear, we will label undetermined coefficients of a polynomial in the analogous form 
in this chapter:

(16.1.3) fi(x ) =  x n -  a \ x n-1 +  a 2x”-2 - . . . ±  a n.

As before, we say that a polynomial f  splits completely in a field K  if it factors into 
linear factors, say '

(16.1.4) f(x )  =  (x -  a i)  . . ( x -  a n),

with a i  i n K. If so, then substituting u, =  a , shows that the coefficients of f  are obtained by 
evaluating the symmetric functions.
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L e m m a  1 6 .1 .5  If (16.1.4) is a factorization of the polynomial (16.1.3), then a,- =  
S j(ai, ••. , an). □

T h e o r e m  1 6 .1 .6  S y m m e t r ic  F u n c t io n s  T h e o r e m .  Every symmetric polynomial g (u i,  • .., u n) 
with coefficients in a ring R can be written in a unique way as a polynomial in the elementary 
symmetric functions s i , . . • , sn.

To be precise: If g (u) is a symmetric polynomial, there is a unique polynomial G (zi, •••, zn) 
with coefficients in R in another set of variables z i , • . . , Zn, such that g (u ) is obtained by 
the substitution z; Sj g(u i,  .••, u n) =  G (si, ••., sn).

We prove the theorem below, but first, some examples:

E x a m p le s  1 6 .1 .7  ( a )  The symmetric polynomial u \  +  • •. +  u2, because it has degree 2, 
is a linear combination c is^ +  C2S2. One can use special values of the variables to determine 
the coefficients. Substituting u =  (1,0, . . . ,  0) shows that q  =  1, and substituting u =  
(1, - 1, 0 , . . . ,  0) shows that C2 =  -  2:

(16.1.8) u i +---- +  u2n =  s i — 2s2-

(b )  We use a different method for the symmetric polynomial

(16.1.9) g(u) = u \u \  + «2« i +  U\u\ + u 3u \  +  W2M3 +  ut,u\

in the three variables u i, U2, U3. The first step is to set u 3 =  O. We obtain the symmetric 
polynomial g° = u \u 2 +  u \u i  in the remaining variables. Let s° denote the elementary 
symmetric functions in u i, U2: s]' =  ui +  u2 and s^ =  u iu 2. We notice that g° =  s]'s|.

The second step is to compare the polynomial g with the three-variable symmetric 
polynomial S1S2:

SlS2 =  (Ui +  U2 +  U3)(uiu2 +  uiU3 +  U2u3).
We won’t expand the right side explicitly. Instead, we note that the expansion has nine terms, 
one of which is u^u2. Since S1S2 is symmetric, the orbit sum g of u2u2, which has six 
terms, appears. The three remaining terms are equal to u iu 2U3 =  S3:

(16.1.10) g = sis2 - 3 s3.

This computation is an example of a systematic method, and the proof of the Symmetric 
Functions Theorem, which we explain next, is based on that method. □

Proof o f  the Symmetric Functions Theorem. There is nothing to show when n — 1, because 
ui =  Si in that case. Proceeding by induction, we assume the theorem proved for symmetric 
functions in n — 1 variables. Given a symmetric polynomial g in u i, . . • , u„,  we consider 
the polynomial g° obtained by substituting zero for the last variable: g °(u i, • • • , u n - i) =  
g(u , . . . ,  un- i ,  0). We note that g° is symmetric in u i, . . • ,  u n_i. So by the induction 
hypothesis, g° may be written as a polynomial in the elementary symmetric functions in 
Mi, . • • , Un-li which we label as s1', ••• ,  s^_^:

S]' =  Ui +  U2 +------- + U n -i , etc.
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L e m m a  1 6 .1 .1 1  L e t  g  b e  a  s y m m e tr ic  p o ly n o m ia l  o f  d e g r e e  d  in  th e  v a r ia b le s  u\,  . . . ,  Un,
a n d  s u p p o s e  th a t  g O =  Q ( s j ' , . . .  , s ° _ j ) .  T h e n  g  =  Q ( s i  , . . . ,  s n - i )  +  s n h , w h e r e  h  is  a

s y m m e t r ic  p o ly n o m ia l  in  u i ,  . . . ,  Un o f  d e g r e e  d  — n .

Proof  L e t  p ( u \ ,  . . .  , u n )  =: g ( u i , . . . ,  u „ )  -  Q ( s i , . . . ,  s n _ i ) . T h is  is  a  d i f f e r e n c e  o f  s y m 

m e t r ic  p o ly n o m ia l s ,  s o  it  is  s y m m e tr ic ,  a n d  if  w e  s e t  w n =  0, w e  o b t a in  p ( w i ,  . . . , u n - i ,  0)  =  

g O _  Q ( s O)  =  O. T h e r e f o r e  u n  d iv id e s  p .  B e c a u s e  p  is  s y m m e tr ic ,  e v e r y  w; d iv id e s  p ,  a n d  
t h e r e f o r e  s n d iv id e s  p .  W r i t in g  p  =: s n h , t h e  p o l y n o m i a l  h  i s  s y m m e tr ic .  T h is  g iv e s  u s  a n  

e q u a t io n  o f  t h e  f o r m  c la im e d  b y  t h e  l e m m a . □

W e  g o  b a c k  t o  th e  p r o o f  o f  th e  S y m m e t r ic  F u n c t io n s  T h e o r e m .  T h e  l e m m a  t e l l s  u s  th a t  

g  =  Q  ( s )  +  s n h ,  w h e r e  h  is  s y m m e tr ic .  A  s e c o n d  in d u c t io n ,  t h i s  t i m e  o n  t h e  d e g r e e  o f  

a ,s y m m e t r i c  p o ly n o m ia l ,  a l lo w s  u s  t o  c o n c lu d e  t h a t  h  is  a  p o ly n o m ia l  in  t h e  s y m m e tr ic  

fu n c t io n s .  T h e n  s o  is  g .

O n e  c a n  s h o w  th a t  G  is  u n iq u e ly  d e t e r m in e d  b y  g o in g  o v e r  th is  p r o o f .  □

W e  g iv e  o n e  m o r e  e x a m p le  o f  th e  s y s t e m a t ic  m e t h o d .  L e t  g  b e  th e  o r b i t  su m  o f  

th e  m o n o m ia l  u i u ^ ,  b u t  th is  t im e  in  fo u r  v a r ia b le s  u i ,  . . .  , M4. L e t  S i ,  . . .  ,54 d e n o t e  t h e  

e l e m e n t a r y  s y m m e t r ic  f u n c t io n s  in  f o u r  v a r ia b le s .  W e  s e t  u  4 =  0 , a n d  o b t a in  f o r m u la
( 1 6 .1 .1 0 ) ,  w r i t t e n  n o w  a s  g O =: s ] 's2  — 3 s ^ . T h e n  a s  in  t h e  a b o v e  le m m a ,

S in c e  g  h a s  d e g r e e  3 , h  =  0 . F o r m u la  1 6 .1 .1 0  r e m a in s  v a l id  w h e n  g  is  t h e  o r b i t  s u m  o f  u  t  U 2 
in  a n y  n u m b e r  n  : :  3  o f  v a r ia b le s .

H e r e  is  a n  im p o r ta n t  c o n s e q u e n c e  o f  t h e  S y m m e t r ic  F u n c t io n s  T h e o r e m :

C o r o l la r y  1 6 .1 .1 2  S u p p o s e  th a t  a  p o ly n o m ia l  f ( x )  =  x n — a i x n-1 +------ ± a n h a s  c o e f f i c ie n t s

in  a  f ie ld  F ,  a n d  th a t  it  s p l i t s  c o m p l e t e l y  in  a n  e x t e n s i o n  f ie ld  K ,  w it h  r o o t s  a i , . . . ,  a n. 
L e t  g ( u  1, . . . ,  u n )  b e  a  s y m m e t r ic  p o ly n o m ia l  in  u i ,  . . . ,  Un w ith  c o e f f i c ie n t s  in  F .  T h e n  

g ( a i ,  . . . , a n )  is  a n  e l e m e n t  o f  F .

F o r  in s t a n c e ,  a *  +  a *  +  • . +  a £  w i l l  b e  a n  e l e m e n t  o f  F .

Proof  T h e  S y m m e t r ic  F u n c t io n s  T h e o r e m  t e l l s  u s  th a t  g  is  a  p o ly n o m ia l  in  t h e  e l e m e n t a r y  

s y m m e t r i c  f u n c t io n s .  S a y  t h a t  g ( u i ,  . . .  , u n )  =: G ( s i , . . ,  , S n ) ,  w h e r e  G (z )  is  a  p o ly n o m ia l  

w it h  c o e f f ic ie n t s  in  F .  W h e n  w e  e v a lu a t e  a t  u  =  a ,  w e  o b t a in  s , ( a )  =  a ;  ( 1 6 .1 .5 ) .  S o

( 1 6 .1 .1 3 )  g(<2j ,  . . . , a n) =  G ( a i ,  . . . ,  an).

B e c a u s e  a i ,  . . . ,  a n a r e  in  F  a n d  G  h a s  c o e f f ic ie n t s  in  F ,  G ( a )  is  in  F .  □

T h e  n e x t  p r o p o s i t i o n  p r o v id e s  a  w a y  t o  c o n s t r u c t  s y m m e tr ic  p o ly n o m ia l s ,  s t a r t in g  w it h  

a n y  p o ly n o m ia l .

There is a symmetric polynomial Q (z i,  . . . , zn- 1) such that g O =  Q (s|, . . . ,  s °_ j) .
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P r o p o s i t io n  1 6 .1 .1 4  L e t  p\ =  p \ (u \ ,  . . .  , U n )  b e  a  p o ly n o m ia l ,  l e t  {p \ ,  . . . ,  p k} b e  its  

o r b it  f o r  t h e  o p e r a t io n  o f  t h e  s y m m e t r ic  g r o u p  o n  t h e  v a r ia b le s ,  a n d  le t  w  =  W\ , • . . , Wk 

b e  a n o t h e r  s e t  o f  v a r ia b le s ,  w h e r e  k  is  th e  n u m b e r o f  p o ly n o m ia l s  in  th e  o r b i t  o f  p i .  ( S o  k 
d iv id e s  th e  o r d e r  n !  o f  th e  s y m m e tr ic  g r o u p .)  I f  h (w \ ,  . . .  , W k) is  a s y m m e tr ic  p o ly n o m ia l  

in  w , t h e n  h ( p \ , . . .  , pk) is  a  s y m m e tr ic  p o ly n o m ia l  in  u .

P r o o f  E x c e p t  th a t it  is  s l ig h t ly  c o n f u s in g ,  th is  is  n e a r ly  tr iv ia l.  A  p e r m u t a t io n  o f  th e  v a r ia b le s  

U\, . . . ,  Un p e r m u t e s  t h e  s e t  {p \ ,  . . .  , p k} b e c a u s e  th a t  s e t  is  a n  o r b it . A n d  b e c a u s e  h  is  a  

s y m m e t r ic  p o ly n o m ia l ,  a  p e r m u t a t io n  o f  p i , . . . ,  Pk c a r r ie s  h ( p \ , . . . , p d  t o  i t s e l f .  □

E x a m p le  1 6 .1 .1 5  T h e r e  a r e  t h r e e  v a r ia b le s  u i ,  U2, U 3 a n d  pi  =  u 2  +  U 2U 3. T h e  o r b it  o f  p i  

c o n s i s t s  o f  t h r e e  p o ly n o m ia ls :

W e  s u b s t i t u t e  w  =  p  i n t o  t h e  s y m m e tr ic  p o ly n o m ia l  Wi W 2 +  w i  W 3 +  W 2W 3, o b t a in in g  a  

s y m m e tr ic  p o ly n o m ia l  in  u :

3 terms 6 terms 3 terns
P i P 2 +  p 2 P 3  +  P 3  p i  = ( u \ u 22  +-------)  +  ( u i u 3 +  ■• ■)  +  (uyu2 u\  +-------- )  . Q

1 6 .2  T H E  D IS C R IM IN A N T

T h e  m o s t  im p o r ta n t  s y m m e tr ic  p o ly n o m ia l ,  a s id e  fr o m  t h e  e l e m e n t a r y  s y m m e t r ic  f u n c t io n s ,  

is  th e  discriminant o f  th e  p o ly n o m ia l

P ( x )  =  X n -  S i x "-1 +  S2x n- 2-------- ± Sn

w it h  th e  v a r ia b le  r o o t s  u i , . . . ,  U n . B y  d e f in i t io n ,  t h e  d is c r im in a n t  is

( 1 6 .2 .1 )  D ( u )  =  (M l -  U 2 ) 2 ( u i  -  U 3 )2  . . . ( M n - l  -  « n ) 2  =  J""[(Uj -  Uj ) 2 .

i<j
Its m a in  p r o p e r t ie s  are:

•  D ( u )  is  a  s y m m e tr ic  p o ly n o m ia l  w ith  in t e g e r  c o e f f ic ie n t s  .

•  I f  a i ,  . . .  , a r e  e l e m e n t s  o f  a  f ie ld ,  t h e n  D ( a )  =  0  i f  a n d  o n ly  i f  tw o  o f  t h e  

e l e m e n t s  a j  a r e  e q u a l .

T h e  S y m m e t r ic  F u n c t io n s  T h e o r e m  t e l l s  u s  th a t  t h e  d is c r im in a n t  D  c a n  b e  w r i t t e n  

u n iq u e ly  a s  a n  in t e g e r  p o ly n o m ia l  in  t h e  e le m e n t a r y  s y m m e tr ic  f u n c t io n s .  L e t

( 1 6 .2 .2 )  A ( z )  =  A ( z j , . . . ,  z „ )  

b e  th a t  p o ly n o m ia l ,  s o  th a t  D  ( u )  =  A ( s ) .  W h e n  n  =  2 ,

T h is  is  t h e  fa m il ia r  fo r m u la  f o r  t h e  d i s c r im in a n t  o f  t h e  q u a d r a t ic  p o ly n o m ia l  x 2  — s j x  +  S2 , 
t h o u g h  t h e  fa c t  th a t D  is  th e  s q u a r e  o f  th e  d i f f e r e n c e  o f  th e  r o o t s  w a s n ’t e m p h a s iz e d  w h e n  I 

w a s  in  s c h o o l .
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Unfortunately, D and A are very complicated when n is larger. I don’t know what they 
are when n >  3. The discriminant of the general cubic polynomial

is already too complicated to remember:

D =  (ui -  «2)2(mi -  W3)2(«2 -  u3)2
(16.2.5) , ,

=  -4si S3 +  s p 2 +  I8S1S2S3 -  4¾ -  27^3,

A =  - 4z1z3 +  z |z 2 +  18Z1Z2Z3 -  4z2 -  27z2.
These formulas remain true when substitutions are made for the variables Uj. If we are 

given particular elements a i ,  . . .  , an in a ring R, and if

(x -  a i) (x  -  a 2) ■ • • (x -  a n ) =  xn — a ix n-1 +  a2xn- 2 -------± a n ,

then, substituting a ; for «;,

D ( a i , . . . ,  a n ) =  Y \ ( a j  - a j )2 =  A (a i, . . . ,  an).

Whether or not a polynomial f(x )  =  xn — a ix n- 1 +  a 2xn- 2 - . . -  ± a n is a product of linear 
factors, its discriminant is defined to be the element A (a i, . . . ,  a n), where A (z) is the 
polynomial (16.2.2). If f  has coefficients in a field F , then A (z) has coefficients in F  and 
A (a) is an element of F.

The discriminant of a cubic becomes simpler when the coefficient of x2 in f (x )  is zero. 
Provided that the characteristic is not 3, the quadratic term in the general polynomial (16.2.4) 
can be eliminated by a substitution analogous to completing squares, called a Tschirnhausen 
transformation,

(16.2.6) x =  y +  s i/3 .

I fwe write a cubic whose quadratic term vanishes as

(16.2.7) /(x )  =  x3 +  p x  +  q, 

the discriminant is obtained by substituting into (16.2.5):

(16.2.8) A(0, p , -q) =  _4p3 -  27q2.

Since the elementary symmetric function s  has degree i in the variables u, it is 
convenient to assign the weight i to the variable Zj, and to define the weighted degree of a
monomial z 1̂ Ẑ 2 . -- Zn" to be e\ + 2e2 +------+nen. Substitution ofs,- for Zj into a monomial of
weighted degree d  in z yields a polynomial of ordinary degree d  in « 1, . . .  , Un. For instance, 
Z1Z2 has weighted degree 3, and S1S2 =  («i +  . . .  ) (u iu 2 +  . ■■) has degree 3. If g(u)  is a 
symmetric polynomial of degree d, and if G(z) is the polynomial such that g(u)  = G(s), 
then G will have weighted degree d  in z.
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T h e  d is c r im in a n t  o f  t h e  c u b ic  ( 1 6 .2 .4 )  is  a  h o m o g e n e o u s  p o ly n o m ia l  o f  d e g r e e  6 in  u .  

T h e r e  a r e  s e v e n  m o n o m i a l s  in  z i ,  Z2, Z3  o f  w e ig h t e d  d e g r e e  6:

a n d  A  is  a n  in t e g e r  c o m b in a t io n  o f  t h o s e  m o n o m ia l s .  W e ’l l  d e t e r m in e  t h e  c o e f f i c ie n t s  

o f  t h e  fir st  f o u r  o f  t h e s e  m o n o m ia l s  u s in g  t h e  s y s t e m a t ic  m e th o d :  W e  s e t  u.3  =  0  in  

D  =  (m i -  u 2 ) 2 ( m  — M3) 2( u 2 -u . 3 )2, o b t a in in g  th e  s y m m e tr ic  p o ly n o m ia l  (m i — m2 ) 2 u 2 u \  =  

( s f  — 4 s 2 ) s f  in  u  1, U 2. T h e r e f o r e  D  =  s | s j  — 4s\  +  S3 I1 , w h e r e  h  is  a  s y m m e t r ic  c u b ic  

p o ly n o m ia l .  T h e  c o e f f ic ie n t s  o f  s 1̂ a n d  s^s2  a r e  z e r o . I d o n ’t k n o w  a n  e a s y  w a y  t o  d e t e r m in e  
t h e  r e m a in in g  t h r e e  c o e f f ic ie n t s  o f  A ,  b u t  o n e  w a y  is  t o  a s s ig n  s o m e  s p e c ia l  v a lu e s  t o  t h e  

v a r ia b le s  u i ,  U 2, M3.

1 6 .3  SPL IT T IN G  FIELDS

L e t  f  b e  a  p o ly n o m ia l  w it h  c o e f f ic ie n t s  in  a  f ie ld  F ,  n o t  n e c e s s a r i ly  a n  ir r e d u c ib le  p o ly n o m ia l .  

A  splitting field f o r  f  o v e r  F  is  a n  e x t e n s io n  f ie ld  K /  F  s u c h  th a t

•  f  s p l i t s  c o m p l e t e l y  in  K ,  sa y  f ( x )  =  ( x  — a i )  • • •  (x  — an)  w i t h  a ;  in  K ,  a n d

•  K  is  g e n e r a t e d  b y  t h e  r o o t s :  K  =  F(a  1, . . .  , a n ) .

T h e  s e c o n d  c o n d i t io n  im p l i e s  th a t , fo r  e v e r y  e l e m e n t  {3 o f  K ,  t h e r e  i s  a  p o ly n o m ia l

p (u \ ,  . . . ,  Un) w i t h  c o e f f ic ie n t s  in  F ,  s u c h  th a t  p ( a i ,  . . . ,  a n )  =  {3. I n  f a c t  t h e r e  w i l l  b e

m a n y  s u c h  p o ly n o m ia ls :  S in c e  t h e  r o o t s  a r e  a lg e b r a ic  o v e r  F ,  s o m e  p o l y n o m i a l s  e v a lu a t e  

t o  z e r o .
I f  o u r  f ie ld  F  is  a  s u b f ie ld  o f  th e  c o m p l e x  n u m b e r s  C , a  s p l i t t in g  f ie ld  K  c a n  b e  o b t a in e d  

s im p ly  b y  a d jo in in g  th e  c o m p l e x  r o o t s  o f  f  t o  F ,  a n d  w e  m a y  r e f e r  to  K  a s  the s p l i t t in g  f ie ld  

o f  f .  B u t  if  F  is  n o t  a  s u b f ie ld  o f  C , w e  h a v e  t o  c o n s t r u c t  a  s p l i t t in g  f ie ld  a b s t r a c t ly ,  a s  w a s  

e x p l a i n e d  in  t h e  la s t  c h a p t e r  ( S e c t i o n  1 5 .6 ) .

L e m m a  1 6 .3 .1

( a )  I f  F  C L  C  K  a r e  f ie ld s ,  a n d  if  K  is  a  s p l i t t in g  f ie ld  o f  a  p o ly n o m ia l  f  o v e r  F ,  th e n  K  is  

a ls o  a  s p l i t t in g  f ie ld  o f  t h e  s a m e  p o ly n o m ia l  o v e r  L.
(b) E v e r y  p o ly n o m ia l  f ( x )  i n  F [ x ]  h a s  a  s p l i t t in g  f ie ld .

( c )  A  s p l i t t in g  f ie ld  is  a  f in i t e  e x t e n s i o n  o f  F ,  a n d  e v e r y  f in i t e  e x t e n s i o n  is  c o n t a in e d  in  a  
s p l i t t in g  f ie ld .

Proof, (a )  T h is  is  o b v io u s .

(b) G iv e n  a  p o ly n o m ia l  f  w it h  c o e f f ic ie n t s  in  F ,  t h e r e  is  a  f ie ld  e x t e n s io n  K '  o f  F  in  w h ic h  

f  s p l i t s  c o m p le t e ly  ( 1 5 .6 .3 ) .  T h e  s u b f ie ld  o f  K '  g e n e r a t e d  b y  th e  r o o t s  o f  f  w i l l  b e  a  s p l i t t in g  

f ie ld .

( c )  A  s p l i t t in g  f ie ld  is  g e n e r a t e d  b y  f i n i t e l y  m a n y  e l e m e n t s  th a t  a r e  a lg e b r a ic  o v e r  F ,  s o
it  is  a  f in i t e  e x t e n s io n  o f  F .  C o n v e r s e l y ,  a  f in i t e  e x t e n s i o n  L / F  is  g e n e r a t e d  b y  f in i t e ly  

m a n y  e l e m e n t s ,  s a y  y i , ■ ■. ,  e a c h  o f  w h ic h  is  a lg e b r a ic  o v e r  F .  L e t  g (- b e  t h e  i r r e d u c ib le  

p o ly n o m ia l  f o r  Yi o v e r  F ,  a n d  l e t  f  b e  t h e  p r o d u c t  g i  . . .  g k . W e  m a y  e x t e n d  t h e  f ie ld  L  t o  a  

s p l i t t in g  f ie ld  K  o f  f  o v e r  L ,  a n d  t h e n  K  w ill  b e  a  s p l i t t in g  f ie ld  o v e r  F  t o o .  □
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T h e o r e m  1 6 .3 .2  S p l i t t in g  T h e o r e m .  L e t  K  b e  a n  e x t e n s io n  o f  a  f ie ld  F  th a t  i s  a  s p l i t t in g  

f ie ld  o f  a  p o ly n o m ia l  f ( x )  w it h  c o e f f ic ie n t s  in  F. I f  a n  i r r e d u c ib le  p o l y n o m i a l  g ( x )  w it h  

c o e f f ic ie n t s  in  F  h a s  o n e  r o o t  in  K ,  t h e n  it  s p l i t s  c o m p l e t e l y  in  K .

T h i s  t h e o r e m  p r o v id e s  a  c h a r a c t e r is t ic  p r o p e r t y  o f  s p l i t t in g  f ie ld s .  A  s p l i t t in g  f ie ld  K  o v e r  F  
is  a  f in i t e  f ie ld  e x t e n s io n  w ith  th is  p r o p e r ty :

An irreducible polynomial over F  with one root in K  splits completely in K.

W h ic h  p o ly n o m ia l  is  u s e d  t o  d e f in e  K  as a  s p l i t t in g  f ie ld  is  n o t  im p o r ta n t .

Proof o f  the Splitting Theorem. L e t  f  a n d  g  b e  a s  in  t h e  s t a t e m e n t  o f  t h e  t h e o r e m .  W e  a r e  

g i v e n  a  r o o t  t l  o f  g  in  K , a n d  w e  m u s t  s h o w  th a t  g  s p l i t s  c o m p l e t e l y  in  K .  S i n c e  g  is  

ir r e d u c ib le ,  it  is  t h e  ir r e d u c ib le  p o l y n o m i a l  f o r  t i  o v e r  F .

T h e  s p l i t t in g  f ie ld  K  is  g e n e r a t e d  o v e r  F  b y  t h e  r o o t s  a i , . . . ,  o f  f .  E v e r y  e l e m e n t  
o f  K  c a n  b e  w r i t t e n  a s  a  p o ly n o m ia l  in  a ,  w ith  c o e f f ic ie n t s  in  F .  W e  c h o o s e  a  p o l y n o m i a l  

P i ( w i ,  . . " , u n )  s u c h  th a t  p i ( a )  =  t l -

L e t  { p i ,  , . . ,  P k }  b e  th e  o r b it  o f  p i  ( u )  f o r  th e  o p e r a t io n  o f  th e  s y m m e t r ic  g r o u p  S n 

o n  th e  p o ly n o m ia l  r in g  F [ « i , . . . ,  u „ ] ,  a n d  l e t  fJ j =  p j ( a ) .  S o  fJi, . . . , fJk a r e  e l e m e n t s  o f  

K . W e  w i l l  p r o v e  t h e  s p l i t t in g  t h e o r e m  b y  s h o w in g  th a t  t h e  p o ly n o m ia l

h ( x )  =  ( x  -  f J i ) - - -  ( x  -  fJk)

h a s  c o e f f ic ie n t s  in  F .  S u p p o s e  th a t  t h i s  h a s  b e e n  p r o v e d .  T h e n  s in c e  t l  i s  a  r o o t  o f  h ,  it  w i l l  

f o l l o w  th a t  t h e  i r r e d u c ib le  p o ly n o m ia l  f o r  fJi o v e r  F ,  w h ic h  is  g ,  d iv id e s  h ,  a n d  s in c e  h  s p l i t s  

c o m p le t e ly  in  K ,  g  d o e s  t o o .

S a y  th a t  h ( x )  =  x k -  b i x *-1 +  b 2x k~2 — . . .  ±  b k . T h e  c o e f f ic ie n t s  b i ,  . . . ,  b k  

a r e  o b t a i n e d  b y  e v a lu a t in g  e l e m e n t a r y  s y m m e tr ic  f u n c t io n s  a t  fJ =  f J i ,  . . . ,  fJk. B u t  t h e s e  a r e  

t h e  e l e m e n t a r y  s y m m e tr ic  f u n c t io n s  in  k  v a r ia b le s .  W e  in t r o d u c e  n e w  v a r ia b le s  w j ,  . . . ,  W h  

a n d  w e  la b e l  t h e  e le m e n t a r y  s y m m e tr ic  f u n c t io n s  in  t h e s e  v a r ia b le s  a s  s'j ( w ) , . . . ,  s'k( w ), 
u s in g  a  p r im e  t o  r e m in d  u s  th a t  t h e  v a r ia b le s  a r e  t h e  n e w  o n e s .  T h e n  b j  =  s j ( f J ) .

W e  e v a lu a t e  s j  in  t w o  s t e p s :  F ir s t ,  w e  s u b s t i t u t e  w  =  p ,  i . e . ,  W j  =  p j (u) .  B e c a u s e  

s / w )  is  s y m m e t r i c  in  w ,  s j ( p )  is  a  s y m m e t r i c  p o ly n o m ia l  in  u  ( 1 6 .1 .1 4 ) .  N e x t ,  w e  s u b s t i t u t e  

u ; =  a ; .  B e c a u s e  s j ( p ( u »  is  s y m m e tr ic  in  u ,  s j ( p ( a ) )  is  in  t h e  f ie ld  F  ( 1 6 .1 .1 2 ) .  O n  t h e  

o t h e r  h a n d ,  s j ( p ( a ) )  =  s j ( f J )  =  b j .  T h e  c o e f f ic ie n t s  b j  a r e  in  F .  □

1 6 . 4  IS O M O R P H IS M S  O F  FIELD E X T E N S IO N S

F o r  t h e  r e s t  o f  t h e  c h a p te r ,  w e  a s s u m e  th a t  o u r  f i e ld s  h a v e  characteristic zero, a n d  w e  w o n ’t 

m e n t io n  th is  a s s u m p t io n  a g a in .  T h e  f ie ld  e x t e n s io n s  th a t  w e  c o n s id e r  w i l l  b e  f in i t e  e x t e n s i o n s .  

W e  n e e d  a  f e w  d e f in it io n s :

•  L e t  K  a n d  K ' b e  e x t e n s io n  f ie ld s  o f  F .  T h e  c o n c e p t  o f  a n  F-isomorphism 0':  K  -*■ K '  w a s  

in t r o d u c e d  b e f o r e  ( s e e  ( 1 5 . 2 . 9 » .  I t  is  a n  i s o m o r p h is m  w h o s e  r e s t r ic t io n  t o  t h e  s u b f ie ld  F  is  

t h e  id e n t i t y  m a p . A n  F-automorphism o f  a n  e x t e n s i o n  f ie ld  K  i s  a n  F - i s o m o r p h i s m  f r o m  K  

t o  i t s e l f .  T h e  F - a u t o m o r p h i s m s  o f  K  a r e  th e  s y m m e t r ie s  o f  th e  f ie ld  e x t e n s i o n .

We now use symmetric functions to prove an amazing fact:
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•  T h e  F - a u t o m o r p h i s m s  o f  a  f in i t e  e x t e n s io n  K  f o r m  a  g r o u p  c a l le d  t h e  Galois group o f  K  

o v e r  F ,  w h ic h  is  o f te n  d e n o t e d  b y  G ( K /  F ) .

•  A  f in i t e  e x t e n s io n  K /  F  is  a  Galois extension i f  t h e  o r d e r  o f  it s  G a l o i s  g r o u p  G  ( K j F )  is  

e q u a l  t o  t h e  d e g r e e  o f  t h e  e x t e n s io n :  | G  ( K /  F )  | =  [ K :  F ] .

W e  w ill  s e e  b e l o w  ( 1 6 .6 .2 )  th a t  th e  o r d e r  o f  th e  G a l o i s  g r o u p  a lw a y s  d iv id e s  th e  d e g r e e  

o f  th e  e x t e n s io n .

E x a m p l e  1 6 .4 .1  T h e  c o m p l e x  n u m b e r  f ie ld  C  is  a  G a l o i s  e x t e n s i o n  o f  t h e  f ie ld  R  o f  r e a l  

n u m b e r s .  T h e  G a l o i s  g r o u p  G ^ ^ )  is  a  c y c l i c  g r o u p  o f  o r d e r  t w o ,  g e n e r a t e d  b y  t h e  

a u t o m o r p h is m  o f  c o m p l e x  c o n j u g a t io n .  T h e r e  is  a n  a n a lo g o u s  s t a t e m e n t  f o r  a n y  q u a d r a t ic  

e x t e n s i o n  K /  F .  A  q u a d r a t ic  e x t e n s io n  is  o b ta in e d  b y  a d jo in in g  a  s q u a r e  r o o t , s a y  th a t  

K  =  F ( a ) ,  w h e r e  a 2 =  a  is  in  F .  T h e  G a l o i s  g r o u p  G  o f  K /  F  h a s  o r d e r  t w o ,  a n d  t h e  

e l e m e n t  t  o f  G  d i f f e r e n t  f r o m  t h e  id e n t i t y  in t e r c h a n g e s  t h e  t w o  s q u a r e  r o o t s  a  a n d  - a .  

F o r  in s t a n c e ,  i f  F  =  Ql a n d  K  =  Q l ( .J 2 ) ,  t h e r e  i s  a n  F - a u t o m o r p h i s m  t  o f  K  t h a t  s e n d s

a  +  b.J2  a  -  b .J 2 .  W e  h a v e  s e e n  t h is  a u t o m o r p h is m  b e f o r e .  □

L e m m a  1 6 .4 .2  L e t  K  a n d  K ' b e  e x t e n s i o n s  o f  a  f ie ld  F .

( a )  L e t  / ( x )  b e  a  p o ly n o m ia l  w i t h  c o e f f ic ie n t s  in  F ,  a n d  le t  a  b e  a n  F - i s o m o r p h i s m  f r o m  

K  t o  K ' .  I f  a  is  a  r o o t  o f  /  in  K ,  th e n  a ( a )  is  a  r o o t  o f  /  in  K '.

(b )  S u p p o s e  t h a t  K  is  g e n e r a t e d  o v e r  F  b y  s o m e  e l e m e n t s  a j ,  . . .  , a n . L e t  a  a n d  a '  b e

F - i s o m o r p h i s m s  K  - -  K ' .  I f  a ( a ; )  =  d ( a , )  f o r  i  =  1 , . . .  , n, t h e n  a  =  a ' .  I f  a n  

F - a u t o m o r p h i s m  a  o f  K  f ix e s  all o f  th e  g e n e r a t o r s ,  it is  th e  id e n t i t y  m a p .

( c )  L e t  /  b e  a n  ir r e d u c ib le  p o ly n o m ia l  w ith  c o e f f ic ie n t s  in  F ,  a n d  le t  a  a n d  a '  b e  r o o t s  o f  

/  in  K  a n d  K ' ,  r e s p e c t iv e ly .  T h e r e  is  a  u n iq u e  F - i s o m o r p h i s m  a : F ( a )  - -  F ( a ' )  th a t  
s e n d s  a  t o  a ' .  I f  F ( a )  =  F ( a ' ) ,  t h e n  a  is  a n  F - a u t o m o r p h i s m .

Proof, ( a )  w a s  p r o v e d  in  t h e  la s t  c h a p t e r  ( 1 5 .2 .1 0 ) .  W e  o m it  t h e  p r o o f  o f  ( b ) .  I n  (c ) ,  t h e  

e x i s t e n c e  o f  a  w a s  p r o v e d  in  t h e  la s t  c h a p te r  ( 1 5 .2 .8 ) ,  a n d  ( b )  s h o w s  th a t  a  is  u n iq u e .  □

P r o p o s i t io n  1 6 .4 .3

( a )  L e t  f  b e  a  p o ly n o m ia l  w it h  c o e f f ic ie n t s  in  F .  A n  e x t e n s io n  f ie ld  L / F  c o n t a in s  a t  m o s t  

o n e  s p l i t t in g  f ie ld  o f  f  o v e r  F .

( b )  L e t  f  b e  a  p o ly n o m ia l  w i t h  c o e f f ic ie n t s  in  F .  A n y  t w o  s p l i t t in g  f i e l d s  o f  f  o v e r  F  a r e  

i s o m o r p h ic  e x t e n s io n  f ie ld s .

Proof  ( a )  I f  L  c o n t a in s  a  s p l i t t in g  f ie ld  o f  / ,  t h e n  /  s p l i t s  c o m p l e t e l y  in  L ,  s a y  /  =  

( x  -  a i )  • . .  ( x  — a n )  w ith  a ;  in  L .  I f  is  a n y  r o o t  o f  /  in  L ,  s u b s t i t u t io n  i n t o  th is  p r o d u c t  

s h o w s  t h a t  =  a ;  f o r  s o m e  i. S o  /  h a s  n o  o t h e r  r o o t s  in  L ,  a n d  t h e  o n ly  s p l i t t in g  f ie ld  o f  /  

th a t is  c o n t a in e d  in  L  is  F ( a i , . . . ,  a n ) .

( b )  L e t  K i  a n d  K 2 b e  t w o  s p l i t t in g  f i e ld s  o f  f  o v e r  F .  T h e  f ir s t  s p l i t t in g  f ie ld  K i  is  a  f in i t e  

e x t e n s io n  o f  F ,  s o  it  h a s  a  p r im it iv e  e l e m e n t  y .  L e t  g  b e  t h e  i r r e d u c ib le  p o l y n o m i a l  f o r  y  

o v e r  F .  W e  c h o o s e  a n  e x t e n s i o n  L  o f  th e  s e c o n d  f ie ld  K 2 in  w h ic h  g  h a s  a  r o o t  y ' ,  a n d  w e  le t  

K '  d e n o t e  t h e  s u b f ie ld  F ( y ' )  o f  L  g e n e r a t e d  b y  y 7. T h e r e  is  a n  F - i s o m o r p h i s m  c p : K 1 - -  K '
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that sends y to y', and because K ' is F-isomorphic to the splitting field Ki, it is also a
splitting field of f .  Then both K ' and K2 are splitting fields contained in the field L, and ( a )

shows that they are equal. Therefore cp is an F-isomorphism from K i to K 2 . □

1 6 .5  F IX E D  FIEL D S

Let H  be a group of automorphisms of a field K. The fixed field of H, which is often denoted 
by K H, is the set of elements of K that are fixed by every group element:

(16.5.1) K h  =  {a e K | a ( a ) =  a  for all a  in H}.

It is easy to verify that K H is a subfield of K, and that H  is a subgroup of the Galois group 
G ( K / K h ). The Fixed Field Theorem below shows that, in fact. H  is equal to G (K / K H).

T h e o r e m  1 6 .5 .2  Let H  be a finite group of automorphisms of a field K  and let F  denote 
the fixed field K H. Let f3i be an element of K, and let {f3i, . . .  f3r} be the H-orbit of

( a )  The irreducible polynomial for f3i over F  is g(x) =  (x — f3j) • . • (x -  f3r).
(b) f31 is algebraic over F , and its degree over F  is equal to the order of its orbit. Therefore 

the degree of f3i over F  divides the order of H.

Proof. Part (b) of the theorem follows from ( a ) .  We prove ( a ) .  Say that

g(x) =  (x -  f3i) ■ ■ • (X -  f3r) =  Xr -  biXr_1 +  ■.. ± br.

The coefficients of g are symmetric functions of the orbit {f3i, . . .  • f3r} (16.1.5). Since the 
elements of H  permute the orbit, they fix the coefficients. Therefore g has coefficients in the 
fixed field.

Let h be a polynomial with coefficients in F  that has f3i as a root. For i =  1, . . .  ,r , 
there is an element a  of H  such that a(f31) =  Because the elements of H  are 
F-automorphisms of K  and because h has coefficients in F , is also a root of h (16.4.2)(a). 
So x -  /3, divides f .  Since this is true for every i, g  divides f  in K[x] and in F[x] (15.6.4)(b). 
This shows that g generates the principal ideal of polynomials in F[x] with root f3i, and 
that g is the irreducible polynomial for over F  (15.2.3). □

An extension field K / F  is called algebraic if every element of K is algebraic over F.

L e m m a  1 6 .5 .3  Let K be an algebraic extension of a field F  that is not a finite extension of
F. There exist elements in K whose degrees over F  are arbitrarily large.

Proof We form a chain of intermediate fields F  <  F i <  F 2 <  . • ■ as follows: We choose an 
element a i  of K that is not in F, and we let F i =  F (a i) . Then a i  is algebraic over F , so 
[Fj : F] <  00, and therefore F i <  K. Next, we choose an element a 2 of K that is not in Fi, 
and we let F 2 =  F (a i, « 2). Then [F2:F] <  00 and Fi <  F2 <  K. We choose «3 in K, not in 
P2, etc. This chain of fields gives us a strictly increasing chain of finite extensions of F. The
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d e g r e e s  [ F  : F ]  b e c o m e  a r b itr a r i ly  la r g e ,  w h i l e  r e m a in in g  f in it e .  E a c h  e x t e n s i o n  Fi/ F  h a s  a  

p r im it iv e  e l e m e n t  Y i, a n d  th e  d e g r e e s  o f  Yi o v e r  F  b e c o m e  a r b itr a r ily  la r g e  t o o .  □

T h e o r e m  1 6 .5 .4  F ix e d  F ie ld  T h e o r e m .  L e t  H  b e  a  f in i t e  g r o u p  o f  a u t o m o r p h is m s  o f  a  f ie ld  

K , a n d  le t  F  =  K H b e  i t s  f ix e d  f ie ld . T h e n  K  is  a  f in i t e  e x t e n s io n  o f  F, a n d  it s  d e g r e e  [ K :  F ]  

is  e q u a l  t o  t h e  o r d e r  | H |  o f  t h e  g r o u p .

Proof  L e t  F  =  K H a n d  le t  n  b e  t h e  o r d e r  o f  H .  T h e o r e m  1 6 .5 .2  s h o w s  th a t  t h e  e x t e n s i o n  

K /  F  is  a lg e b r a ic ,  a n d  th a t  t h e  d e g r e e  o v e r  F  o f  a n y  e l e m e n t  o f  K  d iv id e s  n . T h e r e f o r e  

t h e  d e g r e e  [ K : F ]  is  f in i t e  ( 1 6 .5 .3 ) .  L e t  y  b e  a  p r im it iv e  e l e m e n t  f o r  th is  e x t e n s i o n .  E v e r y  

e l e m e n t  a  o f  H  is  t h e  id e n t i t y  o n  F ,  s o  i f  a  a ls o  f ix e s  y ,  it  w i l l  b e  th e  id e n t i t y  m a p  -  th e  

id e n t i t y  e l e m e n t  o f  H .  T h e r e f o r e  t h e  s t a b i l iz e r  o f  y  is  t h e  tr iv ia l  s u b g r o u p  { l }  o f  H ,  a n d  t h e  

o r b it  o f  y  h a s  o r d e r  n .  T h e o r e m  1 6 .5 .2  s h o w s  th a t  y  h a s  d e g r e e  n  o v e r  F .  S in c e  K  =  F ( y ) ,  

t h e  d e g r e e  [ K :  F ]  is  e q u a l  t o  n  t o o .  □

A u t o m o r p h i s m s  o f  th e  f ie ld  C ( t )  o f  r a t io n a l  f u n c t io n s  in  o n e  v a r ia b le  p r o v id e  e x a m p le s  

th a t  i l lu s t r a te  t h e  F ix e d  F ie ld  T h e o r e m  a n d  T h e o r e m  1 6 .5 .2 .

E x a m p le  1 6 .5 .5  L e t  K  =  C ( t ) ,  a n d  l e t  a  a n d  r  b e  t h e  a u t o m o r p h is m s  o f  K  t h a t  a r e  t h e  

id e n t i t y  o n  C  a n d  s u c h  th a t  a ( t )  =  i t  a n d  r ( t )  =  t~x. T h e n  a 4 =  1, r 2 =  1, a n d  r a  =  a ^ r .  

T h e r e f o r e  a  a n d  r  g e n e r a t e  a  g r o u p  o f  a u t o m o r p h is m s  H  th a t  is  i s o m o r p h ic  t o  t h e  d ih e d r a l  

g r o u p  D 4.

L e m m a  1 6 .5 .6  T h e  r a t io n a l  f u n c t io n  u  =  f  +  r 4 is  t r a n s c e n d e n t a l  o v e r  C .

Proof  L e t  g ( x )  =  x d +  Cd_\Xd - 1 +  . . .  +  c o  b e  a  m o n ic  p o ly n o m ia l  o f  d e g r e e  d  w i t h  c o m p le x  
c o e f f ic ie n t s .  T h e n  t4 dg(u)  is  a  m o n i c  p o l y n o m i a l  o f  d e g r e e  8d  in  t. S in c e  t  is  t r a n s c e n d e n t a l ,  

t 4d g ( u )  * 0 ,  a n d  t h e r e f o r e  g ( u ) * O .  □

It f o l lo w s  f r o m  th e  l e m m a  th a t  th e  f ie ld  C ( u )  is  i s o m o r p h ic  to  a  f ie ld  o f  r a t io n a l  

f u n c t io n s  in  o n e  v a r ia b le .  W e  s h o w  th a t  it  is  th e  f ix e d  f ie ld  K H. W e  n o t e  th a t  u  is  f ix e d  b y  a  

a n d  r .  S o  it is  in  th e  f ix e d  f ie ld  K H, a n d  t h e r e f o r e  C ( u )  C  K H. T h e o r e m  1 6 .5 .2  t e l l s  u s  th a t  

t h e  i r r e d u c ib le  p o ly n o m ia l  f o r  t o v e r  K H  is  t h e  p o ly n o m ia l  w h o s e  r o o t s  f o r m  it s  o r b it .  T h e  

o r b it  o f  t is

{ t, it, - t ,  - I t, t-1 , - I t - 1 , - t - 1 , I1- 1 }

a n d  t h e  p o ly n o m ia l  w h o s e  r o o t s  a r e  t h e  e l e m e n t s  o f  th is  o r b it  is

( x 4  _  t 4 )  ( x 4  -  t - 4 )  =  X8 -  u x 4  +  1.

S o  t  is  a  r o o t  o f  a  p o ly n o m ia l  o f  d e g r e e  8 w i t h  c o e f f ic ie n t s  in  C ( w ) ,  a n d  t h e r e f o r e  t h e  
d e g r e e  [ K : C ( u ) ]  is  a t  m o s t  8. T h e  F ix e d  F ie ld  T h e o r e m  a s s e r t s  th a t  [ K  : K H ]  =  8. S in c e  

C ( u )  C  K H , i t  f o l lo w s  th a t  C ( u )  =  K H .  □
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T h is  e x a m p le  i l lu s t r a te s  a  f a m o u s  th e o r e m :

T h e o r e m  1 6 .5 .7  L i ir o t h ’s  T h e o r e m .  L e t  F  b e  a  s u b f ie ld  o f  t h e  f ie ld  C ( t )  o f  r a t io n a l  f u n c 

t io n s  th a t  c o n t a in s  C  a n d  is  n o t  C  i t s e l f .  T h e n  F  is  is o m o r p h ic  to  a  f ie ld  C ( u )  o f  r a t io n a l  

f u n c t io n s .  □

1 6 .6  G A L O IS  E X T E N S IO N S

W e  c o m e  n o w  t o  t h e  m a in  t o p ic  o f  t h e  c h a p te r :  G a l o i s  t h e o r y .

•  I f  K  is  a n  e x t e n s i o n  f ie ld  o f  F ,  a n  intermediate field L  is  a  f ie ld  s u c h  t h a t  F  C  L  c  K . A n  

in t e r m e d ia t e  f ie ld  is  proper  i f  i t  is  n e i t h e r  F  n o r  K .

I f  L  is  a n  in t e r m e d ia t e  f ie ld ,  t h e n  e v e r y  L - a u t o m o r p h i s m  o f  K  w i l l  b e  a n  
F - a u t o m o r p h i s m ,  a n d  t h e r e f o r e

( 1 6 .6 .1 )  G ( K /  L )  C  G ( K /  F ) .

L e m m a  1 6 .6 .2

( a )  T h e  G a l o i s  g r o u p  G  o f  a  f in ite  f ie ld  e x t e n s io n  K /  F  is  a  f in ite  g r o u p  w h o s e  o r d e r  d iv id e s  

t h e  d e g r e e  [ K : F ]  o f  t h e  e x t e n s io n .

(b )  L e t  H  b e  a  f in i t e  g r o u p  o f  a u t o m o r p h is m s  o f  a  f ie ld  K .  T h e n  K  is  a  G a l o i s  e x t e n s i o n  o f  

i t s  f ix e d  f i e ld  K H , a n d  H  is  t h e  G a l o i s  g r o u p  o f  K / K H .

Proof, (a )  B y  d e f in i t io n  o f  F - a u t o m o r p h i s m ,  th e  e l e m e n t s  o f  G  a c t  t r iv ia lly  o n  F ,  s o  F  is  

c o n t a in e d  in  th e  f ix e d  f ie ld  K G . T h e n  F  C  K G C  K ,  s o  [ K : K G ] d iv id e s  [ K : F ] .  B y  t h e  

F ix e d  F ie ld  T h e o r e m ,  | G  | =  [ K :  K g ].

( b )  B y  d e f in i t io n  o f  K H , t h e  e l e m e n t s  o f  H  a r e  K H - a u t o m o r p h is m s .  T h e r e f o r e  H  is  

a  s u b g r o u p  o f  t h e  G a lo i s  g r o u p  G ( K /  K H ) .  S in c e  | G ( K /  K H ) |  d iv id e s  [ K  : K H ] a n d  

| H |  =  [ K : K  h ], t h e  t w o  g r o u p s  a r e  e q u a l ,  a n d  K  is  a  G a lo i s  e x t e n s i o n  o f  K  H. □

L e m m a  1 6 .6 .3  L e t  Y i b e  a  p r im it iv e  e l e m e n t  fo r  a  f in ite  e x t e n s i o n  K  o f  a  f ie ld  F  a n d  l e t  

f ( x )  b e  t h e  ir r e d u c ib le  p o ly n o m ia l  f o r  Y i o v e r  F .  L e t  Y i , . . . ,  Yr b e  t h e  r o o t s  o f  f  t h a t  a r e  

in  K .  T h e r e  is  a  u n iq u e  F - a u t o m o r p h i s m  a ,  o f  K  s u c h  th a t  a , ( Y i )  =  Y i. T h e s e  a r e  a l l  o f  th e  

F - a u t o m o r p h i s m s  o f  K ,  s o  G ( K /  F )  h a s  o r d e r  r .

Proof  T h e r e  is  a  u n iq u e  F - i s o m o r p h i s m  a , : F ( y i )  —► F ( y , )  th a t  s e n d s  y i  ^  Yi ( 1 6 .4 .2 ) ( c ) .  
W e  are- g iv e n  th a t  K  =  F ( y ! ) ,  an d  s in c e  F ( n )  h a s  th e  s a m e  d e g r e e  o v e r  F ,  K  =  F ( y , )  t o o .  
T h e r e f o r e  a ,  i s  a n  F - a u t o m o r p h i s m  o f  K .  E v e r y  F - a u t o m o r p h i s m  o f  K  s e n d s  y i  t o  a  r o o t  

o f  f ,  s o  it  is  o n e  o f  t h e  a u t o m o r p h is m s  a , .  □

T h e o r e m  1 6 .6 .4  C h a r a c t e r is t ic  P r o p e r t i e s  o f  G a l o i s  E x t e n s i o n s .  L e t  K /  F  b e  a  f in i t e  e x t e n 

s io n  a n d  l e t  G  b e  it s  G a l o i s  g r o u p . T h e  f o l lo w in g  a r e  e q u iv a le n t :

( a )  K /  F  is  a  G a l o i s  e x t e n s i o n ,  i .e . ,  |G |  =  [ K : F ] ,

(b )  T h e  f ix e d  f ie ld  K G is  e q u a l  to  F ,

( c )  K  is a  s p l i t t in g  f ie ld  o v e r  F .

P a r t  (b )  o f  th e  t h e o r e m  ca n  b e  u s e d  t o  s h o w  th a t  a n  e l e m e n t  o f  a  G a l o i s  e x t e n s i o n  K  

is  a c t u a l ly  in  th e  f ie ld  F ,  a n d  (c )  c a n  b e  u s e d  t o  s h o w  th a t  a n  e x t e n s i o n  is  G a l o i s .
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P roofof the Theorem. (a )  <=) (b ) :  B y  th e  F ix e d  F ie ld  T h e o r e m ,  |G |  =  [ K  : K G ]. S in c e  

F  C  K g  C  K , | G |  =  [ K :  F ]  i f  a n d  o n ly  i f  F  =  K G .

( a )  <=* (c ) :  L e t  n =  [ K  : F ] .  W e  c h o o s e  a p r im it iv e  e l e m e n t  y i  f o r  K  o v e r  F .  L e t  f  b e  

its i r r e d u c ib le  p o ly n o m ia l  o v e r  F. S in c e  y i  is  a  p r im it iv e  e l e m e n t ,  th e  d e g r e e  o f  f  is  n. 
L e t  Yi, . , Y  b e  t h e  r o o t s  o f  f  th a t  a r e  in  K . L e m m a  1 6 .6 .3  t e l l s  u s  th a t  |G |  =  r .  S o
|G |  =  [ K :  F ] ,  i . e . ,  th e  e x t e n s io n  is  G a l o i s ,  i f  a n d  o n ly  i f  f  s p l i t s  c o m p le t e ly  in  K .  B e c a u s e  

K  is  g e n e r a t e d  o v e r  F  b y  y\,  it  is  a ls o  g e n e r a t e d  b y  t h e  s e t  o f  a l l  t h e  r o o t s  o f  f ,  s o  K  is  a  

s p l i t t in g  f ie ld  o v e r  F  if  a n d  o n ly  if  f  s p l i t s  c o m p le t e ly  in  K . □

If K  is th e  s p l i t t in g  f ie ld  o f  a  p o ly n o m ia l  f  o v e r  F, w e  m a y  a l s o  r e f e r  t o  th e  G a lo i s  

g r o u p  G  ( K /  F )  o f  t h e  e x t e n s i o n  K /  F  a l s o  a s  t h e  Galois group o f  f .

C o r o l la r y  1 6 .6 .5

( a )  E v e r y  f in ite  e x t e n s io n  K /  F  is  c o n t a in e d  in  a  G a l o i s  e x t e n s io n .

( b )  I f  K /  F  is  a  G a l o i s  e x t e n s i o n ,  a n d  i f  L  is  a n  in t e r m e d ia t e  f ie ld ,  t h e n  K  is a l s o  a G a l o i s  

e x t e n s io n  o f  L , a n d  t h e  G a lo i s  g r o u p  G  ( K /  L )  is  a  s u b g r o u p  o f  t h e  G a l o i s  g r o u p  

G ( K / F ) .

P r o o f  T h e o r e m  1 6 .6 .4  a l lo w s  u s  to  r e p la c e  t h e  p h r a s e  “ G a l o i s  e x t e n s i o n ”  b y  “ s p l i t t in g  

f i e ld .”  T h e n  t h e  C o r o l la r y  f o l lo w s  fr o m  L e m m a s  1 6 .3 .1  a n d  1 6 .6 .2 . □

T h e o r e m  1 6 .6 .6  L e t  K  /  F  b e  a G a lo i s  e x t e n s io n  w it h  G a l o i s  g r o u p  G ,  an d  le t  g  b e  

a  p o ly n o m ia l  w i t h  c o e f f ic ie n t s  in  F  th a t  s p lit s  c o m p l e t e l y  in  K . L e t  it s  r o o t s  in  K  b e  

/31, . . . ,  /3r.

( a )  T h e  g r o u p  G  o p e r a t e s  o n  t h e  s e t  o f  r o o t s  {/3 ,} .

( b )  I f  K  i s  a  s p l i t t in g  f ie ld  o f  g  o v e r  F ,  th e  o p e r a t io n  o n  t h e  r o o t s  is  f a i th f u l ,  a n d  b y  it s  

o p e r a t io n  o n  t h e  r o o t s ,  G  e m b e d s  a s  a  s u b g r o u p  o f  t h e  s y m m e tr ic  g r o u p  Sr.
( c )  I f  g  is  i r r e d u c ib le  o v e r  F ,  th e  o p e r a t io n  o n  th e  r o o t s  is  t r a n s it iv e .

( d )  If K  is  a  s p l i t t in g  f ie ld  o f  g  o v e r  F  a n d  g  is ir r e d u c ib le  o v e r  F ,  t h e n  G  e m b e d s  a s  a  
t r a n s i t iv e  s u b g r o u p  o f  S r .

Proof, (a )  is  ( 1 6 .4 .2 ) ( a )  an d  ( b )  is  ( 1 6 .4 .2 ) ( b ) .  I f  g  is  ir r e d u c ib le ,  it is  th e  i r r e d u c ib le  

p o ly n o m ia l  f o r  /31 o v e r  F .  S in c e  F  is  t h e  f ix e d  f ie ld  o f  G ,  T h e o r e m  1 6 .5 .2  t e l l s  u s  th a t  t h e  

r o o t s  /3,- o f  g  f o r m  t h e  G - o r b i t  o f  / 3  S o  t h e  o p e r a t io n  is  t r a n s i t iv e ,  a s  ( c )  a s s e r t s .  F in a l ly ,  ( d )  

is  th e  c o m b in a t io n  o f  ( b )  a n d  ( c ) .  □

T h is  t h e o r e m  is  u s e f u l ,  t h o u g h  it  d o e s n ’t su f f ic e  t o  d e t e r m in e  th e  G a l o i s  g r o u p . B o t h  t h e  
in t e g e r  r  a n d  t h e  e m b e d d in g  in t o  S r d e p e n d  o n  f ,  n o t  o n ly  o n  th e  G a l o i s  e x t e n s io n  K .  A l s o ,  

t h e  s y m m e t r ic  g r o u p  S r h a s  s e v e r a l  t r a n s i t iv e  s u b g r o u p s  w h e n  r  > 2 .

1 6 .7  T H E  M A I N  T H E O R E M

O n e  o f  t h e  m o s t  im p o r ta n t  p a r t s  o f  G a l o i s  t h e o r y  is  t h e  d e t e r m in a t io n  o f  t h e  in t e r m e d ia t e  

f ie ld s .  T h e  M a in  T h e o r e m  o f  G a l o i s  t h e o r y  a s s e r t s  th a t  w h e n  K  /  F  is  a  G a lo i s  e x t e n s io n ,  t h e
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in t e r m e d ia t e  f i e l d s  a r e  in  b i j e c t iv e  c o r r e s p o n d e n c e  w i t h  t h e  s u b g r o u p s  o f  t h e  G a l o i s  g r o u p .  

It w il l  n o t  b e  i m m e d ia t e ly  c le a r  w h y  th is  fa c t  is  im p o r ta n t ;  w e  w i l l  h a v e  t o  s e e  it  u s e d  to  

u n d e r s t a n d  th a t .

T h e o r e m  1 6 .7 .1  M a in  T h e o r e m .  L e t  K  b e  a  G a l o i s  e x t e n s io n  o f  a  f ie ld  F ,  a n d  le t  G  b e  i t s  

G a l o i s  g r o u p . T h e r e  is  a  b i j e c t iv e  c o r r e s p o n d e n c e  b e t w e e n  s u b g r o u p s  o f  G  a n d  in t e r m e d ia t e  

f ie ld s :

{ s u b g r o u p s }  <— ► {in t e r m e d ia t e  f ie ld s } .

T h is  c o r r e s p o n d e n c e  a s s o c ia t e s  t o  a  s u b g r o u p  H  it s  f ix e d  f ie ld ,  a n d  t o a n  in t e r m e d ia t e  f ie ld  L  

th e  G a l o i s  g r o u p  o f  K  o v e r  L .  T h e  m a p s

H  K h  a n d  L  . .  G ( K / L ) .

a r e  in v e r s e  f u n c t io n s .

Proof. W e  m u s t  s h o w  th a t  t h e  c o m p o s i t i o n  o f  t h e  t w o  m a p s  in  e i t h e r  o r d e r  is  t h e  id e n t i t y  

m a p , a n d  t h e  w o r k  h a s  b e e n  d o n e .  L e t  H  b e  a  s u b g r o u p  o f  G  a n d  le t  L  b e  i t s  f ix e d  f ie ld .  

T h e  F ix e d  F ie ld  T h e o r e m  t e l l s  u s  th a t  G ( K / L )  =  H .  In  t h e  o t h e r  o r d e r ,  l e t  L  b e  a n  

in t e r m e d ia t e  f ie ld  a n d  l e t  H  b e  t h e  G a lo i s  g r o u p  o f  K  o v e r  L .  T h e n  K  is  a  G a lo i s  e x t e n s i o n  

o f  L  ( C o r o l la r y  1 6 .6 .5 ( b ) ) .  T h e o r e m  1 6 .6 .4  t e l l s  u s  th a t  t h e  f ix e d  f ie ld  o f  H  is  L .  □

C o r o l la r y  1 6 .7 .2  (a )  T h e  c o r r e s p o n d e n c e  g iv e n  b y  t h e  M a in  T h e o r e m  r e v e r s e s  in c lu s io n s :  

I f  L  a n d  L ' a r e  in t e r m e d ia t e  f ie ld s  a n d  i f  H  a n d  H '  a r e  t h e  c o r r e s p o n d in g  s u b g r o u p s ,  t h e n  

L  C L '  i f  a n d  o n ly  i f  H  H ' .

(b ) T h e  s u b g r o u p  th a t  c o r r e s p o n d s  t o  th e  f ie ld  F  is  th e  w h o l e  g r o u p  G ( K /  F ) ,  a n d  t h e  

s u b g r o u p  th a t  c o r r e s p o n d s  t o  K  is  t h e  tr iv ia l  s u b g r o u p  ( l ) .

( c )  I f  L  c o r r e s p o n d s  t o  H ,  t h e n  [ K : L ]  =  | H |  a n d  [ L : F ]  =  [ G :  H ] .

In  ( c ) ,  th e  f ir s t  e q u a l i t y  f o l lo w s  f r o m  th e  f a c t s  th a t  K  is  a  G a lo i s  e x t e n s i o n  o f  L  a n d  

t h a t  H  =  G ( K /  L ) .  T h e n  t h e  s e c o n d  e q u a l i t y  f o l lo w s ,  b e c a u s e

| G |  =  [ K : F ]  =  [ K : L ] [ L : F J  a n d  a l s o  |G |  =  | H | [ G : H ] .  □

C o r o l la r y  1 6 .7 .3  A  f in i t e  f ie ld  e x t e n s io n  K / F  h a s  f in i t e ly  m a n y  in t e r m e d ia t e  f ie ld s  

F  C  L  C  K .

Proof. T h is  f o l lo w s  f r o m  t h e  M a in  T h e o r e m  w h e n  K /  F  is  a  G a lo i s  e x t e n s i o n ,  b e c a u s e  

a f in i t e  g r o u p  h a s  f in i t e ly  m a n y  s u b g r o u p s .  S in c e  w e  c a n  e m b e d  a n y  f in i t e  e x t e n s i o n  in t o  

a  G a l o i s  e x t e n s i o n ,  it  is  t r u e  f o r  a n y  f in i t e  e x t e n s io n .  □

E x a m p le  1 6 .7 .4  L e t  F  b e  t h e  f ie ld  o f  r a t io n a l  n u m b e r s ,  a n d  le t a  =  J 3  a n d  fJ =  . . / 5 ,  s o  th a t  

a f J  =  ^ JIS . T h e  s p l i t t in g  f ie ld  K  =  F ( a ,  fJ) o f  t h e  p o ly n o m ia l  ( x 2 -  3 ) ( X  -  5 )  is  a  G a l o i s  

e x t e n s io n  o f  F  o f  d e g r e e  4 . I t s  G a l o i s  g r o u p  G  h a s  o r d e r  4 , s o  it  is  e i t h e r  t h e  K le in  f o u r  g r o u p  

o r  a  c y c l ic  g r o u p . I t  is  e a s y  t o  f in d  t h r e e  in t e r m e d ia t e  f ie ld s  o f  d e g r e e  2  o v e r  F ,  n a m e ly  F ( a ) ,  
F ( f J ) ,  a n d  F ( a f J ) .  T h e s e  t h r e e  in t e r m e d ia t e  f i e ld s  c o r r e s p o n d  t o t  h r e e  p r o p e r  s u b g r o u p s  o f
G . T h e r e f o r e  G  is  t h e  K le in  f o u r  g r o u p ,  w h ic h  h a s  t h r e e  e l e m e n t s  o f  o r d e r  2 ,  h e n c e  t h r e e  

s u b g r o u p s  o f  o r d e r  2 . T h e  c y c l ic  g r o u p  o f  o r d e r  4  h a s  o n ly  o n e  s u b g r o u p  o f  o r d e r  2.
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T h e  s u b g r o u p s  o f  o r d e r  2  a r e  t h e  o n l y  p r o p e r  s u b g r o u p s  o f  G ,  s o  t h e  M a in  T h e o r e m  

t e l l s  u s  th a t  t h e r e  a r e  n o  p r o p e r  in t e r m e d ia t e  f ie ld s  o t h e r  th a n  th e  t h r e e  w e  h a v e  f o u n d .  
C o n s e q u e n t ly ,  a n  e l e m e n t  y  =  a  +  b o t +  c{3  +  dot{3  o f  K ,  w it h  a ,  b ,  c ,  d  in  F ,  h a s  d e g r e e  4  

o v e r  F  u n le s s  it is  in  o n e  o f  th e  t h r e e  p r o p e r  in t e r m e d ia t e  f ie ld s ,  a n d  th is  h a p p e n s  o n ly  w h e n  

a t  le a s t  t w o  o f  t h e  c o e f f ic ie n t s  b , c ,  d  a r e  z e r o .  □

S u p p o s e  th a t  w e  a re  g iv e n  a  c h a in  o f  f ie ld s  F C L  C  K ,  a n d  th a t  K  is a  G a l o i s  e x t e n s i o n  

o f  F .  T h e n  K  is  a l s o  a  G a l o i s  e x t e n s i o n  o f  L .  H o w e v e r ,  L  n e e d n ’t b e  a  G a lo i s  e x t e n s i o n  o f  F. 
T o  c o m p le t e  t h e  p ic t u r e ,  w e  s h o w  t h a t  t h e  in t e r m e d ia t e  f ie ld s  L  t h a t  a r e  G a lo i s  e x t e n s io n s  

o f  F  c o r r e s p o n d  to  n o r m a l  s u b g r o u p s  o f  G .

T h e o r e m  1 6 .7 .5  L e t  K /  F b e  a  G a lo i s  e x t e n s io n  w it h  G a lo i s  g r o u p  G ,  a n d  l e t  L  b e  t h e  f ix e d  

f ie ld  L  o f  a  s u b g r o u p  H  o f  G . T h e  e x t e n s i o n  L  /  F  is  a  G a l o i s  e x t e n s i o n  i f  a n d  o n l y  if  H  is  a  

n o r m a l  s u b g r o u p  o f  G .  I f  s o ,  t h e n  th e  G a lo i s  g r o u p  G ( L / F )  is i s o m o r p h ic  to  th e  q u o t i e n t  

g r o u p  G /  H .

G  =  G ( K / F )  I 
o p e r a te s  on  K  < 
f i x in g  F

P r o o f  L e t  E\ b e  a  p r im it iv e  e l e m e n t  fo r  th e  e x t e n s i o n  L / F .  a n d  le t  g  b e  th e  i r r e d u c ib le  

p o ly n o m ia l  f o r  e  o v e r  F .  T h is  p o ly n o m ia l  s p l i t s  c o m p l e t e l y  in  t h e  s p l i t t in g  f ie ld  K ; le t  it s  

r o o t s  b e  E i , . . . . e r. W e  h a v e  t h e  f o l lo w in g  fa c t s  t o  w o r k  w ith :

•  L  /  F  is  a  G a lo i s  e x t e n s io n  i f  a n d  o n ly  i f  i t  is  a  s p l i t t in g  f ie ld , w h ic h  h a p p e n s  w h e n  a ll  o f

t h e  r o o t s  e,- a r e  in  L .

• I f  a  r o o t  ¢ /  is  in  L ,  t h e n  L  =  F ( E i ) ,  b e c a u s e  e ,  a n d  e i  h a v e  t h e  s a m e  d e g r e e  o v e r  F  a n d  

L  =  F ( e  i ) .

• A n  e l e m e n t  a  o f  G  i s  t h e  id e n t i t y  o n  L  i f  a n d  o n ly  i f  i t  f ix e s  e  i . S o  t h e  s t a b i l iz e r  o f  e i is  

e q u a l  t o  H .

• T h e  o p e r a t io n  o f  G  o n  th e  s e t  { e j  , . . .  , e r } is  t r a n s it iv e :  F o r  an y  i =  1 , . . . ,  r , t h e r e  i s  a n  

e l e m e n t  a  o f  G  s u c h  th a t  a ( e i )  =  e  ( 1 6 .4 .2 ) ( c ) .

L e t  a  b e  a n  e l e m e n t  o f  G , a n d  s a y  t h a t  a ( ? i )  =  E i. T h e n  F ( e , )  =  L  i f  a n d  o n ly  i f  £ i  

is  in  L , a n d  i f  s o ,  t h e  s t a b i l i z e r  o f  e ,  w i l l  b e  e q u a l  t o  H .  O n  th e  o t h e r  h a n d , t h e  s t a b i l iz e r  

o f  a ( e i )  is  t h e  c o n j u g a t e  g r o u p  c tH c t- 1 . T h e r e f o r e  K /  F  is  a  G a l o i s  e x t e n s i o n  i f  a n d  o n ly  i f  

c tH c t-1 =  H  f o r  a ll  a ,  i . e . ,  i f  a n d  o n ly  i f  H  is  a n o r m a l  s u b g r o u p .

S u p p o s e  th a t  L  is  a  G a l o i s  e x t e n s i o n  o f  F .  T h e n  t h e  r o o t s  e ,  a r e  in  L . A n  e l e m e n t  cr

o f  t h e  G a l o i s  g r o u p  G  w ill  m a p  e  t o  a n o t h e r  r o o t  e , ,  a n d  t h e r e f o r e  it w i l l  m a p  L  =  F ( e i )  

to  F ( e ; )  =  L .  S o  r e s t r ic t in g  a  t o  L  d e f in e s  a n  F - a u t o m o r p h i s m  o f  L .  T h is  r e s t r ic t io n  g iv e s

K }  H = G ( K / L )  

o p e r a te s  o n  K  

/ r a n g  L

I f H  is  n o rm a l.

' th en  G / H  =  G ( L / F )  

o p e r a te s  h ere
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u s  a  h o m o m o r p h i s m  ({J: G —> G ( L /F ) .  T h e  k e r n e l  o f  ({J is  t h e  s e t  o f  cr t h a t  r e s tr ic t  t o  th e  

id e n t i t y  o n  L ,  w h ic h  is  H .  M o r e o v e r ,  | G /  H \  =  [ G : H ] =  | G ( L / F ) | .  T h e  F ir s t  I s o m o r p h is m  

T h e o r e m  t e l l s  u s  th a t  G  /  H  is  i s o m o r p h ic  t o  G  ( L  /  F ) .  □

In  th e  n e x t  s e c t io n s ,  w e  e x a m in e  s o m e  o f  th e  m o s t  im p o r ta n t  s i t u a t io n s  in  w h ic h  G a l o i s  

t h e o r y  c a n  b e  u s e d .

1 6 . 8  C U B IC  E Q U A T IO N S

L e t  / ( x )  =  x 3 — a \x 2 +  a 2 x  — a 3 b e  a n  ir r e d u c ib le  p o ly n o m ia l  o v e r  F ,  a n d  l e t  K  b e  a  

s p l i t t in g  f ie ld  o f  J  o v e r  F .  S a y  th a t  th e  r o o t s  o f  f  in  K  a re  a i ,  a 2, « 3. T h e n  in  K [ x ] ,

( 1 6 .8 .1 )  / ( x )  =  ( x  -  a t ) ( x  -  « 2> (x  -  a 3) .

S in c e  a i  is  in  F  a n d  a ,  =  a i  +  a 2 +  « 3, th e  th ir d  r o o t  a 3 is in  th e  f ie ld  g e n e r a t e d  b y  t h e  f ir s t  

t w o  r o o t s .  S o  w e  h a v e  a  c h a in  o f  e x t e n s i o n  f ie ld s

F C  F ( c ( | ) C F ( k i , c ( i )  a n d  F (a x, a 2) =  F (a \ , a 2, a 3) =  K.

L e t  L  d e n o t e  t h e  f ie ld  F ( a i ) .  S in c e  /  is  i r r e d u c ib le  o v e r  F ,  [ L  : F ]  =  3 . A n d  s in c e  at  is  in  L ,  
t h e  p o ly n o m ia l  f  f a c to r s  in  L [ x ] :

( 1 6 .8 .2 )  J ( x )  =  ( x  -  a i ) q ( x ) ,

w h e r e  q  is  th e  q u a d r a t ic  p o ly n o m ia l  w h o s e  r o o t s  a r e  a 2  a n d  « 3. S o  K  is o b t a in e d  fr o m  L  b y  

a d jo in in g  a  r o o t  o f  a  q u a d r a t ic  p o ly n o m ia l .  T h e r e  a r e  t w o  c a s e s :  I f  q  is  i r r e d u c ib le  o v e r  L ,  
t h e n  [ K :  L ]  =  2  a n d  [ K :  F ]  =  6. I f  q  is  r e d u c ib le  o v e r  L ,  t h e n  a 2 a n d  a 3 a r e  in  L ,  L  =  K ,  

a n d  [K: F]  =  3.

E x a m p le s  1 6 .8 .3  ( a )  f ( x )  =  x 3 +  3 x  +  1 is  i r r e d u c ib le  o v e r  Q , a n d  i t s  d e r iv a t iv e  is n o w h e r e  

z e r o  o n  t h e  r e a l  l in e .  T h e r e f o r e  /  d e f in e s  a n  in c r e a s in g  f u n c t io n  o f  t h e  r e a l  v a r ia b le  x  th a t  

t a k e s  t h e  v a lu e  z e r o  e x a c t ly  o n c e :  /  h a s  o n e  r e a l  r o o t .  T h is  r o o t  d o e s  n o t  g e n e r a t e  t h e  

s p l i t t in g  f ie ld  K ,  w h ic h  a l s o  c o n t a in s  t w o  c o m p le x  r o o t s .  S o  [ K : Q ]  =  6.

( b )  f ( x )  =  x 3 — 3 x  +  1 is  a l s o  i r r e d u c ib le  o v e r  IQ. I n  t h i s  c a s e ,  it  h a p p e n s  t h a t  i f  a t  is  a  r o o t  

o f  I ,  t h e n  a 2 =  a j  — 2  is  a n o t h e r  r o o t .  T h is  c a n  b e  c h e c k e d  b y  s u b s t i t u t in g  i n t o  / .  So t h e  

s p l i t t in g  f ie ld  K  is  e q u a l  t o  Q ( a t )  a n d  [ K : Q ]  =  3. □

W e  g o  b a c k  to  a n  a r b itr a r y  ir r e d u c ib le  c u b ic . B y  its o p e r a t io n  o n  th e  r o o t s ,  th e  G a l o i s  

g r o u p  G  o f  K /  F  b e c o m e s  a  t r a n s i t iv e  s u b g r o u p  o f  th e  s y m m e tr ic  g r o u p  S 3 ( 1 6 .4 .2 ) ( c ) .  T h e  

t r a n s i t iv e  s u b g r o u p s  a r e  S 3 a n d  A 3 -  a  c y c l i c  g r o u p  o f  o r d e r  3. I f  [ K :  F ]  =  3 , t h e n  G  =  A 3 , 
a n d  i f  [ K :  FJ =  6, t h e n  G  =  S 3. T o  d is t in g u is h  t h e s e  tw o  c a s e s ,  w e  n e e d  to  d e c i d e  w h e t h e r  

o r  n o t  t h e  q u a d r a t ic  p o ly n o m ia l  q ( x )  th a t  a p p e a r s  in  ( 1 6 .8 .2 )  is  ir r e d u c ib le  o v e r  t h e  f ie ld  

L  =  F ( a i ) .  W o r k in g  in  t h e  f ie ld  L  is  p a in fu l .  W e  w o u ld  r a th e r  m a k e  a  c o m p u t a t i o n  in  t h e  

f ie ld  F .  F o r t u n a t e ly ,  t h e r e  is  a n  e l e m e n t  th a t  m a k e s  it  p o s s ib le  t o  d e c i d e ,  t h e  s q u a r e  r o o t  5 

o f  th e  d i s c r im in a n t  ( 1 6 .2 .5 )  o f  f :

(16.8.4) <5 =  (a i — a 2)(o!i -  a 3 ) (a 2 -  a 3)
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• 8 is an element of K,
• 5 * 0  ( because the roots a , are distinct), and
• a permutation of the roots multiplies 5 by the sign of the permutation.

T h e o r e m  1 6 .8 .5  G a l o i s  T h e o r y  f o r  a  C u b ic .  Let K be the splitting field of an irreducible 
cubic polynomial f  over a field F, let D be the discriminant of / ,  and let G be the Galois 
group of K / F.

• If D is a square in F , then [K: F] =  3 and G is the alternating group A3.
• If D is not a square in F, then [K: F] =  6 and G is the symmetric group S 3 .

The discriminant of x3 + 3x + 1 is -5 . 33, not a square, while the discrminant o fx 3 — 3x + 1 
is 34, a square (see 16.2.8)). This agrees with the discussion of the examples above.

Proof o f Theorem 16.8.5. A permutation of the roots multiplies 8 by the sign of the permu
tation. If 8 is in F , it is fixed by every element of G. In that case odd permutations can’t be 
in G, and therefore G =  A3 and [K : F] =  3. If 8 isn’t in F  then it isn’t fixed by G, so G 
contains an odd permutation. In that case, G =  S3 and [K: F] =  6. □

The alternating group has no proper subgroups. So if G =  A3 there are no proper 
intermediate fields. This is obvious, because [K: F] =  3 is a prime. The symmetric group S3 
has four proper subgroups. With the usual notation, they are the three groups < y>, <xy>, 
<x2y> of order 2, and the group < x) of order 3, which is A3. The Main Theorem tells us 
that when G =  S3, there are four proper intermediate fields. They are F (a3), F (a 2), F (a d ,  
and F (8).

16.9 QUARTIC EQUATIONS

Let /(x )  be an irreducible qu artic polynomial with coefficients in F , and let the roots of
/  in a splitting field K over F  be a i, a 2, a 3, a 4. By its operation on the roots, the Galois
group G =  G (K / F) is represented as a transitive subgroup of S4 (16.6.6). The transitive 
subgroups are easy to determine because S4 is isomorphic to the octahedral group, a rotation 
group. Any subgroup will be a rotation group too, so it will be one of the groups listed in 
Theorem 6.12.1. The transitive subgroups of S4 are

(16.9.1) S4, A4, D 4, C4, D2.

There are three conjugate subgroups isomorphic to D4, and three conjugate subgroups 
isomorphic to C4. The subgroup D 2, the Klein four group, consists of the identity and 
the three products of disjoint transpositions. It is a normal subgroup of S4 that we have 
seen before (2.5.15). (Some other subgroups of S4 are isomorphic to D 2, but they aren’t 
transitive.) Notice that the order of G, which is equal to the degree [K : F ], distinguishes 
all of these groups except the last two. Unfortunately, it isn’t very easy to determine 
the degree.

We begin with a type of quartic polynomial that can be analyzed concretely. I learned 
this from Susan Landau [Landau].

Its main properties are:
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E x a m p le s  1 6 .9 .2  H e r e  F  d e n o t e s  th e  f ie ld  rQl o f  r a t io n a l  n u m b e r s .

(a )  L e t  a  b e  th e  “ n e s t e d "  s q u a r e  r o o t  a  =  V4 +  J S .  T o  d e t e r m in e  th e  i r r e d u c ib le  p o ly n o m ia l

f o r  a  o v e r  F ,  w e  g u e s s  th a t  i t s  r o o t s  m ig h t  b e  ± a  a n d  ± a ' ,  w h e r e  a '  =  v 4  — . / 5 .  H a v in g  

m a d e  th is  g u e s s ,  w e  e x p a n d  t h e  p o ly n o m ia l

f ( x )  =  ( x  -  a ) ( x  +  a ) ( x  -  a ' ) ( x  +  a ' )  =  x 4 — 8x 2 +  11.

It i s n ’t v e r y  h a r d  to  s h o w  th a t  th is  p o ly n o m ia l  is  ir r e d u c ib le  o v e r  F. W e ’ll  l e a v e  t h e  p r o o f  a s

a n  e x e r c is e .  S o  it  is  t h e  ir r e d u c ib le  p o ly n o m ia l  f o r  Of. o v e r  F .  L e t  K  b e  t h e  s p l i t t in g  f ie ld  o f  f .

T h e n

F  C  F ( a )  C  F ( a ,  a ' )  a n d  F ( a ,  a ' )  =  K .

S in c e  f  is  ir r e d u c ib le .  [ F ( a ) : F ]  =  4  a n d  s in c e  . / 5  is  in  F (a ) , a'  =  \ / 4  — . / 5  h  a s  d e g r e e  a t  

m o s t  2  o v e r  F ( a ) .  W e  d o n ’t y e t  k n o w  w h e t h e r  o r  n o t  a '  is  in  t h e  f ie ld  F ( a ) .  In  a n y  c a s e ,  

[ K : F ]  is  4  o r  8. T h e  G a l o i s  g r o u p  G  o f  K /  F  a l s o  h a s  o r d e r  4 o r  8, s o  it  is  D 4, C 4 , o r  D 2 .
W h ic h  o f  th e  c o n j u g a t e  s u b g r o u p s  D 4 m ig h t  o p e r a t e  d e p e n d s  o n  h o w  w e  n u m b e r  t h e  

r o o t s .  L e t ’s  n u m b e r  t h e m  th is  w a y :

W it h  th is  o r d e r in g ,  a n  a u t o m o r p h i s m  th a t  s e n d s  a i  a ;  a ls o  s e n d s  a 3 . .  -  a ; .  T h e  

p e r m u t a t io n s  w i t h  th is  p r o p e r t y  f o r m  t h e  d ih e d r a l  g r o u p  D 4 g e n e r a t e d  b y

( 1 6 .9 .3 )  0' =  ( 1 2 3 4 )  a n d  t  =  ( 2 4 ) .

O u r  G a l o i s  g r o u p  is  a  s u b g r o u p  o f  th is  g r o u p . It c a n  b e  th e  w h o l e  g r o u p  D 4, th e  c y c l ic  g r o u p  

C 4 g e n e r a t e d  b y  a,  o r  t h e  d ih e d r a l  g r o u p  D 2 g e n e r a t e d  b y  0 '  a n d  t .

N o t e : W e  m u s t  b e  c a r e fu l:  E v e r y  e l e m e n t  o f  th is  g r o u p  D 4 p e r m u t e s  t h e  r o o t s ,  b u t  w e  d o n ' t  

y e t  k n o w  w h ic h  o f  t h e s e  p e r m u t a t io n s  c o m e  f r o m  a u t o m o r p h is m s  o f  K . A  p e r m u t a t io n  th a t  

d o e s n ’t c o m e  f r o m  a n  a u t o m o r p h is m  t e l l s  u s  n o t h in g  a b o u t  K .  □

T h e r e  is  o n e  p e r m u t a t io n ,  p  =  0'2 =  ( 1 3 ) ( 2 4 ) ,  th a t  is  in  a ll t h r e e  o f  th e  g r o u p s  
D 4, C 4, a n d  D 2 , s o  it  e x t e n d s  to  a n  F - a u t o m o r p h i s m  o f  K  t h a t  w e  d e n o t e  b y  p  t o o .  T h is  

a u t o m o r p h is m  g e n e r a t e s  a  s u b g r o u p  N  o f  G  o f  o r d e r  2.

T o  c o m p u t e  t h e  f i x e d  f i e l d  K N , w e  l o o k  f o r  e x p r e s s io n s  in  t h e  r o o t s  th a t  a r e  f ix e d  

b y  p .  I t  i s n ’t h a r d  to  f in d  s o m e :  a 2  =  4  +  . / 5  a n d  a a '  =  ^ f f i .  S o  K N  c o n t a in s  t h e  f ie ld  
L  =  F ( . / 5 ,  ^.JIT). W e  in s p e c t  t h e  c h a i n  o f  f ie ld s  F  C  L  C  K N  C  K . W e  h a v e  [ K :  F )  : :  8, 

[ L  : F ]  =  4 , a n d  [ K  : K N ] =  2  ( F ix e d  F ie ld  T h e o r e m ) .  I t  f o l lo w s  th a t  L  =  K N, th a t  

[ K :  F ]  =  8, a n d  th a t  G  is  t h e  d ih e d r a l  g r o u p  D 4.

( b )  L e t  a  =  v  2  +  .J 2 . T h e  i r r e d u c ib le  p o ly n o m ia l  f o r  a  o v e r  F  is x 4 -  4 x 2  +  2. I t s  r o o t s  a r e

a ,  a '  =  v  2  -  . / 5 ,  - a ,  - a '  a s  b e f o r e .  H e r e  a a '  =  . / 5 ,  w h ic h  is  in  th e  f ie ld  F ( a ) .  T h e r e f o r e  

a '  is  a l s o  in  t h a t  f ie ld .  T h e  d e g r e e  [ K :  F ]  is  4 , a n d  G  is  e i t h e r  C 4 o r  D 2.
B e c a u s e  th e  o p e r a t io n  o f  G  o n  th e  r o o t s  is  t r a n s i t iv e ,  t h e r e  is  a n  e l e m e n t  o '  o f  G  th a t  

s e n d s  a  - - t a ' .  S in c e  a 2  =  2  +  . / 5  a n d  a '2 =  2  -  . / 5 ,  a '  s e n d s  . / 5  --t  - . / 5  a n d  O la '- - t  - a a ' .
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( c )  L e t  a  =  yj4 +  . / 7 .  Its i r r e d u c ib le  p o ly n o m ia l  o v e r  F  is  x 4 -  8x 2 +  9. H e r e  aa! =  3 . A g a in ,  

a '  is  in  t h e  f ie ld  F ( a ) ,  a n d  t h e  d e g r e e  [ K :  F ]  is  4 . I f  a n  a u t o m o r p h is m  0" s e n d s  a  a ' ,  t h e n

s in c e  a a '  =  3 , i t  m u s t  s e n d  a '  . .  a .  T h e  G a l o i s  g r o u p  is  D 2.

O n e  c a n  a n a ly z e  a n y  q u a r t ic  p o ly n o m ia l  o f  th e  fo r m  x 4 +  b x 2 +  c  in  th is  w a y .  □  

I t  is  h a r d e r  t o  a n a ly z e  a  g e n e r a l  q u a r t ic

b e c a u s e  i t s  r o o t s  a l ,  . . . ,  a 4 c a n  r a r e ly  b e  w r i t t e n  e x p l i c i t l y  in  a  u s e f u l  w a y .  T h e  m a in  m e t h o d  

is  t o  l o o k  f o r  e x p r e s s io n s  in  t h e  r o o t s  t h a t  a r e  f ix e d  b y  s o m e ,  b u t  n o t  a l l ,  o f  t h e  p e r m u t a t io n s  

in  S 4. T h e  s q u a r e  r o o t  o f  t h e  d i s c r im in a n t  D  is  t h e  f ir s t  s u c h  e x p r e s s io n :

8 =  F I  ( a i  -  a  j )  =  ( a i  - « 2) ( a i  -  « 3 ) ( a i  -  « 4 > ( a 2  - « 3 > ( a 2  -  « 4 ) (C i3  -  ( 4) .

< < j

B e c a u s e  t h e  r o o t s  a r e  d i s t in c t ,  8 i s n ’t z e r o ,  a n d  a s  is  t r u e  fo r  c u b ic  e q u a t io n s  ( 1 6 .8 .4 ) ,  a  
p e r m u t a t io n  a  o f  t h e  r o o t s  m u l t ip l i e s  8 b y  th e  s ig n  o f  th e  p e r m u ta t io n .  E v e n  p e r m u t a t io n s  

f ix  8 a n d  o d d  p e r m u t a t io n s  d o  n o t  f ix  8.

P r o p o s i t io n  1 6 .9 .5  L e t  G  b e  t h e  G a l o i s  g r o u p  o f  a n  i r r e d u c ib le  q u a r t ic  p o l y n o m i a l  f .  T h e  

d is c r im in a n t  D  o f  f  is  a  s q u a r e  in  F  i f  a n d  o n l y  if  G  c o n t a in s  n o  o d d  p e r m u t a t io n .  T h e r e f o r e

•  I f  D  is  a  s q u a r e  in  F ,  t h e n  G  i s  A 4  o r  D 2 .
•  I f  D  is  n o t  a  s q u a r e  in  F ,  t h e n  G  is  S 4, D 4, o r  C 4 .

Proof. D is  a  s q u a r e  in  F  i f  a n d  o n ly  i f  8 is  in  F ,  w h ic h  h a p p e n s  w h e n  e v e r y  e l e m e n t  o f

G  f ix e s  8. T h e  p e r m u t a t io n s  th a t  f ix  8 a r e  t h e  e v e n  p e r m u t a t io n s .  T h e  la s t  s t a t e m e n t s  a r e  

p r o v e d  b y  lo o k in g  a t  t h e  l is t  ( 1 6 .9 .1 )  o f  t r a n s i t iv e  s u b g r o u p s  o f  S 4. □

T h e r e  is  a n  a n a lo g o u s  s t a t e m e n t  fo r  s p l i t t in g  f ie ld s  o f  a  p o ly n o m ia l  o f  a n y  d e g r e e .

P r o p o s i t io n  1 6 .9 .6  L e t  K  b e  a  s p l i t t in g  f ie ld  o v e r  F  o f  a n  ir r e d u c ib le  p o ly n o m ia l  f  o f  

d e g r e e  n  in  F [ x ] ,  a n d  l e t  D  b e  t h e  d is c r im in a n t  o f  f .  T h e  G a l o i s  g r o u p  G ( K /  F )  is  a
s u b g r o u p  o f  th e  a l t e r n a t in g  g r o u p  A „  i f  a n d  o n ly  i f  D  is  a  s q u a r e  in  F .  □

L a g r a n g e  fo u n d  a n o t h e r  u s e f u l  e x p r e s s io n  in  th e  r o o t s  a ; ,  o n e  th a t  is  s p e c ia l  t o  q u a r t ic  

p o ly n o m ia ls .  L e t

( 1 6 .9 .7 )  ^ = 0^2 +  0:3̂ 4, /32 =  « i « 3  +oc2 a4, /33 =  a i a 4 +  a 2 « 3 ,

This implies that a ' . .  -a .  So 0" =  0'.  The Galois group is the cyclic group C 4 .

and let
g (x )  =  (x  -  f h ) (x  -  /3 2) ( x  -  /3 3 ).
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This polynomial is called the resolvent cubic of f .  Every permutation of the roots (X 
permutes the elements f3j, so the coefficients of g are symmetric functions in the roots. They 
are elements of F  that can be computed when needed.

By a lucky accident, the fact that the roots of an irreducible quartic are distinct implies 
that the elements th a re also distinct. For instance,

P i  —  / ¾  =  O C \ O C 2  +  0 !3U !4  -  C C \ a j  —  « 2 « 4  = 1 (<*1 — ( ¥ 4 ) ( « 2  “  “ ■?)•

Since the tCy are distinct, — f32 isn’t zero. The discriminants of the polynomials f  and g 
are actually equal.

Whether or not the resolvent cubic has a root in F gives us more information about 
the Galois group G.

Proposition 16.9.8 Let G be the Galois group of an irreducible quartic polynomial f  over 
F, and let g be the resolvent cubic of J .  Then g is irreducible if and only if the order of G is 
divisible by 3. Moreover,

• If g splits completely in F, then G =  D2.
• If g has one root in F, then G = D 4 or C4.
• If g is irreducible over F, then G = S4 or A 4.

Proof. The proof of the proposition is simple, but the fact that the three elements 
are distinct is an essential point that could easily be overlooked. Let B denote the set 
{f3i, f32, f33). It has order 3. The operation of the symmetric group S4 on the roots a v 
defines a transitive operation on B, and the associated permutation representation is a 
homomorphism ({J:S4 -> S3 that we have seen before (2.5.13). Its kernel is the subgroup D2. 
If g splits completely in F, the Galois group operates trivially on B, and therefore G =  D 2.

If g is irreducible over F , G operates transitively on B (16.6.6), so its order is divisible 
by three. Conversely, if |G | is divisible by three, then G contains an element of order 3, 
say p. Since the kernel of ({J is D 2, p  does not operate trivially on B. It permutes the three
elements cyclically. Therefore G operates transitively on B, and g is irreducible.

The rest of the proposition follows by looking back at the list (16.9.1). □

Thus the polynomials x2 -  D, where D is the discriminant, and the resolvent cubic g(x) 
nearly suffice to describe the Galois group. The results are summed up in this table:

D a square D not a square
(16.9.9) Hg reducible

g irreducible
G =  D2 G =  D 4 or C4
G =  A4 G =  S4

Unfortunately, there is no simple expression in the roots that removes the remaining 
ambiguity (see Exercise M .ll).

Note: The proof of Proposition 16.9.8 makes use of the particular formulas (16.9.7) to define 
a permutation of the set B in terms of a permutation of the roots (Xu. If a permutation 
of the roots comes from an F-automorphism, the permutation of B  will be given by that
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a u t o m o r p h is m . H o w e v e r ,  i f  t h e  p e r m u t a t io n  d o e s n ’t c o m e  f r o m  a n  F - a u t o m o r p h i s m ,  t h e  

p e r m u t a t io n  o f  B  d e f in e d  u s in g  t h e  f o r m u la s  h a s  n o  m e a n in g  f o r  t h e  f ie ld .

F o r  e x a m p l e ,  l e t  K  b e  t h e  s p l i t t in g  f ie ld  o f  t h e  p o ly n o m ia l  x 4 -  2  o v e r  Ql. W e  in d e x  

t h e  r o o t s  f r o m  1 t o  4  in  t h e  o r d e r  a i  =  a ,  =  i a ,  a 3 =  - a ,  a 4 =  - i a ,  w h e r e  a  i s  t h e  

p o s i t iv e  r e a l  f o u r t h  r o o t  o f  2 . T h e n  f \  =  2 i . / 2 ,  f 2 =  0 , fh =  - 2 i . / 2 .  T h e  t r a n s p o s i t io n  
e =  ( 1 2 )  i s n ’t a n  e l e m e n t  o f  t h e  G a l o i s  g r o u p . W h e n  w e  u s e  t h e  f o r m u la s  1 6 .9 .7  t o  d e f in e  

h o w  e  p e r m u te s  t h e  s e t  B ,  t h e  o p e r a t io n  w e  o b ta in  s w it c h e s  f 2 a n d  f h  S in c e  fJz =  0  a n d  

fJ3 0, t h is  p e r m u t a t io n  m a k e s  n o  s e n s e  a lg e b r a ic a l ly .  □

1 6 . 1 0  R O O T S  O F U N IT Y

In  th is  s e c t io n ,  F  d e n o t e s  th e  f ie ld  Ql o f  r a t io n a l  n u m b e r s .  T h e  s u b f ie ld  o f  th e  c o m p l e x  

n u m b e r s  g e n e r a t e d  o v e r  F  b y  a n  n t h  r o o t  o f  u n i t y  I;n =  e 2:r '/"  is  c a l l e d  a  cyclotomic field. 
W e ’ll a s s u m e  t h a t  n  is  a  p r im e  in t e g e r  p .  T h e  i r r e d u c ib le  p o ly n o m ia l  f o r  I; =  e 2:r(/p  o v e r  t h e  

r a t io n a l  n u m b e r s  is

( 1 6 .1 0 .1 )  f ( x )  =  x P _  1 +  • . • +  x  +  1

( T h e o r e m  1 2 .4 .9 ) .  I t s  r o o t s  a r e  th e  p o w e r s  1;, 1;2 , . . . ,  I;p~l , s o  I; g e n e r a t e s  th e  s p l i t t in g  f ie ld  

o f  f ,  a n d  t h e r e f o r e  K  =  F (I ; )  is  a  G a l o i s  e x t e n s i o n  o f  F  o f  d e g r e e  p  — 1.

P r o p o s i t io n  1 6 .1 0 .2

( a )  L e t  p  b e  a  p r im e ,  a n d  le t  I; = elni/p. T h e  G a lo i s  g r o u p  o f  Q l(I;) o v e r  Ql is  a  c y c l ic  g r o u p  

o f  o r d e r  p  -  1. I t  is  i s o m o r p h ic  t o  th e  m u l t ip l i c a t iv e  g r o u p  F *  o f  n o n z e r o  e l e m e n t s  o f  

t h e  p r im e  f ie ld  IFp .

(b )  F o r  a n y  s u b f ie ld  F '  o f  C , th e  G a l o i s  g r o u p  o f  F ' ( I ; )  o v e r  F '  is  a  c y c l ic  g r o u p .

Proof. ( a )  W it h  F  =  Ql, l e t  G  b e  t h e  G a l o i s  g r o u p  o f  F ( t ; )  o v e r  F .  A n  e l e m e n t  a  o f  G  is  

d e t e r m in e d  b y  th e  im a g e  0'( 1;) ,  w h ic h  c a n  b e  a n y  o n e  o f  t h e  p  -  1 r o o t s  o f  f .  L e t ’s  c a ll  O ' th e  

e l e m e n t  s u c h  th a t  O ' (I;) =  I;'. T h e  e x p o n e n t  i  is  d e t e r m in e d  a s  a  n o n z e r o  r e s id u e  m o d u lo  p  

b e c a u s e  I;P =  1. S o  s e n d in g  O' i  d e f in e s  a  b i j e c t iv e  m a p  e : G  - +  F * .  T h e  c o m p u t a t io n

s h o w s  t h a t  e  is  a  h o m o m o r p h i s m ,  a n d  t h e r e f o r e  a n  i s o m o r p h is m . T h e  f a c t  t h a t  F *  is  c y c l i c  is  

a  p a r t  o f  T h e o r e m  1 5 .7 .3 .

T h e  e l e m e n t  crv t h a t  s e n d s  I; I;u g e n e r a t e s  G  i f  a n d  o n ly  i f  v  i s  a  p r im it iv e  r o o t  

m o d u lo  p ,  a  g e n e r a t o r  fo r  t h e  c y c l i c  g r o u p  F * .

( b )  A n  e l e m e n t  a  o f  th e  G a l o i s  g r o u p  G ' =  G (F'(I;)/  F ’)  w ill a lso  s e n d  I; t o  a  p o w e r  I;u. T h e  

p r o o f  a b o v e  s h o w s  th a t  G '  is  i s o m o r p h ic  t o  a  s u b g r o u p  o f  t h e  c y c l i c  g r o u p  F * .  T h e r e f o r e  it  

is  a  c y c l i c  g r o u p  t o o .  □

E x a m p le  1 6 .1 0 .3  p  =  17  a n d  I; =  eld, w h e r e  () =  2 7 r /1 7 .

T h e  r e s id u e  o f  3  i s  a  p r im it iv e  r o o t  m o d u lo  1 7 , s o  t h e  G  a lo i s  g r o u p  G  =  G ( K /  F )  i s  a  

c y c l ic  g r o u p  o f  o r d e r  1 6 , g e n e r a t e d  b y  th e  a u t o m o r p h is m  0 t h a t  s e n d s  I; " ,  1;3 . T h e r e  a r e  f iv e
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s u b g r o u p s ,  o f  o r d e r s  1 6 ,  8, 4 ,  2, a n d  1 , g e n e r a t e d  b y  a, a 2, a 4, a 8, a n d  1 , r e s p e c t iv e ly .  L e t  th e

f ix e d  f ie ld s  o f  t h e  s u b g r o u p s  b e  F  =  L o  =  L  i =  i 0 a 2 > , L 2 =  i 0 a 4 > ,  L 3 =

a n d  L  4 =  K .  T h e y  f o r m  a  c h a in  o f  f i e ld s  L o  C  L 1 C  L 2 C  L 3 C  L 4, w h e r e  th e  d e g r e e  o f  e a c h  

e x t e n s io n  L / L , —  is  2 . T h e  M a in  T h e o r e m  te lls  u s  th a t  t h e s e  a r e  t h e  o n ly  in t e r m e d ia t e  f ie ld s .

L e m m a  1 6 .1 0 .4  T h e  f ie ld  L 3 d e f in e d  a b o v e  is  g e n e r a t e d  b y  c o s  0 ,  a n d  it h a s  d e g r e e  8 o v e r  F .

Proof. L e t  L '  =  F ( c o s 0 ) .  S in c e  £  +  £-1 = 2  c o s  0 ,  c o s 0 i s i n  K  =  F ( £ ) .  M o r e o v e r ,  £  is  a  r o o t  

o f  t h e  q u a d r a t ic  p o ly n o m ia l  ( x  -  £ )  ( x  — £ - 1)  =  x 2 -  2( c o s  0) x  +  1, w h ic h  h a s  c o e f f i c ie n t s  in  

L ' ,  s o  [ K :  L ' ]  :5 2  a n d  [ L ' :  F ]  2':  8. T h e r e f o r e  L ' is  e i t h e r  L 3 o r  K ,  a n d  s in c e  L '  is  a  s u b f ie ld  
o f  JR. b u t  K  is  n o t ,  L '  =  L 3. □

C o r o l la r y  1 6 .1 0 .5  T h e  r e g u la r  17 - g o n  c a n  b e  c o n s t r u c t e d  w it h  r u le r  a n d  c o m p a s s .

Proof  T h e  c h a in  F  C  L 1 C  L 2  C  L 3 s h o w s  th a t  w e  c a n  r e a c h  t h e  f ie ld  L 3, w h i c h  c o n t a in s  

c o s  0, b y  a  s e q u e n c e  o f  t h r e e  s u c c e s s iv e  s q u a r e  r o o t  a d ju n c t io n s ,  a n d  s in c e  L 3 is  a  s u b f ie ld  o f  
JR., t h e s e  s q u a r e  r o o t s  a r e  r e a l .  ( S e e  ( 1 5 .5 .1 0 ) . )  □

T h e  n e x t  l e m m a  is  u s e f u l  f o r  d e s c r ib in g  th e  q u a d r a t ic  e x t e n s i o n  L i  o f  F :

L e m m a  1 6 .1 0 .6  L e t  a  =  C i£  +  C2£2 +  . . .  +  C p _ 2£ P - 2 +  C p - i  £ p ~ l  b e  a  l in e a r  c o m b in a t io n  

w it h  r a t io n a l  c o e f f i c ie n t s  C i, w h e r e  f  =  e 2 ml p a n d  p  is  p r im e . I f  a  is  a  r a t io n a l  n u m b e r ,  t h e n  

Ci =  C2 =  . . .  =  C p - b  a n d  a  =  - c i .

Proof  S in c e  £  is  a  r o o t  o f  f  ( 1 6 .1 0 .1 ) ,  w e  c a n  s o l v e  fo r  £ p - J a n d  r e w r it e  th e  g iv e n  l in e a r  

c o m b in a t io n  a s  a  =  ( - C p - i ) 1  +  ( c i  - C p _ i ) £  +  - • • +  (C p - 2 - C p _ i ) £ p - 2 . B e c a u s e  t h e  p o w e r s

1 , £ ,  . . . ,  £p-2 f o r m  a  b a s is  f o r  K  o v e r  F ,  th is  c o m b in a t io n  is  a  r a t io n a l  n u m b e r  o n ly  i f  a ll  

c o e f f ic ie n t s  e x c e p t  - c p - i  a r e  e q u a l  t o  z e r o .  I f  s o ,  t h e n  q  =  C p _ i f o r  e v e r y  i a n d  a  =  - Q ,  a s  

a s s e r t e d .  □

E x a m p le  1 6 .1 0 .7  T h e  c a s e  p  =  1 7 , c o n t in u e d .

T h e  p o w e r s  o f  th e  p r im it iv e  r o o t  3  m o d u lo  1 7 , l i s t e d  in  o r d e r ,  a n d  w ith  r e p r e s e n t a t iv e s  

f o r  t h e  c o n g r u e n c e  c la s s e s  t a k e n  b e t w e e n  -8 a n d  8, a r e

( 1 6 .1 0 .8 )  1 , 3 ,  - 8, - 7 ,  - 4 ,  5 ,  - 2 ,  - 6, - 1 ,  - 3 ,  8, 7 ,  4 ,  - 5 ,  2 ,  6.

T h e  a u t o m o r p h is m  a  o f  K  =  F ( f )  th a t  s e n d s  £  t o  £3 g e n e r a t e s  t h e  G a l o i s  g r o u p  G ,  a n d  it  

r u n s  t h r o u g h  t h e  p o w e r s  o f  £  in  t h e  c o r r e s p o n d in g  o r d e r :

( 1 6 .1 0 .9 )

T h e  G - o r b i t  o f  £  c o n s i s t s  o f  t h e  1 6  p o w e r s  o f  £  d i f f e r e n t  f r o m  l .
L e t  H  d e n o t e  th e  s u b g r o u p  < (J'2 > o f  o r d e r  8. T h e  G - o r b i t  o f  £  s p l i t s  in t o  tw o  H - o r b i t s  

th a t  a r e  o b t a in e d  b y  t a k in g  e v e r y  o t h e r  t e r m  in  t h e  s e q u e n c e  o f  p o w e r s  ( 1 6 .1 0 .9 ) :

{ £ ,  £-8 , £-4 , . • • }  a n d  { f 3 , f " 7 , f 5 , ■ • ■ }.

L e t  a i  a n d  «2 d e n o t e  t h e  s u m s  o v e r  t h e s e  t w o  o r b it s ,  r e s p e c t iv e ly :  a i  =  f  +  f -8 +  . .  ■. 

T h e  s e t  { a i ,  a 2} is  a  G - o r b i t .  T h e o r e m  1 6 .5 .2  t e l l s  u s  th a t th e  e l e m e n t s  a ;  h a v e  d e g r e e  2
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o v e r  th e  f ix e d  f ie ld  o f  G ,  w h ic h  is  F ,  a n d  th a t  t h e  ir r e d u c ib le  p o ly n o m ia l  f o r  a (- o v e r  F  is  

( x  -  a i ) ( x  -  a 2) .  T o  d e t e r m in e  th is  p o ly n o m ia l ,  w e  n e e d  t o  c o m p u t e  t h e  t w o  s y m m e tr ic  

f u n c t io n s  s i  ( a )  =  a i  +  a 2 a n d  s 2( a )  =  a i a 2 .
T o  b e g in  w i t h ,  w e  n o t e  th a t  Si ( a )  is  th e  su m  o f  a ll p o w e r s  o f  {  d i f f e r e n t  f r o m  1, so  

s  i ( a )  =  - 1  ( 1 6 .1 0 .6 ) .  N e x t ,

S2( a )  =  a i a 2 =  ( {  +  {-8 +  . . .  )({3 +  { - 7  +  . . . ) .

W r it in g  a,- r e q u ir e s  w r it in g  {  m a n y  t im e s ,  s o  w e  u s e  a  s h o r t h a n d . W e  w r it e

( 1 6 .1 0 .1 0 )  a i  =  [1 , - 8, - 4 ,  - 2 ,  - 1 , 8 ,  4 , 2 ] ,  a 2 =  [3 , - 7 ,  5 ,  - 6, - 3 ,  7 , - 5 ,  6] .

T h is  n o t a t io n  in d ic a t e s  th a t  a i  is  th e  s u m  o f  th e  p o w e r s  o f  {  w h o s e  e x p o n e n t s  a r e  in  th e  f ir s t  

b r a c k e t e d  s tr in g . T o  c o m p u t e  s 2( a ) ,  w e  m u s t  a d d  e a c h  o f  t h e  e ig h t  t e r m s  in  t h e  f ir s t  s t r in g  to  

t h o s e  in  t h e  s e c o n d  s t r in g ,  m o d u lo  p ,  o b t a in in g  6 4  e x p o n e n t s .  T h e n  S2( a )  w i l l  b e  t h e  s u m  o f  

t h e  c o r r e s p o n d in g  p o w e r s  o f  { .  L e t ’s n o t  d o  th is  e x p l ic i t ly .  S in c e  S2( a )  is  a  r a t io n a l  n u m b e r ,  

a l l  p o w e r s  d i f f e r e n t  f r o m  =  1 m u s t  o c c u r  t h e  S a m e  n u m b e r  o f  t im e s  ( 1 6 .1 0 .6 ) .  W e  n o t i c e  

th a t  w e  w o n ’t g e t  a n y  z e r o s  w h e n  w e  d o  t h e  a d d it io n ,  b e c a u s e  a  r e s id u e  a n d  it s  n e g a t i v e  a r e  
in  t h e  s a m e  b r a c k e t e d  s e q u e n c e .  S o  t h e  6 4  t e r m s  m u s t  in c lu d e  f o u r  o f  e a c h  o f  t h e  1 6  n o n z e r o  

e x p o n e n t s .  T h e r e f o r e  S2( a )  =  - 4 .  T h e  i r r e d u c ib le  p o ly n o m ia l  f o r  a ;  o v e r  F  is

( 1 6 .1 0 .1 1 )  ( x  - a i ) ( x  - a 2)  =  x Z +  x  -  4 .

I ts  d is c r im in a n t  i s  1 7 , s o  L i  =  F ( ^ H ) .  □

O n e  c a n  d e t e r m in e  th e  e x t e n s i o n  f ie ld  o f  d e g r e e  2  o v e r  F  th a t  is  c o n t a in e d  in  t h e  

c y c lo t o m ic  f ie ld  F ( { p )  f o r  a n y  o d d  p r im e  p  in  t h e  s a m e  w a y .

T h e o r e m  1 6 .1 0 .1 2  L e t  p  b e  a  p r im e  d i f f e r e n t  f r o m  2 , a n d  le t  L  b e  t h e  u n iq u e  q u a d r a t ic  

e x t e n s io n  o f  Q  c o n t a in e d  in  t h e  c y c lo t o m ic  f ie ld  Q ( { p ) .  I f  p  =  1 m o d u lo  4 ,  t h e n  L  =  Q ( , J P ) ,  

a n d  i f  p  =  3  m o d u l o  4 ,  t h e n  L  =  Q ( ^ ^ ) .

T h is  s e e m s  t o  b e  a n  o c c a s io n  f o r  “ p r o o f  b y  e x a m p l e .”  T h e  c a s e  t h a t  p  =  1 m o d u lo  4  

is  i l lu s t r a te d  b y  th e  p r im e  1 7 , a n d  th e  c o m p u t a t io n  is  a n a lo g o u s  f o r  a n y  su c h  p r im e . W e ’ll 
i l lu s t r a te  th e  c a s e  p  =  3  m o d u l o  4  b y  t h e  p r im e  1 1 . T h e  r e s id u e  o f  2  is  a  p r im it iv e  r o o t  
m o d u lo  1 1 . I t s  p o w e r s  l is t  t h e  n o n z e r o  r e s id u e  c la s s e s  m o d u lo  11  in  t h e  o r d e r

1 , 2 , 4 , - 3 ,  5 , - 1 , - 2 , - 4 ,  3 , - 5 .

L e t  {  =  { i i  a n d  l e t  a  b e  t h e  a u t o m o r p h i s m  th a t  s e n d s  {-v-t { z . W it h  s h o r t h a n d  n o t a t io n  a s  

a b o v e ,  t h e  o r b it  s u m s  o f  a 2 a r e

a i  =  [1 , 4 ,  5 ,  - 2 ,  3 ] ,  az  =  [ 2 , - k ,  - 1 ,  - 4 ,  - 5 ] .

H e r e  i f  k  is  in  th e  l is t  o f  e x p o n e n t s  f o r  th e  s u m  a i ,  t h e n  - k  is  in  th e  l is t  f o r  a 2. T h e r e f o r e  z e r o  

o c c u r s  f iv e  t im e s  a m o n g  t h e  2 5  t e r m s  in  t h e  lis t  o f  e x p o n e n t s  f o r  a i a 2, a n d  th is  c o n t r ib u t e s  

5  t o  a i a 2. S in c e  a i a 2 is  in  Q , t h e  2 0  r e m a in in g  t e r m s  m u s t  c o n s i s t  o f  t w o  o f  e a c h  o f  t h e  10  

n o n z e r o  c o n g r u e n c e  c la s s e s  m o d u lo  1 1 . T h e  s u m  o f  t h e s e  t e r m s  c o n t r ib u t e s  - 2 .  T h e r e f o r e  

a i a 2 =  3 . T h e  i r r e d u c ib le  p o ly n o m ia l  f o r  a ;  is  x 2 +  x  +  3 . I t s  d i s c r im in a n t  is  - 1 1 .  □
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T h e o r e m  1 6 .1 0 .1 3  K r o n e c k e r - W e b e r  T h e o r e m .  Every Galois extension of the field Q of 
rational numbers whose Galois group is abelian is contained in one of the cyclotomic 
fields Q ((„). □

1 6 .1 1  K U M M E R  E X T E N S IO N S

This section is devoted to the following theorem:

T h e o r e m  1 6 .1 1 .1  Let F  be a subfield of C that contains the pth root of unity (  =  g27r i /p , 
p  prime, and let K / F  be a Galois extension of degree p. Then K is obtained by adjoining a 
pth root. In other words, K is generated over F  by an element {3, with {3P in F.

Extensions of this type are often called Kummer extensions. The Galois group of a Kummer 
extension is a cyclic group of prime order.

The theorem is familiar for p  =  2: Every extension of degree 2 can be obtained by 
adjoining a square root. But suppose that p  =  3 and that F  contains the cube root of unity 
w =  e27r'/3  ̂ If the discriminant of the irreducible cubic polynomial f  (16.2.7) is a square in 
F, then the splitting field of f  has degree 3 (16.8.5). The theorem asserts that the splitting 
field has the form F(::Jb), for some b in F. This isn’t obvious. If the discriminant is not a 
square, the roots cannot be obtained by adjoining a cube root. (This is Exercise 11.1.)

The next proposition completes the picture. Suppose that {3 is the pth root of a 
nonzero element b of F  in an extension field K. Then it will be a root of the polynomial 
g(x) =  xP -  b, and if ( is in F , the roots of f  in K will be £v{3 for l! =  0 ,1 , . . . ,  p  -  1. So {3 
will generate the splitting field of g over F.

P r o p o s i t io n  1 6 .1 1 .2  Let p  be a prime, let F  be a field that contains the pth root of unity 
(  =  e2m/P, and let b be a nonzero element of F. The polynomial g(x) =  x p — b  is either 
irreducible over F , or else it splits completely.

Proof. Let K be a splitting field of g over F , and suppose that some root {3 of g is not in 
F. Then the degree [K : F] will be greater than 1, so the Galois group G =  G (K / F) will 
contain an element a  different from the identity. Since {3 generates K over F , a({3) cannot 
be equal to {3. So a({3) =  for some v with 0 <  v <  p. We also have a({)  =  (. Therefore 
a 2({3) =  (v(^v{3) =  £2v{3 , and in general, a k({3) = £kv{3. Since 0 <  l! <  p  and p  is prime, the 
multiples of l! run through all residues modulo p. This shows that G operates transitively on 
the p  roots of g. Therefore g is irreducible over F. □

Proof o f  Theorem (16.11.1). The proof is nice. We view K as a vector space over F , and we 
verify that an element a  of the Galois group G is a linear operator on K: If ex and {3 are in 
K  and c is in F, then a(c) =  c. Since a  is an automorphism,

a ( a  +  {3 ) =  a (a )  +  a({3 ) and a(ca) = a (c )a (a )  =  c a (a )  ,

We choose a generator a  for the cyclic Galois group G. Then a p = 1, so any eigenvalue 
). of (J must satisfy the relation =  1, which means th a t). is a power of £. These eigenvalues 
are in the field F  by hypothesis. Moreover, a linear operator of order p  has at least one 
eigenvalue different from 1. This is because, over the complex numbers, the matrix of a  is 
diagonalizable (see Theorem 4.7.14 or Corollary (10.3.9». Its eigenvalues are the entries of

Theorem (16.10.12) is a special case of a beautiful theorem of algebraic number theory.
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t h e  c o r r e s p o n d in g  d ia g o n a l  m a tr ix  A .  I f  a  is  n o t  t h e  id e n t i t y ,  t h e n  A  * 1, s o  s o m e  d ia g o n a l  

e n t r y  m u s t  b e  d i f f e r e n t  f r o m  1.

L e t  b e  a n  e i g e n v e c t o r  o f  a  w i t h  e ig e n v a lu e  A *  1 , a n d  l e t  b  =  f3P. T h e n  a ( f J )  =  Af3, 

h e n c e  a ( b )  =  (Af3)p =  b . S in c e  a  g e n e r a t e s  G ,  b  is in  th e  f ix e d  f ie ld ,  w h ic h  is  F ,  w h i l e  is 
n o t  in  F .  S in c e  [ K :  F ]  is  p r im e ,  F ( f 3 )  =  K .  □

W ith  n o t a t io n  a s  in  T h e o r e m  1 6 .1 1 .1 ,  sa y  th a t  K  is  th e  s p l i t t in g  f ie ld  o v e r  F  o f  a n  

i r r e d u c ib le  p o ly n o m ia l  f  o f  d e g r e e  p .  T h e r e  is  a  s im p le  e x p r e s s io n  in  t h e  r o o t s  o f  f  th a t  

o f te n  y ie ld s  a n  e i g e n v e c t o r  f o r  th e  o p e r a t o r  a .  T h e  p e r m u t a t io n  o f  th e  r o o t s  a  i , . . . ,  a  P 
o f  I  th a t  is  d e f in e d  b y  a  w il l  b e  c y c l ic ,  s o  i f  w e  n u m b e r  th e  r o o t s  a p p r o p r ia t e ly ,  a  w il l  b e  t h e  

p e r m u t a t io n  ( 1 2  ■. .  p ) .  L e t  A b e  a n  e i g e n v a l u e  o f  a,  a n d  le t

( 1 6 .1 1 .3 )  =  a i  +  A a 2 +  • • •  +  A p - * a p .

T h e n  a ( f 3 )  =  «2 +  A «  • • •  +  A P~2 a p _ j  +  A P - 1 a i  =  A - 1f3. S o  u n le s s  h a p p e n s  to  b e  z e r o ,  

it  w i l l  b e  a n  e i g e n v e c t o r  w i t h  e i g e n v a l u e  A - 1 .

E x a m p le  1 6 .1 1 .4  K u m m e r ’s t h e o r e m  l e a d s  to  a  f o r m u la  fo r  t h e  r o o t s  o f  a  c u b ic  p o ly n o m ia l  

th a t  w a s  d i s c o v e r e d  in  t h e  s ix t e e n t h  c e n t u r y  b y  C a r d a n o  a n d  T a r ta g l ia .  T h e  d e r iv a t io n  

th a t  w e  o u t l in e  h e r e  i s n ’t a s  s h o r t  a s  C a r d a n o ’s , b u t  i t  is  e a s i e r  t o  r e m e m b e r  b e c a u s e  it  
i s  s y s t e m a t ic .  W e  s u p p o s e  t h a t  t h e  q u a d r a t i c  c o e f f i c i e n t  o f  t h e  c u b ic  is  z e r o ,  a n d  t o  a v o id  

d e n o m in a t o r s  in  t h e  s o l u t i o n ,  w e  w r i t e  it  a s

f ( x )  =  x 3 +  3 p x  +  2 q .

T h e n  Si =  0 , S2 =  3 p , S3 =  — 2 q , a n d  th e  d is c r im in a n t  is  D  =  - 2 2 3 3 ( q 2 +  p 3 ).
L e t  th e  r o o t s  b e  m i, m2, M3, n u m b e r e d  a r b itr a r ily . W it h  w  =  e 2n :'/3 , th e  e l e m e n t s

Z =  Mi +  WM2 +  w 2«3 a n d  z ' =  Ml +  ^ M 2 +  WM3
a re  e ig e n v e c t o r s  fo r  th e  c y c l ic  p e r m u t a t io n  a  =  ( 1 2 3 ) .  S in c e  1 +  w  +  w 2  =  0 ,

z  +  Z  =  s  1 +  z  +  z  =  m i.

T h e  c u b e s  z 3 a n d  z '3 a r e  f ix e d  b y  a ,  s o  a c c o r d in g  t o  K u m m e r ’s  T h e o r e m  a n d  T h e o r e m

1 6 .8 .5 ,  t h e y  c a n  b e  w r i t t e n  in  t e r m s  o f  p ,  q ,  5  =  a n d  w .  W h e n  t h e  c u b e s  a r e  w r i t t e n  in  
th is  w a y ,  m i =  z  +  z '  w ill  b e  e x p r e s s e d  a s  a  s u m  o f  c u b e  r o o t s .

O n e  m a k e s  t h e  f o l lo w in g  c o m p u t a t io n s .  L e t

A  =  u  2  M2 +  « 2  U3 +  u  2 m 1,

B  =  U::Mi +  m |m 2 +  M2 M3.

T h e n
A  -  B =  (U j  -  M2) (M l -  U 3) ( U 2 -  M3)  =  5 ,

A + B =  s i s 2 — 3s 3 =  6q .

A l s o ,  u  i  +  u 2 +  «3 =  s i  +  3s i s 2 +  3s 3 =  -  6q .

O n e  s o l v e s  f o r  A, B  a n d  e x p a n d s  z3 a n d  z '  . T h e  r e s u l t  o f  th is  c o m p u t a t i o n i s  C a r d a n o ’s  

fo r m u la :  ___________________

+ y -?-\/<?2 + p 3-

F o r  in s t a n c e ,  i f  f ( x )  =  x 3 +  3 x  +  2 , t h e n  x  =  V - l  +  . / 2  - ^ - 1  — . / 2 .

( 1 6 .1 1 .5 )
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H o w e v e r ,  th e  f o r m u la  is  a m b ig u o u s .  In  th e  t e r m  ^ - q  +  y /q 2 +  p 3 , th e  s q u a r e  r o o t  

c a n  t a k e  t w o  v a lu e s ,  a n d  w h e n  a  s q u a r e  r o o t  is  c h o s e n ,  t h e r e  a r e  t h r e e  p o s s i b le  v a lu e s  fo r  

th e  c u b e  r o o t ,  g iv in g  s ix  w a y s  t o  r e a d  th a t t e r m . T h e r e  a r e  a l s o  s ix  w a y s  t o  r e a d  th e  o t h e r  

t e r m . B u t  f  h a s  o n ly  t h r e e  r o o t s .  □

16.12 QUINTIC EQUATIONS

T h e  m a in  m o t iv a t io n  b e h in d  G a l o i s ’s  w o r k  w a s  t h e  p r o b le m  o f s o l v i n g  f i f t h - d e g r e e  e q u a t io n s .  

A  s h o r t  t im e  e a r l i e r ,  A b e l  h a d  s h o w n  t h a t  t h e  q u in t i c  e q u a t io n

( 1 6 .1 2 .1 )  x 5 — a \x A +  « 2*3 — a 3 X2 +  a^x — a$ =  0

w ith  v a r ia b le  c o e f f i c ie n t s  a ;  c o u l d n ’t b e  s o lv e d  b y  r a d ic a ls ,  b u t  n o  e q u a t io n  w it h  in t e g e r  

c o e f f i c ie n t s  t h a t  c o u l d n ’t b e  s o lv e d  w a s  k n o w n . A n y h o w ,  t h e  p r o b le m  w a s  o v e r  2 0 0  y e a r s  

o ld , a n d  it  c o n t in u e d  t o  in t e r e s t  p e o p l e .  In  t h e  m e a n t im e  G a l o i s ’s  id e a s  h a v e  tu r n e d  o u t  to  

b e  m u c h  m o r e  im p o r ta n t  t h a n  t h e  p r o b le m  th a t  m o t iv a t e d  t h e m . I t  is  a m a z in g  th a t  G a lo i s  

w a s  a b le  t o  d o  w h a t  h e  d id  b e f o r e  t h e  c o n c e p t  o f  a  g r o u p  w a s  d e v e lo p e d .

P r o p o s i t io n  1 6 .1 2 .2  L e t  F  b e  a  s u b f ie ld  o f  th e  c o m p le x  n u m b e r s .  T h e  f o l lo w in g  t w o  

c o n d i t io n s  o n  a  c o m p l e x  n u m b e r  a  a r e  e q u iv a le n t ,  a n d  a  is  c a l le d  solvable o v e r  F  i f  it  

s a t i s f i e s  e i t h e r  o n e  o f  th e m :

( a )  T h e r e  is  a  c h a in  o f  s u b f i e ld s  F  — F o  C  Fi C  . . .  C  F r  — K  o f  C  s u c h  th a t  a  is  in  K ,  a n d

•  j  =  1, . . .  , r ,  F j  =  F j - i  ( f i j ) ,  w h e r e  a  p o w e r  o f  f i j  is  in  F j _ i .

(b )  T h e r e  is  a  c h a in  o f  s u b f ie ld s  F  =  F o  C  F i  C  . . .  C  F s  =  K  o f  C  su c h  th a t  a  is  in  K ,  a n d

•  f o r  j  — 1 ,  . . . ,  r , F j + i  is  a  G a l o i s  e x t e n s io n  o f  F j  o f  p r im e  d e g r e e .  .

T h e  p r o o f  o f  t h e  p r o p o s i t i o n  i s n ’t d if f ic u lt ,  b u t  it  d o e s n ’t h a v e  m u c h  in tr in s ic  in t e r e s t ,  s o  

w e  d e f e r  it t o  t h e  e n d  o f  t h e  s e c t i o n .  W e  n e e d  c o n d i t io n  ( b )  in  o r d e r  t o  b e  a b le  t o  u s e  

G a l o i s  t h e o r y .  I t  is  t h e  m o r e  im p o r ta n t  c h a r a c t e r iz a t io n  o f  s o lv a b i l i t y ,  a n d  o n e  c a n  a v o id  t h e  

t e c h n ic a l i t y  o f  t h e  p r o p o s i t i o n  b y  a c c e p t in g  it  a s  t h e  d e f in i t io n .

C o n d i t io n  ( a )  m e a n s  th a t  F j  is  g e n e r a t e d  o v e r  F j _ i  b y  a n  n t h  r o o t  f o r  s o m e  i n t e g e r  n  
( th a t  d e p e n d s  o n  j ) .  It is  s im i la r  t o  th e  d e s c r ip t io n  o f  th e  rea l n u m b e r s  th a t  c a n  b e  c o n s t r u c t e d  

b y  r u le r  a n d  c o m p a s s .  I n  t h a t  d e s c r ip t io n ,  o n ly  s q u a r e  r o o t s  o f  p o s i t i v e  r e a l  n u m b e r s  a r e  

a l lo w e d .  T h e o r e t i c a l ly ,  o n e  c o u ld  u n r a v e l  t h e  e x t e n s i o n s  to  w r i t e  a  s o lv a b le  e l e m e n t  a  u s in g  

a  s u c c e s s io n  o f  n e s t e d  r o o t s .  B u t  a s  w i t h  C a r d a n o ’s  s o lu t io n  o f  t h e  c u b ic  e q u a t io n ,  t h e r e  is  

a  g r e a t  d e a l  o f  a m b ig u it y  in  a  f o r m u la  i n v o lv in g  r a d ic a ls ,  b e c a u s e  t h e r e  a r e  n  c h o ic e s  f o r  

a n  n t h  r o o t .  I t  is  u s e l e s s  t o  w r i t e  a  r o o t  e x p l ic i t ly  a s  a  c o m p l ic a t e d  e x p r e s s io n  in  r a d ic a ls .  

I n d e e d ,  C a r d a n o ’s f o r m u la  is  u s e l e s s .

P r o p o s i t io n  1 6 .1 2 .3  I f  a  is  a  r o o t  o f  a  p o l y n o m i a l  o f  d e g r e e  a t  m o s t  f o u r  w i t h  c o e f f i c ie n t s  in  

a  f ie ld  F ,  t h e n  a  is  s o lv a b le  o v e r  F .

Proof  F o r  q u a d r a t ic  p o ly n o m ia l s ,  t h e  q u a d r a t ic  f o r m u la  p r o v e s  th is .  F o r  c u b ic s ,  C a r d a n o ’s 

fo r m u la  1 6 .1 1 .7  g iv e s  t h e  s o lu t io n .  I f  f ( x )  is  q u a r t ic ,  w e  b e g in  b y  a d jo in in g  t h e  s q u a r e  r o o t  

8 o f  D . T h e n  w e  u s e  C a r d a n o ’s  f o r m u la  to  s o lv e  f o r  a  r o o t  o f  t h e  r e s o lv e n t  c u b ic  g(x),  a n d
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w e  a d jo in  it . A t  th is  p o in t ,  T a b le  1 6 .9 .9  s h o w s  th a t  t h e  G a lo i s  g r o u p  o f  f  o v e r  t h e  f ie ld  

th a t  w e  o b t a in  is  a  s u b g r o u p  o f  t h e  K le in  f o u r  g r o u p .  T h e r e f o r e  f  c a n  b e  s o l v e d  b y  a  

s e q u e n c e  o f  a t  m o s t  tw o  m o r e  s q u a r e  r o o t  e x t e n s io n s .  □

T h e o r e m  1 6 .1 2 .4  L e t  f  b e  a n  ir r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  5  o v e r  a  s u b f ie ld  F  o f  t h e  

c o m p le x  n u m b e r s ,  w h o s e  G a l o i s  g r o u p  G  is  e i t h e r  t h e  a l t e r n a t in g  g r o u p  A s  o r  t h e  s y m m e tr ic  

g r o u p  Ss. T h e n  t h e  r o o t s  o f  f  a r e  n o t  s o lv a b le  o v e r  F .

Proof. I f  G  =  S s ,  w e  r e p la c e  F  b y  t h e  q u a d r a t ic  e x t e n s i o n  F ( 8) ,  w h e r e  5  is  t h e  s q u a r e  r o o t  

o f  th e  d is c r im in a n t .  I f  w e  c a n  s o lv e  o v e r  F ,  w e  c a n  s o l v e  o v e r  t h e  la r g e r  f ie ld  F ( 5 ) .  S o  w e  

m a y  a s s u m e  th a t  G  is  t h e  a l t e r n a t in g  g r o u p  A s ,  a  s im p le  g r o u p  ( 7 .5 .4 ) .

O u r  s t r a t e g y  is  a s  f o l lo w s :  W e  c o n s id e r  a  G a l o i s  e x t e n s io n  o f  F ' /  F  o f  p r im e  d e g r e e  p ,  

w it h  G a l o i s  g r o u p  G ' ,  a  c y c l ic  g r o u p  o f  o r d e r  p ,  a n d  w e  s h o w  th a t  n o  p r o g r e s s  to w a r d  

s o lv in g  th e  e q u a t io n  f  =  0  is  m a d e  w h e n  o n e  r e p la c e s  F  b y  F ' .  W e  d o  th is  b y  s h o w in g  th a t  
t h e  G a lo i s  g r o u p  o f  f  o v e r  F '  is  a g a in  t h e  a l t e r n a t in g  g r o u p  A s .  B e c a u s e  A s  c o n t a in s  a n  

e l e m e n t  o f  o r d e r  5, i t  c a n n o t  b e  t h e  G a lo i s  g r o u p  o f  a  r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  5 . S o  f  

r e m a in s  i r r e d u c ib le  o v e r  F ' .  T h e r e f o r e  t h e r e  is  n o  c h a in  o f  ty p e  ( 1 6 .1 2 .2 ) ( b ) ,  a n d  th e  r o o t s  
o f  f  a r e  n o t  s o lv a b le .

W e  c h o o s e  s u c h  a n  e x t e n s i o n  F ' ,  a n d  t h e n  w e  h a v e  tw o  G a lo i s  e x t e n s io n s .  T h e  f ir s t ,  

K /  F ,  is  t h e  s p l i t t in g  f ie ld  o f  t h e  q u in t i c  p o l y n o m i a l  f  o v e r  F .  I t s  G a l o i s  g r o u p  is  G  =  A 5. 

T h e  s e c o n d ,  F '  /  F ,  h a s  a  c y c l i c  G a lo i s  g r o u p  G '  o f  o r d e r  p ,  a n d  s in c e  i t i s a  G a lo i s  e x t e n s io n ,  

it  is  th e  s p l i t t in g  f ie ld  o f  s o m e  i r r e d u c ib le  p o l y n o m ia l  g  o v e r  F .

L e t  K '  b e  t h e  s p l i t t in g  f ie ld  o v e r  F  o f  th e  p r o d u c t  p o ly n o m ia l  f g .  I t  is  g e n e r a t e d  b y  t h e  

c o m p l e x  r o o t s  a i ,  . . .  , «5 a n d  tH , . . . ,  fJp  o f  f  a n d  g ,  r e s p e c t iv e ly .  T h e  r o o t s  a ;  g e n e r a t e  

t h e  s p l i t t in g  f ie ld  K  o f  f ,  a n d  t h e  r o o t s  fJ j g e n e r a t e  t h e  s p l i t t in g  f ie ld  F '  o f  g .  T h e  in c lu s io n s  
a m o n g  t h e  f o u r  f ie ld s  a r e  s h o w n  in  t h e  d ia g r a m  b e lo w .  E a c h  o f  t h e  e x t e n s io n  f ie ld s  is  a  

G a lo i s  e x t e n s i o n ,  a n d  t h e  G a l o i s  g r o u p s  h a v e  b e e n  la b e le d  in  th e  d ia g r a m .

H  * '  .  H

K  9
\

G
F

F '
/
G

S in c e  K  is  a  G a l o i s  e x t e n s i o n  o f  F ,  G  is  i s o m o r p h ic  to  th e  q u o t i e n t  g r o u p  9 /  H ' ,  a n d  s in c e  

F '  i s  a  G a lo i s  e x t e n s io n  o f  F ,  G '  is  i s o m o r p h ic  t o  t h e  q u o t i e n t  g r o u p  Q / H  ( 1 6 .7 .5 ) .  O u r  p la n  

is  t o  s h o w  th a t  H  is  i s o m o r p h ic  to  G ,  i .e . ,  t h a t  H  is  t h e  a l t e r n a t in g  g r o u p  A s .

T h e  g r o u p  H '  c o n s i s t s  o f  t h e  F - a u t o m o r p h i s m s  o f  K '  th a t  f ix  t h e  r o o t s  a / ,  a n d  H  
c o n s i s t s  o f  th e  F - a u t o m o r p h i s m s  th a t  f ix  th e  r o o t s  fJ j. I f  a n  F - a u t o m o r p h i s m  o f  K '  f ix e s  th e  

r o o t s  a ;- a n d  a l s o  th e  r o o t s  fJ j , t h e n  s in c e  t h e s e  r o o t s  g e n e r a t e  K ' ,  it  is  th e  id e n t i t y .  T h e r e f o r e  
H  n  H '  is  t h e  tr iv ia l  g r o u p .

W e  r e s tr ic t  t h e  c a n o n ic a l  m a p  Q -*■ Q / H  «  G '  t o  t h e  s u b g r o u p  H ' .  T h e  k e r n e l  o f  th is  

r e s t r ic t io n  i s  t h e  t r iv ia l  g r o u p  H n  H ' ,  s o  t h e  r e s t r ic t io n  i s  in j e c t iv e .  I t  m a p s  H '  i s o m o r p h ic a l ly  

to  a  s u b g r o u p  o f  G '-  B y  h y p o t h e s i s ,  G ' is  c y c lic  o f  p r im e  o r d e r  p . S o  t h e r e  a r e  o n ly  t w o  

p o s s ib i l i t i e s :  e i t h e r  H  is  t h e  t r iv ia l  g r o u p ,  o r  e l s e  H ’ is  c y c l ic  o f  o r d e r  p .
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Case 1: H '  is  th e  tr iv ia l  g r o u p . T h e n  th e  s u r j e c t iv e  m a p  f r o m  9  t o  th e  q u o t i e n t  g r o u p  

9 / H ' G  is  a n  i s o m o r p h is m ,  a n d  9  is  i s o m o r p h ic  t o  t h e  s im p le  g r o u p  G  =  A s .  T h is  m a k e s  

t h e  e x i s t e n c e  o f  a  s u r j e c t iv e  m a p  f r o m  9  t o  th e  c y c l i c  q u o t i e n t  g r o u p  9 /  H  G '  im p o s s ib le .  

S o  t h i s  c a s e  is  r u le d  o u t .

Case 2: H '  is  c y c l i c  o f  o r d e r  p .  T h e n  191 =  |G |  |H ' |  =  p | G |  a n d  a l s o  191 =  | G ' | | H |  =  p\H\.  
T h e r e f o r e  G  a n d  H  h a v e  t h e  s a m e  o r d e r ,  6 0 . W e  r e s tr ic t  t h e  c a n o n ic a l  m a p  9  -*■ 9 / H ' G  
t o  th e  s u b g r o u p  H .  T h e  k e r n e l  o f  th is  r e s t r ic t io n  is  th e  tr iv ia l  g r o u p  H  0 H ' ,  s o  th e  r e s t r ic t io n  

is  in j e c t iv e .  It m a p s  H  i s o m o r p h ic a l ly  t o  a  s u b g r o u p  o f  G .  S in c e  b o t h  g r o u p s  h a v e  o r d e r  6 0 ,  
t h e  r e s t r ic t io n  is  a n  i s o m o r p h is m ,  a n d  H  G  =  A 5. □

W e  n o w  e x h ib i t  a n  i r r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  5  o v e r  Q , w h o s e  G a l o i s  g r o u p  
is  S 5. T h e  f a c t s  th a t  5  is  a  p r im e  in te g e r  a n d  th a t  t h e  G a lo i s  g r o u p  G  a c t s  t r a n s i t iv e ly  o n  

t h e  r o o t s  a i ,  . . . ,  a s  l im it  t h e  p o s s ib le  G a lo i s  g r o u p s . S in c e  t h e  a c t io n  is  t r a n s i t iv e ,  |G |  is  

d iv i s ib le  b y  5. T h u s  G  c o n t a in s  a n  e l e m e n t  o f  o r d e r  5. T h e  o n ly  e l e m e n t s  o f  o r d e r  5  in  S 5 a r e  

th e  5 - c y c le s .  W e  l e a v e  t h e  n e x t  le m m a  a s  a n  e x e r c is e .

L e m m a  1 6 .1 2 .5  I f  a  s u b g r o u p  G  o f  S 5 c o n ta in s  a  5 - c y c le  a n d  a l s o  a  t r a n s p o s i t io n ,  t h e n
G  =  S 5 . □

C o r o l la r y  1 6 .1 2 .6  L e t  f ( x )  b e  a n  ir r e d u c ib le  p o ly n o m ia l  o f  d e g r e e  5  o v e r  Q . I f  f  h a s  e x a c t ly  

t h r e e  r e a l  r o o t s ,  i t s  G a l o i s  g r o u p  G  is  t h e  s y m m e tr ic  g r o u p , a n d  h e n c e  i t s  r o o t s  a r e  n o t  

s o lv a b le .

Proof  L e t  t h e  r o o t s  b e  a i ,  . . .  , as,  w i t h  a i ,  a 2, a 3 r e a l  a n d  a 4, a s  c o m p le x ,  a n d  l e t  K  b e  

t h e  s p l i t t in g  f i e ld  o f  f .  T h e  o n ly  p e r m u t a t io n s  o f  t h e  r o o t s  t h a t  f ix  t h e  f ir s t  t h r e e  r o o t s  a r e  

t h e  id e n t i t y  a n d  t h e  t r a n s p o s i t io n  ( 4  5). S in c e  F (a  1, a 2, ( 3) K ,  t h a t  t r a n s p o s i t io n  m u s t  b e  

in  G .  S in c e  G  o p e r a t e s  t r a n s i t iv e ly  o n  th e  r o o t s ,  it  c o n t a in s  a n  e l e m e n t  o f  o r d e r  5, a  5 - c y c le .  

S o  G  =  Ss. □

E x a m p le  1 6 .1 2 .7  T h e  p o ly n o m ia l  x 5 — 1 6 x  =  x ( x 2 -  4 ) ( x 2 +  4 )  h a s  t h r e e  r e a l  r o o t s .  O f  
c o u r s e  it is  r e d u c ib le ,  b u t w e  w e  c a n  a d d  a  s m a ll  c o n s t a n t  w i t h o u t  c h a n g in g  th e  n u m b e r  o f  

r e a l  r o o ts .  T h is  is  s e e n  b y  lo o k in g  a t  t h e  g r a p h  o f  t h e  p o ly n o m ia l .  F o r  in s t a n c e ,  x 5 -  16 x  +  2  
a ls o  h a s  t h r e e  r e a l  r o o t s ,  a n d  it  is i r r e d u c ib le  o v e r  Q . Its r o o t s  a r e  n o t  s o lv a b le  o v e r  Q . □

W e  n o w  p r o v e  P r o p o s i t io n  1 6 .1 2 .2 .

L e m m a  1 6 .1 2 .8  L e t  K /  F  b e  a  G a l o i s  e x t e n s i o n  w h o s e  G a lo i s  g r o u p  G  is  a b e l ia n .  T h e r e  is  

a c h a in  o f  in t e r m e d ia t e  f ie ld s  F  =  F o  C  F i  C  . ■• C F m =  K  s u c h  t h a t  F ,- /  F , _ i  is  a  G a l o i s  

e x t e n s i o n  o f  p r im e  d e g r e e  fo r  e a c h  i.

Proof  T h e  a b e l ia n  g r o u p  G  c o n t a in s  a  s u b g r o u p  H  o f  p r im e  o r d e r .  T h is  s u b g r o u p  c o r r e 
s p o n d s  t o  a n  in t e r m e d ia t e  f ie ld  L ,  a n d  K  is  a  G a l o i s  e x t e n s io n  o f  L  w it h  g r o u p  H .  B e c a u s e  G  

i s  a b e l ia n ,  H  is  a  n o r m a l  s u b g r o u p ,  a n d  t h e r e f o r e  L  is  a  G a lo i s  e x t e n s io n  o f  F  w ith  a b e l ia n  G a 

lo i s  g r o u p  G  =  G  /  H .  S in c e  G  h a s  s m a l le r  o r d e r  t h a n  G ,  in d u c t io n  c o m p l e t e s  t h e  p r o o f .  □

P roofof Proposition 1 6 .1 2 .2 .  ( a )  :=} ( b )  W e  b e g in  w ith  th e  c h a in  o f  f ie ld s  ( a ) ,  a n d  w e  a d d  

m o r e  e x t e n s i o n s  a n d  m o r e  f ie ld s  to  t h e  c h a in  t o  a r r iv e  a t  a  c h a in  h a v in g  t h e  p r o p e r t ie s
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( b ) .  F ir s t ,  s in c e  =  $ {(ZFa, w e  c a n ,  a t  t h e  c o s t  o f  a d d in g  in t e r m e d ia t e  f ie ld s ,  s u p p o s e  th a t  

a l l  th e  r o o t s  th a t  o c c u r  in  o u r  c h a in  a r e  p t h  r o o t s  f o r  v a r i o u s  p r im e s  p .  W e  m a k e  a  n o t e  o f  

t h e  p r im e s  p i ,  . . . ,  P k  t h a t  o c c u r ,  a n d  s e t  t h is  c h a in  a s id e  f o r  t h e  m o m e n t .

W e  g o  b a c k  t o  t h e  f ie ld  F ,  a n d  t o  s ta r t ,  w e  a d jo in  t h e  p wth  r o o t s  o f  u n i t y  f o r  

v  =  1 , . . . ,  k , o n e  a f t e r  t h e  o t h e r .  E a c h  o f  t h e s e  e x t e n s io n s  is  G a l o i s ,  w i t h  a  c y c l i c  G a l o i s  

g r o u p  ( P r o p o s i t i o n  1 6 .1 0 .2 ( b ) ) .  L e m m a  1 6 .1 2 .8  s h o w s  th a t  e a c h  o f  t h e m  c o n t a in s  a  c h a in  

w h o s e  la y e r s  a r e  G a l o i s  e x t e n s i o n s  o f  p r im e  d e g r e e .

L e t  F '  b e  t h e  f i e ld  w e  o b ta in .  W e  c o n t in u e  b y  a d jo in in g  t h e  r o o t s  t h a t  w e  w e r e  

g iv e n ,  b u t  t o  F ' .  B y  K u m m e r  t h e o r y ,  e a c h  o f  t h e s e  r o o t  a d ju n c t io n s  w i l l  n o w  b e  a  G a lo i s  

e x t e n s io n  w i t h  a  c y c l i c  G a l o i s  g r o u p  o f  p r im e  o r d e r ,  u n le s s  it  b e c o m e s  a  t r iv ia l  e x t e n s io n .  
T h e  f ie ld  K ' th a t  w e  o b t a in  a t  t h e  e n d  o f  o u r  n e w  c h a in  w il l  c o n t a in  t h e  la s t  f ie ld  K  o f  

’t h e  c h a in  g iv e n  to  s ta r t ,  s o  Of. w i l l  b e  a n  e l e m e n t  o f  K ' .  T h e r e f o r e  th is  n e w  c h a in  is  o n e  o f  

th e  f o r m  ( b ) .

( b ) = > ( a )  S u p p o s e  th a t  w e  a r e  g iv e n  a  c h a in  ( b ) ,  a n d  c o n s id e r  o n e  o f  th e  e x t e n s i o n s  in  t h e  

c h a in ,  s a y  F ,-_ i  C  F,. I t  is  a  G a l o i s  e x t e n s i o n  o f  p r im e  d e g r e e ,  s a y  d e g r e e  p .  T h e o r e m  1 6 .1 1 .1  

s h o w s  th a t  th is  e x t e n s io n  i s  o b t a in e d  b y  a d jo in in g  a  p t h  r o o t ,  p r o v id e d  th a t  t h e  p t h  r o o t s  o f  
u n ity  a r e  in  F , - i .  S o  w e  e n la r g e  t h e  c h a in ,  b e g in n in g  b y  a d jo in in g  t h e  r e q u ir e d  p t h  r o o t s  o f  

u n ity  to  F .  T h e  e n la r g e d  c h a in  w i l l  s a t i s f y  c o n d i t io n  ( a ) .  □

II parait apres cela qu'i! n'y a aucun fruit a  tirer 
de la solution que nous proposons.

— E v a r iste  G a lo is

E X E R C ISE S

S e c t io n  1  S y m m e tr ic  F u n c t io n s

1 .1 . D e t e r m in e  t h e  o rb it  o f  th e  p o ly n o m ia l  b e lo w . I f  th e  p o ly n o m ia l  is  s y m m e tr ic , w r ite  it in  
te r m s  o f  th e  e le m e n ta r y  sy m m e tr ic  f u n c t io n s .

( a )  u\u 2  +  u\u 3  +  u\u\ (n = 3 ) ,

(b ) ( u i  +  U2) ( U 2 +  U 3) (uj +  U3) (n = 3 ) ,

( c )  ( u i  - U 2) ( U 2 - U 3) ( U 1 - U 3) (n = 3 ) ,

(d ) u 3 U 2 +  u 2 u 3 +  u 3 u i  - u i u 2  -  U2U3 -  U 3U3 (n =  3 ) ,

( e )  u\ +  U j +--------+ u  I .

1 .2 . F in d  tw o  b a s e s  fo r  th e  r in g  o f  s y m m e tr ic  p o ly n o m ia ls ,  a s a  m o d u le  o v e r  th e  ring R .

* 1 .3 . L e t  Wk =  -I----------+  u * .

( a )  P r o v e  Newton’s identities: wk — S i w k- 1 +  ■•• ±  S k - i  W  Cf kSk =  O.

(b )  D o  W i, . . . ,  w n g e n e r a t e  th e  r in g  o f  sy m m e tr ic  fu n c t io n s?



S e c t io n  2  T h e  D is c r im in a n t

2 .1 . P r o v e  th a t  t h e  d is c r im in a n t  is  a  sy m m e tr ic  fu n c t io n .

2.2. ( a )  P r o v e  th a t  t h e  d is c r im in a n t  o f  a  r e a l  c u b ic  is  n o n -n e g a t iv e  i f  a n d  o n ly  i f  t h e  c u b ic  h a s
t h r e e  r e a l  r o o ts .

( b )  S u p p o s e  th a t  a  r e a l  q u a r t ic  p o ly n o m ia l  h a s  a p o s it iv e  d isc r im in a n t . W h a t  c a n  y o u  s a y  
a b o u t  t h e  n u m b e r  o f  r e a l r o o ts?

2 .3 .  ( a )  P r o v e  th a t  t h e  T s c h im h a u s e n  s u b s t i tu t io n  (1 6 .2 .6 )  d o e s  n o t  c h a n g e  t h e  d isc r im in a n t
o f  a  c u b ic  p o ly n o m ia l .

( b )  D e t e r m in e  th e  c o e f f ic ie n t s  p  a n d  q  in  (1 6 .2 .7 )  th a t a r e  o b ta in e d  f r o m  t h e  g e n e r a l  
c u b ic  (1 6 .2 .4 )  b y  t h e  T s c h im h a u s e n  su b s t itu t io n .

2 .4 . U s e  u n d e te r m in e d  c o e f f ic e n ts  t o  d e t e r m in e  th e  d isc r im in a n t  o f  th e  p o ly n o m ia l

(a )  x 3 +  p x  +  q ,  (b )  x 4 +  p x  +  q , (c )  x 5 +  p x  +  q .

2 .5 . U s e  th e  s y s t e m a t ic  m e th o d  o n  th e  d isc r im in a n t  in  fo u r  v a r ia b le s , to  d e t e r m in e  th e  
c o e f f ic ie n t s  in  A  ( s i , . . . ,  S4)  o f  a l l  m o n o m ia ls  n o t  d iv is ib le  b y  S4.

2 .6 . L e t  mJ =  ui +  t, i =  1 , 2 , 3 .  C o m p u t e  th e  d e r iv a t iv e s  11tS i(u ') a n d  f r A ( u ' ) ,  a n d  u s e  y o u r  
r e s u lts  to  v e r i f y  F o r m u la  1 6 .2 .5  f o r  th e  d isc r im in a n t  o f  a  c u b ic .

2 .7 . T h e r e  a r e  n v a r ia b le s . L e t  rn =  u iu \ u \ - -  a n d  le t  p ( u )  =  L  aim).  T h e
ueAn

S n -o r b it  o f  p ( u )  c o n ta in s  tw o  e le m e n ts ,  p  a n d  a n o th e r  p o ly n o m ia l  q . P r o v e  th a t  

( p  -  q )2 = D ( u ) .

S e c t io n  3  S p lit t in g  F ie ld s

3 .1 . L e t  I  b e  a  p o ly n o m ia l  o f  d e g r e e  n w ith  c o e f f ic ie n t s  in  F  a n d  le t  K  b e  a s p lit t in g  f ie ld  fo r  
/  o v e r  F .  P r o v e  th a t  [ K :  F ]  d iv id e s  n ! .

3 .2 . D  e t e r m in e  th e  d e g r e e s  o f  t h e  sp l i t t in g  f ie ld s  o f  th e  f o l lo w in g  p o ly n o m ia ls  o v e r  Q:

( a )  x 3 -  2, ( b )  x 4  -  1, ( c )  x 4 +  l .

3 .3 . L e t  F  =  IF'2( u )  b e  th e  f ie ld  o f  r a t io n a l fu n c t io n s  o v e r  th e  p r im e  f ie ld  IF'2. P r o v e  th a t  
th e  p o ly n o m ia l  x 2 -  u  is  ir r e d u c ib le  o v e r  F ,  a n d  th a t  i t  h a s  a d o u b le  r o o t  in  a s p lit t in g  
f ie ld .

S e c t io n  4  I s o m o r p h is m s  o f  F ie ld  E x t e n s io n s

4 .1 . ( a )  D e t e r m in e  a ll  a u to m o r p h is m s  o f  th e  f ie ld  Q (  - ^ ) ,  a n d  o f  th e  f ie ld  Q ( . / 2 ,  w ) ,  w h e r e
w  =  e m i / 3 .

( b )  L e t  K  b e  th e  s p l i t t in g  f ie ld  o v e r  Q  o f  f ( x )  =  ( x 2 — 2 x  -  1 ) ( x 2 - -  2 x  -  7 ) .  D e t e r m in e  
a ll a u to m o r p h is m s  o f  K .

S e c t io n  5  F ix e d  F ie ld s

5 .1 . F o r  e a c h  o f  th e  f o l lo w in g  s e ts  o f  a u to m o r p h is m s  o f  t h e  f ie ld  o f  r a t io n a l fu n c t io n s  C ( t ) ,  
d e te r m in e  th e  g r o u p  o f  a u to m o r p h is m s  th a t  th e y  g e n e r a te ,  a n d  d e te r m in e  t h e  f ix e d  f ie ld  

e x p lic it ly .
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(a )  a(t)  =  t 1 , (b )  a(t)  =  i t , ( c )  a(t)  =  - t ,  r ( t )  =  t 1,

(d ) a(t)  =  w t , r ( t )  =  t_ l , w h e r e  w  =  e 21Ti / 3 .
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5 .2 . S h o w  th a t  t h e  a u to m o r p h is m s  ct( 0  =  - a n d  i ( t )  =  " r + y  o f  C ( 0  g e n e r a t e  a  g r o u p

is o m o r p h ic  t o  th e  a lte r n a t in g  g ro u p  A 4, a n d  d e te r m in e  th e  fix ed  f ie ld  o f  th is  g r o u p .

5 .3 . L e t  F  =  C ( t )  b e  th e  f ie ld  o f  r a t io n a l fu n c to n s  in  t. P r o v e  th a t  e v e r y  e le m e n t  o f  F  th a t  is 
n o t  in  C  is t r a n s c e n d e n ta l  o v e r  C .

S e c t io n  6  G a lo is  E x t e n s io n s

6 .1 . L e t  a  b e  a c o m p le x  r o o t  o f  t h e  p o ly n o m ia l  x 3 +  x  +  l  o v e r  Q , a n d  le t  K  b e  a  s p lit t in g  

f ie ld  o f  th is  p o ly n o m ia l  o v e r  Q . Is  V - 3 1  in  th e  f ie ld  Q ( a ) ?  I s  it  in  K ?

6 .2 . L e t  K  =  Q ( J 2 ,  ,J 3 ,  .J 5 ) .  D e t e r m in e  [ K : Q ], p r o v e  th a t  K  is  a  G a lo is  e x t e n s io n  o f  Q ,
a n d  d e t e r m in e  its  G a lo is  g r o u p .

6 .3 . L e t  K  ::) L  ::) F  b e  a  c h a in  o f  e x t e n s io n  f ie ld s  o f  d e g r e e  2 . S h o w  t h a t  K  c a n  b e  g e n e r a te d  
o v e r  F  b y  t h e  r o o t  o f  a n  ir r e d u c ib le  q u a r tic  p o ly n o m ia l  o f  t h e  f o r m  x 4 +  b x 2 +  c .

S e c t io n  7  T h e  M a in  T h e o r e m

7 .1 . D e t e r m in e  t h e  in te r m e d ia t e  f ie ld s  o f  a n  e x t e n s io n  f ie ld  o f  t h e  f o r m  F ( J { i ,  . j b )  w it h o u t  
a p p e a l in g  to  th e  M a in  T h e o r e m .

7 .2 . L e t  K /  F  b e  a  G a lo is  e x t e n s io n  s u c h  th a t  G ( K / F )  ~ C 2  X C 12. H o w  m a n y  in te r m e d ia t e  
f ie ld s  L  a r e  th e r e  w ith  (a )  [ L :  F ]  = 4 ,  (b )  [ L :  F ]  =  9 , ( c )  G ( K /  L )  ~  C 4?

7 .3 . H o w  m a n y  in te r m e d ia t e  f ie ld s  L  w ith  [L  : F ]  =  2  a r e  t h e r e  w h e n  K /  F  i s  a G a lo is  
e x t e n s io n  w ith  G a lo is  g r o u p  (a )  t h e  a lte r n a t in g  g r o u p  A 4 , (b )  th e  d ih e d r a l  g r o u p  D 4?

7 .4 . L e t  F  =  Q  an d  K  =  Q ( J 2 ,  ,J 3 , .J 5 ) .  D  e t e r m in e  all in te r m e d ia te  f ie ld s .

7 .5 . L e t  / ( x )  b e  a n  ir r e d u c ib le  c u b ic  p o ly n o m ia l  o v e r  Q  w h o s e  G a lo is  g r o u p  is  S 3. D e t e r m in e
t h e  p o s s ib le  G a lo is  g r o u p s  o f  t h e  p o ly n o m ia l  ( x 3 — 1) / ( x ) .

7 .6 . L e t  K /  F  b e  a  G a lo is  e x t e n s io n  w h o s e  G a lo is  g r o u p  is th e  sy m m e tr ic  g r o u p  S 3. I s  K  th e  
sp lit t in g  f ie ld  o f  a n  ir r e d u c ib le  c u b ic  p o ly n o m ia l  o v e r  F ?

7 .7 . ( a )  D e t e r m in e  t h e  ir r e d u c ib le  p o ly n o m ia l  f o r  i  +  J 2  o v e r  Q .

(b )  P r o v e  th a t  t h e  s e t  ( 1 ,  i, J 2 ,  iJ2)  is  a b a s is  f o r  Q ( i ,  J 2 )  o v e r  Q .

7 .8 . L e t  a  d e n o t e  t h e  p o s i t iv e  r e a l  fo u r th  r o o t  o f  2 . F a c to r  t h e  p o ly n o m ia l  x 4 — 2  in to

ir r e d u c ib le  fa c to r s  o v e r  e a c h  o f  t h e  f ie ld s  Q , Q ( J 2 ) ,  Q ( J 2 ,  i), Q ( a ) ,  Q ( a ,  i ) .

7 .9 . L e t  f  =  e 2 m / 5 . P r o v e  th a t  K  =  Q ( f )  is  a  sp lit t in g  f ie ld  fo r  th e  p o ly n o m ia l  x 5 — 1 
o v e r  Q , an d  d e t e r m in e  th e  d e g r e e  [ K : Q ] .  W it h o u t  u s in g  T h e o r e m  1 6 .7 .1 , p r o v e  th a t  K  is 
a  G a lo is  e x t e n s io n  o f  Q , an d  d e t e r m in e  its G a lo is  g r o u p .

7 .1 0 . L e t  K /  F  b e  a  G a lo is  e x t e n s io n  w ith  G a lo is  g r o u p  G ,  a n d  let H  b e  a  s u b g r o u p  o f  G .  
P r o v e  th a t  th e r e  e x is t s  a n  e le m e n t  /3 e  K  w h o s e  s ta b il iz e r  is  e q u a l  to  H.

7 .1 1 . L e t  a  =  ,if2 , {3 =  ,J 3 ,  a n d  y  =  a  +  {3. L e t  L  b e  t h e  f ie ld  Q ( a ,  {3), a n d  le t  K  b e  t h e
sp lit t in g  f ie ld  o f  t h e  p o ly n o m ia l  ( x 3 — 2 )  (x 2  -  3 )  o v e r  Q .

( a )  D  e t e r m in e  t h e  ir r e d u c ib le  p o ly n o m ia l  /  fo r  y  o v e r  Q , a n d  it s  r o o t s  in  C

( b )  D e t e r m in e  t h e  G a lo is  g r o u p  o f  k / Q .

S e c t io n  8 C u b ic  E q u a t io n s

8 .1 . L e t  K /  F  b e  a  G a lo is  e x te n s io n  w h o s e  g r o u p  G  is  th e  K le in  fo u r  g r o u p  D 2. P r o v e  th a t  K
ca n  b e  o b ta in e d  b y  adj o in in g  tw o  s q u a r e  r o o t s  t o  F ,  an d  e x p la in  h o w  G  acts o n  K .
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8 .2 . D e t e r m in e  th e  G a lo is  g r o u p s  o f  th e  fo l lo w in g  p o ly n o m ia ls  o v e r  Q:

( a )  x 3 -  2 , (b )  x 3 +  3 x  +  1 4 , (c )  x 3 -  3 x 2 +  1, (d )  x 3 -  2 1 x  +  7,

( e )  x 3 +  x 2 — 2x  -  1, ( f )  x 3 +  x 2 -  2x  +  1.

8 .3 . D e t e r m in e  th e  q u a d r a tic  p o ly n o m ia l  q ( x )  th a t  a p p e a r s  i n  ( 1 6 .8 .2 )  e x p l ic i t ly , i n  te r m s  o f  
a i  a n d  th e  c o e f f ic ie n t s  o f  / .

8 .4 . L e t  K  =  Q ( a ) ,  w h e r e  a  is  a r o o t  o f  th e  p o ly n o m ia l  x 3 + 2 x  + 1, a n d  le t  g ( x )  =  x 3 +  x  +  1. 
D o e s  g ( x )  h a v e  a  r o o t  in  K ?

8.5 . L e t  a ;  b e  th e  r o o t s  o f  a  c u b ic  p o ly n o m ia l  / ( x )  =  x 3 +  p x  +  q . F in d  a  fo r m u la  fo r  a s e c o n d  
r o o t  «2 in  te r m s  o f  t h e  e le m e n t s  a i ,  5 , a n d  th e  c o e f f ic ie n t s  o f  / .

S e c t io n  9  Q u a r t ic  E q u a t io n s

9 .1 . L e t  K  b e  a  G a lo is  e x te n s io n  o f  F  w h o s e  G a lo is  g r o u p  is  t h e  sy m m e tr ic  g r o u p  S4 . W h ic h  
in t e g e r s  o c c u r  a s  d e g r e e s  o f  e le m e n t s  o f  K  o v e r  F ?

9 .2 . W ith  r e f e r e n c e  t o  E x a m p le  1 6 .9 .2 (a ) ,  w r i t e  t h e  e le m e n t  a  +  a ' a s  a n e s t e d  sq u a r e  r o o t .  
W h a t  o th e r  n e s t e d  s q u a r e  r o o ts  d o e s  K  c o n ta in ?

9 .3 .-  C a n  V 4  +  .J 7  b e  w r it te n  in  th e  fo r m  . .  +  . . /b ,  w ith  r a t io n a l n u m b e r s  a a n d  b?

9 .4 . (a) P r o v e  th a t  th e  p o ly n o m ia l  x 4 — 8x 2 +  11 is  ir r e d u c ib le  o v e r  Q  in  tw o  w a y s: u s in g  th e
m e th o d s  o f  C h a p te r  12  a n d  c o m p u t in g  w ith  its  r o o ts .

(b )  D o  th e  s a m e  fo r  th e  p o ly n o m ia l  X 4  — 8x 2 +  9.

( c )  D e t e r m in e  a ll  in te r m e d ia te  f ie ld s  w h e n  K  is th e  sp lit t in g  f ie ld  o f  x 4 — 8x 2 +  11 
o v e r  Q .

9 .5 . C o n s id e r  a  n e s t e d  s q u a r e  r o o t  a  =  \Jr +  . . / i  w ith  r  a n d  t in  a  f ie ld  F .  A s s u m e  th a t  a  h a s  
d e g r e e  4  o v e r  F ,  le t  /  b e  th e  ir r e d u c ib le  p o ly n o m ia l  o f  a  o v e r  F ,  a n d  l e t  K  b e  a sp lit t in g  
f ie ld  o f  /  o v e r  F .

( a )  C o m p u t e  th e  ir r e d u c ib le  p o ly n o m ia l  / ( x )  fo r  a  o v e r  F .  P r o v e  th a t  G ( K / F )  is  o n e  
o f  th e  g r o u p s  D 4 ,  C 4 ,  o r  D 2 .

( b )  E x p la in  h o w  to  d e t e r m in e  th e  G a lo is  g r o u p  in  te r m s  o f  th e  e le m e n t  — t.

( c )  A s s u m e  th a t  th e  G a lo is  g r o u p  o f  K /  F  is  th e  d ih e d r a l g r o u p  D 4. D e t e r m in e  
g e n e r a to r s  fo r  a ll  in te r m e d ia t e  f ie ld s  F  C  L  C  K .

9 .6 .  C o m p u t e  t h e  d is c r im in a n t  o f  t h e  q u a r tic  p o ly n o m ia l  x 4 +  1, a n d  d e t e r m in e  its  G a lo is  
g r o u p  o v e r  Q .

9 .7 .  A s s u m e  th a t  a n  e x t e n s io n  f ie ld  K /  F  h a s  t h e  f o r m  K  =  F ( . . ,  . . /b ) .  D e t e r m in e  a ll  n e s t e d  

s q u a r e  r o o t s  v V  +  . . / i  th a t  a re  in  K ,  w ith  r  a n d  t  in  F .

9 .8 . D e t e r m in e  w h e t h e r  o r  n o t  t h e  f o l lo w in g  n e s t e d  r a d ic a ls  c a n  b e  w r it te n  in  te r m s  o f  
u n n e s t e d  s q u a r e  r o o t s ,  a n d  i f  s o ,  f in d  a n  e x p r e s s io n .

(a )  V 2 + J I T ,  (b )  v /lO  +  5 v '2 , ( c )  J I T  +  6 v '2 , (d ) 6̂ +  J I T ,  ( e )  J I T  +  ./6 .

9 .9 . (a) D e t e r m in e  t h e  d is c r im in a n t  a n d  th e  r e s o lv e n t  c u b ic  o f  a  p o ly n o m ia l  o f  t h e  fo r m
/ ( x )  =  X 4  +  r x  +  s .

( b )  D e t e r m in e  t h e  G a lo i s  g r o u p s  o f  x 4 +  8x  +  12  a n d  x 4 +  8x  — 12 o v e r  Q .

( c )  C a n  t h e  r o o t s  o f  t h e  p o ly n o m ia l  x 4 +  x  — 5 b e  c o n s tr u c te d  b y  r u le r  a n d  c o m p a s s ?
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9 .1 0 . ( a )  W h a t  a r e  t h e  p o s s ib le  G a lo i s  g r o u p s  o f  a n  ir r e d u c ib le  q u a r tic  p o ly n o m ia l  o v e r  Q  th a t
h a s e x a c t ly  t w o  r e a l  r o o ts?

(b )  W h a t  a r e  th e  p o s s ib le  G a lo is  g r o u p s  o v e r  Q  o f  a n  ir r e d u c ib le  q u a r t ic  p o ly n o m ia l  
f ( x )  w h o s e  d is c r im in a n t  is  n e g a t iv e ?

9 .1 1 . L e t  F  =  Q , a n d  le t  K  b e  th e  sp l i t t in g  f ie ld  o f  th e  p o ly n o m ia l  f ( x )  =  x 4 — 2  o v e r  F .  T h e  

r o o t s  a r e  a ,  - a ,  i a ,  - i a ,  w ith  a  =  ./2 .

(a )  D e t e r m in e  th e  G a lo is  g r o u p  G  =  G ( K / F ) ,  a n d  t h e  s u b g r o u p  H  =  G ( K / F ( i ) ) .

(b )  S h o w  h o w  e a c h  e l e m e n t  o f  H  p e r m u te s  th e  r o o t s  o f  f .

( c )  F in d  all in te r m e d ia t e  f ie ld s .

9 .1 2 . D e t e r m in e  t h e  G a lo i s  g r o u p s  o f  t h e  f o l lo w in g  p o ly n o m ia ls  o v e r  Q .

( a )  x 4 +  4 x 2 +  2 ,  ( b )  x 4 +  2 x 2 +  4 ,  ( c )  x 4 +  1 ,

(d ) x 4 +  x  +  1 , ( e )  x 4 +  x 3 +  x 2 +  x  +  1 , ( f )  x 4 +  x 2 +  1.

9 .1 3 . L e t  K  b e  t h e  sp l i t t in g  f ie ld  o v e r  Q  o f t h e  p o ly n o m ia l  x 4 — 2 x 2 — 1. D e t e r m in e  t h e  G a lo is  
g r o u p  G  o f  K / Q ,  f in d  a ll  in te r m e d ia t e  f ie ld s , a n d  m a tc h  th e m  u p  w ith  t h e  s u b g r o u p s  
o f  G .

* 9 .1 4 . L e t  F  =  Q ( w ) ,  w h e r e  u> =  e 27fl / 3 . D e t e r m in e  th e  G a lo is  g ro u p  o v e r  F  o f  th e  sp l i t t in g  

f ie ld  o f  (a )  ./2 +  ../2 , ( b )./2+ ./2 .
«

* 9 .1 5 . L e t  K  b e  th e  s p lit t in g  f ie ld  o f  a n  ir r e d u c ib le  q u a r tic  p o ly n o m ia l  f ( x )  o v e r  F ,  a n d  le t  
th e  r o o t s  o f  f ( x )  in  K  b e  a i ,  a 2, a 3, a 4 . A s s u m e  th a t  th e  r e s o lv e n t  c u b ic  g ( x )  h a s  a
r o o t  f i i  =  a  i  a 2 +  a 3a 4 in  F .  E x p r e s s  th e  r o o t  a i  e x p l ic i t ly  in  te r m s  o f  n e s t e d  sq u a r e
r o o ts .

9 .1 6 .  D e t e r m in e  t h e  r e s o lv e n t  c u b ic  o f  t h e  g e n e r a l  q u a r t ic  p o ly n o m ia l  ( 1 6 .9 .4 ) .

9 .1 7 . D e t e r m in e  th e  r e a l  n u m b e r s  a  o f  d e g r e e  4  o v e r  Q  th a t  c a n  b e  c o n s tr u c te d  w ith  r u le r  a n d  
c o m p a s s , in  te r m s  o f  t h e  G a lo is  g r o u p s  o f  th e ir  ir r e d u c ib le  p o ly n o m ia ls .

9 .1 8 . P r o v e  th a t  a n y  G a lo is  e x t e n s io n  w h o s e  G a lo is  g r o u p  is  th e  d ih e d r a l g r o u p  D 4 is  th e  
s p l i t t in g  f ie ld  o f  a  p o ly n o m ia l  o f  t h e  f o r m  x 4 +  b x 2 +  c .

S e c t io n  1 0  R o o t s  o f  U n ity

1 0 .1 . D e t e r m in e  th e  d e g r e e  o f  1;7 o v e r  th e  f ie ld  Q ( 1;3) .

1 0 .2 . L e t  I; =  1;17. F in d  g e n e r a to r s  fo r  t h e  in te r m e d ia t e  f ie ld  L 2 d e s c r ib e d  in  E x a m p le  1 6 .1 0 .3 .

1 0 .3 . L e t  I; =  1;7. D e t e r m in e  t h e  d e g r e e  o f  t h e  f o l lo w in g  e le m e n t s  o v e r  Q .

( a )  f  +  f 5 , ( b ){3 +  ^ ,  ( c )  f 3 +  f 5 +  ^6 .

1 0 .4 . L e t I; =  1;i 3. D e t e r m in e  t h e  d e g r e e s  o f  th e  f o l lo w in g  e le m e n t s  o v e r  Q .

( a )  {  +  1;12 , ( b )  I; +  1;2 , ( c )  I; +  1;5 +  , (d )  {2 +  1;5 +  , ( e )  {  +  1;5 +  +  1;n ,
( f )  I; +  1;2 +  1;5 +  f 12 , (g ) I; +  1;3 +  +  1;9 +  1;10 +  1;12.

10.5 . L e t  K  =  Q ( l; p ) .  D e t e r m in e  e x p l ic i t ly  a ll in te r m e d ia t e  f ie ld s  w h e n

(a ) p  =  5, (b )  p  =  7 , ( c )  p  =  1 1 , (d )  p  =  1 3 .

1 0 .6 . ( a )  C a rry  o u t  th e  p r o o f  o f T h e o r e m  1 6 .1 0 .1 2 .

( b )  P r o v e  t h e  K r o n e c k e r -W e b e r  T h e o r e m  fo r  q u a d r a tic  e x te n s io n s .



510 Chapter 16 Galois Theory

1 0 .7 .  Let l;n =  e 2ni/n and let K =  Q(l;„). •

( a )  Prove that K is a Galois extension of Q.
( b )  Define an injective homomorphism G (K /Q ) --  U  to the group U  of units in the

ring 'L/(n).
( c )  Prove that this homomorphism is bijective when n =  6, 8,12. (In fact, this map is 

always bijective.)

1 0 .8 . Determine the Galois groups of the polynomials x8 — 1, x 12 — 1, x 9 — 1.
1 0 .9 . Let /(x ) =  (x -  a i)  ... (x -  a n).

( a )  Prove that the discriminant of /  is ± / '  (aj) ... / '  (an), where / '  is the derivative of / ,  
and determine the sign.

(b) Use the formula to compute the discriminant of the polynomial x p — 1, and use it to 
give another proof of Theorem 16.10.12.

1 0 .1 0 . With regard to the eigenvector y described at the end of Section 16.11, show that at least 
one of the elements y  =  a i  +  l;a 2 +------ + p isn’t zero.

S e c t io n  1 1  K u m m e r  E x t e n s io n s

1 1 .1 . Prove that if the discriminant of an irreducible cubic polynomial in F[x] is not a square 
in F, then the roots cannot be obtained by adoining a cube root to F.

11.2. (a )  Prove Proposition 16.11.2 without using Galois theory.
(b) With F  arbitrary, prove if xP — a is reducible in F[x], then it has a root in F.

* 1 1 .3 . Let F  be a subfield of C that contains i, and let K be a Galois extension of F  whose 
group is C4. Is it true that K has the form F(a), with a 4 in F?

1 1 .4 . Carry out the computation to arrive at Cardano’s formula (16.13.3).
1 1 .5 . (a ) How does Cardano’s formula (16.13.3) express the roots of the polynomials x3 +

3x, x3 + 2, x3 — 3x +  2 and x3 — 3x + 2?
(b) What are the correct choices of roots in Cardano’s formula?

S e c t io n  1 2  Q u in t ic  E q u a t io n s

1 2 .1 . Is every Galois extension of degree 10 solvable?
1 2 .2 . Determine the transitive subgroups of S5 .
1 2 .3 . Let G be the Galois group of an irreducible quintic polynomial. Show that if G  contains 

an element of order 3, then G is either S 5 or A5.
1 2 .4 . Let Si, . . . ,  Sn be the elementary symmetric functions in variables u i, • • ., Un, and let F  

be a field.

( a ) Prove that the field F(m) of rational functions in «i, • • • , Un is a Galois extension of 
the field F(ss, . . .  , $ n ) ,  and that its Galois group is the symmetric group Sn.

(b )  Suppose that n =  5, and let w =  U1U2 + U2U3 + U3U4 + U4U5 + U5U1. Determine the 
Galois group of F( u) over the field F(s, w).

( c )  Let G be a finite group. Prove that there exists a field F  and a Galois extension K 
of F  whose Galois group is G.
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12 .5 . L e t  K  b e  a  G a lo is  e x t e n s io n  o f  Q  w h o s e  d e g r e e  is  a p o w e r  o f  2 , and  su ch  th a t K  C  JR. 
P r o v e  th a t  t h e  e le m e n t s  o f  K  c a n  b e  c o n s tr u c te d  b y  ru le r  a n d  c o m p a s s .

1 2 .6 . P r o v e  th a t  if  th e  G a lo is  g r o u p  o f  a  p o ly n o m ia l  f  is  a n o n a b e l ia n  s im p le  g r o u p , t h e n  th e  
r o o t s  a r e  n o t  s o lv a b le .

1 2 .7 . F in d  a  p o ly n o m ia l  o f  d e g r e e  7  o v e r  Q  w h o s e  G a lo is  g r o u p  is  S 7.

12 .8 . L e t  p  b e  a  p r im e . P r o v e  th a t  th e  sy m m e tr ic  g r o u p  is  g e n e r a te d  b y  a n y  p - c y c l e  to g e th e r  
w ith  a n y  t r a n s p o s it io n .

M is c e l la n e o u s  P r o b le m s

M .I .  L e t  F i  C  F2  b e  a f ie ld  e x t e n s io n ,  a n d  le t  f  b e  a  p o ly n o m ia l  w ith  c o e f f ic ie n t s  in  F \ .  A  
sp lit t in g  f ie ld  K 2 o f  f  o v e r  F 2 w i l l  c o n ta in  a  s p l i t t in g  f ie ld  K  1 o f  f  o v e r  F i . W h a t  is  th e  
r e la t io n  b e t w e e n  t h e  G a lo is  g r o u p s  G ( K i /  F i )  a n d  G ( K 2 /  F 2)?

M .2 . L e t  L / F  a n d  K / L  b e  G a lo is  e x t e n s io n s .  I s  K / F  n e c e s s a r i ly  a G a lo is  e x te n s io n ?

M .3 . (Vandermonde determinant)

( a )  P r o v e  th a t th e  d e te r m in a n t  o f  th e  m a tr ix

U2

U\ u" - 1

un-

.n-1

i s  a c o n s ta n t  m  u lt ip le  o f  th e  s q u a r e  r o o t  o f  th e  d isc r im in a n t  S (w )  =  D i < / Ui — u j).
(b )  D  e t e r m in e  t h e  c o n s ta n t .

M .4 . ( a )  

* (b )

M .S .

T h e  n o n -n e g a t iv e  r e a l  n u m b e r s  a re  t h o s e  h a v in g  a  rea l s q u a r e  r o o t .  U s e  th is  fa c t  to  
p r o v e  th a t  th e  f ie ld  JR h a s n o  a u to m o r p h is m  e x c e p t  th e  id e n t i t y .

P r o v e  th a t  C  h a s n o  continuous a u to m o r p h is m s  o th e r  th a n  c o m p le x  c o n ju g a t io n  a n d  
t h e  id e n tity .

L e t  K  =  lFq, w h e r e  q  =  p r .

( a )  P r o v e  th a t  th e  Frobenius m a p  cp d e f in e d  b y  cp (x ) =  x P  is  a n  a u to m o r p h is m  o f  
F  =  lFp.

(b )  P r o v e  th a t  th e  G a lo is  g ro u p  G  ( K /  F )  is  a  c y c l ic  g ro u p  o f  o r d e r  r  th a t  is  g e n e r a te d  
b y  t h e  F r o b e n iu s  m a p  cp.

( c )  P r o v e  th a t  t h e  M a in  T h e o r e m  o f  G a lo is  th e o r y  is  t r u e  f o r  th e  e x t e n s io n  K  /  F .

M .6. ■'Let K  b e  a s u b f ie ld  o f  C , a n d  le t  G  b e  its  g r o u p  o f  a u to m o r p h ism s . W e  c a n  v ie w  G  a s
a c tin g  o n  t h e  p o in t  se t  K  in  th e  c o m p le x  p la n e . T h e  a c t io n  w il l  p r o b a b ly  b e  d is c o n t in u o u s ,  
b u t  n e v e r t h e le s s ,  w e  c a n  d e f in e  a n  a c t io n  o n  l in e  s e g m e n ts  [ a ,  .8] w h o s e  e n d p o in t s  a r e  in  
K  b y  d e f in in g  g [ a ,  .8] =  [ g a ,  g.8]. T h e n  G  a ls o  a c ts  o n  p o ly g o n s  w h o s e  v e r t ic e s  a r e  in  K .

( a )  L e t  K  =  Q ( £ )  w h e r e  £  is  a  p r im it iv e  f i f t h  r o o t  o f  1. F in d  th e  G - o r b it  o f  th e  r e g u la r  
p e n ta g o n  w h o s e  v e r t ic e s  a r e  1, £ , £2 , £ 3 , £*.

(b )  L e t  a  b e  th e  s id e  le n g th  o f  t h e  p e n ta g o n  o f  (a ) .  S h o w  th a t  a 2 i s  i n  K ,  a n d  f in d  t h e  
ir r e d u c ib le  e q u a t io n  fo r  a  o v e r  Q .

1 In memory of Bruce Renshaw.
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* M .7 . A  p o ly n o m ia l  f  in  F[u\,  . . .  , u n ]  is \ - s y m m e t r ic  i f  f ( u ai , . . .  ua„) =  f ( u  1, . . . ,  un ) 
fo r  e v e r y  e v e n  p e r m u ta t io n  0',  an d  s k e w -s y m m e tr ic  i f  f ( u ai , . . . ,  uan) =  ( s ig n  0')  
f ( u i ,  . . . ,  un) fo r  e v e r y  p e r m u ta t io n  a.

( a )  P r o v e  th a t  th e  sq u a r e  ro o t o f  th e  d isc r im in a n t  8 =  n  i < / ui — u  j )  is  sk e w -s y m m e tr ic .

( b )  P r o v e  th a t  e v e r y  \ - sy m m e tr ic  p o ly n o m ia l  h a s  th e  f o r m  f  +  g 8 , w h e r e  f ,  g  a r e  
s y m m e tr ic  p o ly n o m ia ls .

* M .8. ZW ith  v a r ia b le s  u o , u i ,  uz, U3, le t  Pi =  (u, - u i + i ) ( u ;  - u l+ 2) ( u , + i  - u , + 2) ,  in d ic e s  r e a d  
m o d u lo  4. D e t e r m in e 3

( a )  E L o  ■ ( b )  £ L o  P + ! .

* M .9 . L e t f ( t ,  x) b e  a n  ir r e d u c ib le  p o ly n o m ia l  in  C [t, x ]  th a t  is m o n ic  an d  c u b ic  w h en  r e g a r d e d  
as a  p o ly n o m ia l  in  x .  A s s u m e  th a t  f o r  s o m e  to. th e  p o ly n o m ia l  f ( t o ,  x )  h a s  o n e  s im p le  
r o o t  a n d  o n e  d o u b le  r o o t . P r o v e  th a t  th e  sp lit t in g  f ie ld  K  o f  f ( x )  o v e r  C ( t )  h a s  d e g r e e  6.

* M .1 0 . L e t  K  b e  a  f in ite  e x t e n s io n  o f  a  f ie ld  F ,  a n d  le t  f ( x )  b e  in  K[x], P r o v e  th a t  th e r e  is a  
n o n z e r o  p o ly n o m ia l  g(x) in  K [ x ]  su c h  th a t  th e  p r o d u c t  f (x)g(x)  is in  F [ x ] .

* M . l l .  L e t  f (x)  b e  a n  ir r e d u c ib le  q u a r tic  p o ly n o m ia l  in  F [ x ]  a n d  l e t  a t ,  az, U3 , a 4 b e  i t s  r o o ts  
in  a  s p l i t t in g  f ie ld  K . A s s u m e  th a t  th e  r e s o lv e n t  c u b ic  h a s  a r o o t  {3 =  a i a 2 +  a 3a 4 in  F, 
b u t  th a t  t h e  d is c r im in a n t  D  is n o t  a  sq u a r e  in  F .  A c c o r d in g  to  (1 6 .9 .9 ) ,  t h e  G a lo is  g r o u p  
o f  K / F  is  e i th e r  C 4 o r  D4 .

( a )  D e t e r m in e  th e  su b g r o u p  H  o f  th e  g r o u p  S 4 o f  p e r m u ta t io n s  o f  th e  r o o ts  a ,-, w h ic h  
s t a b i l iz e s  {3 e x p lic it ly . D o n ’t fo r g e t  to  p r o v e  th a t  n o  p e r m u ta t io n s  o t h e r  th a n  th o s e  
y o i l  list f ix  {3.

( b )  L e t  y  =  a i a 2 -  a 3a 4 a n d  e  =  a t  +  a 2 -  a 3 -  a 4. P r o v e  th a t  a n d  e 2 a re  in  F.
( c )  L e t  5  b e  th e  s q u a r e  r o o t  o f  th e  d isc r im in a n t. P r o v e  th a t if  y:;i:O, th e n  8 y  is  a  sq u a r e  

in  F  i f  a n d  o n ly  i f  G  =  C 4. S im ila r ly , p r o v e  th a t i f  E:;i:O, th e n  5 e  is  a  sq u a r e  in  F  if  
a n d  o n ly  i f  G  =  C 4 .

(d )  P r o v e  th a t  y  a n d  e  c a n ’t b o th  b e  z e r o .

* M .U .  A  f in ite  g r o u p  G  is solvable i f  it c o n ta in s  a  c h a in  o f  su b g r o u p s  G  =  H o  C  H j  C  . . .  C  
H k  =  { l }  su ch  th a t  fo r  e v e r y  i =  1, . . .  , k, Hi  is a  n o r m a l s u b g r o u p  o f  H i-1, a n d  th e  
q u o t ie n t  g r o u p  H ,/  H ,+1 is  a  c y c lic  g r o u p . L e t  f  b e  a n  ir r e d u c ib le  p o ly n o m ia l  o v e r  a  f ie ld  
F ,  a n d  le t  G  b e  its  G a lo is  g r o u p . P r o v e  th a t  th e  r o o ts  o f  f  a re  s o lv a b le  o v e r  F  i f  a n d  o n ly  
i f  G  is  a  s o lv a b le  g r o u p .

* M .1 3 . 3L e t  K j F  b e  a  G a lo is  e x t e n s io n  w ith  G a lo is  g r o u p  G . I f  w e  th in k  o f  K  a s  a n  F -  
v e c to r  s p a c e , w e  o b ta in  a  r e p r e s e n ta t io n  o f  G  o n  K . L e t  x  d e n o te  th e  c h a r a c te r  o f  th is  
r e p r e s e n ta t io n . S h o w  th a t  i f  F  c o n ta in s  e n o u g h  r o o ts  o f  u n ity , th e n  x  is  th e  c h a r a c te r  o f  
t h e  r e g u la r  r e p r e s e n ta t io n .

Wie weit diese Methoden reichen werden, muss erst
die Zukunft zeigen.

— E m m y N o e t h e r

2Suggested by H arold Stark.
■^Suggested by Galyna Dobrovolska.



A P P E N D I X

B a c k g r o u n d  M a t e r i a l

Historically speaking, it is of course quite untrue 
t h a t  m a th e m a t ic s  is f r e e  f r o m  c o n tr a d ic t io n ;  

non-contradiction appears as a goal to be achieved, 
not as a God-given quality that has been granted us once for all.

— N ic o la s  B o u r b a k i

A .1  A B O U T  P R O O F S

W h a t  m a t h e m a t ic ia n s  c o n s id e r  a n  a p p r o p r ia t e  w a y  t o  p r e s e n t  a  p r o o f  is  n o t  e a s y  to  m a k e  

c le a r .  O n e  c a n n o t  g i v e  p r o o f s  th a t  a r e  c o m p l e t e  in  t h e  s e n s e  th a t  e v e r y  s t e p  c o n s i s t s  in  

a p p ly in g  a  r u le  o f  lo g ic  t o  t h e  p r e v io u s  s t e p .  W r it in g  s u c h  a  p r o o f  w o u ld  t a k e  t o o  l o n g ,  a n d  

t h e  m a in  p o in t s  w o u l d n ’t b e  e m p h a s iz e d .  O n  t h e  o th e r  h a n d , a l l  d if f ic u lt  s t e p s  o f  t h e  p r o o f  
a r e  s u p p o s e d  t o  b e  in c lu d e d .  S o m e o n e  r e a d in g  t h e  p r o o f  s h o u ld  b e  a b le  t o  f ill in  a s  m a n y  

d e t a i l s  a s  n e e d e d  t o  u n d e r s t a n d  it. H o w  t o  w r i t e  a  p r o o f  is  a  s k i l l  th a t  c a n  b e  le a r n e d  o n ly  b y  

e x p e r ie n c e .

T h r e e  g e n e r a l  m e t h o d s  u s e d  to  c o n s t r u c t  a  p r o o f  a r e  dichotomy, induction, a n d  

contradiction.
T h e  w o r d  dichotomy m e a n s  d iv i s io n  in to  t w o  p a r ts .  I t  i s  u s e d  t o  s u b d iv id e  a  p r o b le m  

in t o  s m a l le r ,  m o r e  e a s i ly  m a n a g e d  p i e c e s .  O t h e r  n a m e s  f o r  th is  p r o c e d u r e  a r e  case analysis 
a n d  divide and conquer.

H e r e  is  a n  e x a m p l e  o f  d ic h o t o m y :  B y  d e f in i t io n ,  t h e  binomial coefficient ( £ )  ( r e a d  n  

c h o o s e  k )  is th e  n u m b e r  o f  s u b s e t s  o f  o r d e r  k  in  th e  s e t  o f  in d ic e s  { I ,  2 ,  . . . ,  n  }. F o r  e x a m p le ,

( i )  =  6. T h e  s e t  { I ,  2, 3 , 4} h a s  s ix  s u b s e t s  o f  o r d e r  2.

Proof, L e t  S  b e  a  s u b s e t  o f  { I ,  2 , . . .  , n }  o f  o r d e r  k. T h e n  e i t h e r  n  is  in  S  o r  n  is  n o t  in  S .  

T h i s  is  o u r  d ic h o t o m y .

Case 1: n  is  n o t  in  S .  In  th is  c a s e ,  S  is  a c t u a l ly  a  s u b s e t  o f  { I ,  2 ,  . . .  , n  -  I } .  B y  d e f in i t io n ,

P r o p o s i t io n  A . I . I  F o r  e v e r y  in t e g e r  n  a n d  e v e r y  k  <  n ,

t h e r e  a r e  ( ^ 1) o f  t h e s e  s u b s e t s .

513
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Case 2 : n  i s  in  S .  L e t  S '  ■  S  -  {n} b e  t h e  s e t  o b t a in e d  b y  d e l e t in g  t h e  in d e x  n  f r o m  t h e  s e t  S .  

T h e n  S '  i s  a  s u b s e t  o f  { l ,  2 ,  . . . , n  -  l } ,  c f  o r d e r  n  -  1. T h e r e  a r e  ( £ = { )  s u c h  s e t s  S'. H e n c e  

t h e r e  a r e  ( ” = * ) s u b s e t s  o f  o r d e r  k  t h a t  c o n t a in  n .

T h is  g iv e s  u s  ( n k l )  +  ( ” _ ] )  s u b s e t s  o f  o r d e r  k  a l t o g e t h e r . □

T h e  r e m a r k a b le  p o w e r  o f  th e  m e t h o d  o f  d i c h o t o m y  is  s h o w n  h e r e :  In  e a c h  o f  th e  t w o  

c a s e s ,  n  e S  a n d  n  ¢  S , w e  h a v e  a n  a d d i t io n a l  f a c t  a b o u t  o u r  s e t  S .  T h is  a d d it io n a l  f a c t  c a n  
b e  u s e d  in  t h e  p r o o f .

O f t e n  a  p r o o f  w ill  r e q u ir e  s o r t in g  th r o u g h  s e v e r a l  p o s s ib i l i t i e s ,  e x a m in in g  e a c h  in  tu r n .  
T h is  is  d i c h o t o m y ,  o r  c a s e  a n a ly s is .  I t  is  a n a lo g o u s  t o  t h e  w a y  G r a y ’s Manual of Botany is  u s e d  

t o  d e t e r m in e  t h e  s p e c i e s  o f  a  p la n t .  T h e  p r o c e d u r e  in  G r a y ’s M a n u a l  l e a d s  t h r o u g h  a  s e q u e n c e  

o f  d i c h o t o m ie s .  A  ty p ic a l  o n e  is  “ l e a v e s  o p p o s i t e ,”  o r  “ le a v e s  a l t e r n a t e .” C la s s i f ic a t io n  o f  

m a t h e m a t ic a l  s t r u c t u r e s  w i l l  a l s o  p r o c e e d  t h r o u g h  a  s e q u e n c e  o f  d i c h o t o m ie s .  T h e y  n e e d  n o t  

b e  s p e l l e d  o u t  f o r m a l ly  in  s im p le  c a s e s ,  b u t  w h e n  o n e  is  d e a l in g  w it h  a  c o m p l ic a t e d  r a n g e  o f  

p o s s ib i l i t i e s ,  c a r e f u l  s o r t in g  is  n e e d e d .

Induction is  t h e  m a in  m e t h o d  f o r  p r o v in g  a  s e q u e n c e  o f  s t a t e m e n t s  Pn, i n d e x e d  b y  
p o s i t iv e  in t e g e r s  n .  T o  p r o v e  P n f o r  a ll  n ,  t h e  p r in c ip le  o f  in d u c t io n  r e q u ir e s  u s  to  d o  tw o  

th in g s :

( i )  p r o v e  th a t  p  is  t r u e , a n d

( i i )  p r o v e  th a t  i f ,  f o r  s o m e  i n t e g e r  k  >  1, P k  is  t r u e ,  t h e n  P k + i  is  a l s o  t r u e .

S o m e t i m e s  it is  m o r e  c o n v e n i e n t  to  p r o v e  th a t  if , fo r  s o m e  in t e g e r  k  : :  0, Pk-i  is  t r u e ,  t h e n  
P k  is  t r u e . T h i s  is  j u s t  a  c h a n g e  o f  t h e  in d e x .

H e r e  a r e  s o m e  e x a m p l e s  o f  in d u c t io n .  I f  n  is  a  p o s i t i v e  in t e g e r ,  t h e n  n !  ( “ n  f a c t o r ia l” ) 

i s  th e  p r o d u c t  1 • 2  ■ • . n  o f  t h e  in t e g e r s  f r o m  1 t o  n .  A l s o ,  O! i s  d e f in e d  t o  b e  1.

Proof. L e t  P r  b e  th e  s t a t e m e n t  th a t  (£ ) =  e^-ey.  f o r  a ll e  ■  1 , . . . ,  r . Y o u  w ill  b e  a b le  to  

c h e c k  th a t  P i  is  t r u e .  A s s u m e  th a t  P r - i  is  t r u e .  T h e n  t h e  f o r m u la  is  t r u e  w h e n  w e  s u b s t i t u t e  

n  = :  -  1 a n d  e  =  k  a n d  is  a l s o  tr u e  w h e n  w e  s u b s t i t u t e  n  ■  r  -  1 a n d  e ■  k  -  1:

( A .  1 .2 )

a n d

A c c o r d in g  to  P r o p o s i t io n  ( A .  1 .1 ) ,

( : - 1) !  , ( r  — 1)!

( r  -  k ) ( r  -  I ) !  +  k ( r  - I ) !  _______r!

k ! ( r  — k)\ k ! ( r  — k ) !  k ! ( :  - k ) !

This shows that Pr is true. □
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A s  a n o t h e r  e x a m p le ,  le t  u s  p r o v e  th e  “ p i g e o n h o l e  p r in c ip l e .”  H e r e  | S | d e n o t e s  t h e  

o r d e r ,  t h e  n u m b e r  o f  e l e m e n t s ,  o f  a  s e t  S .

P r o p o s i t io n  A . I . 4  I f  cp: S  T  is  a n  in j e c t iv e  m a p  b e t w e e n  f in i t e  s e t s ,  t h e n  T  c o n t a in s  a t  

l e a s t  a s  m a n y  e l e m e n t s  a s  a r e  in  S : | S |  <  | T | .

P r o o f  W e  u s e  in d u c t io n  o n  n  =  |S | .  T h e  a s s e r t io n  i s  t r u e  i f n  =  0 ,  t h a t  is ,  i f  S  i s  e m p ty .  W e  

s u p p o s e  t h a t  t h e  t h e o r e m  h a s  b e e n  p r o v e d  f o r  n  =  k  -  1, a n d  w e  p r o c e e d  t o  c h e c k  it  f o r  

n  =  k , w h e r e  k  >  O. W e  s u p p o s e  th a t  |S |  =  k , a n d  w e  c h o o s e  a n  e l e m e n t  s  o f  S .  L e t  t =  c p (s )  

b e  th e  im a g e  o f  s  in  T .  S in c e  cp i s  in j e c t iv e ,  s  is  t h e  o n ly  e l e m e n t  w h o s e  im a g e  i s  t. T h e r e f o r e  

cp m a p s  t h e  s e t  S '  =  S  — {s} o b t a in e d  b y  r e m o v in g  s  in j e c t iv e ly  t o  t h e  s e t  T '  =  T  — {t}. 

O b v io u s ly ,  |S ' |  =  |S |  — 1 =  k  — 1 a n d  |T ' |  =  |T |  — 1. B y  th e  in d u c t io n  a s s u m p t io n ,  |S ' |  : :  |T ' | ,  

a n d  s o  | S |  ::  |T | .  □

T h e r e  is  a  v a r ia n t  o f  th e  p r in c ip le  o f  in d u c t io n ,  c a l l e d  c o m p le te  in d u c t io n .  H e r e  a g a in ,  

w e  w i s h  to  p r o v e  a  s t a t e m e n t  P n  f o r  e a c h  p o s i t i v e  in t e g e r  n . T h e  p r in c ip le  o f  c o m p l e t e  

in d u c t io n  a s s e r t s  th a t  it  is  e n o u g h  t o  p r o v e  t h e  f o l lo w in g  s t a t e m e n t :

I f  n  i s  a p o s i t i v e  in te g e r , a n d  if  P k  i s  t r u e  f o r  e v e r y  

p o s i t iv e  in te g e r  k  <  n , th e n  P n  i s  tru e .

W h e n  n  =  1, t h e r e  a r e  n o  p o s i t i v e  in t e g e r s  k <  n . T h e  h y p o t h e s i s  in  t h e  s t a t e m e n t  is  
a u t o m a t ic a l ly  s a t i s f i e d  w h e n  n  =  1. S o  a  p r o o f  u s in g  c o m p le t e  in d u c t io n  m u s t  in c lu d e  a  

p r o o f  o f  P i .
T h e  p r in c ip le  o f  c o m p l e t e  in d u c t io n  is  u s e d  w h e n  t h e r e  i s  a  p r o c e d u r e  to  r e d u c e  Pn to  

P k  fo r  s o m e  s m a l le r  in t e g e r s  k , b u t  n o t  n e c e s s a r i ly  t o  P n - i .  H e r e  is  a n  e x a m p le :

T h e o r e m  A .1 .S  E v e r y  i n t e g e r  n  g r e a t e r  t h a n  1 i s  a  p r o d u c t  o f  p r im e  in t e g e r s .

P r o o f  L e t  P n  b e  t h e  s t a t e m e n t  t h a t  n  is  a  p r o d u c t  o f  p r im e s .  W e  a s s u m e  th a t  Pk is  t r u e  

f o r  a ll  k  <  n ,  a n d  w e  m u s t  p r o v e  t h a t  Pn is  t r u e ,  i .e . ,  t h a t  n  is  a  p r o d u c t  o f  p r im e s .  I f  

n  is  p r im e  i t s e l f ,  t h e n  it  is  t h e  p r o d u c t  o f  o n e  p r im e . O t h e r w is e ,  n  c a n  b e  w r i t t e n  a s  a  

p r o d u c t  n  =  ab  o f  p o s i t i v e  in t e g e r s  n e i t h e r  o f  w h ic h  is e q u a l  to  1. T h e n  a a n d  b  a r e  

l e s s  t h a n  n , s o  t h e  in d u c t io n  h y p o t h e s i s  t e l l s  u s  t h a t  Pa a n d  P b  a r e  b o t h  t r u e ,  t h a t  is ,  a 
a n d  b  a r e  p r o d u c t s  o f  p r im e s .  P u t t in g  t h e s e  p r o d u c t s  s id e  b y  s id e  g iv e s  u s  th e  r e q u ir e d  
f a c t o r iz a t io n  o f  n .  □

P r o o f s  b y  c o n t r a d ic t io n  p r o c e e d  b y  a s s u m in g  th a t  th e  d e s ir e d  c o n c lu s io n  is  f a l s e  a n d  

d e r iv in g  a  c o n t r a d ic t io n  f r o m  th is  a s s u m p t io n .  T h e  c o n c l u s i o n  m u s t  t h e r e f o r e  b e  t r u e . S u c h  

p r o o f s  a r e  o f t e n  f a k e s ,  in  t h e  s e n s e  t h a t  t h e  a r g u m e n t  b y  c o n t r a d ic t io n  is  e a s i ly  t u r n e d  in t o  a  

d ir e c t  p r o o f .  H e r e  is  a n  e x a m p le :

P r o p o s i t io n  A . l .6 L e t  cp: S  —► T  b e  a n  in j e c t iv e  m a p  b e t w e e n  f in i t e  s e t s .  I f  cp is b i j e c t iv e ,  

t h e n  |S |  =  | T |

P r o o f  S in c e  w e  a r e  g iv e n  th a t  cp is  in j e c t iv e ,  cp w i l l  b e  b i j e c t iv e  if  a n d  o n ly  i f  it  is  s u r j e c t iv e .  
W e  a s s u m e  t h a t  |S |  =  | T | ,  b u t  th a t  cp is n o t  s u r j e c t iv e .  T h e n  t h e r e  is  a n  e l e m e n t  t in  T , w h ic h
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is  n o t  in  t h e  im a g e  o f  S .  T h is  b e in g  s o ,  cp a c t u a l ly  m a p s  S  in j e c t iv e ly  t o  t h e  s e t  T '  =  T  -  {t}. 

T h e n  P r o p o s i t io n  A . l . 4  t e l l s  u s  th a t  |S |  ::  I T\  =  | T \ -  1 a n d  th is  c o n t r a d ic t s  |S |  =  | T |.  □

T r y  n o t  t o  a r r a n g e  p r o o f s  t h is  w a y .  T h e  a s s u m p t io n  m a d e  in  th e  p r o o f  t h a t  | S \ =  I T | is 

i r r e le v a n t .  P u t  p o s i t i v e ly ,  th e  a r g u m e n t  s h o w s  t h a t  i f  a n  in j e c t iv e  m a p  cp i s n ’t b i j e c t iv e ,  t h e n  

|S |  <  |T | .
I f  X  s t a n d s  fo r  s o m e  s t a t e m e n t ,  w e  l e t  not X  s t a n d  fo r  t h e  s t a t e m e n t  t h a t  X  i s  f a ls e .  

T h e  a s s e r t io n  “ i f  not B, t h e n  not A ” is  t h e  contrapositive o f  t h e  a s s e r t io n  “ i f  A, t h e n  B , ”  

a n d  is  lo g ic a l ly  e q u iv a le n t  w i t h  it . T h e  a r g u m e n t  p r e s e n t e d  a b o v e  p r o v e s  t h e  c o n t r a p o s i t i v e  

o f  t h e  a s s e r t io n  o f  t h e  p r o p o s i t io n .
I t  i s n ’t e a s y  to  f in d  v e r y  s im p le  e x a m p le s  o f  g o o  d  p r o o f s  b y  c o n t r a d ic t io n ,  b u t  t h e r e  a r e  

s o m e  in  th e  t e x t .

A .2  T H E IN T E G E R S

W e  le a r n  e l e m e n t a r y  p r o p e r t i e s  o f  a d d i t io n  a n d  m u l t ip l i c a t io n  o f  in t e g e r s  in  e l e m e n t a r y  
s c h o o l ,  b u t  le t  u s  l o o k  a g a in ,  t o  s e e  w h a t  w o u ld  b e  r e q u ir e d  in  o r d e r  t o  p r o v e  s o m e  o f  

t h e  p r o p e r t i e s ,  s u c h  a s  t h e  a s s o c ia t iv e  a n d  d is t r ib u t iv e  la w s . C o m p le t e  p r o o f s  r e q u ir e  a  fa ir  
a m o u n t  o f  w r it in g , a n d  w e  w i l l  o n ly  m a k e  a  s ta r t  h e r e .  I t  is  c u s to m a r y  t o  b e g in  b y  d e f in in g  
a d d i t io n  a n d  m u l t ip l i c a t io n  f o r  p o s i t i v e  in t e g e r s .  N e g a t iv e  n u m b e r s  a r e  in t r o d u c e d  la te r .  

T h i s  m e a n s  th a t  s e v e r a l  c a s e s  h a v e  t o  b e  t r e a t e d  a s  o n e  g o e s  a lo n g ,  w h ic h  is  b o r in g ,  o r  e l s e  a  

c l e v e r  n o t a t io n  h a s  t o  b e  fo u n d  t o  a v o id  su c h  a  c a s e  a n a ly s is .  W e  w il l  c o n t e n t  o u r s e lv e s  w i t h  

a  d e s c r ip t io n  o f  t h e  o p e r a t io n s  o n  p o s i t i v e  in t e g e r s .  P o s i t iv e  in t e g e r s  a r e  a l s o  c a l l e d  natural 
numbers.

T h e  s e t  N  o f  n a tu r a l  n u m b e r s  i s  c h a r a c t e r iz e d  b y  t h e s e  p r o p e r t ie s :

Peano's Axioms
•  T h e  s e t  N  c o n t a in s  a  p a r t ic u la r  e l e m e n t  1.

•  Successor function: T h e r e  i s  a  m a p  ct: N  - +  N  th a t  s e n d s  a n  in t e g e r  t o  a n o t h e r

in t e g e r ,  c a l l e d  t h e  successor o r  next integer. T h is  m a p  is  in j e c t iv e ,  a n d  f o r  e v e r y  n in  

N , O'(n) 1.

•  Induction axiom: S u p p o s e  t h a t  a  s u b s e t  S  o f  N  h a s  t h e s e  p r o p e r t ie s :

(i) 1 is  a n  e l e m e n t  o f  S ,  a n d

(ii) i f  n i s  in  S ,  t h e n  O'(n) is  in  S .

T h e n  S  c o n t a i n s  e v e r y  n a tu r a l  n u m b e r :  S  =  N .

T h e  s u c c e s s o r  O'(n) w ill  tu r n  in t o  n +  1 w h e n  a d d i t io n  is  d e f in e d .  A t  th is  s t a g e  th e  n o t a t io n  

n +  1 c o u ld  b e  c o n f u s in g .  I t  is  b e t t e r  t o  u s e  a  n e u tr a l  n o t a t io n ,  a n d  w e  w il l  d e n o t e  t h e  

s u c c e s s o r  b y  n' f o r  n o w . T h e  s u c c e s s o r  f u n c t io n  a l lo w s  u s  to  u s e  t h e  n a tu r a l  n u m b e r s  fo r  

c o u n t in g ,  w h ic h  is  th e  b a s is  o f  a r i t h m e t ic .
T h e  i n d u c t io n  p r o p e r t y  c a n  b e  d e s c r ib e d  in t u i t iv e ly  b y  s a y in g  th a t  t h e  n a tu r a l  n u m b e r s  

a re  o b t a in e d  fr o m  1 b y  r e p e a t e d ly  t a k in g  th e  n e x t  in te g e r :

N  =  {1 , 1 ' , 1 " ,  . . . }  ( =  {1,  2 ,  3,  . . . }  ) .
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I n  o t h e r  w o r d s ,  c o u n t in g  r u n s  t h r o u g h  a ll  n a tu r a l  n u m b e r s .  T h is  p r o p e r t y  i s  t h e  b a s is  o f  

in d u c t io n  p r o o f s .

P e a n o ’s  a x io m s  c a n  a l s o  b e  u s e d  t o  m a k e  r e c u r s iv e  d e f in i t io n s .  T h e  p h r a s e s  recursive 
definition, o r  inductive definition, r e f e r  t o  t h e  d e f in i t i o n 'o f  a  s e q u e n c e  o f  o b j e c t s  C n  in d e x e d  

b y  t h e  n a tu r a l  n u m b e r s ,  in  w h i c h  e a c h  o b j e c t  is  d e f in e d  in  t e r m s  o f  t h e  p r e c e d in g  o n e .  F o r  

in s t a n c e ,  a  r e c u r s iv e  d e f in i t io n  o f  t h e  f u n c t io n  x n is

T h e  im p o r ta n t  p o in t s  are:

( A .2 .1 )  C i  i s  d e f in e d ,  a n d  a  r u le  i s  g iv e n  fo r  d e t e r m in in g  C n , ( =  Cn+\ ) f r o m  Cn.

It is  in t u i t iv e ly  c le a r  th a t  t h e s e  p r o p e r t ie s  d e t e r m in e  th e  s e q u e n c e  Cn u n iq u e ly ,  t h o u g h  to  

g iv e  a  q u ic k  p r o o f  o f  th is  fa c t  f r o m  P e a n o ’s  a x io m s  i s n ’t e a s y .  W e  w o n ’t c a r r y  th e  p r o o f  o u t .
G iv e n  t h e  s e t  o f  p o s i t i v e  in t e g e r s  a n d  th e  a b i l i t y  to  m a k e  r e c u r s iv e  d e f in i t io n s ,  w e  c a n  

d e f in e  a d d i t i o n  a n d  m u l t ip l i c a t io n  o f  p o s i t i v e  in t e g e r s  a s  f o l lo w s :

( A  2 2) Addition: m  +  1 =  m '  a n d  m  +  n '  =  ( m  +n) ' .
Multiplication: m l  =  m  an d  m n '  =  m n + m .

In  t h e s e  d e f in i t io n s ,  w e  t a k e  a n  a r b itr a r y  in t e g e r  m  a n d  d e f in e  a d d i t io n  a n d  m u l t ip l i c a t io n  

f o r  th a t  in t e g e r  m  a n d  f o r  e v e r y  n  r e c u r s iv e ly .  In  th is  w a y ,  m  +  n a n d  m  . n  a r e  d e f in e d  f o r  
all m  a n d  n.

T h e  p r o o f s  o f  t h e  a s s o c ia t iv e ,  c o m m u t a t iv e ,  a n d  d is t r ib u t iv e  la w s  f o r  t h e  in t e g e r s  a r e  

e x e r c i s e s  in  in d u c t io n  t h a t  m ig h t  b e  c a l le d  “ P e a n o  p la y in g .”  W e  w i l l  c a r r y  o u t  o n e  o f  th e  

v e r i f i c a t io n s  h e r e  a s  a  s a m p le .

Proof o f the associative law for addition. W e  a r e  t o  p r o v e  t h a t  f o r  a l l  a, b ,  a n d  n  in  N ,  
(a +  b) +  n =  a +  ( b  +  n ) .  W e  f ir s t  c h e c k  t h e  c a s e  n  =  1 fo r  a ll  a a n d  b .  T h r e e  a p p l ic a t io n s  
o f  t h e  d e f in i t io n  g iv e

(a +  b )  +  l  =  ( a  +  b )  =  a  +  b  =  a  +  ( b  +  l ) .

N e x t ,  a s s u m e  t h e  a s s o c ia t iv e  la w  tr u e  fo r  a  p a r t ic u la r  v a lu e  o f  n  a n d  f o r  a l l  a ,  b . T h e n  w e  

v e r i f y  it  f o r  n ' a s  f o l lo w s :

( a  +  b )  +  n '  =  ( a  +  b )  +  ( n  +  1) ( d e f in i t io n )
=  ( ( a  +  b )  +  n )  +  1 ( c a s e  n  =  1)
=  ( a  +  ( b  +  n ) )  +  1 ( in d u c t io n  h y p o t h e s i s )

=  a  +  « b  +  n )  +  l )  ( c a s e  n  =  l )

=  a  +  ( b  +  ( n  +  1»  ( c a s e  n  =  1)

=  a  +  ( b  +  n ' )  ( d e f i n i t io n ) .  □

T h e  p r o o f s  o f  o t h e r  p r o p e r t ie s  o f  a d d i t io n  a n d  m u l t ip l i c a t io n  f o l lo w  s im ila r  l in e s .
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A . 3  Z O R N 'S  L E M M A

A t  a  f e w  p la c e s  in  th e  t e x t ,  w e  r e f e r  t o  Z o r n ’s  L e m m a , a  t o o l  f o r  h a n d lin g  in f in i t e  s e t s .  W e  

n o w  d e s c r ib e  it.

•  A  partial ordering o f  a  s e t  S  is  a  r e la t io n  s  :: s ' ,  w h ic h  m a y  h o ld  b e t w e e n  c e r t a in  e l e m e n t s  

a n d  w h ic h  s a t i s f i e s  t h e  f o l l o w i n g  a x io m s  fo r  a ll  s ,  s ' ,  s"  in  S:

( A .3 .1 )

( i)  s  :: s;

( i i )  i f  s  : :  s '  a n d  s ' : :  s " , t h e n  s  ::  s " ;

( i i i )  i f  s  ::  s ' a n d  s ' : :  s , t h e n  s  =  s '.

A  p a r t ia l  o r d e r in g  is  c a l le d  a  total ordering if , in  a d d it io n ,

( iv )  f o r  all s ,  s f in  S ,  e i t h e r  s  : :  s f o r s f ::  s .

F o r  e x a m p l e ,  le t S  b e  a  s e t  w h o s e  e l e m e n t s  a re  s e t s .  I f  A ,  B  a re  in  S ,  w e  m a y  d e f in e  
A  : :  B  i f  A  is  a  s u b s e t  o f  B: A  C  B. T h is  is  a  p a r t ia l  o r d e r in g  o n  S ,  c a l l e d  t h e  ordering by 
inclusion. W h e t h e r  o r  n o t  i t  is  a  to ta l  o r d e r in g  d e p e n d s  o n  t h e  p a r t ic u la r  c a s e .

A n  e l e m e n t  m  o f  a  p a r t ia l ly  o r d e r e d  s e t  S  is  a  maximal element i f  t h e r e  is  n o  e l e m e n t  s

in  S  w ith  m  : :  s , e x c e p t  fo r  m  i t s e l f .  A  p a r t ia lly  o r d e r e d  s e t  S  m a y  c o n t a in  m a n y  d i f f e r e n t

m a x im a l  e l e m e n t s .  F o r  e x a m p le ,  a  s u b s e t  V  o f  a  s e t  U  is  a  proper  s u b s e t  i f  V  is  n e i t h e r  t h e  

e m p t y  s e t ,  n o r  t h e  w h o le  s e t  U .  T h e  s e t  o f  a l l  p r o p e r  s u b s e t s  o f  t h e  s e t  { l ,  . . . ,  n } , o r d e r e d  

b y  in c lu s io n ,  c o n t a in s  n m a x im a l  e l e m e n t s ,  o n e  o f  w h ic h  is { 2 , 3 ,  4 , . . . ,  n } .
A  n o n e m p t y  f in i t e  p a r t ia l ly  o r d e r e d  s e t  S  c o n t a in s  a t  l e a s t  o n e  m a x im a l  e l e m e n t ,  b u t  

a n  in f in i t e  p a r t ia l ly  o r d e r e d  s e t ,  s u c h  a s  t h e  s e t  o f  in t e g e r s ,  m a y  c o n t a in  n o  m a x im a l  e l e m e n t  

a t a ll . A  t o t a l ly  o r d e r e d  s e t  c o n t a in s  a t m o s t  o n e  m a x im a l  e le m e n t .

•  I f  A  is  a  s u b s e t  o f  a  p a r t ia lly  o r d e r e d  s e t  S ,  th e n  a n  upper bound f o r  A  is  a n  e l e m e n t  b  in  S  

s u c h  t h a t  fo r  a ll a  in  A ,  a  ::  b . A  p a r t ia l ly  o r d e r e d  se t  S  is  inductive i f  e v e r y  t o t a l ly  o r d e r e d  

s u b s e t  T  o f  S  h a s  a n  u p p e r  b o u n d .

A  f in i t e  t o t a l ly  o r d e r e d  s e t  c o n t a in s  a  u n i q u e  m a x im a l .e l e m e n t ,  a n d  is  in d u c t iv e .

L e m m a  A .3 .2  Z o r n ’s  L e m m a .  A n  in d u c t iv e  p a r t ia lly  o r d e r e d  s e t  S  h a s  a t  l e a s t  o n e  m a x im a l  

e le m e n t .

Z o r n ’s  L e m m a  is  e q u iv a le n t  w it h  t h e  axiom ofchoice,  w h ic h  is  k n o w n  t o  b e  i n d e p e n d e n t  

o f  t h e  b a s ic  a x io m s  o f  s e t  t h e o r y .  W e  w o n ’t e n t e r  in t o  a  f u r th e r  d i s c u s s io n  o f  th is  e q u iv a le n c e ,  
b u t w e  w ill s h o w  h o w  Z o r n ’s  L e m m a  c a n  b e  u s e d  t o  s h o w  th a t  e v e r y  v e c t o r  s p a c e  h a s

a  b a s is .

P r o p o s i t io n  A .3 .3  E v e r y  v e c t o r  s p a c e  V  o v e r  a  f ie ld  F  h a s  a  b a s is .

P r o o f .  L e t  S  b e  th e  s e t  w h o s e  e l e m e n t s  a re  t h e  l in e a r ly  in d e p e n d e n t  s u b s e t s  o f  V , p a r t ia lly  

o r d e r e d  b y  in c lu s io n . W e  s h o w  th a t  S  is  in d u c t iv e :  L e t  T  b e  a  t o ta l ly  o r d e r e d  s u b s e t  o f  S .
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T h e n  w e  c la im  th a t  t h e  u n io n  o f  t h e  s e t s  m a k in g  u p  T  i s  a ls o  l in e a r ly  in d e p e n d e n t .  T h is  w il l  

s h o w  th a t  it  is  in  S .  T o  v e r i f y  th is ,  le t

B  =  U A
A e T

b e  t h e  u n io n .  B y  d e f in i t io n ,  a  r e la t io n  o f  l in e a r  d e p e n d e n c e  o n  B  i s  f in i t e ,  s o  i t  c a n  b e  w r it te n  

in  th e  fo r m

( A .3 .4 ) c i  VI +-------+  c n vn =  0,

w i t h  v ;  in  B . S in c e  B  i s  a  u n io n  o f  t h e  s e t s  in  T ,  e a c h  v ,  i s  c o n t a in e d  in  o n e  o f  t h e s e  s u b s e t s ,  
c a l l  it  A , .  T h e  c o l l e c t i o n  { A i ,  . . . ,  A „ }  o f  t h e s e  s u b s e t s  is  a  f in i t e ,  t o t a l ly  o r d e r e d  s u b s e t  o f  

T .  I t  h a s  a  u n iq u e  m a x im a l  e l e m e n t  A .  T h e n  v; is  in  A  fo r  e v e r y  i =  1, . . . ,  n . B u t  s in c e  A  is  

in  S ,  it is  a  l in e a r ly  i n d e p e n d e n t  s e t .  T h e r e f o r e  ( A .3 .4 )  is  th e  tr iv ia l  r e la t io n .  T h is  s h o w s  th a t  

B is  l in e a r ly  i n d e p e n d e n t ,  h e n c e  t h a t  i t  i s  a n  e l e m e n t  o f  S .

W e  h a v e  v e r i f i e d  t h e  h y p o t h e s i s  o f  Z o r n ’s  L e m m a . S o  S  c o n t a in s  a  m a x im a l  e l e m e n t  

M,  a n d  w e  c la im  t h a t  M  is  a  b a s is .  B y  d e f in i t io n  o f  S ,  M  is  l in e a r ly  i n d e p e n d e n t .  L e t  

W  =  S p a n  ( M ) .  I f  W  <  V , t h e n  w e  c h o o s e  a n  e l e m e n t  v  in  V , w h ic h  is  n o t  in  W. T h e  s e t  

M  U {v } w i l l  b e  l in e a r ly  in d e p e n d e n t .  T h i s  c o n t r a d ic t s  t h e  m a x im a l i t y  o f  M  a n d  s h o w s  t h a t  
W  =: V ,  h e n c e  t h a t  M  is  a  b a s is .  □

A  s im ila r  a r g u m e n t  p r o v e s  T h e o r e m  ( 1 1 .9 .2 )  o f  C h a p te r  11:

Proposition A.3.S L e t  R  b e  a  r in g . E v e r y  id e a l  1  =1= R  i s  c o n t a in e d  i n  a  m a x im a l  id e a l .  □  

A.4 THE IMPLICIT FUNCTION THEOREM
T h e  I m p l ic i t  F u n c t io n  T h e o r e m  fo r  c o m p le x  p o ly n o m ia l  f u n c t io n s  i s  u s e d  a  f e w  t im e s  in  
t h is  b o o k ,  a n d  f o r  la c k  o f  a  r e f e r e n c e ,  w e  d e r iv e  it  h e r e  f r o m  th e  t h e o r e m  f o r  r e a l  v a lu e d  

f u n c t io n s  th a t  w e  s t a t e  b e lo w .  T h e  t h e o r e m  f o r  r e a l  v a lu e d  f u n c t io n s  c a n  b e  f o u n d  in  [ R u d in ] ,  

T h e o r e m  9 .2 7 .

Theorem A.4.1 Implicit Function Theorem. L e t  ( x ,  y ) ,  . . .  , / r ( x ,  y )  b e  f u n c t io n s  o f n  +  r  
r e a l  v a r ia b le s  X ] ,  . . • , x m , y i  . . . ,  y r , w h ic h  h a v e  c o n t in u o u s  p a r t ia l  d e r iv a t iv e s  in  a n  o p e n  

s e t  o f  ]Rn + r  c o n t a in in g  t h e  p o in t  ( a ,  b).  A s s u m e  th a t  t h e  J a c o b ia n  d e t e r m in a n t

d e t

is  n o t  z e r o  a t  th e  p o in t  ( a ,  b ) .  T h e r e  is  a  n e ig h b o r h o o d  U  o f  th e  p o in t  a  in  ]Rn su c h  th a t  
t h e r e  a r e  u n iq u e  c o n t in u o u s ly  d i f f e r e n t ia b le  f u n c t io n s  Y  1 ( x ) ,  . . . ,  Y r ( x )  o n  U  s a t i s f y in g

“ f i
d y t  ' ' 3 y r

a f r

_  d y t  ■ '  a y r  _

/ i(x ,  Y (x ) )  =  0 for i = 1, • ■. , r, and Y (a )  =  b. □
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T h e  p a r t ia l  d e r iv a t iv e s  o f  a c o m p le x  p o ly n o m ia l  f ( x ,  y )  a r e  d e f in e d  u s in g  t h e  r u le s  

o f  c a lc u lu s .  B u t  w e  c a n  a l s o  w r i t e  e v e r y t h in g  in  t e r m s  o f  t h e  r e a l  a n d  im a g in a r y  p a r t s ,  s a y  

x  =  Xo + X j i ,  y  =  y o  +  Y i i  w h e r e  x o , x i ,  yo, y i  a r e  r e a l  v a r ia b le s ,  a n d  f  =  f o  +  i I i ,  

w h e r e  f i  =  f ' ( x o ,  x i ,  y o ,  Y i )  is  a  r e a l - v a lu e d  f u n c t io n  o f  th e  fo u r  r e a l  v a r ia b le s .  S in c e  f  is  a  

p o ly n o m ia l  in  x  a n d  y ,  th e  r e a l  f u n c t io n s  f i  a r e  p o ly n o m ia l s  in  th e  r e a l  v a r ia b le s  X i a n d  y i .  

S o  t h e y  h a v e  c o n t in u o u s  p a r t ia l  d e r iv a t iv e s .

Lemma A.4.2 L e t  f ( x ,  y )  b e  a  p o l y n o m i a l  in  t w o  v a r ia b le s  w i t h  c o m p le x  c o e f f ic ie n t s .  T h e n  

w it h  n o t a t io n  a s  a b o v e ,

a f  a f o  a f i  .(a) —  =  —  +  i ,  a n d
- y  - y o  - y o

(b) (Cauchy-Riemann equations) a n d  - - 1— = - - 1 .
a y o  a y i  a y i  d y o

Proof. O n e  ca n  u se  th e  p r o d u c t  r u le  to  v e r ify  t h e s e  f o r m u la s .  S u p p o s e  th a t  f  =  g h .  T h e n  

f o  =  g o h o  — g i h  a n d  /  =  g o h  +  g i h o .  I f  th e  f o r m u la s  a r e  tru e  fo r  g  a n d  h ,  t h e y  f o l lo w  
f o r  f .  S o  it is  e n o u g h  t o  v e r i f y  t h e  l e m m a  fo r  t h e  f u n c t io n s  f  =  y  a n d  f  =  x ,  f o r  w h ic h  t h e y  

a r e  o b v io u s .  □

Theorem A.4.3 Implicit Function Theorem for Complex Polynomials. L e t  f ( x ,  y )  b e  a  

c o m p le x  p o ly n o m ia l .  S u p p o s e  th a t  f o r  s o m e  ( a ,  b )  in  C 2 , f ( a ,  b )  =  0 a n d  ^  ( a ,  b )  * 0  

T h e r e  is  a  n e ig h b o r h o o d  U  o f  x  in  

h a v in g  t h e  p r o p e r t ie s
f ( x ,  Y ( x »

o n  w h ic h  a  u n iq u e  c o n t in u o u s  f u n c t io n  Y ( x )  e x i s t s  

0 a n d  Y ( a )  =  b .

Proof  W e  r e d u c e  t h e  t h e o r e m  t o  t h e  r e a l  I m p l ic i t  F u n c t io n  T h e o r e m  A .4 .1 .  T h e  s a m e  

a r g u m e n t  w i l l  a p p ly  w h e n  t h e r e  a r e  m o r e  v a r ia b le s .

W it h  n o t a t i o n  a s  a b o v e ,  w e  a r e  t o  s o lv e  t h e  p a ir  o f  e q u a t io n s  f o  =  f i  =  0  f o r  y o  a n d  

Y i a s  f u n c t io n s  o f  x o  a n d  x i .  T o  d o  t h is ,  w e  s h o w  th a t  t h e  J a c o b ia n  d e t e r m in a n t

is  n o t  z e r o  a t  ( a ,  b ) .  B y  h y p o t h e s i s ,  f i ( a o ,  a i ,  b o ,  b i )  =  0 . A l s o ,  s in c e  ^  ( a ,  b )  * 0 ,  L e m m a

A .4 .2 ( a )  t e l l s  u s  th a t  ^  =  d o  a n d  , v
■ '  ’ ayo ‘lyo

th a t  t h e  J a c o b ia n  d e t e r m in a n t  is

d e t

A d i ,  a r e  n o t  b o th  z e r o .  P a r t  (b) o f  t h e  l e m m a  s h o w s

d o
d i

- d !

d o
d o  +  d i  2 >  0 .

T h is  s h o w s  th a t  th e  h y p o t h e s e s  o f  th e  I m p l ic i t  F u n c t io n  T h e o r e m  ( A .4 .1 )  a r e  s a t i s f ie d .  □
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E X E R C ISE S

S e c t io n  A . l  A b o u t  P r o o fs  

A .I . U s e  in d u c t io n  t o  f in d  a  c lo s e d  fo r m  fo r  e a c h  o f  th e  fo llo w in g  e x p r e s s io n s .

(a) 1 +  3 +  5 +  . . .  +  ( 2n +  1 )

(b )  1 2  +  2 2  +  32 +  - - - + n 2

A .2 . P r o v e  th a t  I 3 +  2  +------ +  n3 =  (n(n  +  1))2 /4.
A .3 . P r o v e  th a t  1/ (1.  2) +  1/(2 ■3) +  • • •  +  1/ (n(n  +  1 »  =  n/ (n  +  1).
A .4 .  L e t  rp: S  —* T  b e  a  s u r je c t iv e  m a p  b e t w e e n  f in ite  s e ts . P r o v e  b y  in d u c t io n  th a t  |S |  :: |T |  

an d  th a t  i f  |S |  =  |T | ,  t h e n  rp is  b ije c t iv e .

A .S . L e t  n b e  a  p o s i t iv e  in te g e r .  S h o w  th a t  i f  2n — 1 is  a  p r im e  n u m b e r , th e n  n is  p r im e .

A .6. L e t  a „  =  2? n +  1. P r o v e  th a t  a „  =  a o a i  . . . a „  —  +  2.
A .7 .  A  n o n c o n s ta n t  p o ly n o m ia l  w ith  r a t io n a l  c o e f f ic ie n t s  is  c a l le d  ir r e d u c ib le  i f  it  is  n o t  

a p r o d u c t  o f  t w o  n o n c o n s t a n t  p o ly n o m ia ls  w it h  r a t io n a l  c o e f f ic ie n t s . P r o v e  th a t  e v 
e r y  p o ly n o m ia l  w ith  r a t io n a l c o e f f ic ie n t s  c a n  b e  w r it te n  as a p r o d u c t  o f  ir r e d u c ib le  
p o ly n o m ia ls .

S e c t io n  A .2  T h e  I n te g e r s

A .8. P r o v e  th a t  e v e r y  n a tu r a l n u m b e r  n e x c e p t  1 h a s  th e  fo r m  m' fo r  s o m e  n a tu r a l  
n u m b e r  m .

A .9 . P r o v e  th e  f o l lo w in g  la w s  fo r  th e  n a tu r a l n u m b e r s .

(a) t h e  c o m m u t a t iv e  la w  fo r  a d d it io n ,

(b )  t h e  a s s o c ia t iv e  la w  f o r  m u lt ip lic a t io n ,

(c )  th e  d is tr ib u t iv e  la w ,

(d )  th e  c a n c e l la t io n  la w  f o r  a d d it io n :  i f  a  +  b  =  a  +  c ,  t h e n  b  =  c .

A .1O . T h e  r e la t io n  <  o n  N  c a n  b e  d e f in e d  b y  t h e  r u le  a  <  b i f  b  =  a  +  n fo r  s o m e  n . A s s u m e  
th a t  p r o p e r t ie s  o f  a d d it io n  h a v e  b e e n  p r o v e d .

(a) P r o v e  th a t  i f  a  <  b , t h e n  a  +  n < b  +  n fo r  a l l  n.
( b )  P r o v e  th a t  t h e  r e la t io n  <  is  tr a n s it iv e .

(c )  P r o v e  th a t  i f  a  a n d  b  a r e  n a tu r a l n u m b e r s , th e n  a  < b ,  o r  a  =  b , o r  b  <  a .

A . 1 l .  A s s u m e  th a t  b a s ic  p r o p e r t ie s  o f  t h e  r e la t io n  <  o n  N  a r e  k n o w n  ( s e e  E x e r c is e  A .1 O ). P r o v e  
th e  p r in c ip le  o f  complete induction: A  su b s e t  S  o f  N  is e q u a l  t o  N  i f  i t  h a s  th e  f o l lo w in g  
p r o p e r ty :  I f  n is  a n  e le m e n t  o f  N  s u c h  th a t  m  is  in  S  fo r  e v e r y  m  <  n, th e n  n is  in  S .
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S e c t io n  A .3  Z o r n ’s  L e m m a  

A .1 2 . L e t  S  b e  a p a r t ia lly  o r d e r e d  se t .

( a )  P r o v e  th  a t if  S  c o n t  a in s  a n  u p p e r  b o u n d  b ,  th e n  b  is  u n iq u e , a n d  a ls o  b  is  a m a x im a l  
e le m e n t .

(b )  P r o v e  th a t  if  S  is t o ta l ly  o r d e r e d , th e n  a m a x im a l e  le m e n t  m  is an  u p p e r  b o u n d  fo r  S .

A .1 3 .  U se  Z o r n ’s L e m m a  to  p r o v e  th a t  e v e r y  id e a l  I  o f  a r in g  R  th a t  is  n o t  R  i t s e l f  is  c o n ta in e d  
in  a m a x im a l id e a l.

S e c t io n  A .4  T h e  Im p lic it  F u n c t io n  T h e o r e m  

A .1 4 . P r o v e  L e m m a  (A .4 .2 ) .

A .1 S . L e t  f ( x ,  y )  b e  a  c o m p le x  p o ly n o m ia l .  A s s u m e  th a t  t h e  e q u a t io n s

1  =  0, —  = 0, —  = 0, 
a x  dy

h a v e  n o  c o m m o n  s o lu t io n  in  ( [ 2 . P r o v e  th a t  the lo c u s  f  =  0  is  a m a n ifo ld  o f  d im e n s io n  2.
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( A )  t h e  c la s s  o f  t h e  id e a l  A  ( 1 3 .7 .2 )

A  t h e  t r a n s p o s e  o f  t h e  m a tr ix  A  ( 1 .3 .1 )

A n t h e  a l t e r n a t in g  g r o u p  ( 2 .5 .6 )

C  t h e  f i e ld  o f  c o m p l e x  n u m b e r s  ( 2 .2 .2 )

Cn t h e  c y c l i c  g r o u p  o f  o r d e r  n  ( 6 .4 .1 )

C(x)  t h e  c o n j u g a c y  c la s s  o f  t h e  e l e m e n t  x  ( 7 .2 .3 )

c o f ( A )  t h e  c o f a c t o r  m a tr ix  o f  t h e  m a tr ix  A  ( 1 .6 .7 )

D n t h e  d ih e d r a l  g r o u p  ( 6 .4 .1 )

d e t A  t h e  d e t e r m in a n t  o f  t h e  m a tr ix  A  ( 1 .4 .1 )

ei, ei j  a  s t a n d a r d  b a s i s  v e c t o r  ( 1 .1 .2 4 ) ,  a  m a tr ix  u n it  ( 1 .1 .2 1 )
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G Ln  th e  g e n e r a l  l in e a r  g r o u p  ( 2 .2 .4 )

I ,  I  t h e  id e n t i t y  m a tr ix  ( 1.1.11) ,  t h e  i c o s a h e d r a l  g r o u p  (6.12.1)

im cp  t h e  im a g e  o f  t h e  m a p  cp ( 2 .5 .4 )

kercp  t h e  k e r n e l  o f  t h e  h o m o m o r p h i s m  cp ( 2 .5 .5 ) ,  ( 4 .1 .5 )

K g  a  f ix e d  f ie ld  ( 1 6 .5 .1 )

t h e  s p a c e  o f  b o u n d e d  s e q u e n c e s  ( 3 .7 .2 )

M , Mn t h e  g r o u p  o f  i s o m e t r i e s  o f  t h e  p la n e ,  o f  n - s p a c e  ( S e c t io n  6 .2 )

N  t h e  s e t  o f  p o s i t i v e  in t e g e r s ,  a l s o  c a l l e d  natural numbers ( A .2 .1 )

N ( H )  t h e  n o r m a l iz e r  o f  t h e  s u b g r o u p  H  ( 7 .6 .1 )

n !  n  f a c to r ia l:  t h e  p r o d u c t  o f  t h e  in t e g e r s  1, 2, . . .  , n .

(” ) a  b in o m ia l  c o e f f i c ie n t  ( A .1 .1 )

O n t h e  o r t h o g o n a l  g r o u p  ( 6 .7 .3 ) ,  ( 9 .1 .2 )

0 3 j t h e  L o r e n t z  g r o u p  ( 9 .1 .5 )
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K the field of real numbers (2.2.2)

R + the additive group of R  (2.1.1)

Rx the multiplicative group of invertible elements of R  (2.1.1)

Sn, the symmetric group (2.2.5)

S" the n-dimensional sphere (Section 9.2)

S L n the special linear group (2.2.11), (9.1.3)

SO n the special orthogonal group (5.1.11), (9.1.3)

SPzn the symplectic group (9.1.4)

SUn the special unitary group (9.1.3)

T  the tetrahedral group (6.12.1)

Un the unitary group (8.3.14), (9.1.3)

<x> the subgroup generated by the element x (2.4.1)

Z  the center of a group (2.5.12)

Z the ring of integers (2.2.2)

Z(x) the centralizer of the element x (7.2.2)

l;n the nth root of unity e2: r >  (12.4.7)

LJLJ the largest integer :: JL: the floor of JL (13.7.7)

co the cube root of unity e2:r'/3 (10.4.14)

«  indicates that two structures are isomorphic, as in G ~ G' (2.6.3)

= congruence, as in a-=b modulo n (2.9.1), see also (2.8.2), (2.7.14)

* If A is a complex matrix, then A * is the adjoint matrix A1 (8.3.5)
In a matrix display, * denotes an undetermined entry.
The starred exercises are some of the more difficult ones.

© direct sum (3.6.5), (14.7.2)

If S and T are sets, we use the following notation:

|S| the number of elements, the order, of the set S

[S] the subset S, when it is regarded as an element of a set of subsets
(2.7.8)

S E S S is an element of S.

S C  T  S is a subset of T, or S is contained in T. In other words, every element
of S is also an element of T.
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T  ::) S T  c o n t a in s  S , w h ic h  is  th e  s a m e  a s  S  C T .

S  <  T  S  is  a  p r o p e r  s u b s e t  o f  T , m e a n in g  th a t  it is  a  s u b s e t ,  a n d  T  c o n t a in s

a n  e l e m e n t  th a t  is  n o t  a  m e m b e r  o f  S .

T >  S  T h is  is  th e  s a m e  a s  S  <  T .

S  n  T  th e  intersection o f  th e  se ts :  th e  s e t  o f  a ll  e l e m e n t s  in  c o m m o n  to  S  a n d

T .

S  U  T  th e  union o f  th e  se ts :  th e  s e t  o f  a ll e l e m e n t s  th a t  a re  c o n t a in e d  in  a t

l e a s t  o n e  o f  t h e  s e t s  S  o r  T .

S x  T  th e  product  s e t .  Its e l e m e n t s  a r e  o r d e r e d  p a ir s  ( s ,  t ) ,  w ith  s  in  S  a n d  t
in  T .

cp: S  —> T  a  m a p  cp f r o m  S  to  T , a  f u n c t io n  w h o s e  d o m a in  is  S  a n d  w h o s e  r a n g e  

is  T .

s""'" t  T h is  w ig g ly  a r r o w  in d ic a t e s  th a t  th e  m a p  u n d e r  c o n s id e r a t io n  s e n d s
t h e  e l e m e n t  s  t o  t h e  e l e m e n t  t , i . e . ,  th a t  c p (s )  =  t.

□  T h is  s y m b o l  in d ic a t e s  t h a t  a  d ig r e s s io n  in  th e  t e x t ,  s u c h  a s  a  p r o o f  o r

a n  e x a m p l e ,  h a s  e n d e d ,  a n d  th a t  th e  t e x t  r e tu r n s  to  th e  m a in  th r e a d . □
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C u t  a n d  p a s t e ,  4 6 5 - 6 8  

C y c le  n o t a t io n ,  2 4  

C y c lic  g r o u p , 4 6 - 4 7 , 1 6 3 , 1 8 3 ,  2 0 8  

g e n e r a t o r  fo r ,  8 4  

in f in i t e ,  4 7  

o f  o r d e r  n ,  4 6  

C y c l ic  R - m o d u l e ,  4 3 2  

C y c lo t o m ic  p o ly n o m ia l ,  3 7 4

D

D e f in in g  r e la t io n s ,  2 1 2  

D e g e n e r a t e  c o n ic ,  2 4 5  

D e g r e e
o f  f ie ld  e x t e n s i o n ,  4 4 6 - 4 9  

o f  a  m o n o m ia l ,  3 2 7  

m u lt ip l i c a t iv e  p r o p e r t y  o f ,  4 4 7  

t o t a l ,  3 2 7  

w e ig h t e d ,  4 8 2  

D e t e r m i n a n t  h o m o m o r p h i s m ,  4 9 ,  5 6 , 6 2  
D e t e r m in a n t ,  7 , 1 8 - 2 4

c o m p l e t e  e x p a n s io n  o f ,  2 9  

f o r m u la s  fo r ,  2 7 - 3 1  

m u lt ip l i c a t iv e  p r o p e r t y  o f ,  2 1 - 2 4  

o f  p e r m u t a t io n  m a tr ix ,  2 7  

r e c u r s iv e  d e f in i t i o n  o f ,  20 
o f  R - m a t r ix ,  4 1 4  

u n iq u e n e s s  o f ,  20-21 
V a n d e r m o n d e ,  5 1 1  

D i a g o n a l  e n t r ie s ,  6 
D i a g o n a l  f o r m , 1 1 6 - 1 9  

D ia g o n a l i z a b l e  m a tr ix ,  1 1 7  

D ia g o n a l i z a b le  o p e r a t o r ,  1 1 9  

D i a g o n a l  m a tr ix ,  6 
D i c h o t o m y ,  5 1 3

D i f f e r e n t ia l  e q u a t io n s ,  1 4 1 - 4 5 ,  1 5 1  

D i h e d r a l  g r o u p , 1 6 3 ,  1 8 3 , 3 1 6  
D i m e n s i o n ,  8 6 - 9 1  

o f  c h a r a c t e r ,  2 9 9  

o f  v e c t o r  s p a c e ,  9 0  

o f  l in e a r  g r o u p ,  2 6 2  

D i m e n s i o n  f o r m u la ,  1 0 2 - 4  

D i r e c t  s u m s ,  9 5 - 9 6 ,  2 9 5  

o f  m o d u le s ,  4 2 9  

o f  s u b m o d u le s ,  4 3 0

D i s c r e t e  g r o u p , 1 6 7 - 7 2  

D is c r e t e  s u b g r o u p ,  1 6 8  

D is c r im in a n t ,  4 8 1 - 8 3  
D is t in c t ,  1 7

D is t r ib u t iv e  la w , 5 , 8 1 , 3 2 4  

f o r  c o n g r u e n c e  c la s s e s ,  61  

f o r  m a tr ix  m u l t ip l i c a t io n ,  1 4 7  

f o r  v e c t o r  s p a c e s ,  8 4  

D i v i d e  a n d  c o n q u e r ,  5 1 3  

D iv i s o r
g r e a t e s t  c o m m o n ,  4 4 - 4 5 ,  3 3 4 , 3 5 9 ,  

3 6 2  

z e r o ,  3 4 3  

D o m a i n

E u c l id e a n ,  3 6 1 , 3 7 6  
f a c t o r iz a t io n ,  3 6 0 - 6 7 , 3 7 9 , 4 0 0  

in te g r a l ,  3 4 3  

p r in c ip a l  id e a l ,  3 6 1  

u n iq u e  f a c t o r iz a t io n ,  3 6 4  

D o t  p r o d u c t ,  1 3 2 , 2 2 9  

D o u b l e  c o s e t ,  7 6

E

E ig e n s p a c e ,  1 2 6  

g e n e r a l iz e d ,  131  

E i g e n v a l u e ,  1 1 1 , 1 1 3 ,1 1 4 ,  1 1 6 ,2 3 4  

E i g e n v e c t o r s ,  1 1 0 - 1 3 ,  1 1 6 , 1 2 4  

g e n e r a l iz e d ,  120 
p o s i t iv e ,  112 

E i s e n s t e i n  c r i t e r io n ,  3 7 3 - 7 4  
E le m e n t a r y  i n t e g e r  m a tr ix ,  4 1 8  

E le m e n t a r y  m a tr ix ,  1 0 - 1 2 ,  7 7  

E l e m e  n ta r y  r o w  o p e r a t io n ,  1 0  

E le m e n t a r y  s y m m e t r ic  f u n c t io n ,  4 7 8  

E l e m e n t s

a d jo in in g ,  3 3 8 - 4 1  

a lg e b r a ic ,  4 4 3 - 4 6  
i n v e r s e  i m a g e  o f ,  55  

ir r e d u c ib le ,  4 4 4  

m a x im a l ,  5 1 8  

n o r m  o f ,  3 8 6  

p r im e ,  3 6 0  

p r im it iv e ,  4 6 2 - 6 3  

r e la t iv e ly  p r im e ,  3 6 2  

r e p r e s e n t a t iv e ,  5 5
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Elements (continued) 
solvable, 502 
stabilizer of, 177 -78 
transcendental, 443-46 
zero, 417 

Ellipse, 246 
Ellipsoid, 248, 269 
Equation, 4

Cauchy-Riemann, 520 
class, 195-97 
cubic, 492-93 
differential, 141-45 
homogeneous, 15, 88, 92 
quartic, 493 -97 
quintic, 502-5 

Equator, 265, 267 
Equivalence relation, 52-56 

defined, 53
defined by a map, 55-56 
reflexive, 53 
symmetric, 53 
transitive, 53 

Euclidean Algorithm, 45, 367 
Euclidean domain, 361, 376 
Euclidean space, 241-42 

standard, 241 
Euler’s theorem, 137-38 
Exceptional group, 283 
Expansion by minors, 19, 28 

on the ith row, 28 
Extension

algebraic, 472 
cubic, 446 
field, 442 
finite, 446
Galois, 485, 488-89 
Kummer, 500-502 
ring, 338

F

Factoring, 359-82
algebraic integers, 385--87 
Gauss primes, 376-78 
Gauss’s lemma, 367-71 
ideals, 392-94, 409

integer polynomials, 371-75, 380-81 
integers, 359, 378
unique factorization domains, 360-67 

Factorization 
ideal, 391
irreducible, 364, 365 
prime, 365 

Faithful operation, 182 
Faithful representation, 291 
F-automorphism, 484 
Fermat’s theorem, 99 
Fibonacci numbers, 152 
Field extension, 442 

algebraic, 486 
degree of, 446-49 
isomorphism of, 445, 484-86 

Fields, 80-84, 98-99, 442-76 
adjoining roots, 456-59 
algebraically closed, 471 
algebraic and transcendental elements, 

443-46 
characteristic of, 83
finding irreducible polynomials, 449-50
finite, 442, 459-62
fixed, 486-88
function, 442-43, 463-71
intermediate, 488
number, 442
quadratic number, 383-411 
of rational functions, 344 
real quadratic, 402-5 
ruler and compass constructions, 

450-55 
splitting, 483-84 
tangent vector, 280 

Finite abelian group, 431 
Finite-dimensional vector space, 89 

dimension of, 90 
subspaces of, 95 

Finite extension, 446 
Finite field, 442, 459-62 

order of, 459 
Finite group, 41

homomorphism of, 58 
of orthogonal operators on plane, 

163-67
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F in i t e ly  g e n e r a t e d  m o d u le ,  4 1 5  

F in i t e  s im p le  g r o u p ,  2 8 3  

F in i t e  s u b g r o u p s  o f r o t a t i o n  g r o u p ,  1 8 3 - 8 7  

F ir s t  I s o m o r p h is m  T h e o r e m ,  6 8 - 6 9 ,  2 1 5 ,  

3 3 5 ,  4 1 4 ,  4 3 2 ,  4 9 2  

F ix e d  f ie ld ,  4 8 6 - 8 8  

F ix e d  F ie ld  T h e o r e m ,  4 8 7  -88 
F ix e d  p o in t  t h e o r e m ,  1 6 6 , 1 9 8  

F ix e d  v e c t o r ,  1 1 1  

F o r m

H e r m it ia n ,  2 3 2 - 3 5  

K il l in g ,  2 8 9  

L o r e n t z ,  2 3 1  
m a tr ix  o f ,  2 3 0  

n o n d e g e n e r a t e ,  2 3 6 ,  2 5 2  

q u a d r a t ic ,  2 4 6  

r a t io n a l  c a n o n ic a l ,  4 3 5  

s ig n a t u r e  o f ,  2 4 0  

s k e w - s y m m e t r ic ,  2 3 0 , 2 4 9 - 5 2  

s y m m e tr ic ,  2 3 0  
F o u r ie r  m a tr ix ,  2 6 0  
F r a c t io n s ,  3 4 2 - 4 4  

F r e e  a b e l ia n  g r o u p , 2 2 5  

F r e e  g r o u p , 2 1 0 - 1 1

m a p p in g  p r o p e r t y  o f ,  2 1 4  

F r e e  m o d u le s ,  4 l 2 ,  4 3 7  

s u b m o d u le s  o f ,  4 2 1 - 2 3  

F r o b e n iu s  m a p , 3 5 5 ,  5 1 1  

F r o b e n iu s  r e c ip r o c i t y ,  3 2 1  
F u n c t io n  f i e ld ,  4 4 2 - 4 3 ,  4 6 3 - 7 1  

c u t an d  p a s t e ,  4 6 5  -68 
F u n c t io n s

r a t io n a l ,  4 8 7  

s u c c e s s o r ,  5 1 6  

s y m m e tr ic ,  4 7 7  - 8 1  

F u n d a m e n t a l  d o m a in ,  1 9 3  

F u n d a m e n ta l  T h e o r e m  

o f  A lg e b r a ,  4 7 1  

o f  A r i t h m e t i c ,  3 5 9 , 3 6 3

G

G a l o i s  e x t e n s i o n ,  4 8 5 ,  4 8 8 - 8 9
c h a r a c t e r i s t i c  p r o p e r t ie s  o f ,  4 8 8 - 8 9  

G a l o i s  g r o u p , 4 8 5

o f  a  p o ly n o m ia l ,  4 8 9

G a lo i s  t h e o r y ,  4 7 7 - 5 1 2  

f o r  a  c u b ic ,  4 9 3  

c u b ic  e q u a t io n s ,  4 9 2 - 9 3  
d is c r im in a n t ,  4 8 1 - 8 3  

f ix e d  f ie ld s ,  4 8 6 - 8 8  

i s o m o r p h is m s  a n d  f i e ld  e x t e n s i o n s ,  
4 8 4 - 8 6

K u m m e r  e x t e n s io n s ,  5 0 0 - 5 0 2  

M a in  T h e o r e m ,  4 8 9 - 9 2  

q u a r t ic  e q u a t io n s ,  4 9 3 - 9 7  

q u in t ic  e q u a t io n s ,  5 0 2 - 5  

r o o t s  o f  u n i ty ,  4 9 7  - 5 0 0  

s p l i t t in g  f ie ld s ,  4 8 3 - 8 4  
s y m m e tr ic  f u n c t io n s  a n d , 4 7 7  - 8 1  

G a u s s  in te g e r ,  3 2 3 , 3 8 6  

G a u s s  p r im e , 3 7 6 - 7 8 ,  3 9 4  

G a u s s ’s le m m a , 3 6 7 - 7 1  

G e n e r a l i z e d  e i g e n s p a c e ,  131  

G e n e r a l i z e d  e i g e n v e c t o r ,  1 2 0  

G e n e r a l  l in e a r  g r o u p ,  8, 41  

in t e g e r ,  4 1 8  
o v e r  R , 4 1 4  

G e n e r a t o r s ,  2 1 2 - 1 6 ,  2 2 5 - 2 6 ,  4 2 3 - 2 6 ,  4 3 8  

J o r d a n , 1 2 2  

o f  a  m o d u le ,  4 1 5  

G e o m e t r y ,  a lg e b r a ic ,  3 4 7 - 5 3 ,  3 5 7 - 5 8  

G l i d e  r e f le c t io n .  1 6 0  

G l id e  s y m m e tr y ,  155  

G r a m -S c h m id t  p r o c e d u r e ,  2 4 1  
G r e a t e s t  c o m m o n  d iv i s o r ,  4 4 ,  3 3 4 ,  3 5 9 ,  3 6 2  

G r o u p  h o m o m o r p h i s m ,  4 8  

G r o u p  o p e r a t io n ,  1 7 6 - 7 8  

G r o u p  r e p r e s e n t a t io n ,  2 9 0 - 3 2 2  

G r o u p s ,  3 7 - 7 7

a b e l ia n ,  4 0 ,  8 1 ,  4 1 2 - 1 3 ,  4 2 1

a f f in e , 2 8 8
a l t e r n a t in g ,  4 9 ,  6 3
a v e r a g in g  o v e r ,  2 9 4

c e n t e r  o f ,  5 0 ,  1 9 6

c ir c le ,  2 6 2

c o m p a c t ,  3 1 1

c o m p le x  a lg e b r a ic ,  2 8 2

c o r r e s p o n d e n c e  t h e o r e m ,  6 1 - 6 4
c o s e t s ,  5 6 - 5 9
c r y s ta l lo g r a p h ic ,  1 8 7
c y c l ic ,  4 6 - 4 7 ,  6 4 ,1 6 3 ,  1 8 3
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G r o u p s  (continued) 
d e f in e d , 4 0

d e f in in g  r e la t io n s  fo r ,  4 2  

d ih e d r a l ,  16 3 , 1 8 3  

d i s c r e t e ,  1 6 7  - 7 2

e q u i v a l e n c e  r e la t io n s  a n d  p a r t i t io n s ,  

5 2 - 5 6  

e x c e p t i o n a l ,  2 8 3  

f in i t e ,  4 1 ,  1 6 3 - 6 7  

f in i t e  s im p le ,  2 8 3  

f r e e ,  210-11 
f r e e  a b e l ia n ,  2 2 5  

G a lo i s ,  4 8 5  

g e n e r a l  l in e a r , 41  

h o m o m o r p h is m s ,  4 7 - 5 1  

h o m o p h o n ic ,  7 7  

i c o s a h e d r a l ,  1 8 3  

in f in i t e ,  4 1  

i s o m o r p h ic ,  51  
i s o m o r p h is m  o f ,  5 1 - 5 2  

la w s  o f  c o m p o s i t i o n ,  3 7 - 4 0  

l in e a r ,  2 6 1 - 8 9  

L o r e n t z ,  2 6 2  

M a t h ie u ,  2 8 3
m o d u la r  a r i t h m e t ic ,  6 0 - 6 1  

m u lt ip l ic a t iv e ,  8 4  

n o n a b e l ia n ,  222 
o c t a h e d r a l ,  1 8 3  

o n e - p a r a m e t e r ,  2 7 2 - 7 5  

o p e r a t io n  o f ,  2 9 3  

o p p o s i t e ,  7 0  

o r d e r  o f ,  4 0  

o r t h o g o n a l ,  1 3 4 , 2 6 1  

p - g r o u p s ,  1 9 7 - 9 8  
p la n e  c r y s t a l lo g r a p h ic ,  1 7 2 - 7 6  

p o in t ,  1 7 0 - 7 1  

p r o d u c t  g r o u p ,  6 4 - 6 6  

p r o t e c t iv e ,  2 8 0  

q u o t i e n t ,  6 6 - 6 9 ,  7 4 - 7 5  

r e p r e s e n t a t io n  o f ,  2 9 2  

r o t a t io n ,  1 3 7 , 2 6 9 - 7 2  

s im p le ,  1 9 9  
s p e c ia l  l in e a r ,  4 3 , 5 0  

s p in ,  2 6 9  

s p o r a d ic ,  2 8 3  

s u r j e c t iv e ,  6 2

s y m m e tr ic ,  4 1 ,  50, 1 9 7  

s y m p le c t ic ,  2 6 1  

t e t r a h e d r a l ,  183  

t r a n s la t io n ,  1 6 8 - 7 0  

t r a n s la t io n  in , 2 7 7  - 8 0  

t r ia n g le ,  2 2 6

t w o - d im e n s io n a l  c r y s ta l lo g r a p h ic ,  

1 7 2

u n ita r y ,  2 3 5 ,  2 6 1

H

H a l f  in t e g e r ,  3 8 4  

H a l f  s p a c e ,  2 5 9  

H a u s d o r f f  s p a c e ,  351  

H e r m it ia n  f o r m , 2 3 2 - 3 5 ,  2 5 4  
s t a n d a r d , 2 3 2  

H e r m it ia n  m a tr ix ,  2 3 3  

H e r m it ia n  o p e r a t o r ,  2 5 7  

' H e r m it ia n  p r o d u c t ,  2 9 9  
H e r m it ia n  s p a c e ,  2 4 1 - 4 2 ,  2 5 6  

s t a n d a r d , 2 4 1  

H e r m it ia n  s y m m e t r y ,  2 3 3  

H i l b e r t  B a s i s  T h e o r e m ,  4 2 8 - 2 9  

H ilb e r t  N u l l s t e l l e n s a t z ,  3 4 5  

H o m e o m o r p h i s m ,  2 6 2  

H o m o g e n e i t y  in  a  g r o u p ,  2 7 7  
H o m o g e n e o u s  l in e a r  e q u a t i o n ,  1 5 ,

88, 9 2

H o m o g e n e o u s  p o ly n o m ia l ,  3 2 8  

H o m o m o r p h i s m ,  4 7 - 5 1 ,  1 5 8  

d e t e r m in a n t ,  4 9 ,  5 6 , 6 2  

g r o u p ,  4 8  

im a g e  o f ,  4 8 - 4 9  

k e r n e l  o f ,  4 9 ,  5 6 , 6 2 ,  6 9 ,  3 3 1 ,
4 1 3

r e s t r ic t io n  o f ,  61  

o f  m o d u le s ,  4 1 3  

o f  r in g s , 3 2 8 - 3 4  

o f  R - m o d u le s ,  4 2 7  

sp in , 2 6 9  

tr iv ia l,  4 8  

H o m o p h o n i c  g r o u p , 7 7  
H y p e r b o la ,  2 4 6  

H y p e r p la n e ,  2 5 9  

H y p e r v e c t o r ,  86
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I c o s a h e d r a l  g r o u p ,  1 8 3

c la s s  e q u a t i o n  o f ,  1 9 8 - 2 0 0  

I d e a l ,  3 3 1 ,  3 8 7

f a c t o r i z a t i o n ,  3 9 1 - 9 4  

g e n e r a t e d  b y  a  s e t ,  3 3 2  

o f  l e a d i n g  c o e f f i c i e n t s ,  4 2 8  

m a x i m a l ,  3 4 4 - 4 7 ,  3 9 4  

p r i m e ,  3 9 2 ,  3 9 4 - 9 6  
p r i n c i p a l ,  3 3 1  

p r o d u c t ,  3 5 5 ,  3 9 0  

p r o p e r ,  3 3 1  

u n i t ,  3 3 1  

z e r o ,  3 3 1  
I d e a l  c la s s ,  3 8 8 ,  3 9 6 - 9 9  

I d e a l  m u l t i p l i c a t i o n ,  3 8 9 - 9 2  

I d e m p o t e n t ,  3 4 1  

I d e n t i t i e s ,  5 , 4 1 7 - 1 8  
N e w t o n ,  5 0 5  

I d e n t i t y  e l e m e n t ,  4 2  

I d e n t i t y  m a t r i x ,  6  
I m a g e ,  o f  h o m o m o r p h i s m ,  4 1 3  

I m a g i n a r y  q u a d r a t i c  n u m b e r  f i e ld ,  

3 8 3

I m p l i c i t  F u n c t i o n  T h e o r e m ,  5 2 2

I n c l u s i o n ,  o r d e r i n g  b y ,  5 1 8

I n c l u s i o n  m a p ,  4 8

I n d e f i n i t e  f o r m ,  2 3 1
I n d e p e n d e n c e ,  8 7 , 9 5 , 9 7 ,  4 1 5

I n d e p e n d e n t  s u b s p a c e s ,  9 5

I n d e x ,  m u l t i p l i c a t i v e  p r o p e r t y  o f ,  5 8

I n d u c e d  la w ,  4 2

I n d u c e d  r e p r e s e n t a t i o n ,  3 2 1

I n d u c t i o n ,  5 1 3 - 5 1 6

I n d u c t i v e  d e f i n i t i o n ,  5 1 7

I n d u c t i v e  s e t ,  5 1 8
I n f i n i t e  b a s i s ,  9 8

I n f i n i t e  c y c l ic  g r o u p ,  4 7

I n f i n i t e - d i m e n s i o n a l  s p a c e ,  9 6 - 9 8

I n f i n i t e  g r o u p ,  41

I n f i n i t e  o r d e r ,  4 7

I n f i n i t e  s e t ,  s p a n  o f ,  9 7

I n n e r  a u t o m o r p h i s m ,  1 9 3

I n t e g e r  g e n e r a l  l i n e a r  g r o u p ,  4 1 8
I n t e g e r  m a t r i x

d i a g o n a l i z i n g ,  4 1 8 - 2 3

I e l e m e n t a r y ,  4 1 8  ■

i n v e r t i b l e ,  4 1 8  

I n t e g e r  p o l y n o m i a l s ,  f a c t o r i n g ,  

3 7 1 - 7 5  

I n t e g e r s ,  3 9 0 ,  5 1 6 - 1 7  

a l g e b r a i c ,  3 8 3 - 8 5  

f a c t o r i n g ,  3 7 8  

G a u s s ,  3 2 3 ,  3 8 6  

h a l f ,  3 8 4  

m o d u l o ,  6 6  

n e x t ,  5 1 6  

n o r m  o f ,  3 9 7  

p r i m e ,  6 4 ,  3 9 4 - 9 6  
r in g  o f ,  3 8 4  

s q u a r e - f r e e ,  3 8 4  

s u b g r o u p s  o f  a d d i t i v e  g r o u p  o f ,  

4 3
s u c c e s s o r ,  5 1 6  

I n t e g r a l  d o m a i n ,  3 4 3  

I n t e r m e d i a t e  f i e ld ,  4 8 8  

I n t e r s e c t i o n ,  5 2 7  
I n v a r i a n t

f o r m ,  2 9 7  

o p e r a t o r ,  3 0 7  

s u b s p a c e ,  1 1 0 , 2 9 4  

v e c t o r ,  2 9 4  

I n v e r s e ,  7 , 4 0  

I n v e r s e  i m a g e ,  55  
l e f t ,  r i g h t ,  7  

I n v e r t i b l e  i n t e g e r  m a t r i x ,  4 1 8  

I n v e r t i b l e  m a t r i x ,  7 ,  15  

I n v e r t i b l e  o p e r a t o r ,  1 0 9  

I r r e d u c i b l e  c h a r a c t e r ,  2 9 9  

I r r e d u c i b l e  e l e m e n t ,  4 4 4  

I r r e d u c i b l e  f a c t o r i z a t i o n ,  3 6 4  
I r r e d u c i b l e  p o l y n o m i a l ,  3 5 0 , 3 8 3 ,  

4 4 3 ,  4 5 8  
f i n d i n g ,  4 4 9 - 5 0  

I r r e d u c i b l e  r e p r e s e n t a t i o n ,  2 9 4 - 9 6  

I s o m e t r i x ,  1 5 6 - 5 9

d i s c r e t e  g r o u p  o f ,  1 6 7 - 7 2  

f ix e d  p o i n t  o f ,  1 6 2  

o r i e n t a t i o n - p r e s e r v i n g ,  1 6 0  

o r i e n t a t i o n - r e v e r s i n g ,  1 6 0  
o f  t h e  p l a n e ,  1 5 9 - 6 3  

I s o m o r p h i c  g r o u p s ,  51
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Isomorphism, 51-52
of branched coverings, 464 
of field extensions, 445, 464, 484-86 
of groups, 51-52 
modules and, 413 
of representations, 293, 307 
of rings, 328 
of vector spaces, 85, 91 

Isomorphism class of a group, 52

J

Jacobi identity, 276 
Jordan block, 121, 148 
Jordan form, 120-25, 148 
Jordan generators, 122

K

Kaleidoscope principle, 167 
Kernel

of homomorphism, 49, 56, 62, 413 
of ring homomorphism, 331 

Killing form, 289
Klein Four Group, 47, 65, 490, 493, 503 
Kronecker delta, 133 
Kronecker-Weber Theorem, 500 
Kummer extensions, 500-502

L

Lagrange interpolation formula, 17,
380

Lagrange’s theorem, 57 
Latitude, 265-66 
Lattice, 403, 405-8 
Lattice basis, 169, 405 
Laurent polynomials, 356 
Law of composi tion , 37-40 

associative, 37 
commutative, 38 
ide ntity for, 39 

Law of cosines, 242 
Leadin g coefficients, 325 

ideal of, 428 
Left coset, 49, 56 
Left m u lt ip l i c a t io n ,  195,277 -78

by G, 177 
Left translation, 277 
Lie algebra, 275-77, 286 
Lie bracket, 276 
Linear algebra, in ring, 412-41 

free modules, 414-17 
generators and relations, 423-26 
linear operators and, 432-35 
modules, 412-14 
noetherian rings, 426-29 
polynomial rings in several variables, 

436
structure of abelian groups, 429-32 

Linear combination, 9, 79, 86, 97 
Linear equation, homogeneous, 15, 88, 91 
Linear group, 261-89

classical groups, 261-62 
dimension of, 262 
integer general, 418 
Lie algebra, 275-77 
normal subgroups of SL2, 280-83 
one-parameter groups, 272-75 
rotation group SO3, 269-72 
special unitary group SU2, 266-69 
spheres and, 263-66 
translation in group, 277 -80 

Linear operator, 102-31, 293, 432-35 
applications of, 132-53 
characteristic polynomial of, 113-16, 

115
defined, 108-10 
dimension formula, 102-4 
eigenvectors, 110-13 
Jordan form, 120-25 
left shift, right shift, 109 
triangular and diagonal form.

116-19 
Linear relation, 103 

among vectors, 87 
Linear transformation, 102 

matrix of, 104-8 
Longitude, 265-66 
Lorentz form, 231 
Lorentz group, 262 
Lorentz transformation, 262 
Luroth’s Theorem, 488
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M

Main Lemma, 392 
M ain The orem of Galois theory, 

489-92 
Manifold, 278 
Mapping property

of free groups, 214 
of quotient groups, 214 
of quotient modules, 413 
of quotient rings, 335, 343 

M aps
canonical, 66, 335, 423 
equivalence relation defined by, 

55-56 
Frobenius, 355 
surj ective, 54 
well define d, 180 
zero, 328 

Maschke’s theorem, 296, 298 
Mathieu group, 283 
Matrix, 1-36

addition of, 2 
adjoint, 233 
augm e nted, 12 
basechange, 94 
block multiplication, 8 -9  
cofactor, 29-31 
de terminant of, 7, 18-24 
d iagon al, 6, 117, 146 
d iagonal entries in, 6 
diagonalizable, 117, 124 
elementary, 10-12 '
e 1 ementary integer, 418 
Fourier, 260 
Hermitian, 233 
identity, 6 
inte ge r, 418-23 
invertible, 7, 15
of linear transformation, 104-8 
multiplication of, 2-3, 78 
n onzero, 9 
normal, 242 
orthogonal, 132-38 
permutation, 24-27, 51 
of polynomi als, 432

posi ti ve, 112 
presentation, 423 
R-matrix, 414 
rotation, 108, 134 
row echelon, 13-15 
row reduction of, 10-17 
scalar multiplication of, 2 
self-adjoint, 233 
skew-Hermitian, 267 
square, 2, 8 
unitary, 235, 244-45 
upper triangular, 6 
zero, 6 

Matrix entries, 1 
Matrix expon enti al, 145-50, 

278
Matrix multiplication, 2-4  
Matrix notation, 4, 86 
Matrix of form, 230 
Matrix of transformation, 105 
Matrix prod uct, 3 
Matrix representation, 290 
Matrix transpose, 17 -18 
Matrix units, 9-10 
Maximal element, 518 
Maximal ideal, 344-47, 394 
Minors, 19

exp ansion by, 19 
Modular arithmetic, 60-61 
Modules, 412-14 

basis of, 415 
direct sum of, 429 
finitely generated, 415 
free, 412, 414-17 
generators of, 415 
homomorphism, 413 
isomorphism, 413 
rank of, 416 
of relations, 424 
R-module, 412 
Structure Theorem for, 

432-35 
Monic polynomial 325, 340 
Monomial, 325, 327 
Multi-index, 327 
Multiple root, 458
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Multiplication 
block, 8 -9  
ideal, 389-92 
left, 177, 195, 277-78 
of matrices, 78 
matrix, 2-4 
right, 216 
scalar, 2, 5, 78, 90 
table, 38

Multiplicative group, structure of, 84 
Multiplicative property 

of degree, 447 
of index, 58
of the determinant, 21-24 

Multiplicative set, 357

N

Natural number, 516 
n-dimensional sphere (n-sphere), 

263
Negative definite, 231 
Negative semidefinite, 231 
Newton’s identities, 505 
Nilpotent, 122, 127, 355 
Node, 351
Noetherian ring, 426-29 
Nonabelian group, 222 
Noncommutative ring, 324 
Nondegeneracy on a subspace, 252 
Nondegenerate form, 236, 252 
Nonsingular point, 358 
Nonzero, 9 
Norm

of an element, 386, 403 
of an ideal, 397 

Normalizer, 203 
Normal matrix, 242 
Normal subgroup, 66

generated by a set, 212 
North pole, 263, 264 
Notation 

cycle, 24
fraction, 40, 343-44 
matrix, 4, 86 
power, 40

sigma, 4
summation, 5, 28 

Nullity, 103 
Nullspace, 79, 103 
Null vector, 236, 252 
Number field, 442 

algebraic, 442

o

Octahedral group, 183 
One-dimensional character, 303-4 
One-parameter group, 272-75 
Operation

on cosets, 178-80 
faithful, 182 
of a group, 176-78, 293 
partial, 217, 218 
on subsets, 181 

Operator
adjoint, 242 
determinant of, 118 
diagonalizable, 117 
Hermitian, 244 
invertible, 109 
linear, 110, 293, 432-35 
normal, 242 
nilpotent, 122, 127 
orientation-preserving, 159 
orientation-reversing, 159 
orthogonal, 134, 162, 245 
self-adjoint, 243 
shift, 109, 434 
singular, 109 
symmetric, 245 
trace of, 118 
unitary, 242 

Opposite group, 70 
Orbit, 166, 177, 185 
Orbit sum, 477 
Order

of finite field, 459 
of group,40, 208-10 
by inclusion, 5 1 8  

partial, 518 
total, 518
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Ordered set, 86 
Orientation, 159
Orientation-preserving isometry, 160 
Orientation-reversing isometry, 160 '
Orthogonal basis, 252 
Orthogonal group, 134, 261 
Orthogonality, 235-41, 254-56 
Orthogonality relations, 300 

proof of, 309-11 
Orthogonal matrix, 132-38 
Orthogonal operator, 134, 245 
Orthogonal projection, 238-41 
Orthogonal representation, 269 
Orthogonal space, 236 

to a subspace, 252 
Orthogonal sum, 237 
Orthogonal vectors, 252 
Orthonormal basis, 133, 240

P

Parabola, 246 
Parallelogram law, 256

for vector addition, 112 
Partial operation, 217, 220 
Partial ordering, 518 
Partition, 52-56, 57 
Peano’s axioms, 516-17 
Permutation matrix, 26, 51 

determinant of, 27 
Permutation representation, 181-83,

304
Permutation, 24-27, 41, 50, 201 

cycle notation, 24 
representation, 181-83, 192 
symmetric group, 24 
transposition, 25 

p-group, 197-98 
Pick’s Theorem, 411 
Plane algebraic curve, 350 
Plane crystallographic group, 172-76, 189-90 
Point group, 170-71 
Point, 163 

base, 468 
branch, 351, 353 

Polar decomposition, 259, 287

Pole, 184, 186
north, 263, 264 

Polynomial ring, 325-28, 432-35 
in several variables, 436, 440 

Polynomial, 85, 327
characteristic, 113-16, 197 
complex, 520 
constant, 325 
cyclotomic, 374 
discriminant of, 481-83 
homogeneous, 328 
integer, 380-81
irreducible, 350, 383, 443, 449-50, 458 
Laurent, 356 
matrix of, 432 
monic, 325, 340 
paths of, 101 
primitive, 368, 371 
quadratic, 247 
quartic, 495 
ring, 325-328 
roots of, 116 
symmetric, 477 

Positive combination, 259 
Positive definite, 229, 231, 232, 234 
Positive eigenvector, 112 
Positive matrix, 112 
Power notation, 40 
Presentation matrix, 423 
Prime

Gauss, 376-78, 381, 394 
ramified, 395 
split, 395 

Prime element, 360 
Prime factorization, 365 
Prime ideal, 392, 394-96 
Prime integer, 64, 394-96 
Primitive element, 462-63 
Primitive Element Theorem, 462-63 
Primitive polynomial, 368, 371 
Primitive root, 84 
Principal ideal, 331 
Principal ideal domain, 361 
Product group, 64-66, 74 
Product ideal, 355, 390 
Product matrix, 3
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Product permutation, 24 
Product ring, 341-42 
Product rule, 142 
Product set, 67, 527 
Projection, 64

orthogonal, 238-41 
stereographic, 263 

Projective group, 280 
Proper ideal, 331 
Proper subgroup, 43 
Proper subspace, 79 
Pythagoras’ theorem, 133

Quadratic form, 246 
Quadratic number field, 383-411 

algebraic integer, 383-85 
class group, 396-99 
factoring algebraic integers, 385-87 
factoring ideals, 392-94 
ideal class, 396-99 
ideal multiplication, 389-92 
ideals, 387 -89 
imaginary, 383 
lattices and, 405-8 
real, 402-5 

Quadric, 245-49 
Quartic equation, 493- 97 
Quartic polynomial, 495 
Quaternion algebra, 266, 288 
Quaternion group H, 47 
Quintic equation, 502-5 
Quotient group, 66-69, 74-75 

mapping property of, 214-15 
Quotient ring, 334-38

mapping property of, 335, 343

R

Ramified prime, 395 
Rank, 103

of a free module, 416 
Rational canonical form, 435 
Rational function, 342, 344, 487 

field of, 344 
R-automorphism, 477

Real quadratic field, 402-5 
Recursive definition, 517 

of the determinant, 20 
Reducible representation, 295 
Reflection, 134, 160 

glide, 160 
Regular representation, 304-7 
Relations, 212-16, 423-26 

adding, 337 -38 
complete set of, 215 
defining, 212 
module of, 424 
orthogonality, 309-11 

Relation vector, 424 
Relatively prime elements, 362 
Representation 

adjoint, 289 
complex, 293 
conjugate, 293 
faithful, 291 
of a group, 290-92 
induced, 321 
irreducible, 294-96 
isomorphism of, 293, 307 
matrix, 290 
orthogonal, 269 
permutation, 181-83, 304 
reducible, 295 
regular, 304-7 
sign, 291 
standard, 291 
of SU2, 311-14 
trivial, 291 
unitary, 296-98 

Representative element, 55 
Residue, 330, 335 
Resolvent cubic, 496 
Restriction, 110, 181

crystallographic, 171-72 
of homomorphism, 61 

Riemann Existence Theorem, 465 
Riemann surface, 350, 352, 464 
Right coset, 58-59 ,216 
Right inverse, 7 
Right multiplication, 216 
Right shift operator, 109
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R in g s ,  3 2 3 - 5 8
a u t o m o r p h is m  o f ,  3 5 5  

c h a r a c t e r i s t i c  o f ,  3 3 4  

e x t e n s i o n  o f ,  3 3 8  

h o m o m o r p h i s m  o f ,  3 2 8 - 3 4  

id e a l s  in , 3 2 8 - 3 4 ,  3 8 7 - 8 9  

o f  in t e g e r s ,  3 8 4  

l in e a r  a lg e b r a  in , 4 1 2 - 4 1  

n o e t h e r ia n ,  4 2 6 - 2 9  

n o n c o m m u t a t iv e ,  3 2 4  

p o ly n o m ia l ,  3 2 5 - 2 8 ,  3 3 9 , 4 3 2 - 3 5 ,  4 3 6  
p r o d u c t ,  3 4 1 - 4 2  

q u o t i e n t ,  3 3 4 - 3 8  

u n i t  o f ,  3 2 5  
z e r o ,  3 2 4 ,  4 1 4  

R - m a t r ix ,  4 1 4

d e t e r m in a n t  o f ,  4 1 4  

R - m o d u le ,  4 1 2

h o m o m o r p h i s m  o f ,  4 2 7  

R o o t

a d jo in in g ,  4 5 6 - 5 9  

m u lt ip le ,  4 5 8  

R o o t  o f  u n i ty ,  4 9 7  - 5 0 0  
R o t a t i o n ,  1 3 4 , 1 6 0  

a x is  o f ,  1 3 4  

R o t a t io n a l  s y m m e t r y ,  1 5 4  

R o t a t io n  g r o u p ,  1 3 7
f in i t e  s u b g r o u p s  o f ,  1 8 3 - 8 7  

S 0 3 ,  2 6 9 - 7 2  
R o t a t i o n  m a tr ix ,  1 0 8 , 1 3 4  

R o w  e c h e l o n  m a tr ix ,  1 3 - 1 5  

R o w  in d e x ,  1 

R o w  o p e r a t io n ,  1 0  

e l e m e n t a r y ,  10 
R o w  r a n k ,  1 0 8  

R o w  r e d u c t io n ,  1 0 - 1 7  

R o w  v e c t o r ,  2 ,  9 7 , 1 0 8

S

S c a la r  m u l t ip l i c a t io n ,  2 , 5, 7 8 ,  8 4 , 9 0  

a s s o c ia t iv e  la w  fo r , 9 0  

S c a la r s ,  2

S c h u r ’s l e m m a , 3 0 7 - 9  
S c h w a r t z  in e q u a l i t y ,  2 5 6  

S e c o n d  I s o m o r p h i s m  T h e o r e m ,  2 2 7

S e l f - a d j o in t  m a tr ix , 2 3 3  

S e l f - a d j o in t  o p e r a t o r ,  2 4 3  

S e m ig r o u p ,  7 5  

S e t s

in d e p e n d e n t ,  8 7 , 9 5 ,  9 7 , 4 1 5  

in d u c t iv e ,  5 1 8  

o r d e r e d ,  86 
p r o d u c t ,  5 2 7  

S h e e t s ,  4 6 5  

S h if t  o p e r a t o r ,  4 3 4  

S i e v e  o f  E r a t o s t h e n e s ,  3 7 2  

S ig m a  n o t a t io n ,  4  

S ig n a tu r e  o f  a  fo r m , 2 4 0  

S ig n  r e p r e s e n t a t io n ,  2 9 1  

S i m p l e  g r o u p s ,  1 9 9  
S in g u la r  o p e r a t o r ,  1 0 9  

S in g u la r  p o in t ,  3 5 8  

S i z e  f u n c t io n ,  3 6 0  

S k e w - H e r m i t ia n  m a tr ix , 2 6 7  

S k e w - s y m m e t r ic  fo r m , 2 3 0 ,  2 4 9 - 5 2  

S o lv a b le  e l e m e n t ,  5 0 2  
S p a c e

c o v e r in g ,  3 5 1  

E u c l id e a n ,  2 4 1 - 4 2  

H e r m it ia n ,  2 4 1 - 4 2  

S p a n , 86
d e f in e d ,  91  

o f  in f in it e  s e t ,  9 7  

S p e c ia l  l in e a r  g r o u p , 4 3 , 5 0  

S p e c t r a l  t h e o r e m ,  2 4 2 - 4 5 ,  2 5 3  
f o r  H e r m it ia n  o p e r a t o r s ,  2 4 4  

fo r  n o r m a l  o p e r a t o r s ,  2 4 4  

f o r  s y m m e tr ic  o p e r a t o r s ,  2 4 5  

f o r  u n ita r y  m a tr ic e s ,  2 4 4 - 4 5  

S p h e r e ,  2 6 3 - 6 6

c e l e s t ia l ,  t e r r e s tr ia l ,  2 6 4  

S p in  g r o u p , h o m o m o r p h i s m ,  2 6 9  

S p l i t  p r im e , 3 9 5  

S p l i t t in g  f ie ld ,  4 8 3 - 8 4  

S p l i t t in g  T h e o r e m ,  4 8 4  

S p o r a d ic  g r o u p ,  2 8 3  

S q u a r e - f r e e  in te g e r ,  3 8 4  

S q u a r e  m a tr ix , 2 , 8 
S q u a r e  s y s t e m , 1 6 - 1 7  

S ta b i l i z e r ,  o f  e l e m e n t ,  1 7 7  - 7 8  
S ta n d a r d  b a s i s ,  88, 4 1 5
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S ta n d a r d  r e p r e s e n t a t io n ,  2 9 1  

S t e r e o g r a p h ic  p r o j e c t io n ,  2 6 3  

S tr u c tu r e  T h e o r e m

fo r  a b e l ia n  g r o u p s ,  4 2 9 - 3 0  

fo r  m o d u l e s ,  4 3 2 - 3 5  

u n iq u e n e s s  f o r ,  4 3 1 - 3 2  

S u b f ie ld ,  8 0  

S u b g r o u p ,  4 2
o f  a d d i t iv e  g r o u p  o f  in t e g e r s ,  

4 3 - 4 6  

c h a r a c t e r i s t i c ,  2 2 5  

c o m m u t a t o r ,  2 2 5  

c o n j u g a t e ,  7 2 , 1 7 8 ,  2 0 3  

d i s c r e t e ,  1 6 8  

f in i t e ,  1 8 3 - 8 7  

n o r m a l ,  66 
p r o p e r ,  4 3  

o f  S L 2, 2 8 0 - 8 3  

S y lo w  p - s u b g r o u p s ,  2 0 3  

tr iv ia l ,  4 3  

z e r o ,  4 2 2  

S u b m o d u le ,  4 1 3
d ir e c t  s u m  o f ,  4 3 0  

o f  f r e e  m o d u le s ,  4 2 1 - 2 3  

S u b r in g ,  3 2 3 ,  3 2 4  

S u b s e t s ,  o p e r a t io n  o n ,  1 8 1  

S u b s p a c e ,  7 8 - 8 0 ,  8 5  

i n d e p e n d e n t ,  9 5  
l in e a r  t r a n s f o r m a t io n  a n d , 102 
n o n d e g e n e r a t e  o n  a, 2 3 6  

o r t h o g o n a l  s p a c e  t o ,  2 5 2  

p r o p e r ,  7 9  

s u m  o f ,  9 5  

S u b s t i t u t io n  P r in c ip le ,  3 2 9  

S u c c e s s o r  f u n c t io n ,  5 1 6  

S u m m a t io n  n o t a t io n ,  5 , 2 8  

S u r j e c t iv e  m a p ,  5 4  
S y lo w  p - s u b g r o u p s ,  2 0 3  

S y lo w  t h e o r e m s ,  1 9 5 , 2 0 3 - 7  

S y l v e s t e r ’s la w ,  2 4 0 ,  2 5 6 ,  2 5 8  

S y m b o l i c  n o t a t i o n ,  5 5  

S y m m e t r ic  f o r m , 2 2 9 ,  2 3 0  

S y m m e t r ic  f u n c t io n ,  4 7 7  - 8 1  

e l e m e n t a r y ,  4 7 8  

S y m m e t r ic  F u n c t io n s  T h e o r e m ,  
4 7 9 - 8 1

S y m m e t r ic  g r o u p ,  2 4 ,  4 1 , 5 0 ,  1 9 7  

c o n j u g a t io n  in , 2 0 0 - 2 0 3  

S y m m e t r ic  o p e r a t o r ,  2 4 5  

s p e c tr a l  t h e o r e m  fo r , 2 4 5  

S y m m e t r ic  p o ly n o m ia l ,  4 7 7  

S y m m e t r y ,  1 5 4 - 9 4  

a b s tr a c t ,  1 7 6 - 7 8  

b i la t e r a l ,  1 5 4  

g l id e ,  1 5 5  

H e r m it ia n ,  2 3 3  

o f  p la n e  f ig u r e s ,  1 5 4 - 5 6  
r o t a t io n a l ,  1 5 4  

t r a n s la t io n a l ,  1 5 5  

S y m p le c t ic  g r o u p ,  2 6 1  

S y s t e m , 4
c o o r d in a t e ,  1 5 9  

s q u a r e ,  1 6 - 1 7

T

T a n g e n t  v e c t o r  f ie ld ,  2 8 0  

T e r r e s t r ia l  s p h e r e ,  2 6 4  

T e tr a h e d r a l  g r o u p ,  1 8 3  

T h ir d  I s o m o r p h is m  T h e o r e m ,  2 2 7  

T - in v a r ia n t ,  1 1 0

T o d d - C o x e t e r  A lg o r i t h m ,  2 0 6 ,  2 1 6 - 2 0  

T o t a l  o r d e r in g ,  5 1 8  

T r a c e ,  1 1 6

T r a n s c e n d e n t a l  e l e m e n t ,  4 4 3 - 4 6  

T r a n s f o r m a t io n  

L o r e n t z ,  2 6 2  

T s c h ir n h a u s e n ,  4 8 2  

T r a n s la t io n ,  1 5 6 , 1 6 0

in  a  g r o u p , 2 7 7 - 8 0 ,  2 8 6 - 8 7  

l e f t ,  2 7 7  

T r a n s la t io n  g r o u p ,  1 6 8 - 7 0  

T r a n s la t io n  v e c t o r ,  1 6 3  

T r a n s la t io n a l  s y m m e tr y ,  1 5 5  

T r a n s p o s e ,  m a tr ix ,  1 7 - 1 8  

T r a n s p o s i t i o n ,  2 5  

T r ia n g le  g r o u p ,  2 2 6  

T r ia n g u la r  f o r m , 1 1 6 - 1 9  

T r iv ia l  h o m o m o r p h i s m ,  4 8  

T r iv ia l  r e p r e s e n t a t io n ,  2 9 1  

T r iv ia l  s u b g r o u p ,  4 3  
T r u n c a t e d  p o ly h e d r o n ,  1 8 6
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T s c h i r n h a u s e n  t r a n s f o r m a t i o n ,  4 8 2  

T w o - d i m e n s i o n a l  c r y s t a l l o g r a p h i c  g r o u p  

1 7 2

u

U n b r a n c h e d  c o v e r i n g ,  3 5 1  

U n i o n ,  5 2 7  

U n i p o t e n t ,  3 5 5
U n i q u e  f a c t o r i z a t i o n  d o m a i n ,  3 6 4  

U n i q u e n e s s  o f  t h e  d e t e r m i n a n t ,  2 0 - 2 1  

U n i t ,  o f  a  r i n g ,  3 2 5  

U n i t a r y  g r o u p ,  2 3 5 ,  2 6 1  

S U 2 , 2 6 6 - 6 9 ,  2 8 4  

U n i t a r y  m a t r i x ,  2 3 5

s p e c t r a l  t h e o r e m  f o r ,  2 4 4 - 4 5  

U n i t a r y  r e p r e s e n t a t i o n s ,  2 9 6 - 9 8  

U n i t  b a l l ,  2 6 4  

U n i t  i d e a l ,  3 3 1  
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