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Preface

Since 1995, the field of ultracold atomic physics has been developing very quickly, and it
is still expanding. The physics of ultracold atomic systems has covered a broad range of
topics and has had an impact on several other fields, such as condensed matter physics,
quantum information and computation, nuclear physics, and high-energy physics. This
textbook tries to cover most of the major achievements of ultracold atomic physics in the
past 25 years, although it is not possible to cover all of them. These achievements range
from the early-stage developments, such as Bose–Einstein condensation of alkali atoms,
to the studies of BEC-BCS crossover in degenerate Fermi gas, synthetic gauge fields, and
the Hubbard models, and recent progress, such as many-body localization and dynamical
gauge fields. To cover these topics, the book consists of four parts. Full-color versions of
certain figures can be found in the resources tab for this book at cambridge.org.

• Part I introduces basic atomic physics relevant to ultracold atomic systems, in order to
be self-contained. The part consists of two chapters, one on single-atom physics, such
as atomic structures and atom–light interaction, and the other on two-body collision
physics. This part provides basics for readers to understand, for instance, how to trap
and manipulate ultracold atoms with light and how to tune the interaction by magnetic
field. It is precisely these control tools that make the ultracold atomic physics possible.
When discussing atomic structure and two-body collision, we not only cover the widely
used alkali-metal atoms but also introduce the alkaline-earth-metal atoms, which have
been used by more laboratories in recent years. When discussing atom–light interaction,
we not only the scalar light shift, which is the basics mechanism for optical trapping and
optical lattices, but also vector light shift and STIRAP, which are essential for generating
a synthetic gauge field and creating ultracold molecules. We also extend the discussion
of the two-body problem to the three-body problem, where the famous Efimov effect
has been extensively studied in ultracold atomic systems.

• Part II is about interacting Bose gas. This part consists of two chapters, one focusing on
the interaction effect and the other focusing on topology and spin effects. The interaction
effect is mainly about Bose condensate and superfluidity. One exception is the one-
dimensional system, where we highlight that the interaction effect is so strong that it
destroys condensate. The topology effect mainly concentrates on topological defects
in a Bose–Einstein condensate, both spinless and spinful. Finally, we also discuss the
spin-orbit coupling effect, arising from the synthetic gauge field, in a Bose–Einstein
condensate. The spin-orbit coupling effect has been studied extensively in electronic
systems in condensed matter physics, but in ultracold atomic systems, it is the first time
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viii Preface

that the spin-orbit coupling effects are studied in the Bose system, which has been a
major topic in ultracold atomic physics in the past decade.

• Part III is about Fermi gas. This part also consists of two chapters, one on Fermi liquids
and the other on Fermi superfluids. For Fermi liquids, we use polaron as an example to
discuss a number of basic qualities and their universal relations in a Fermi liquid, and
we use quantum point contact as an example to discuss the transport property of Fermi
liquids. Both polaron and quantum point contacts have been focused experimental top-
ics of ultracold atomic physics over the past 10 years or so. For Fermi superfluid, we
first introduce the basics of the BCS theory, also for the purpose of being self-contained.
Then, we generalize the BCS theory to discuss the BEC-BCS crossover across a Fesh-
bach resonance. We both introduce the theoretical concepts and describe the crossover,
and we also review the representative experimental results for the crossover.

• Part IV is about lattice physics. Part II and Part III consider uniform systems, and this
part considers lattice effects by applying optical lattices to ultracold atoms. This part
also consists of two chapters, one on the noninteracting band effect and the other on
the interacting effect. The noninteracting band effect mainly focuses on various kinds of
topological bands, including how to realize such topological bands and how to reveal the
unique physical effects of topological bands in ultracold atomic systems. The interac-
tion effect mainly focuses on Bose and Fermi Hubbard models, and we also discuss the
interplay between interaction and disorder potential, which has led to the new develop-
ments in many-body localization seen in the past 10 years. Being an isolated system, an
ultracold atomic gas is an ideal platform for experimental studies of many-body local-
ization, and so far, most experiments about many-body localization have been carried
out in ultracold atomic systems.

When I selected and organized the topics for this book, I paid special attention to the
following considerations. I hope that, with these considerations, this book is accessible
for most readers, especially for experimentalists; for junior researchers, including senior
undergraduate students; and for readers outside the field of ultracold atomic physics.

• A few key physics concepts are emphasized throughout the book for example, sym-
metry and universality. Many studies in ultracold atomic physics have illustrated the
importance and power of these concepts. I hope that by introducing these examples, the
book can also benefit readers outside the field of ultracold atomic physics.
Symmetry plays a crucial role in many physics discussions, and it is one of the key con-
cepts that we continually highlight in this book. For example, first of all, the concepts
of the symmetry of Hamiltonian and the symmetry of the state are discussed in Sec-
tions 1.1, 3.5, and 4.5, which lead to the relation between symmetry and degeneracy,
as well as the concept of symmetry breaking. In Section 4.5, we have also emphasized
how these concepts can help us understand the orders of phase transition. In Section 8.1,
these concepts are revisited by introducing the concept of emergent symmetry. Second,
the relation between symmetry and topology, especially the symmetry-protected topo-
logical phenomenon, is introduced in Sections 7.2 and 7.3. Third, in Section 8.2, we
discuss another use of symmetry, that is, two different systems are related by a symmetry,
and how this can help us understand one system with the knowledge of the other system.
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Here the example is the Fermi Hubbard model, where the repulsive Fermi Hubbard is
related to the attractive Fermi Hubbard model by the particle-hole symmetry. Finally, a
special symmetry, known as the scaling symmetry, is encountered several times in the
discussion of the Efimov effect in Section 2.6, of the Tonks–Girardeau gas in Section 3.4,
and of the unitary Fermi gas in Section 6.2.

Universality is another important concept in physics, which states that many micro-
scopically different systems can share the same low-energy physics described by very
few parameters. We have discussed several such examples in this book. In Section 2.2,
the low-energy scattering of different interatomic potentials can be universally described
by the s-wave scattering length. In Section 5.1, different Fermi liquids can be described
by a few parameters known as the Fermi liquid parameters. In Section 8.1, the quantum
critical regime at different microscopic models can be described by a very few critical
exponents.

• Connections between different physics contents are highlighted. Many seemingly dif-
ferent physics can have connections, sometimes because of a common mathematical
structure behind them. For example, the synthetic gauge field has become a major topic
of study since about 2010 in ultracold atomic physics, created by the atom–light inter-
action; however, this effect actually already existed in the magnetic trapping of atoms,
even prior to the birth of the field. This connection is explicitly discussed when I intro-
duce magnetic trapping in Section 2.1. Other examples include discussion of topology
and mean-field theory. For topology, in Sections 4.2 and 4.4, we discuss various kinds
of topological defects in a Bose–Einstein condensate, and in Sections 7.2 and 7.3,
we discuss various kinds of topological band structures for noninteracting fermions.
These two are different physics, but they share the same mathematical descriptions. For
mean-field theory, we discuss the BCS mean-field theory for fermions in Section 6.1
and the mean-field theory for the Bose–Hubbard model in Section 8.1. The physics of
these two systems are also very different, and these two mean-field theories also look
quite different. However, there are common physical insights behind these two, which
are highlighted in Section 8.1. In this book, we use many boxes to discuss the concepts
and connections across different chapters. By building up connections between differ-
ent physics phenomena, we hope this can help readers to understand the physics more
deeply.

• Discussions of theories are always supported by experimental results in ultracold atomic
systems. If one looks at the literature on ultracold atoms, there are a lot more the-
ory papers than experimental works. When I choose topics for this book, aside from
discussing some open issues, I only selected those theories that have been confirmed
by experiments. All the discussions of theories are supported by experimental results.
Though I do not go into the experimental details, I hope this can provide readers with
direct physical pictures and intuitions. In addition, for the discussion of theories, I try
to use the back-of-envelope calculations, though sometimes being less rigorous. I try
to avoid using advanced theoretical tools, such as Green’s functions and field theory
approaches. Students with quantum mechanics and statistical mechanics backgrounds
should be able to understand most parts of the results. I hope this can make this book
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friendly to students, including senior undergraduate students and those mostly focusing
on experiments.

I have taught a course on Ultracold Atomic Physics at Tsinghua University, Beijing,
since 2012. For the past eight years, every year, about 80–100 students attend this course.
More than half of them are not from Tsinghua University but rather from other universities
and institutions in the Beijing area, or even from other cities. Although they do not get
grades from the course, they attend all the lectures because of their interest in the physics.
They ask many excellent questions in and after class. These questions help me improve my
lecture notes, which have led to this book as it stands now. Here I give special thanks to all
of them. This book would not have been possible without their enthusiasm in the course.

In the past 10 years, I have enjoyed fruitful collaborations with my previous students
and postdocs, and many things of which I have written in the book I learned from them
during these collaborations. The book would also not have been possible without their
contributions. I thank them for many valuable suggestions and for help in finalizing the
manuscript: Chao Gao, Zheyu Shi, Pengfei Zhang, Yanting Cheng, Ran Qi, Zeng-Qiang
Yu, Wei Zheng, Yu Chen, Ren Zhang, Boyang Liu, Mingyuan Sun, Zhigang Wu, and Juan
Yao. Most of them are currently already faculty in different universities and institutions in
China. I wish them great success in their careers.

I sincerely thank my thesis advisor, Professor Chen-Ning Yang, who brought me into
the field of ultracold atomic physics nearly 20 years ago. As Professor Yang always said, it
is good luck for someone to grow up together with a young field. His taste in physics and
style of doing research, his guidance and encouragement, have had an important impact on
my scientific career. This book is a special gift to Professor Yang’s coming one-hundredth
birthday. I thank Professor Tin-Lun Ho and many other senior scientists for their support
over all these years. The Institute for Advanced Study of Tsinghua University (IASTU)
provides a very special academic environment, and I am very glad that I can carry out my
research there.

Last, but not least, I am grateful to all my family members for their support all these
years. Together with my wife, it was great fun to watch two kids grow up during the eight
years over which I wrote this book.
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Atomic and Few-Body Physics





1 A Single Atom

Learning Objectives

• Discuss the Coulomb interaction, the spin-orbit coupling, and the hyperfine coupling as
the three effects that determine atomic structure.

• Highlight the importance of the separation of energy scales of these three effects.
• Introduce different atomic structures of alkali-metal, alkaline-earth-metal, and magnetic

atoms.
• Introduce the long-lived excited states in alkaline-earth atoms, and their applications,

such as to atomic optical clocks.
• Discuss the Zeeman structure of atoms in a magnetic field.
• Discuss the idea of magnetic trapping, which can naturally lead to the emergence of a

synthetic gauge field.
• Introduce the scalar light shift and its applications, such as laser trapping, optical lattices,

and laser cooling.
• Introduce the vector light shift and its applications, such as the light-induced Zeeman

field and synthetic spin-orbit coupling.
• Discuss the synthetic spin-orbit coupling and various kinds of gauge fields generated by

the vector light shift.
• Introduce the basic idea of the stimulated Raman adiabatic passage.

1.1 Electronic Structure

Let us first consider a general Hamiltonian of Z electrons moving around a nucleus that
contains the Coulomb interaction, the spin-orbit coupling, and the hyperfine coupling.
These are the three effects that determine the electronic structure of an atom. Here we
should emphasize the important role of the separation of energy scales; that is to say, the
typical energy scales of these three terms are quite different. Thanks to the separation of
energy scales, we can analyze them one by one, which enables us to obtain a clear picture
of the electron structure.

Coulomb Interaction between Electron and Nucleus. Each electron moves around the
nucleus with an attractive Coulomb interaction between the electron and the nucleus, which
is described by

3



4 A Single Atom

Ĥ0 =
Z∑

i=1

(

−!2∇2
i

2m∗ + Vei(ri)

)

, (1.1)

where i = 1, . . . , Z labels the electrons; ri labels the coordinate of electron centering at
the nucleus; m∗ = mM/(m + M) is the reduced mass, where m is the electron mass and
M is the nucleus mass; Vei(r) = −Zκ/r is the Coulomb potentials between the electron
and the nucleus, where κ = e2/(4πε0); e is the electron charge; and ε0 is the vacuum
permittivity. The eigenstates are characterized by three quantum numbers (n, l, m). Usually
for the spherical symmetric potential, because of the SO(3) rotational symmetry, the energy
spectrum only depends on n and l and does not depend on m. However, for the 1/r Coulomb
potential, such as with a hydrogen atom, the eigenspectrum is

E = −m∗Z2κ2

2!2n2 , (1.2)

which only depends on the principal quantum number n and is independent of angular
momentum quantum number l; l can take integer values from 0 to n − 1. This extra degen-
eracy is a consequence of 1/r potential, which leads to an SO(4) symmetry larger than the
three-dimensional rotational symmetry [102]. The separation of these energy levels is of
the order of electron volts (∼ 1014Hz) because it originates from the Coulomb interaction.
The energy levels, usually named as the term-diagrams, are schematized in Figure 1.1,
where 1, 2, 3, . . . label the principal quantum number n and s, p, d, . . . represent the angu-
lar momentum quantum number l. The term-diagram for a hydrogen atom is shown in
Figure 1.1(a).

Coulomb Interaction between Electrons. The repulsive Coulomb interaction between
electrons is given by

V̂c =
∑

i<j

Vee(ri − rj), (1.3)

1s 1s

2s 2p 2s
2p

3s 3p 3d 3s
3p 3d

0 0

(a) (b)!Figure 1.1 Schematic of the term-diagram: (a) the hydrogen atomwithout screening effect and (b) an alkali-metal atom with
screening effect. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.



5 Electronic Structure

where Vee(r) = κ/r. Here we discuss a couple of physical consequences of this term.
First, the inner electrons of the fully filled levels screen the positive Ze charge of the
nucleus, and thus, the valence electron experiences a reduced Coulomb potential. When
the electronic orbit of the outermost electron is far from the nucleus, approximately, it
experiences a fully screened field of all the rest of the Z − 1 electrons. That is to say,
for large enough r, the effective attraction between the electron and the nucleus becomes
a Coulomb potential with effective charge unity, that is, −κ/r. The closer this electron
approaches toward the nucleus, the more it experiences the unscreened nuclear potential
with charge Ze. The attraction between the electron and the nucleus recovers −Zκ/r for
sufficiently small r. Therefore the effective potential seen by the valance electron is no
longer proportional to 1/r, and hence, the enlarged SO(4) symmetry no longer exists. Con-
sequently, the eigenstates with the same n but different l are no longer degenerate, and the
energy level becomes

E = − m∗Z2κ2

2!2(n − δ(n, l))2 , (1.4)

where δ(n, l) is a function depending on n and l and is also called the “quantum defect”
[157]. The term-diagram with the screening effect is schematized in Figure 1.1(b). Nor-
mally, the energy level with larger l becomes higher. This energy splitting is also of the
order of electron volts, because it also originates from the Coulomb interaction.

Second, let us consider two electrons in two orbits, say, ψ1(r) and ψ2(r). Because the
total wave function of two electrons has to be antisymmetric, and if these two electrons
form a spin singlet, the wave function in the spin space is antisymmetric, and their spatial
wave function has to be symmetric, that is, ψ1(r1)ψ2(r2) + ψ1(r2)ψ2(r1). If these two
electrons form a spin triplet, the wave function in the spin space is symmetric, and their
spatial wave function should be antisymmetric, that is, ψ1(r1)ψ2(r2) − ψ1(r2)ψ2( r1). In
the latter case, the wave function vanishes when two electrons come close enough, which
reduces the repulsive interaction energy. Thus, the energies of the triplet states are lower
than the energy of the singlet state. In other words, the Coulomb repulsion favors the total
spin S of electrons to be maximized. This argument can be generalized to cases with more
than two electrons and to cases with more than two quantum states, which gives the early
day explanation of the first Hund’s rule.1 Also, for a given S, the short-range repulsion
is minimized when the total angular momentum L is maximized, which gives the second
Hund’s rule. The characteristic energy scale of the Hund’s rules is also of the order of
electron volts.

The Spin-Orbit and Hyperfine Couplings. The Hamiltonian for the spin-orbit coupling
is given by

Ĥso =
∑

i

αi
fŜi · L̂i, (1.5)

1 There are more advanced discussions of the origin of the first Hund’s rule in later quantum chemistry
calculations that we will not discuss in detail here.



6 A Single Atom

and it describes the coupling between the electronic spin Ŝi and its orbital angular momen-
tum L̂i with strength αi

f
2, giving rise to the fine structure. The origin of the spin-orbit

coupling can be intuitively understood as follows. Sitting in the rest frame of an electron,
the nucleus moves around the electron. Because the nucleus is charged, the circulating
motion of the nucleus gives rise to an electric current, and the strength of the current is
proportional to the angular momentum of the relative motion between the electron and the
nucleus. The circulating current further induces a magnetic field, which acts on the spin of
electrons. This leads to the spin-orbit coupling given by Eq. 1.5.

As one can see from this picture, because this process involves the magnetic effect
induced by the electric current, it is naturally weaker than the Coulomb interaction, because
the latter is purely electronic. In fact, the characteristic energy scale of the spin-orbit cou-
pling is typically of the order of 10−3eV (∼ 1011Hz), and in many cases it is much weaker
than the Hund’s rule coupling originating from the Coulomb interaction. Originally, this
spin-orbit coupling is between the spin and orbital angular momentum of each individual
electron; however, because the Hund’s rule coupling locks the electron spins of all valance
electrons to an eigenstate of the total electron spin Ŝ, and locks the angular momentum of
all valance electrons to an eigenstate of the total angular momentum L̂, it is more conve-
nient to express the leading order effect of the spin-orbit coupling in terms of Ŝ and L̂ as
αfŜ · L̂ + · · · . Here the first term represents the coupling between Ŝ and L̂ with strength
αf, which is called the LS coupling. The residual terms represented by · · · denote the dif-
ference between the actual coupling (Eq. 1.5) and the LS coupling term. Because S and L
are not really good quantum numbers for Eq. 1.5, these residual terms compete with the
Hund’s rule and can change the quantum number S and L. Nevertheless, Ĵ = Ŝ+L̂ = ∑

i Ĵi

still commutes with this coupling.
The hyperfine interaction couples the electronic degrees of freedom Ŝ and L̂ to the

nucleus spin Î. In general, Ŝ and L̂ couple to Î differently. Nevertheless, the character-
istic energy scale for the hyperfine coupling is of the order of 10−6eV (∼ 108–109Hz),
which is much smaller compared with the spin-orbit coupling. This is because the nuclear
magneton is much smaller than the Bohr magneton. Since the LS coupling already locks Ŝ
and L̂ to an eigenstate of Ĵ, we express the leading order effect of the hyperfine coupling
in terms of Ĵ and Î as αhfĴ · Î + · · · , where αhf is the strength of this coupling. This gives
rise to the hyperfine structure. Only with the first term, J is still a good quantum number,
but the residual term represented by · · · can change the quantum number J, which is due
to Ŝ and L̂ coupled to Î differently.

Zoo of Ultracold Atoms. So far, three classes of atoms have been cooled to quantum
degeneracy in cold atom experiments. They are (1) alkali-metal atoms, including hydro-
gen (H), lithium (Li), sodium (Na), potassium (K), rubidium (Rb), and cesium (Cs); (2)
alkaline-earth-metal (-like) atoms, including strontium (Sr), calcium (Ca), and ytterbium
(Yb). In the periodic table, ytterbium does not belong to the alkaline-earth-metals, but
its outer electronic structure is the same as alkaline-earth-metal atoms; and (3) atoms with
large electronic magnetic moments, which are called “magnetic atoms” here. These include
chromium (Cr), dysprosium (Dy), and erbium (Er). We also anticipate that more atomic

2 In general, αi
f should also depend on spatial position. Here we ignore this dependence for simplicity.



7 Electronic Structure

Table 1.1 The electronic structure and the nuclear spin of the alkali-metal atoms used
in current experiments

Atom Valance electron Label 2S+1LJ Nuclear spin I

Li 2s1 2S 1
2

7Li (I = 3/2, B); 6Li (I = 1, F)

Na 3s1 2S 1
2

23Na (I = 3/2, B)

K 4s1 2S 1
2

40K (I = 4, F);
39K (I = 3/2, B); 41K (I = 3/2, B)

Rb 5s1 2S 1
2

85Rb (I = 5/2, B); 87Rb (I = 3/2, B)

Cs 6s1 2S 1
2

133Cs (I = 7/2, B)

Note: F denotes fermion, and B denotes boson. Here the symbol 2S+1LJ labels the electronic
structure of each atom.

species can be cooled to quantum degeneracy in the future. Here we will discuss the elec-
tronic structure and the spin structure at zero magnetic field of these three classes based on
the aforementioned terms.

Alkali-Metal Atoms. So far, all atomic species in Table 1.1 have been cooled to quantum
degeneracy, among which 87Rb and 23Na are the most-studied ultracold bosonic isotopes
and 40K and 6Li are the most-studied fermionic isotopes. Following are a few key points
about this class of atoms:

• In the ground state, since there is only one electron in the s-orbital, S = 1/2, L = 0, and
J = 1/2. The ground state is always labeled by 2S1/2. There is no spin-orbit coupling in
the ground state, and the atomic spin structure is determined by the hyperfine coupling.
The hyperfine spin is defined as F̂ = Î + Ĵ, and F is a good quantum number for an
alkali-metal atom at the zero magnetic field. For instance, for 87Rb, I = 3/2, so the total
F can be either 1 or 2. At zero magnetic field, the energy splitting between F = 1 states
and F = 2 states is a few times 109Hz.

• For the first excited state, the valance electron is the p-orbital, and thus L = 1. Due
to the LS coupling, the total J can be either 1/2 or 3/2. Thus the excited states are
split into 2P 3

2
and 2P 1

2
, as shown in Figure 1.2(a). Historically, this splitting was dis-

covered in the absorption spectra of lights due to sodium atoms, and they are named
as D1 and D2 lines. Using sodium as an example, this fine splitting is 2.1 × 10−3eV
(% 5 × 1011Hz), and the splitting between the ground state 2S 1

2
and these two states is

about 2.1eV (% 5 × 1014Hz). Because the fine-structure splitting is much smaller com-
pared with the excitation energy, normally both 2P 3

2
and 2P 1

2
should participate in the

optical transition, which are key processes for trapping and manipulating alkali-metal
atoms, as we shall discuss in Section 1.3 in detail. In addition, 2P 3

2
and 2P 1

2
are further

split by the hyperfine coupling, and the hyperfine splitting is even smaller compared with
the fine-structure splitting.

Alkaline-Earth-Metal (-Like) Atoms. Table 1.2 contains the alkaline-earth-metal atoms
(Ca and Sr) and alkaline-earth-metal-like atom (Yb) that have been cooled to quantum
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Table 1.2 The electronic structure and the nuclear spin of alkaline-earth-metal (-like) atoms
used in current experiments

Atom Valance electron Label 2S+1LJ Nuclear spin I

Yb 4f 146s2 1S0
174Yb (I = 0, B);
171Yb (I = 1/2, F); 173Yb (I = 5/2, F)

Ca 4s2 1S0
40Ca (I = 0, B)

Sr 5s2 1S0
84Sr (I = 0,B); 87Sr (I = 9/2, F)

Note: F denotes fermion, and B denotes boson.

!Figure 1.2 Schematic of the electronic structure: (a) an alkali-metal atom and (b) an alkaline-earth-metal atom. The dashed line
in (a) denotes the excitation energy, and the dashed lines in (b) denote that these states are coupled either by the
spin-orbit coupling (SO) or by the hyperfine coupling (HF) process. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.

degeneracy. Alkaline-earth-metal atoms have several unique properties compared with the
alkali-metal atoms:

• For the ground state, two electrons occupy the s-orbital, and therefore, the total electron
spin S = 0 and the angular momentum L = 0. All bosonic isotopes of alkaline-earth-
metal atoms have zero nuclear spin, and the fermionic isotopes have nonzero nuclear
spin I, which can be very large. However, because of J = 0, and consequently, the
absence of the hyperfine coupling, the nuclear spin is decoupled from the electronic spin
degree of freedom. Therefore, the nuclear spin nearly does not participate in two-body
interactions, and the interaction possesses an SU(N) symmetry with large-N [193]. We
will discuss this in Section 2.3.

• For the first excited states, one electron still occupies the s-orbital, but the other electron
is excited to the p-orbital. Thus, these states have L = 1. The electronic structure of
these excited states is shown in Figure 1.2(b). First of all, because of the Hund’s rule,
the Coulomb energies for the S = 1 states (3PJ) are lower than that for the S = 0 state
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(1P1). Second, due to the LS coupling, all states within the S = 1 manifold split into
J = 0, 1, and 2, denoted by 3P0, 3P1,3P2, respectively.

• As we will see in Section 1.3, because the optical transition is dominated by the dipole
transition, and the dipole transition does not change the electronic spin quantum number
S, the direct coupling between these excited states with S = 1 (3PJ) and the ground state
with S = 0 is forbidden because of different quantum number S. That is to say, at the
leading order, the dipole transition can only couple the ground state to the S = 0 excited
state (1P1) and cannot couple the ground state to the S = 1 manifold (3PJ).

• As we have mentioned above, the spin-orbit coupling term does not conserve the quan-
tum number S and L, and it can mix two states as long as they have the same J. Thus,
among the three states with S = 1, 3P1 states can be coupled to 1P1 states by the spin-
orbit coupling. Through this coupling, there exists a small but finite dipole transition
matrix element between the 3P1 states and the ground state. This gives rise to a lifetime
for 3P1 states of about a few hundred nanoseconds. And for 3P0 and 3P2, because their
quantum numbers J are different from that of 1P1, they cannot be coupled to 1P1 by the
spin-orbit coupling term.

• For fermionic isotopes, the coupling between 3P0 or 3P2 and 1P1 can be induced by the
hyperfine coupling. As we have discussed above, after including the hyperfine coupling,
J is also not a good quantum number. However, the coupling mediated by the hyperfine
coupling is much weaker, and hence, the lifetimes of 3P0 and 3P2 states are much longer
than for 3P1 states, and the lifetime can be many seconds. These long-lived electronic
excited states can be used as an important tool for precision measurement. On one hand,
the spontaneous emission rates of these states are so small, and on the other hand, the
coupling is not completely forbidden because of these residual couplings. Taking advan-
tage of these properties, the transition between 3P0 and 1S0 induced by laser coupling
can be used for the purpose of realizing the atomic optical clock. Therefore, these states
are also called the “clock state.” The atomic optical clock has reached an accuracy of
10−19s nowadays, and it is the most accurate clock we have now [25]. If one were to
start to run such a clock from the beginning of the universe until now, this clock would
be expected neither to gain nor to lose even one second. Such a clock can now be used
to test fundamental physics [92].

• For bosonic isotopes, due to the absence of the nuclear spin, there is absolutely no one-
photon dipole transition for 3P0 and 3P2. In this case, the coupling to ground state has
to be induced by higher-order processes. The lifetime of these two states can be many
years long, and for all practical purposes, these states can be viewed as not decayed.

Magnetic Atoms. Table 1.3 contains three atoms whose total angular momentum of elec-
tron J is very large. For chromium, five d-orbitals and one s-orbital are all half-filled, and
thus all six electrons are spin polarized because of the first Hund’s rule, which gives S = 3
and L = 0. Dysprosium and erbium are open-shell lanthanide atoms. For dysprosium, 7
f -orbitals are filled by 10 electrons, and thus there are 4 unpaired electrons. Because of
the first Hund’s rule, these four unpaired electrons are spin polarized, which gives rise to
a total electronic spin S = 2. And because of the second Hund’s rule, these four unpaired
electrons give maximized angular momentum L = 6. Similarly, for erbium, 7 f -orbitals
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Table 1.3 The atomic structure of high-spin magnetic atoms like Cr and lanthanide Dy and Er

Atom Valance electron Label 2S+1LJ Nuclear spin I

Cr 3d54s1 7S3
52Cr (I = 0, B); 53Cr (I = 3/2, F)

Dy 4f 106s2 5I8
162Dy (I = 0, B); 163Dy (I = 5/2, F)

Er 4f 126s2 3H6
168Er (I = 0,B)

Note: F denotes fermion, and B denotes boson.

are filled by 12 electrons, and thus there are 2 unpaired electrons, which gives S = 1 and
a maximized angular momentum L = 5. Furthermore, it turns out that for both Dy and Er,
the spin-orbit coupling favors a maximum J, that is, J = 8 for dysprosium and J = 6 for
erbium. The atomic structures of these atoms also have strong effects on the interaction
between these atoms:

• In the presence of a finite magnetic field, J can be easily polarized, which results in a
magnetic moment d = 6µB for chromium, d = 10µB for dysprosium, and d = 7µB for
erbium. Therefore, the magnetic moment is about one order of magnitude larger than
that of the alkali-metal atoms, and hence the magnetic dipole interaction between two
atoms is two orders of magnitude larger.

• In the presence of a finite magnetic field, because the angular momentum L is nonzero
for dysprosium and erbium, the electron cloud is anisotropic, so that the short-range Van
der Waals potential is also anisotropic. This effect does not exist in chromium, whose
angular momentum is zero.

• In the limit of a vanishing magnetic field, J becomes depolarized, and the spin rotational
symmetry is restored. These atoms exhibit the aspects of high-spin particles, and their
interactions depend on spin, as we will discuss in Section 4.3.

1.2 Magnetic Structure

Now we consider the effect of a static magnetic field on the atomic structure. Because
electrons are charged, in principle, the electron motion inside an atom can also be affected
by the presence of magnetic field. However, this effect is too small compared with the
Coulomb interaction, such that we can safely ignore the change of electron orbital due
to the magnetic field. We only focus on the Zeeman effect acting on the electron spin S,
orbital angular momentum L, and nuclear spin I. The energy scale of the Zeeman splitting
is comparable with the hyperfine splitting for a typical magnetic field of hundreds of Gauss
in the laboratory.

Hence, here we consider an atom as a point neural particle carrying S, L, and I. Now
let us focus on the ground state of alkali-metal atoms. For example, for 87Rb atoms with
S = 1/2, L = 0, and I = 3/2, the ground state spin structure is determined by

Ĥs = B(µBgSŜz + µNgI Îz) + αhf Ĵ · Î, (1.6)
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!Figure 1.3 Schematic of the Zeeman energy structure. Here we consider the electronic ground state of a 87Rb atomwith
J = 1/2 and I = 3/2.Fz labels the good quantum number of each state. A color version of this figure can be
found in the resources tab for this book at cambridge.org/zhai.

where µB and µN are the Bohr magneton and the nuclear magneton, respectively, and
µN & µB. gS and gI are the Landé g-factors. Here we first consider the situation that the
magnetic field is spatially uniform and its direction is chosen as the ẑ direction. For this
Hamiltonian, Fz is a good quantum number, and its spectrum can be solved exactly. Here
we analyze the behavior in the small B and large B regimes, respectively. By smoothly
connecting the small B and large B regimes, one naturally obtains the qualitative feature
for the energy diagram, as shown in Figure 1.3

• In the small B-field regime, when BµBgs & αhf, the hyperfine coupling dominates.
The hyperfine coupling splits the energy between states with F = 1 and the states with
F = 2. Within the three F = 1 states, or the five F = 2 states, the Zeeman field
simply creates a linear Zeeman energy and a quadratic Zeeman energy proportional to Fz

and F2
z , respectively. The reason that there exists a quadratic Zeeman effect is precisely

because the hyperfine spin contains both electronic spin and nuclear spin components,
and they couple to the external magnetic moment differently.

• In the large B-field regime, when BµBgS ' αhf, the Zeeman energy of electron spin
dominates. The energies of four states with Sz ≈ −1/2 decrease as B increases, and the
energies of the other four states with Sz ≈ 1/2 increase as B increases.

Magnetic Trap. In the presence of a magnetic field, the energies of some spin states
increase with an increasing magnetic field strength. That is to say, if an atom is prepared
in such a state, it can be trapped in the regime where the magnetic field strength has a local
minimum. Atoms in these states are called the “low-field seeking” atoms. The energies of
some other states decrease with an increasing magnetic field strength. These states can be
trapped in the regime where the magnetic field strength has a local maximum. Atoms in
these states are called the “high-field seeking” atoms. This is the basic idea of the magnetic
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trapping. It is not difficult to show that, due to the constraint from the Maxwell equations,
the magnetic field cannot have a local maximum if there is no electronic current inside a
vacuum chamber. It can also be shown that the magnetic field cannot point to the same
direction in order to create a local minimum of magnetic field strength in space. Thus,
the natural idea is to trap the “low-field seeking” atoms by a minimum of the magnetic
field strength, using a spatially varying magnetic field texture. For instance, a so-called
quadrupole trap has a magnetic field configuration B = B0(x, y, −2z), where r = (x, y, z) is
the spatial coordinate and the magnetic field strength has a minimum at r = 0.

Emergent Synthetic Gauge Field. Above we have studied the Zeeman energy level of
an atom in a uniform magnetic field, which results in the idea of trapping atoms near a
minimum of the magnetic field strength. On the other hand, we have also noticed that the
magnetic field cannot point to the same direction in order to have a local minimum of its
strength. Thus, to fill the gap, we have to consider the motion of an atom in a spatially
varying magnetic field configuration B(r). Let us consider the Schrödinger equation for
the motion of an atom as

i!
∂ψ

∂t
=
(

− !2

2m
∇2 + Ĥs(r)

)
ψ , (1.7)

where

Ĥs(r) = µBgSB(r) · Ŝ + µNgIB(r) · Î + αhfĴ · Î. (1.8)

We introduce a unitary matrix U(r) to diagonalize Ĥs(r) as ((r) = U†(r)Ĥs(r)U (r) for
every r. For each r, we can always choose a local coordinate such that the magnetic field
direction is taken as local ẑ direction, therefore, ((r) has the same energy level as shown
in Figure 1.3 for the Hamiltonian Eq. 1.6 that only depends on the strength |B(r)|.

Denoting ψ̃ = U†(r)ψ , the Schrd̈inger equation for ψ̃ can be written into the adiabatic
spin bases as

i!∂ψ̃
∂t

=
(

1
2m

(−i!∇ − A)2 +(( r)
)
ψ̃ , (1.9)

where A(r) = i!U†(r)(∇U(r)). Here we have used

U†(−i!∇)U = −i!∇ − i!U†(r)(∇U(r)). (1.10)

Notice that U†(r)U (r) = 1, which means

U†(r)(∇U(r)) + (∇U†(r))U(r) = 0, (1.11)

and U†(r)(∇U(r)) is purely imaginary. Thus A is a real field. Eq. 1.9 takes the same form
as the Schrödinger equation for the motion of a particle in an external gauge field [73]. In
cold atom literatures, this emergent gauge field A is called the “synthetic gauge field.”

Gauge fields are classified as abelian and non-abelian. For abelian ones, different com-
ponents of the gauge field commute with each other, for instance, when A is a number. For
non-abelian ones, different components of the gauge field do not commute with each other.
Here, in general, A is a matrix, and different spatial components of A do not commute
with each other, which represents a non-abelian gauge field. The off-diagonal component
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of A gives rise to the transition between different spin eigenstates in local coordinates. If
these off-diagonal components are too small compared with the difference between the
diagonal components of ((r), the transition effect becomes negligible, and one can safely
assume that the atoms always stay in the same adiabatic spin eigenstate. It is usually the
case when the magnetic field strength is large and the spatial variation is small. Using the
adiabatic approximation, an atom in this adiabatic spin state can effectively be viewed as a
spinless particle, which experiences a potential only depending on the strength |B(r)|. This
manifests the magnetic trapping as discussed above. The only modification is the presence
of the diagonal component of the gauge field A, say, denoted by Aii, corresponding to the
adiabatic spin eigenstate labeled by i. This gives rise to an abelian gauge field. This abelian
gauge field has a physical effect when it leads to a nonzero synthetic magnetic field Bsyn,
given by Bsyn = ∇ × Aii(r).

The discussion above says that the motion of a neural atom with spin in a spatially vary-
ing magnetic field B(r) is equivalent to the motion of a spinless charged particle in a syn-
thetic magnetic field Bsyn. This synthetic magnetic field Bsyn should not be confused with
the real magnetic field B. The real magnetic field B only acts on the spin degree of freedom
of an atom and does not couple to its motion because atoms are neutral. However, the syn-
thetic gauge field only acts on the motion of the particle. This equivalence is emergent from
the Berry phase effect, and the basic idea is illustrated in Figure 1.4. Let us consider a neu-
tral atom with spin moving in a spatially varying magnetic field. Following the adiabatic
approximation, when an atom moves, its spin direction is always aligned with the local
magnetic field direction. Therefore, when the atom follows a closed trajectory in space, its
wave function acquires an extra phase that is proportional to the solid angle expanded by
the spin direction along the trajectory. On the other hand, for a charged particle moving in
a magnetic field, due to the Aharonov–Bohm effect, it also requires a phase for any closed
trajectory which is proportional to the total flux enclosed by the trajectory. If these two

(a) (b)

e

!Figure 1.4 Emergence of synthetic gauge field. (a) A neutral and spinful atom (represented by the filled circles) moves in a
magnetic field with spatially varying magnetic field directions (represented by longer arrows), and its spin direction
(represented by arrows attached to the filled circles) always follows the local magnetic field direction. (b) A charged
spinless particle moves in a magnetic field (represented by the vertical arrows). These two motions are equivalent
when (i) the adiabatic approximation for case (a) is valid and (ii) the phases accumulated along any trajectory are
always equal between cases (a) and (b). A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.
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Box 1.1 Different Kinds of “Magnetic Fields”

It is really important to distinguish these three concepts of the realmagnetic field, the light-inducedmagnetic
field, and the synthetic magnetic field. Here we summarize the difference and the relations between these
three “magnetic fields.” First of all, the former two act on the spin degree of atoms, and the third one acts
on the spatial motion of atoms. Second, both the real and the light-induced magnetic fields can polarize
spin of atoms in a spatially dependent way, which leads to the synthetic magnetic field. Third, the synthetic
magnetic field generated by the light-induced magnetic field can be much stronger than that generated by
the real magnetic field. The synthetic gauge field is an active research topic in cold atom physics, and more
discussion can be found in Box 7.3.

phases are always equal for any trajectory, then the spatial motion of a neutral spinful atom
in a spatially varying magnetic field can be effectively described by a “charged” spinless
particle in a synthetic magnetic field. This also tells us that the synthetic magnetic flux
generated in this way depends on how fast the magnetic field direction varies in space.
However, it is hard for a real magnetic field to vary very rapidly in space. In Section 1.3 we
will introduce the vector light shift, which can generate a light-induced Zeeman field for
atoms that can vary in the scale of the order of interparticle spacing. By combining these
two effects, we can generate a strong synthetic magnetic field. To further clarify these
concepts, we summarize different terminology of “magnetic fields” in Table 1.1.

Finally, we should also mention that this adiabatic approximation can break down either
when the off-diagonal components of A become very large due to fast variation of the
magnetic field direction or when the energy differences of the diagonal components of
((r) become quite small. For instance, the latter happens at r = 0 of the quadruple trap,
where a few spin states become degenerate. Around the r = 0 regime, the off-diagonal
components of A are always important, which drives transitions between different adiabatic
spin states. Therefore, there is significant probability that a “low-field seeking” state can
flip into a “high-field seeking” state, which is also known as the “Majorana transition.”
When the transition takes place, atoms cannot be trapped by the magnetic trap. This is one
of the major challenges in achieving a Bose–Einstein condensate in a magnetic trap before
1995. This is actually an effect of the non-abelian gauge field. It is interesting to note that
though the synthetic gauge field became a major research subject in cold atom physics after
around 2010, its effect already existed even prior to the birth of this field. The JILA group
and the MIT group came up with different methods to solve this problem. The JILA group
applies an oscillating offset magnetic field to deal with this problem [140]. Treating a time-
periodical system requires the Floquet theory, which will also be discussed in Section 7.4.

1.3 Light Shift

In the previous sections, we discussed the structure of a single atom. In this section, we
will discuss how a single atom interacts with a laser light.
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General Framework. Atoms experience an effective potential in the presence of the laser
field. Here we will discuss such potential using the ground state alkali-metal atoms as an
example. One can see that the first two leading order contributions to this light-induced
potential are the scalar potential and the vector potential, which are known as the scalar
light shift and the vector light shift, respectively.

As discussed in Section 1.1, let us consider all states in the ground state 2S 1
2

manifold
with the electron angular momentum L = 0, and all states in the electronic excited states
2P 1

2
and 2P 3

2
manifolds with L = 1. Here, by “manifold,” we mean that both electronic

and nuclear spin degrees of freedom are included, and each manifold contains multiple
spin states. The energy splitting Eex between the ground and the excited manifolds is of
the order of the electron volt, which usually lies in the energy window of a visible light
field, as shown in Figure 1.5. We denote the detuning )e = Eex − !ω, where ω is the laser
frequency. Usually, )e is comparable to or larger than the fine-structure splitting and is
much larger than the hyperfine splitting. )e is also much smaller than the detuning of the
other electronic excited states, that is to say, all the other electronic excited states are far
detuned. With these energy scale considerations, our model is established as follows:

• The contributions from both 2P 1
2

and 2P 3
2

are important and should be treated on equal
footing.

• The hyperfine coupling and the Zeeman energy are safely ignored.

• Except for 2S 1
2
, 2P 1

2
and 2P 3

2
manifolds, all the other electronic states are not included.

Hence, we write down our model as follows [61]:

Ĥ = Ĥat + Ĥd. (1.12)

!Figure 1.5 Schematic of the level diagram for atom-light interaction. Here we use the alkali-metal atoms as an example. Three
relevant energy scales, the excitation energyEex, the detuning)e, and the fine structure splittingαf, are marked on
the diagram. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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Ĥat denotes the Hamiltonian for the atom part and it is given by

Ĥat = EexPe + αfŜ · L̂. (1.13)

Here we define a projection operator Pg to the ground states manifold with L = 0 and a
projection operator Pe to the excited states manifold with L = 1. In our model, Pg +Pe =
1. We have also set the ground state energy as zero energy, and the Ŝ · L̂ vanishes when
acting on the ground state manifold. It is also important to note that Ĥat itself does not
provide any coupling between the ground and the excited states.

Here the atom–light interaction refers to the interaction between electrons inside the
atom and the electromagnetic field of the laser. Considering a time-dependent electric field
applied to electrons, the Hamiltonian can be written as

Ĥ =
Z∑

i=1

1
2m∗ (p̂i + eA(t))2 + . . . , (1.14)

where ri denotes the coordinate of a valance electron in the rest frame of the nucleus,
and . . . represents the Coulomb interactions and other terms discussed in Section 1.1.
Typically, the wave length of a laser is much longer than the size of an atom, therefore, on
the scale of electronic wave function inside an atom, we can ignore the spatial dependence
of A and only consider its temporal dependence. As we will see below, this leads to the
dipolar coupling.

Here, by performing a gauge transformation, we consider Û†ĤÛ → Ĥ, and U†ψ → ψ ,
and here

Û = e−∑i ieA·ri/!. (1.15)

Under this gauge transformation, p̂i +eA changes back to p̂i and the kinetic energy returns
to the normal p̂2

i /(2m∗). However, because this gauge transformation is time dependent,
there will be an extra term i!(∂tÛ)†Û added into the Hamiltonian, which is given by

i!(∂tÛ†)Û = −eri · ∂A
∂t

= eri · E, (1.16)

where E is the electric field of the laser given by E = −∂A/∂t. Hence, it results in the
dipole coupling Ĥd = d · E, where d = ∑

i eri is the electron dipole operator, and it gives
rise to the transition between the ground and the excited states.

First, we consider a single laser field, and

Ĥd = d · E =
∑

j=x,y,z

djE0
j cos(φj − ωt), (1.17)

where E0
j cos(φj − ωt) is the jth component of the electric field and j = x, y, z denotes

three spatial components of the laser field. For example, in this notation, for a light linearly
polarized along x̂, E0

x += 0 and E0
y = E0

z = 0; for a light linearly polarized along the
(x̂ + ŷ)/

√
2 direction, E0

x = E0
y += 0, φx = φy and E0

z = 0; and for a light circularly
polarized in the xy plane, E0

x = E0
y += 0, φx = φy ± π/2 and E0

z = 0.



17 Light Shift

Here we first simply the Hamiltonian by employing the rotating wave approximation.
We first define a unitary transformation as

Û(t) = e−iωtPe = (1 − Pe) + Pee−iωt = Pg + Pee−iωt. (1.18)

and apply this unitary transformation to the Hamiltonian. The rotating wave approxima-
tion ignores e±i2ωt terms because they are high-frequency oscillating terms. With this
approximation, it is straightforward to show that the Hamiltonian is reduced to

Ĥd = Û†(t)ĤdÛ(t) ≈ 1
2

∑

j=x,y,z

(
E∗

j PgdjPe + EjPedjPg

)
, (1.19)

where we have also used PgdjPg = PedjPe = 0 because of the rotational symmetry
of the electron wave functions. Here Ej is defined as E0

j eiφj . Unlike E, here E is time-
independent, which encodes the phase and amplitude information of the laser field. In this
notation, for a light linearly polarized along x̂, E = E0ex; for a light linearly polarized
along the (x̂ + ŷ)/

√
2 direction, E = E0√

2
(ex + ey); and for a light circularly polarized in the

xy plane, E = E0√
2
(ex + iey).

Moreover, a time-dependent term i!(∂tÛ†)Û can be absorbed in Ĥat so that Ĥat becomes

Ĥat = )ePe + αfŜ · L̂, (1.20)

where )e = Eex − !ω. )e > 0 is called the red detuning and )e < 0 is called the
blue detuning. In this way, we obtain the new Ĥat + Ĥd as a time-independent effective
Hamiltonian. We will revisit such a time periodical problem in Section 7.4 with a general
theoretical framework known as the Floquet theory.

This formalism can be straightforwardly generalized to the situations with multiple laser
beams. In this case, the electric field consists of contributions from all laser beams, and we
write the dipole coupling as

Ĥd = d · E =
∑

κ

∑

j=x,y,z

djE0
j,κ cos(φj,κ − ωκ t), (1.21)

where κ labels different laser fields. Here different lasers can have different frequencies,
but their difference should be small. That is to say, suppose we denote the average of these
frequencies as ω; their difference should be much smaller than ω. Therefore, we can still
safely drop all terms with e±i(ωκ+ω)t and retain all terms with e±i(ωκ−ω)t. After the rotating
wave approximation, it is easy to show that Eq. 1.19 still holds, except that the definition
of Ej should be modified as

Ej =
∑

κ

E0
j,κeiφj,κ−i(ωκ−ω)t. (1.22)

Note that if all lasers share the same frequency, E is time-independent. If there are multiple
frequencies, E is also time-dependent.

The physical meaning of the rotating wave approximation can be understood more
clearly when we treat the laser as a quantum field labeled by photon number. Let us
now consider an atom in the ground state (denoted by |g〉) in a laser field with N pho-
tons (denoted by |N〉). In the second quantized form, the d · E coupling can either create
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a photon or annihilate a photon when it couples an atom from the ground state to the
excited state. Thus, we shall consider following two different second-order perturbation
processes. Starting from the state |g〉|N〉, the atom can either be first excited to the excited
state (denoted by |e〉) by absorbing a photon, such that the intermediate state is |e〉|N − 1〉
with energy )e, and then return to the ground state |g〉|N〉 by emitting a photon. The atom
can also be first excited to the excited state by emitting a photon, such that the interme-
diate state is |e〉|N + 1〉 with energy Eex + !ω, and then return to the ground state |g〉|N〉
by absorbing a photon. The second process has a much larger intermediate state energy,
and therefore, the probability is considerably smaller. The rotating wave approximation is
basically to ignore the second process. With the first process alone, by taking the energy of
photons into account, the energy detuning changes from Eex in Eq. 1.13 to )e in Eq. 1.20.

Hereafter we will consider how this second-order process generates an effective potential
for atoms in the ground state manifold after eliminating the excited states |e〉|N − 1〉. Fol-
lowing the standard perturbation theory, the effective Hamiltonian for atoms in the ground
manifold is derived as

Ĥeff = −PgĤdPeĤ−1
at PeĤdPg = −1

4

∑

i, j=x,y,z

E∗
i D̂ijEj, (1.23)

where D̂ij is a rank-2 Cartesian tensor operator defined as

D̂ij = PgdiPeĤ−1
at PedjPg. (1.24)

D̂ij is purely a property of atoms. By using the fact that Pg + Pe = 1 and PgdiPg = 0,
Pe in Eq. 1.24 can be eliminated. Hereinafter we should focus on the properties of D̂ij in
different circumstances.

The Scalar Light Shift. We first consider a special case with αf = 0; then Ĥat is simplified
as )ePe, and

D̂ij = 1
)e

PgdidjPg. (1.25)

Since the ground state has L = 0, which has the spatial reflection symmetry and rotational
symmetry, it is easy to see that Dij = 0 if i += j, and all three Djj ( j = x, y, z) are the same.
Therefore,

D̂ij = −4usδij, us = − e2

12)e
〈g|r2|g〉, (1.26)

which gives rise to an effective Hamiltonian

Ĥeff = usE2. (1.27)

This term acts identically on different spin states of the ground manifold and cannot flip
the spin, and this term also does not depend on the polarization of the lasers. This is
because the dipole coupling only acts on the orbital degree of freedom of the valance
electron, and therefore, in the absence of Ŝ · L̂ coupling, the orbital degree of freedom is
decoupled from the spin degree of freedom. Hence, this term is called the scalar light shift,
and us is called the atom’s scalar ac polarizability. Below we shall discuss some important
applications of the scalar light shift.
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Trapping Atoms with Laser. The scalar potential only depends on the intensity of the
laser. For the red detuning case, us < 0, atoms will be trapped in the place where the laser
intensity is a local maximum. Hence, one can trap atoms with a focused laser beam. This is
the basic mechanism of the laser trapping. In this optical trap, all spin states in the ground
state manifold will experience identical potentials, and one can fully utilize the spin degree
of freedom of atoms, as we will discuss in Section 4.3.

However, there is one complication we should notice. So far what we have considered is
the second-order process that the photon absorption is followed by the stimulated emission.
In fact, there is another process, that is, the photon absorption is followed by the sponta-
neous emission. The spontaneous emission is what causes the finite lifetime of the excited
state and can be described by adding an imaginary part , in the excited state energy, where
, is the line width of the excited states. Hence, this process can be described by adding
an imaginary part to the excited state energy in the expression of the ac polarizability.
Consequently, us acquires an imaginary part as

us ∝ 1
)e − i,

= )e

)2
e + ,2 + i

,

)2
e + ,2 . (1.28)

For the off-resonant case with )e ' ,, the real part behaves as 1/)e and the imaginary
part behaves as ,/)2

e . Since the real and imaginary parts have difference power depen-
dence on )e, in the far-detuned regime with )e ' ,, the imaginary part can be strongly
suppressed compared with the real part. Since the real part provides the trapping effect, one
usually works in this far-detuned regime for laser trapping. The laser trapping was awarded
the Nobel Prize in 2018.

Optical Lattice. Now let us consider applying two counterpropagating laser beams, say,
along x̂. These two lasers have the same frequency and the same polarization; for instance,
both are linearly polarized along ŷ. Suppose both two lasers have the same strength E0;
according to Eq. 1.22, we have

Ey = E0eikx + E0e−ikx = 2E0 cos(kx). (1.29)

The electric field intensity has a spatial periodical modulation due to the interference
between two lasers. Hence, the scalar light shift gives rise to a periodic lattice potential
V(x) ∝ cos2(x), which is now well known as the optical lattice. Optical lattices will be the
main topic of the last part of this book.

Cooling Atoms with Laser. If )e becomes small, the imaginary part of the scalar poten-
tial also becomes important, which means the process with spontaneous emission becomes
important. There is an important difference between the process with the stimulated emis-
sion and the process with the spontaneous emission. For the former, because it is the same
photon that is absorbed and emitted, the momentum transfer is canceled, and atoms do
not receive momentum transfer after the entire second-order process. But for the latter,
since the photon can go any direction in the spontaneous emission process, on average, the
momentum transfer during the emission process is canceled out, and therefore, atoms get
kicked by the photons of the laser field during absorbing the photon. Effectively, atoms
feel a force proportional to ,/)2

e and the momentum of the laser. Now considering two
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counterpropagating lasers with same frequency, if an atom is at rest, the force from the left
laser cancels with the force from the right laser, because the momentum transfers received
from the left and the right lasers are of equal strength and opposite sign. However, if an
atom moves toward the right, due to the Doppler effect, )e for two lasers depends on the
velocities of the atoms, and they are different. Thus, the force cannot be canceled out, and
it can be shown that the net force is always opposite to the velocity of the atom [138].
Thus, this effect slows down the motion of atoms. That is the basic mechanism of the
laser cooling, which is one of the most important steps to cool atoms toward the quantum
degeneracy. Laser cooling was recognized with the Nobel Prize in 1997.

However, due to various limitations, it is very hard to reach quantum degeneracy of
atomic gases directly by laser cooling. Directly reaching quantum degeneracy by laser
cooling was first achieved more than 20 years after achieving Bose–Einstein condensation
in atomic gases [76, 160]. In most experiments, one needs to perform evaporative cooling
after laser cooling. The basic idea of evaporative cooling is quite straightforward. Consid-
ering that the trapping potential has a finite depth U0, atoms with kinetic energy larger than
U0 have a significant chance to escape from the trap. Now let us gradually decrease U0,
thus, more and more atoms with larger kinetic energy escape from the trap, and the average
kinetic energy of the remaining atoms decreases. Therefore, the temperature of the remain-
ing atomic gas decreases. However, we should notice that the evaporative cooling pays the
price of losing atoms in order to lower the temperature. When losing atoms, the degenerate
temperature also decreases. Therefore, the efficiency of the evaporative cooling becomes
crucial. That is to say, lowering the temperature has to be faster than lowering the degener-
ate temperature; otherwise, the system can never reach quantum degeneracy. The efficiency
of evaporative cooling certainly depends on how to lower the trap depth U0 as a function
of time t, and controlling this dynamical process is the key challenge to reaching quantum
degeneracy through evaporative cooling.

Vector Light Shift. Now let us consider the situation with finite Ŝ · L̂ coupling. As we
discussed above, fine structure splitting αf can be comparable to detuning )e. Here, just
to simplify the calculation, we consider the situation αf/)e & 1, and the main conclusion
does not change if αf ∼ )e. When αf/)e & 1, we can expand Ĥ−1

at to the leading order
of αf/)e, and we obtain

Ĥ−1
at =

(
1
)e

− αf

)2
e

Ŝ · L̂
)
Pe, (1.30)

and therefore,

D̂ij = Pgdi
1
)e

djPg − αf

)2
e
Pgdi(Ŝ · L̂)djPg. (1.31)

As shown above, the first term gives the scalar part. And for the second term, one has

Pgdi(Ŝ · L̂)djPg = Pg( Ŝ · L̂)didjPg − Pg[(Ŝ · L̂), di]djPg (1.32)

= −i!εlimSlPgdmdjPg, (1.33)
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where the first term vanishes because ground state has L̂Pg = 0, and for the second term,
we have used the commutative relation [L̂l, d̂i] = i!εlimd̂m, where εjim is the Levi–Civita
symbol. Thus we reach

D̂ij = −4usδij + i
!αf

)e
εijlSl(−4us) % −4us

(
δij + i

!αf

)e
εijlSl

)
, (1.34)

where the second term will give rise to a vector light shift. In this case, the effective
Hamiltonian is given by

Ĥeff = −1
4

∑

i,j=x,y,z

E∗
i D̂ijEj = us|E|2 + iuv(E∗ × E) · Ŝ, (1.35)

where uv = !αfus/)e is the vector polarizability. The physical meaning of the vector light
shift is a Zeeman field B = iuvE∗ × E acting on the electronic spin degree of freedom of
an alkali-metal atom.

Again, because the dipole coupling acts on the orbital degree of freedom, the vector light
shift has to reply on the Ŝ · L̂ coupling that hybridizes the orbital degree of freedom with
the electronic spin degree of freedom. In this case, the Ŝ · L̂ exists only in the excited states,
and therefore, the vector light shift is smaller than the scalar term by an order of !αF/)e.
Consequently, the vector light shift scales with)e also as 1/)2

e . Thus, the vector light shift
has the same scaling as the spontaneous emission process. In the discussion of the scalar
light shift, we have noticed that, because the scalar light shift and the spontaneous emission
scale with )e differently, one can suppress the effect of spontaneous emission compared
with the scalar potential by increasing the detuning. However, this no longer works for
the vector light shift. Because the vector light shift and the spontaneous emission scale
with )e in the same way, one cannot suppress the spontaneous emission process without
reducing the strength of the vector light shift. This discussion of atom–light interaction
can also be generalized to lanthanide atoms like Dysprosium and Erbium [41]. There, the
f -orbital is not fully filled for the ground state, and electric spin and angular momentum are
not good quantum numbers for atoms in their ground state. Therefore, the dipole coupling
can always act on the electronic spin degree of freedom. Thus, for these lanthanide atoms,
the vector light shift scales in the same way as the scalar light shift, and they both scale as
1/)e [41, 24]. Indeed, the vector light shift has been realized in the lanthanide atoms with
suppressed spontaneous emission [41, 24].

Light-Induced Zeeman Energy. Below we will discuss a couple of examples as the appli-
cations of the vector light shift. If an atom is illuminated in a linearly polarized light, then
E∗ × E = 0, and the vector light shift vanishes. If the light is circularly polarized, for
instance, E = E0√

2
(ex + iey), then

E∗ × E = iE2
0ez, (1.36)

which gives rise to a light-induced Zeeman energy proportional to uvE2
0Sz. This difference

between a linear polarized light and a circular polarized light lies between their difference
in symmetry. The presence of a linear polarized light does not break the time reversal sym-
metry, but the presence of a circular polarized light does. Since the presence of a Zeeman
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field breaks the time-reversal symmetry, symmetry-wise, it is compatible with the presence
of a circular polarized light, but is not compatible with the presence of a linearly polarized
light.

Since uv depends on the fine-structure splitting and detuning, if two different atoms are
illuminated in the same circular polarized laser, they will experience different light-induced
Zeeman fields. In general, because the spin-orbit coupling is stronger for heavier atoms,
the vector light shift is also larger for heavier atoms for a given detuning. One experiment
that can demonstrate this effect is the spin exchanging scattering between 23Na and 87Rb
atoms [108]. The spin exchanging scattering will be discussed in detail in Section 2.3.
Here let us first mention it briefly. Considering the F = 1 spin states of both 23Na and
87Rb atoms, each of them has three magnetic states labeled by |Fz〉. For instance, one of
the spin-exchanging scattering processes can take place as

|0〉Na| − 1〉Rb ↔ | − 1〉Na|0〉Rb. (1.37)

This spin-exchanging scattering reaches a resonance at a certain magnetic field when the
Zeeman energy difference between the incoming and the outgoing states vanishes, that is,

)E = (E|0〉Na + E|−1〉Rb) − (E|−1〉Na + E|0〉Rb) = 0, (1.38)

at which the period of the spin-exchanging oscillation reaches a maximum. The Zeeman
energy contains a contribution from both the static magnetic field and the light-induced
Zeeman field. In the common practical condition [108], given a typical value of the opti-
cal trapping laser, the light-induced Zeeman energy for 87Rb is equivalent to applying a
magnetic field of ∼mG, but the light-induced Zeeman energy for 23Na is only equivalent
to applying a magnetic field of ∼µG, which can be safely ignored. This difference is due
to the difference in their fine-structure splitting. Therefore, the magnetic field strength to
reach the spin-exchanging resonance is different for different laser intensities. This has
been experimentally observed, and the experimental results are shown in Figure 1.6.

Synthetic Spin-Orbit Coupling. Now we consider atoms in a real static magnetic field
along ẑ that gives rise to a Zeeman energy, assumed to be hFz for simplicity. In addition,
let us consider two counterpropagating Raman beams along x̂, with one polarized along ŷ
and the frequency ω1 and the other polarized along ẑ and the frequency ω2, as shown in
Figure 1.7. The electronic field is given by

E = E1eik0x+iω1tey + E2e−ik0x+iω2tez. (1.39)

This is the situation of two lasers with different frequencies. With the help of Eq. 1.22, one
can obtain

E∗ × E = E1E2(e−i2k0x−iδωt − ei2k0x+iδωt)ex, (1.40)

where δω = ω2 − ω1. Then, atoms in this laser field experience a light-induced Zeeman
field as

Ĥeff = iuvE1E2(e−i2k0x−iδωt − ei2k0x+iδωt)Ŝx. (1.41)

In the low-field regime, by using the Wigner–Eckart theorem, one can project the Hamil-
tonian Eq. 1.43 into the hyperfine eigenstate bases, where the Ŝx,y,z terms become F̂x,y,z
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!Figure 1.6 Physical effect of the light-induced Zeeman energy. (a) The energy difference between different spin states)E
defined in Eq. 1.38. (b) The observed spin exchanging oscillation periods as a function of the real magnetic field
strength, for different light-induced magnetic fields.Bac in the figure denotes the light-induced Zeeman field for
87Rb at different intensities of the circular polarized light. Reprinted from Figure [108]. A color version of this figure
can be found in the resources tab for this book at cambridge.org/zhai.
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!Figure 1.7 Schematic of the synthetic spin-orbit coupling for atoms. (a) The laser configuration of the Raman coupling scheme.
Two counterpropagating Raman beams with different polarization directions and different frequencies are applied
along x̂, and B is the real magnetic field applied along the ẑ direction. (b) Raman coupling couples two Zeeman levels
split by a Zeeman energy denoted by h. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.
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terms, respectively.3 Thus, the total Hamiltonian for the spin part contains both the real
static Zeeman field and the light-induced Zeeman field as

Ĥs = hF̂z + i-(e−i2k0x−iδωt − ei2k0x+iδωt)F̂x, (1.42)

where - denotes the coupling constant proportional to E1E2. Let us consider the situa-
tion that δω is near-resonant with h. Following the discussion above, we apply a unitary
transformation Û = e−iδωtF̂z/! and implement the rotating-wave approximation to drop the
terms with 2δω frequency; the full Hamiltonian can be reduced to

Ĥs = (h − δω)F̂z +-(sin(2k0x)F̂x − cos(2k0x)F̂y). (1.43)

This Hamiltonian represents a spatially dependent Zeeman field that varies the spin
direction at the scale of the laser wavelength.

The discussion above mainly concerns the motion of electrons inside an atom. Now, we
consider an atom as a point particle moving in such a spatially dependent Zeeman field,
and the Hamiltonian is given by

Ĥ = !2k̂
2

2m
+ Ĥs, (1.44)

where k now stands for the spatial motion of the atom. By applying a spatially dependent
spin rotation Û = e−i2k0xF̂z to the Hamiltonian, one can obtain that

Ĥ = !2

2m
(k̂x − 2k0F̂z/!)2 + !2 k̂

2
⊥

2m
+ (h − δω)F̂z −-F̂y. (1.45)

Below we will analyze several different situations of the model Eq. 1.45.

• When h − δω is much larger than -, we can only keep the lowest spin branch by imple-
menting the adiabatic approximation. Without loss of generality, we consider h−δω > 0.
Nearby the minimum of the dispersion, the dispersion can be well approximated by

1
2m∗ (kx − kmin)2 [112]. For small -, kmin ≈ 2k0 + o(-). This can be viewed as realizing
a constant gauge U(1) gauge field Ĥ = 1

2m∗ (kx − Ax)2 where Ax is a constant. A con-
stant U(1) gauge field has no physical effect because there is neither an electric nor a
magnetic field, and it can be gauged away by a gauge transformation eikminx.

• In the regime discussed above, if - depends on the y coordinate, then it means kmin,
or equivalently, to say, Ax, depends on y. This leads to a synthetic magnetic field
Bsyn = −∂Ax/∂y [113]. This emergent synthetic magnetic field can also be understood
in terms of spatial twisting of spins by the light-induced magnetic field, as discussed in
Section 1.2. If - depends on time, then Ax also depends on time. This realizes a syn-
thetic electric field given by Esyn = −∂Ax/∂t [115]. However, the spatial and temporal
dependences of these gauge fields are completely fixed by the external classical fields,
which are the profile of the laser intensity in this case. There is no quantum dynamics of
these gauge fields. We will summarize the timeline of simulating various kinds of U(1)

3 According to the Wigner–Eckart theorem, the projection from Ŝx,y,z terms to F̂x,y,z terms acquires a constant

coefficient given by F(F+1)−I(I+1)+J(J+1)
2F(F+1) . For 87Rb, I = 3/2, J = 1/2, and for the F = 1 manifold, this

constant is −1/4.
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gauge fields in Box 7.3, where we will discuss how to realize a U(1) gauge field with its
own dynamics.

• In the regime when h−δω is comparable to-, we need to keep all spin components. Here
we again consider - a constant independent of spatial and temporal coordinates, but we
need to keep both the vector gauge potential Ax = 2k0F̂z/! and the scalar potential
−-F̂y terms as matrices. These two terms do not commute with each other, and this
realizes a non-abelian gauge field. Unlike the abelian case, a non-abelian gauge field has
a physical effect even though they are constants. As one can see, if one wants to gauge
away the vector potential, one needs to make a gauge transformation e2ik0xF̂z , and this
gauge transformation does not commute with the scalar potential term.

In this case, the Hamiltonian can also be written as

Ĥ = !2k̂
2

2m
+ hk · F̂, (1.46)

where

hk =
(

0, −-,
(

h − δω − !2

m
k0kx

))
. (1.47)

In this way, this Hamiltonian can be viewed as a momentum-dependent Zeeman field.
For eigenstates, the spin direction of the atom is locked by its momentum, which gives
rise to the spin-orbit coupling effect. Here we should note that one should not confuse
this synthetic spin-orbit coupling with the real spin-orbit coupling discussed in atomic
structure. For the synthetic spin-orbit coupling, “orbit” refers to the spatial motion of
atoms, and “spin” refers to the total spin of an atom. In nature, neutral atoms do not
possess the spin-orbit coupling effect, and here it is a synthetic effect generated by the
atom–light interaction. The real spin-orbit coupling refers to the fine structure coupling
given by nature, where “orbit” means the motion of electrons around the nucleus inside
the atom and “spin” refers to the spin of electrons. Nevertheless, from the discussion
above, it is interesting to note that generating the synthetic spin-orbit coupling relies on
the real spin-orbit coupling.

• We have not included the quadratic Zeeman energy in the discussion above. Considering
atoms like 87Rb with F = 1, in the moderate magnetic field, there also exists sizable
quadratic Zeeman energy denoted by qF2

z , as discussed in Section 1.2. Especially, let us
consider the situation that h − δω ≈ q ' -, such that

δ = h − δω − q & - (1.48)

h − δω + q ≈ 2q ' -. (1.49)

In this case, two states with |F = 1, Fz = 0〉 and |F = 1, Fz = −1〉 are nearly
degenerate, and their energy separation with |F = 1, Fz = 1〉 is much larger than the
coupling. Hence, we introduce a pseudo-spin-1/2 to represent |F = 1, Fz = 0〉 and
|F = 1, Fz = −1〉 states, described by the Pauli matrices σ , and ignore |F = 1, Fz = 1〉.
In the spin-1/2 subspace described by the Pauli matrix, the Hamiltonian can be written as
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Ĥ = !2

2m
(k̂x − k0σz)2 + !2 k̂

2
⊥

2m
+ δ

2
σz −-σy, (1.50)

where δ denotes h − δω − q. Upon a spin rotation, the Hamiltonian can also be written
in the form used most often in literature:

Ĥ = !2

2m
(k̂x − k0σz)2 + !2k̂

2
⊥

2m
+ δ

2
σz +-σx. (1.51)

This Hamiltonian has been realized in both Bose condensate [114] and degenerate Fermi
gas [181, 32]. The effects of this spin-orbit coupling in ultracold Bose and Fermi gases
have been extensively studied in cold atom physics [186]. We will discuss how this
synthetic spin-orbit coupling affects the properties of a Bose condensate in Section 4.5.

1.4 Stimulated Raman Adiabatic Passage

In Section 1.3 we have discussed that atoms in their ground state can experience an effec-
tive potential due to the two-photon process via intermediate excited states. In this section,
we will discuss a dynamical process that can transfer atoms from one low-energy state to
another low-energy state, also through a two-photon process via an intermediate state. This
is known as Stimulated Raman Adiabatic Passage (STIRAP).

Here we introduce the simplest version of the STIRAP [178]. As shown in Figure 1.8,
the two low-energy states are denoted by |1〉 and |2〉 with energy E1 and E2, and the excited
state is denoted by |e〉 with energy Eex. A laser called a “pump laser” couples |1〉 to |e〉 with
energy ωp and a time-dependent coupling strength -p(t), and another laser called a “stoke
laser” couples |2〉 to |e〉 with energy ωs and a time-dependent coupling strength-s(t). Here
it is important to note that the time dependence of -s(t) and -p(t) should be slow enough
compared to other time scales. Here we introduce two detunings )p = Eex − E1 − !ωp

and )s = Eex − E2 − !ωs, and STIRAP requires )p = )s, which will be denoted by )
below. Therefore, under the rotating wave approximation, the time-dependent Hamiltonian
is given by

Ĥ(t) = !|/〉H(t)〈/|T , (1.52)

where |/〉 denotes (|1〉, |2〉, |e〉) and 〈/|T denotes (〈1|, 〈2|, 〈e|)T , and H(t) is a 3×3 matrix
given by

H(t) =




0 0 -p(t)
0 0 -s(t)

-p(t) -s(t) )



 . (1.53)

This Hamiltonian can in fact be rewritten as

Ĥ(t) = A(t)
[(
-p(t)
A(t)

|1〉 + -s(t)
A(t)

|2〉
)

〈e| + h.c.
]

+)|e〉〈e|, (1.54)
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!Figure 1.8 Schematic of the STIRAP scheme. (a) How two lasers couple three different states at three different stages. The dashed
line and the solid line denote the stoke laser and the pump laser, respectively. (b) The temporal profiles of-s (dashed
line) and-p (solid line) as a function of time. (c) The population in the |1〉 state (solid line) and the population in the
|2〉 state (dashed line) as a function of time. A color version of this figure can be found in the resources tab for this
book at cambridge.org/zhai.

where A(t) =
√
-2

p(t) +-2
s (t). Now we define a “bright” state |B〉 as

|B〉 = -p(t)
A(t)

|1〉 + -s(t)
A(t)

|2〉 (1.55)

and another “dark state” |D〉 orthogonal to |B〉 as

|D〉 = −-s(t)
A(t)

|1〉 + -p(t)
A(t)

|2〉. (1.56)

In the Hilbert space spanned by {|1〉, |2〉}, only |B〉 couples to |e〉, and |D〉 state does not
couple to |e〉 at all. That is to say, for any given time t, H(t) can be diagonalized by a unitary
matrix U(t), and there will always be an instantaneous eigenstate |D(t)〉 whose eigenenergy
always remains as zero. The other two instantaneous eigenstates will be in superposition
of |B〉 and |e〉, and their energies will be ±

√
A2(t) +)2/4.
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The key idea of STIRAP relies on this dark state |D(t)〉. If one solves the time-dependent
Schrödinger equation, there will be an extra i!(∂tU†(t))U(t) term when one rotates into the
instantaneous eigenstate bases, as we discussed in Section 1.3. The off-diagonal matrix
elements of this term can couple different instantaneous eigenstates. However, since the
three instantaneous eigenstates are always separated by a finite energy difference, if H(t)
changes sufficiently smoothly as a function of time, U(t) also varies sufficiently smoothly,
and therefore the off-diagonal matrix elements can be made sufficiently small compared
with the energy separation of the three instantaneous eigenstates. Therefore, in this adia-
batic regime, the system can nearly remain in one of the instantaneous eigenstates during
the time evolution. In this case of STIRAP, we would like to keep the system in the dark
state |D(t)〉.

The idea of the STIRAP is to utilize the dark state |D(t)〉 to transfer atoms from |1〉 to
|2〉 by properly designing the time dependence of -p(t) and -s(t). To fulfill this goal, at
initial time, -p/-s → 0 and therefore |D〉 → |1〉; and at the final time of the transfer,
-s/-p → 0 and therefore |D〉 → |2〉. The time sequence is very counterintuitive. It
basically constitutes three steps: (1) initially, atoms are populated in state |1〉, however,
one first opens up the coupling between |2〉 and |e〉, as shown in Figure 1.8(a1); (2) in the
intermediate stage, both lasers’ coupling is open, and atoms are transferred from |1〉 to |2〉,
as shown in Figure 1.8(a2); and (3) when atoms have been gradually transferred to the |2〉
state, the coupling between |e〉 and the less occupied |1〉 should remain open, as shown in
Figure 1.8(a3). We schematically show an example of the temporal profiles of -s(t) and
-p(t) in Figure 1.8(b). Correspondingly, the populations of the |1〉 state and |2〉 state are
given by -2

s (t)/A2(t) and -2
p/A2(t), respectively, and they are plotted in Figure 1.8(c).

The STIRAP scheme transfers atoms from one state to another in a coherent way, and
the energy difference between these two states is taken away by photons such that there is
no inelastic energy transfer. The STIRAP scheme has two major advantages that make the
STIRAP scheme very stable:

• Because this dark state does not involve the excited state component |e〉, it is stable
against the spontaneous emission of the |e〉 state.

• This scheme is not sensitive to the details of the temporal profile of -p(t) and -s(t), and
it works as long as the temporal profiles satisfy the aforementioned initial and long time
conditions.

STIRAP has been widely used in atomic and molecular physics, as well as chem-
istry [178]. In cold atom physics, STIRAP has been mostly used for producing ultracold
ground state molecules [127]. In this application, it transfers the two-body molecular state
instead of the single-particle atomic states, but the working principle is the same as dis-
cussed above. The experiment starts with an ultracold sample of the Feshbach molecules
whose energy is very close to scattering threshold, and the size is as large as the interparti-
cle spacing. The Feshbach molecule will be discussed in Section 2.4. The goal is to transfer
them into the ground state molecule, whose energy is more than 1014Hz below the thresh-
old, and the size of the molecule is a few times the Bohr radius. This process is shown in
Figure 1.9. In this case, the excited state is chosen as one of the excited molecular states
that has reasonably large coupling matrix elements with both the initial Feshbach molecule
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!Figure 1.9 STIRAP for producing ground-state molecules. Schematic of using the STIRAP method to transfer a molecule from a
Feshbach molecule to the ground state molecule through a molecular excited state. Reprinted from Ref. [127]. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

and the final ground state molecule. The transfer efficiency can be larger than 90%. As the
STIRAP process is coherent, the final sample of the ground state molecules remains at very
low temperature. Using this method, a degenerate gas of ground state molecules has been
produced [45].

Exercises

1.1 Considering an electron with Coulomb interaction between electron and nucleus, the
Hamiltonian is given by

Ĥ = −!2∇2
i

2m∗ − Zκ
r

, (1.57)

and considering the Laplace–Runge–Lene vector defined as

Ĵ = 1
2m∗

(
p̂ × L̂ − L̂ × p̂

)
− Zκ

r
r

. (1.58)

Show that [Ĵ, Ĥ] = 0. This operator Ĵ and the angular momentum operator L̂ together
form the SO(4) algebra. This only works for the Coulomb potential.
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1.2 Considering the excited state of the alkali-metal atom with L = 1 and S = 1/2, write
down the eigenstates for a Hamiltonian with spin-orbit coupling

H = αfŜ · L̂, (1.59)

where αf is a constant.
1.3 Considering a 87Rb or 6Li atom in magnetic field Bẑ, the Hamiltonian can be written

as Eq. 1.6.

(1) Solve the full energy spectrum E as a function of B.
(2) Analyze how E depends on B for small B, and find both the linear and the

quadratic Zeeman shifts. For the linear Zeeman field, one can also use the
Wiger–Eckart theorem to determine the coefficient gF.

(3) Analyze the spin structure at large B.

1.4 Show that in a regime without electric current, the magnetic field strength can not
have a local maximum.

1.5 Estimate the regime where the Majorana transition becomes significant for 87Rb
atoms in a pure quadrupole trap with B = B0(x, y, −2z).

1.6 Derive Eq. 1.19 following the rotating wave approximation.
1.7 Considering the Hamiltonian Eq. 1.42,

(1) show, by using the rotating wave approximation with Û = e−iδωtF̂z/!, that the
Hamiltonian can be reduced to the form of Eq. 1.43.

(2) show, by using a unitary transformation Û = e−i2k0xF̂z , that the Hamiltonian Eq.
1.43 can be mapped to Eq. 1.51.

1.8 Considering a time-dependent Hamiltonian

Ĥ = ωF̂z + B0 cos(ω0t)F̂x, (1.60)

show that when ω0 is close to ω, by rotating wave approximation, the Hamiltonian
can become a time-independent one as

Ĥ = )F̂z + B0

2
F̂x, (1.61)

where ) = ω − ω0.
1.9 Considering a Hamiltonian with four coupled states |0〉, |1〉, |2〉, and |3〉,

(1) construct a Hamiltonian that exhibits two dark states. Write down the wave
function of these two dark states.

(2) discuss the condition when this Hamiltonian has one dark state.
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Learning Objectives

• Highlight “short-ranged,” “dilute,” and “low energy” as three main features of interac-
tions between ultracold atoms.

• Introduce the important concept of the phase shift.
• Introduce the s-wave scattering length as a universal parameter describing the low-

energy interaction between ultracold atoms.
• Discuss the relation between divergent scattering length, low-energy bound state, and

jump of phase shift.
• Discuss the relation between the scattering length and the scattering amplitude.
• Discuss under what conditions a positive scattering length describes repulsive interac-

tion.
• Discuss the conditions when an algebraically decayed potential can be treated as a finite

range one.
• Introduce two types of zero-range single-channel potentials to capture the universal low-

energy s-wave interaction between ultracold atoms.
• Introduce the concepts of renormalization condition and renormalizable theory.
• Discuss how the spin rotational symmetry imposes constraints on interaction forms for

both alkali-metal and alkaline-earth-metal atoms.
• Introduce Feshbach resonance as an important tool to tune scattering length.
• Compare the two-channel Feshbach resonance with the single-channel shape resonance,

and compare wide and narrow resonances.
• Introduce a zero-range two-channel model.
• Introduce the confinement-induced resonance to tune interaction strength by an external

potential.
• Summarize three key conditions for a Feshbach resonance, and unify the optical Fesh-

bach resonance, the orbital Feshbach resonance, and the confinement induce resonance
all in terms of these three conditions.

• Introduce the Efimov effect as an important three-body effect at the vicinity of the two-
body scattering resonance.

• Highlight the symmetry aspect of the Efimov effect.
• Discuss various connections between few-body and many-body physics.
• Illustrate that few-body calculation can be used to determine properties of many-body

systems by using high-temperature expansion as an example.

31
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2.1 Scattering Length

Interactions between particles play the most important role in quantum many-body physics.
One of the major common goals of both ultracold atomic physics and condensed mat-
ter physics is to understand interaction effects in quantum many-body systems. Ultracold
atomic physics studies dilute gases of neutral atoms, and condensed matter physics mainly
focuses on electronic gases in solid. Many fundamental differences between the many-
body phenomena in these two systems can be traced back to the different interaction forms
between particles in these two systems. The interaction between electrons are the Coulomb
repulsion, and the interatomic potential contains an attractive Van der Waals potential and a
strong repulsion at very short distance. This interaction between ultracold atoms possesses
the following three key features that are important for our subsequent discussions.

• Short Ranged: The Van der Waals interaction V(r) is short ranged, and to a certain extent,
we can approximate V(r) & 0 when r > r0, where r0 is the range of the potential.

• Dilute: The ultracold atomic gas is very dilute, and the typical distance d between two
atoms is much larger than r0.

• Low Energy: The temperature of ultracold atomic gas is very low; that is to say, the
incoming energy E = !2k2/(m) of the scattering state is very low compared with the
short-range potential energy, that is, kr0 ' 1, or equivalently, !2k2/(m) ' !2/(mr2

0).

With the first two points, it seems that for most of the time, any two atoms are far
separated at a distance where the interaction potential is zero. Thus, classically atoms do
not experience any forces mutually and the gas looks like a noninteracting one. However, as
we will show in this chapter, in the quantum regime, this system is not only an interacting
one but also sometimes can become a strongly interacting one.

The Phase Shift. Let us consider a two-body Schrödinger equation in the relative
coordinate [

− !2

2m̄
∇2 + V(r)

]
/ = E/, (2.1)

where r stands for the relative coordinate between two atoms, m̄ is the reduced mass of two
particles, and m̄ = m/2 for particles with equal mass m. Here we focus on the situation that
V(r) is spherical symmetric,1 and we can expand the wave function in terms of different
angular momentum partial waves as

/(r) =
+∞∑

l=0

χkl(r)
kr

Pl(cos θ ), (2.2)

and different partial waves are decoupled. It is easy to show that

d2χkl

dr2 − l(l + 1)
r2 χkl + 2m̄

!2 (E − V(r))χkl = 0. (2.3)

1 For atoms like dysprosium and erbium with partially filled f -shells, as we discussed in Section 1.1, the Van
der Waals interaction is anisotropic in the presence of an external magnetic field, and there also presents an
anisotropic dipolar interaction. Here we do not discuss this situation.
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We first consider the s-wave scattering channel with l = 0. Because of the short-ranged
nature of the potential, for r > r0, V(r) = 0, and in this regime a general solution to Eq.
2.3 is given by

χk = A sin(kr + δk), (2.4)

where δk is called the phase shift. The phase shift is the most important quantity for low-
energy scattering in a dilute quantum gas. Because of the dilute nature of the ultracold
atomic gas stated above, atoms have a negligible chance to come close enough to explore
the details of the interaction potential, and therefore we are only concerned about the wave
function in the regime r ! r0. It is clear that all the interaction effects are contained in the
phase shift δk.

However, the phase shift is determined by the behavior of the wave function at short
distance. To determine δk, we need the information in the regime with r < r0. We shall
match the boundary condition at r = r0 to give

χ ′(r > r0)
χ (r > r0)

∣∣∣∣
r=r0

= k cos(kr0 + δk)
sin(kr0 + δk)

# k
tan δk

= χ ′(r < r0)
χ (r < r0)

∣∣∣∣
r=r0

. (2.5)

Here, for the second approximate equality, we have used the low-energy property to
approximate kr0 ≈ 0. Now, the question is, to determine the phase shift, do we need to
know the full information of the wave function χ (r < r0) inside r < r0? Let us consider
the situation that when r < r0, the interaction potential changes very rapidly, and in this
regime, the incoming energy E can be ignored compared with the strength of V(r). Thus, it
is reasonable to assume that the energy E dependence of χ (r < r0) is insignificant for the
low-energy states. Therefore, to the leading order, we can take χ ′(r < r0)/χ (r < r0)|r=r0

simply as a constant denoted by −1/as, where as is called the s-wave scattering length.
Thus we have

k
tan δk

= − 1
as

. (2.6)

With Eq. 2.6 the relation between δk and k is shown in Figure 2.1. It shows that for small k,
δk linearly depends on momentum as −kas, and for large k (but still much smaller compared
with 1/r0), δk saturates to ±π/2. We should also note that for deriving Eq. 2.6, we only use
the three conditions discussed at the beginning, and Eq. 2.6 is therefore valid for any value
of as, including as = ±∞. As shown in Figure 2.1, when as becomes larger, the linear
regime of δk becomes smaller. When as = ±∞, δk becomes ∓π/2 for any nonzero k.

We can further treat E as a perturbation for the Schrödinger equation in the regime r < r0

and improve this expansion systematically. By expanding k/ tan δk to the next order in k2,
we obtain

k
tan δk

= − 1
as

+ 1
2

reffk2 + . . . , (2.7)

where the coefficient defines an effective range reff. In most cases, the contribution from the
reff term is negligible at low energy, and as is the most important parameter for describing
low-energy two-body interactions. However, there are exceptions. For example, when as
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!Figure 2.1 The s-wave phase shift. The phase shift δk/π as a function of kr0 for different as/r0; as/r0 = 50 for the solid
line, as/r0 = 103 for the dashed line, as/r0 = −50 for the dotted line, and as/r0 = −103 for the
dash-dotted line. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

approaches zero, the expansion equation 2.7 is not very appropriate because δk cannot be
always zero for all k. In the limit as → 0, it is better to expand [19]

− tan δk

k
= 1

1
as

− 1
2 reffk2

≈ as + 1
2

reffa2
s k2 + . . . . (2.8)

In fact, in the limit as → 0, reff diverges such that reffa2
s remains finite, and v = −reffa2

s is
called the scattering volume. That is to say, when as is finite, tan δk linearly depends on k,
and when as vanishes, the linear term vanishes and tan δk depends on ∼ k3.

Considering two different short-range potentials V1(r) and V2(r), say, for two interaction
potentials of two different atoms, the short-range wave functions χ1(r) and χ2(r) are also
very different in the regime r < r0. But as long as they give the same value of χ ′/χ at
r = r0 and therefore the same phase shift, the low-energy physics of the two systems are
identical, despite the very different behaviors of the short-range potentials. If we further
focus on the situation that the effective range effect is negligible, then these two potentials
share the same as, and this as is the only parameter that is needed for describing the low
energy of two different microscopic potentials. This is so-called universality, which states
that different systems with quite different microscopic details can be described universally
by a few parameters.

The s-wave scattering length also possesses a clear geometric meaning. In the zero-
energy limit, the s-wave wave function at r > r0 can be expanded as

χ (r) ∝ sin(kr + δk) ≈ sin δk + cos δk(kr)

∝ 1 + k
tan δk

r = 1 − r
as

. (2.9)

It is clear that χ (r = as) = 0; that is to say, as is the location of the node of the zero-energy
radial wave function.

Let us consider a toy model with a finite range attractive square well potential V(r) =
−V0 (V0 > 0) for 0 < r < r0, and V(r) = 0 for r > r0, and we also consider a hard core
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boundary condition at r = 0. This simple toy model mimics the real interatomic potential.
In this model, the zero-energy wave function for 0 < r < r0 is given by

χ (r) = sin

(√
2V0m̄

!2 r

)

. (2.10)

It satisfies the hard core boundary condition at r = 0, and its slope at r = r0 determines
the wave function at the outside, whose node determines as. With this picture, it is easy to
show how as changes as the depth V0 of the attractive well increases. When the attractive
well is shallow and

√
2V0m̄/!2r0 < π/2, the situation is shown in the left of Figure 2.2(a),

where the node of the wave function appears at a negative value, giving rise to a negative as.
As V0 increases, when

√
2V0m̄/!2r0 approaches π/2, the slope for the zero-energy wave

function approaches zero. As a result, as first approaches −∞, and then jumps from −∞ to
+∞, as shown in the middle of Figure 2.2(a). At this jump, the phase shift also jumps from
π/2 to −π/2. Then, when V0 further increases, the slope becomes negative and the node
comes to a positive value, as shown in the right of Figure 2.2(a). As V0 further increases,
as decreases from +∞ to finite positive value. This simple example shows that as can take
any value from −∞ to +∞, as we shown in Figure 2.2(b).

!Figure 2.2 Geometric meaning of the scattering length. (a) The geometric meaning of the s-wave scattering length illustrated by
a square well model. (b) The s-wave scattering length as a function of the depth of the attractive well. The
low-energy bound state energy is also plotted. Different behaviors of the scattering amplitudes are marked in
different regimes. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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In this simple toy model, it can also be shown that

− 1
as

= χ ′(r < r0)
χ (r < r0)

∣∣∣∣
r=r0

=

√
2V0m̄

!2

tan
(√

2V0m̄
!2 r0

) . (2.11)

It is clear that as will repeatedly change from ∞ to +∞ as V0 increases. That is to say,
there will be a series of different values of V0 that give the same value of as. With our
discussion of universality above, this means that the low-energy physics is the same for
these different values of V0.

Finally, it is worth mentioning that the discussion of the phase shift can be generalized
to other higher partial waves. One can show that for the lth partial wave, the corresponding
phase shift δk ∝ k2l+1. Therefore, for low-energy collision, the phase shifts for the higher
partial waves are suppressed compared with the s-wave case. That means that at the lowest
energy, the interaction effect is dominated by the s-wave channel, as long as the s-wave
channel is not forbidden.

The Shallow Bound State. Above we have considered low-energy scattering states with
E > 0, and now we turn to consider a bound state with negative energy E < 0. The
difference between a scattering state and a bound state lies on the asymptotic behavior at
large r. For scattering states, their wave functions keep oscillating with a fixed momentum
at large r. The energy spectrum of scattering states is a continuum, and the short-range
boundary condition determines the phase shift. But for bound states, their wave functions
decay exponentially at large r, and the energy spectrum of bound states is discrete, which
is determined by the short-range boundary condition. Explicitly, in the regime r > r0, the
radial wave function is given by

χ = Ae−r
√

2m̄|E|/!2
. (2.12)

Similarly to the discussion of the low-energy scattering state, here we are concerned with
the absolute value of the binding energy being much weaker than the strength of the poten-
tial, such that the wave function at the short distance r < r0 is also insensitive to the bound
state energy. Therefore, we can match the same boundary condition at r = r0 for this bound
state wave function and reach

χ ′

χ

∣∣∣∣
r=r0

= −
√

2m̄|E|
!2 = − 1

as
. (2.13)

Obviously, if as < 0, there is no solution for Eq. 2.13, which means that there is no shallow
bound state for negative as. But for as > 0, we have a bound state solution with

Eb = − !2

2m̄a2
s

, (2.14)

which is shown in Figure 2.2(b).
Nevertheless, we should be very careful about the statement of no bound state with

negative as. In fact, as shown in Figure 2.2, the first bound state appears at
√

2V0m̄/!2r0 =
π/2, and it will not disappear when V0 further increases. However, there are regimes with
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larger V0 where as is negative. That is to say, for these negative as, there actually exist
bound states. To reconcile this fact with Eq. 2.13 above, we should note that Eq. 2.13 only
applies to the low-energy bound state because of the assumption that boundary conditions
are insensitive to energy. The absence of a solution for Eq. 2.13 only rules out the existence
of the low-energy bound state but does not exclude the existence of deep bound states. In
fact, it is easy to see that the bound state that emerged at

√
2V0m̄/!2r0 = π/2 becomes a

sufficient deep bound state when as becomes negative again. Moreover, even for positive as,
Eq. 2.14 works only when as/r0 ! 1. The binding energy will deviate from this universal
expression, and the short-range details will matter when the bound state is sufficiently deep.

Features of a Scattering Resonance. From above discussions, we can also find that
the following three properties occur simultaneously, which we call an s-wave scattering
resonance:

1. The s-wave scattering length jumps from −∞ to +∞.
2. The phase shift jumps by π .
3. A bound state appears at the threshold.

This connection between the jump of the phase shift and the existence of a zero-energy
bound state is also related to Levinson’s theorem in quantum mechanics.

Now we have introduced the scattering length as as a central concept for the s-wave
scattering. Below we will address two important questions regarding how to interpret the
physical meaning of as.

In What Sense Does a Larger |as| Mean a Stronger Interaction? We have considered
the two-body problem from the perspective of the eigenstate of the Schrödinger equation.
Here we introduce another viewpoint. Considering an incoming wave eikz along the ẑ direc-
tion that is scattered to an outgoing wave along the radial direction, the total wave function
at large distance can be written as

$ = eikz + f (θ )
eikr

r
, (2.15)

where f (θ ) is called the scattering amplitude. To determine f (θ ), we need to first rewrite
Eq. 2.15 as

$ = 1
2ikr

[+∞∑

l=0

(2l + 1)Pl(cos θ )(eikr−lπ/2 − e−i(kr−π l/2))

]

+ f (θ )
eikr

r
. (2.16)

Because these two viewpoints should give the same results, by comparing this equation
with Eq. 2.2 and Eq. 2.4, and focusing on the l = 0 channel, we can obtain the s-wave
scattering amplitude as

fs(θ ) = e2iδ − 1
2ik

= − 1
ik − k/ tan δ

= − 1
1/as + ik

, (2.17)

which is independent of θ . For identical bosons, the scattering cross section σ is given by
8π |fs|2. If |kas| , 1, we have f (θ ) ∼ −as, and the scattering cross section is σ = 8πa2

s .
Thus, the larger |as| is, the larger is the scattering cross section. In this sense, one can say
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that the absolute value of as represents the strength of the interaction. But this argument
cannot be generalized to very large or even infinite as, because if |kas| ! 1, f (θ ) should
be approximated as −1/(ik), and then the scattering cross section becomes 8π/k2. It is
interesting to note that in this regime, the scattering cross section strongly depends on
momentum of particles under collision and does not depend on any other parameters. This
is the so-called unitary regime. As already indicated in this formula of the scattering cross
section, the interaction energy of a many-body system at the unitary regime only depends
on density and temperature. These behaviors will be discussed in Chapters 5 and 6 in detail.

In What Sense Does as > 0 Mean Repulsive Interaction? When we talk about a pure
short-range repulsive interaction, usually what we naturally have in mind is a hard core
potential with size R0. That is to say, V(r) = +∞ for r ! R0 and V(r) = 0 for r > R0,
which forces the wave function to vanish at r = R0. This leads to δk = −kR0. The
interatomic interaction we considered here has an attractive well, and the microscopic
potential form is very different from the hard core potential. However, the low-energy
expansion of the phase shift given by Eq. 2.6 can agree with δk = −kR0, at least for a large
range of small k, if as is positive and as = R0. Therefore, as far as the low-energy phase
shift of the scattering states is concerned, a positive as is equivalent to a hard core repul-
sive interaction. In other words, as we discussed at the beginning of this section, atoms in
a dilute gas can only experience the phase shift δk, so they cannot distinguish the actual
interatomic potential from a hard core potential for sufficiently low-energy atoms.

However, we shall emphasize that this equivalence is only valid for low-energy scat-
tering states and small as such that kas , 1. There are several reasons. First, at large
momentum, when kas is large, the phase shift given by Eq. 2.6 always saturates to −π/2,
but the phase shift of a hard core potential keeps increasing linearly. Second, in order
for the hard core model to be valid in a gas system, the hard core radius R0 should be
taken to be much smaller than the interparticle spacing, typically 1/k. That also requires
as ∼ R0 , 1/k. Third, as discussed above, for positive as, there is a low-energy bound
state, and such a bound state is also absent in the hard core potential. Nevertheless, only
when kas , 1, the absolute value of the binding energy !2/(2m̄a2

s ) is much larger than
typical kinetic energy !2k2/(2m̄), and this bound state is well beyond the low-energy
regime. In summary, a positive as can be regarded as representing a repulsive interaction
only when

1. kas , 1 and only the low-energy scattering states are considered.
2. the bound state is sufficiently deep that can be safely ignored for low-energy scattering.

How Short Range Is Short Ranged? So far, we have considered a finite range potential
where the interaction is taken strictly as zero above a range r0. But the actual Van der Waals
potential is algebraically decaying one at large distance. Now we shall come back to briefly
revisit how good this approximation is to replace an algebraically decaying potential as a
strictly finite-range one.

Let us again first recall how we solve the finite-range potential. In the r > r0 regime,
the potential term vanishes and the Hamiltonian only contains the kinetic energy term. For
a three-dimensional kinetic operator, there are two independent solutions for the s-wave
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Box 2.1 Meaning of Positive Scattering Lengths in This Book

Since the main part of this book discusses interaction effects in ultracold atomic gases, here we shall make an
important statement onmodeling the interaction potential in different parts of this book. In Parts II and IV of
this book, we always consider the situation that the scattering length is small compared with the interatomic
distance. Hence, when we talk about positive as, by default, we consider that these two conditions are satis-
fied, and the interaction is taken as repulsive. In Part III of this book, we will consider the situation thatas can
go across infinity. In this case, these two conditions are not satisfied, and in particular, the role of the shallow
bound state is very crucial. In this part, a positive as does not mean the interaction is repulsive.

channel, which can be taken as sin(kr)/(kr) and cos(kr)/(kr). The general wave func-
tion at large distance is a superposition of these two solutions, and the mixing angle of
the superposition gives the phase shift, which should be determined by the short-range
physics.

This strategy can be generalized straightforwardly to an algebraically decaying poten-
tial. The only difference is that one needs to find out the corresponding solutions for a
1/rα potential. It turns out that, for the s-wave case, one can also write down two indepen-
dent solutions whose asymptotic behavior also approaches sin(kr)/(kr) and cos(kr)/(kr),
respectively. Hence, the general wave function is a superposition of these two solutions,
and the mixing angle of the superposition determines the phase shift in this case. In this
case, the phase shift is also determined by the short-range physics. The similar treatment
can be generalized to higher partial wave cases. In this way, one can show that for the lth
partial wave, tan δk ∝ k2l+1 if 2l + 1 ≤ α − 2 and tan δk ∝ kα−2 if 2l + 1 ≥ α − 2
[34]. Therefore, as far as the low-energy physics is concerned, if an algebraically decaying
potential is considered to be equivalent to a finite-range one, at least the leading-order con-
tribution to the low-energy phase shift has to be the same for these two potentials, which
means α− 2 has to be larger than 2l + 1. Thus, for the s-wave channel, α should be greater
than 3. For the realistic Van der Waals potential, α = 6, and this means that for l = 0, 1
channels, it can be treated by the strictly finite-range approximation, and for l ≥ 2, the
algebraically decaying tail needs to be considered more seriously.

2.2 Zero-RangeModels

We have discussed the low-energy physics for a two-body problem using a finite-range
potential and shown that for most circumstances, the s-wave scattering length as is the only
parameter that is required for describing the low-energy interaction in a dilute quantum
gas. Here we would like to develop an effective model to describe the interaction effects
in many-body systems, and we would like to require the following two features in our
effective model:
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• Inspired by the two-body discussion, we would like to use the s-wave scattering length
as as the only parameter in our effective model and disregard the microscopic details of
the interatomic potential.

• For the convenience of later studies of many-body theories, it will be useful that this
effective model is a zero-range one, that is to say, two atoms interact only when they are
exactly in the same spatial location. In Section 2.1, we always keep the interaction range
r0 finite, and in this section, we should be taking r0 to zero.

Here, by effective, we mean that the low-energy scattering properties, including phase shift
for the low-energy scattering state and the shallow bound state energy, can be well repro-
duced by this effective model. Below we present two different effective models, and both
can achieve this goal.

Pseudopotential. The simplest form of a zero-range model is a delta-function potential
V(r) ∝ δ(r). Obviously, for r /= 0, V(r) = 0 and χ (r) = sin(kr + δk) always satisfy
the Schrödinger equation. The question is whether the Schrödinger equation can still be
satisfied as r → 0. However, as shown above, for zero energy, χ (r) behaves as 1 − r/as

and therefore $(r) behaves as 1/r − 1/as, which diverges as 1/r at the short distance.
Therefore, a simple delta-function potential gives a divergent energy. We note that this
1/r divergence is not physical, because in the finite-range model discussed above, the free
wave function terminates at r0 and the even short-range wave function is determined by the
microscopic potential. In other words, this 1/r divergence is an artifact arising from taking
r0 to zero. So a properly defined interaction potential should be able to eliminate this 1/r
divergency at r → 0 before taking the δ-function interaction.

Let us denote such a potential as V(r) = δ(r)Ô(r), and V(r) should satisfy the
Schrödinger equation as

[
− !2

2m̄
∇2 + V(r)

]
$ = E$, (2.18)

where $(r) = sin(kr + δk)/(kr). To focus on the r → 0 limit, let us again consider the
expansion of the wave function $(r) around r = 0 as

$(r) = 1
r

− 1
as

+ o(kr). (2.19)

It is straightforward to show that

[∂r · r]$(r) = − 1
as

+ o(kr), (2.20)

which eliminates the short-range 1/r divergence. Hence, when Ô(r) takes the form [77]

Ô(r) = 2π!2as

m̄
∂r · r, (2.21)

we have

V(r)$(r) = −2π!2

m̄
δ(r). (2.22)
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And because in three dimensions,

− !2

2m̄
∇2$(r) = 2π!2

m̄
δ(r), (2.23)

the Schrödinger equation is satisfied. This interaction potential is known as Fermi’s
pseudo-potential [77]. Furthermore, one can show that the energy of the low-energy bound
state can also be reproduced.

Renomalizable Contact Potential. A pseudo-potential model can nicely reproduce the
low-energy physics. However, it has a shortcoming that the operator is not Hermitian. Thus,
it is not very convenient to use the pseudo-potential in many circumstances, in particular,
when a second-quantized form of a many-body Hamiltonian is needed. For studying many-
body physics, it is still convenient to use a delta-function contact potential as V(r) = gδ(r).
Though we have already known that it will cause a divergent problem at short distance,
nevertheless, let us proceed further and see how serious the problem is and whether there
are ways to fix the problem.

Here we consider spin-1/2 fermions with this delta-function interaction potential as an
example. With a delta-function interaction potential, the second-quantized Hamiltonian for
spin-1/2 fermions can be written as

Ĥ =
∫

d3r

(
∑

σ

$̂†
σ ( r)

(
− !2

2m
∇2
)
$̂σ (r) + g$̂†

↑( r)$̂†
↓(r)$̂↓(r)$̂↑(r)

)

, (2.24)

where $̂†
σ (r) and $̂σ (r) (σ =↑, ↓) are creation and annihilation operators for fermions at

position r. In the momentum space, this Hamiltonian is given by

Ĥ =
∑

kσ

!2k2

2m
$†

kσ$kσ + g
V

∑

k,k1,k2

$̂†
k
2 +k1,↑

$̂†
k
2 −k1,↓

$̂ k
2 −k2,↓

$̂ k
2 +k2,↑

, (2.25)

where V is the volume of the system. Here the second term represents scattering between
atoms, with the center-of-mass momentum k conserved and the relative momenta changing
from k2 to k1.

We first compute a two-body scattering T-matrix with Hamiltonian equation 2.25. We
consider an on-shell scattering process with both incoming and outgoing states having
the same energy E and the center-of-mass momentum equaling zero. Since the interac-
tion vertex g is now a constant independent of momentum, the leading order diagram is a
direct scattering from the incoming state to the outgoing state, whose contribution is g, as
shown in Figure 2.3(a). The next-order diagram involves intermediate states, and the rela-
tive momentum p of the intermediate state can be taken at any momentum. Its contribution
can be computed by the second-order processes as

1
V

∑

p
g

1

E − !2p2

m + i0+
g, (2.26)

where i0+ is a mathematical technicality necessary for the calculation of the integrals and
is also a consequence of causality. Furthermore, one can systematically consider all the
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!Figure 2.3 T-matrix for two-body scattering. Ladder diagrams for two-body T-matrix (a) of the renormalizable contact potential
model Eq. 2.24 and (b) for the two-channel model Eq. 2.66. The two-channel model will be discussed in Section 2.4.

higher order contributions by including more intermediate states, as illustrated by the so-
called ladder diagram shown in Figure 2.3(a). It turns out that for two-body problems,
unlike the many-body situation to be discussed in later chapters, the summation of the
ladder diagram is an exact solution. The summation of the ladder diagram leads to the
so-called Schwinger–Dyson equation given by

T2(E) = g + 1
V

∑

p
g

1

E − !2p2

m + i0+
g + . . .

= g + g
V

∑

p

1

E − !2 p2

m + i0+
T2(E), (2.27)

and thus

T2(E) = g

1 − g
V

∑
p

1

E− !2p2
m +i0+

. (2.28)

Here it is important to notice that the summation over momentum in Eq. 2.28 behaves
as
∫

d3p(1/p2) at large momentum and diverges at large momentum in three dimensions.
This divergence comes from the upper limit of the energy integration and is called the
ultraviolet divergence. As we discussed in Box 2.2, such an ultraviolet divergence means
the short-range physics is not treated properly. Here, it means nothing but that the short-
range 1/r behavior of the free wave function should not be taken to the r → 0 limit, and
the δ-function contact potential is not appropriate.

This divergence can also be viewed from the Hamiltonian in momentum space
equation 2.25, where the scattering vertex is taken as independent of the momentum trans-
fer, because the Fourier transformation of a δ-function potential is a constant. However,
this is unphysical because in any physical model with finite range r0, this scattering vertex
always decays toward zero when the transferred momentum is much larger than !/r0. By
taking this momentum dependence of the scattering vertex into account, the large momen-
tum divergence in the summation of Eq. 2.28 can be avoided. Nevertheless, the momentum
dependence of the scattering vertex at large momentum comes from the short-range struc-
ture of the microscopic potential, which is the nonuniversal physics that we do not want to
include.

Hence, we encounter a dilemma. On one hand, we understand that the zero-range δ-
function potential, or equivalently saying, a momentum-independent scattering vertex at
large momentum, is unphysical, which causes ultraviolet divergence. On the other hand,
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Box 2.2 Two Kinds of Divergences

Quite often, we will encounter the situation that the integration over energy, or equivalently, the integration
over momentum space, diverges. There are two different kinds of divergence. One is called the ultraviolet
divergence, and the other is called the infrared divergence. The ultraviolet divergence is due to the upper limit
of the energy integration taking to infinity, and the infrared divergence is due to the lower limit of the energy
integration taking to zero. However, the physical quantity should always be finite. Thus, both divergences
mean that something unphysical is mistaken. The ultraviolet divergence usually means that the high-energy
physics, or equivalently, the short-range physics, is not treated properly. Here the delta-function potential
is such an example. The infrared divergence usually means the low-energy, or equivalently, the large-scale
structure, is mistaken. We will discuss an example of the infrared divergence in Section 3.4.

the details of the short-range potential, or the momentum dependence of the scattering
vertex at large momentum, is nonuniversal, which we do not want to explicitly include.
To overcome this problem, we will implement the idea of renormalization. We will still
use the delta-function potential, but we will not treat interaction parameter g as a physical
parameter. And we should find a way to properly renormalize the interaction parameter g
and to relate it to the physical parameter as. Hence, let us rewrite

T2(E) = g

1 − g
V

∑
p

1
E−!2p2/(m)+i0+

= 1

1
g + 1

V

∑
p

1
!2 p2/m

− 1
V

∑
p

(
1

E− !2 p2
m +i0+

+ 1
!2p2/m

)

= 1
1
g + 1

V

∑
p

1
!2 p2/m

+ ikm
4π!2

, (2.29)

where k =
√

mE/!2. This two-body T-matrix should be related to the s-wave scattering
amplitude of Eq. 2.17 determined by the two-body calculation above; therefore, we have

T2(E) = 4π!2

m
1

1
as

+ ik
= 1

1
g + 1

V

∑
p

1
!2p2/m

+ ikm
4π!2

. (2.30)

Hence, we reach the important renormalization identity that relates g to physical quantity
as, that is,

m
4π!2as

= 1
g

+ 1
V

∑

p

1
!2p2/m

. (2.31)

To conclude, we will use Eq. 2.24 or Eq. 2.25 as our model for a many-body system.
But one will often encounter an ultraviolet divergence problem when using this model.
When the ultraviolet divergence is encountered, we should use Eq. 2.31 to replace g by
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the physical parameter as, and at the same time this replacement eliminates the divergency.
This is an important result that will be repeatedly used in later chapters.

However, there is one important question. Here we obtain the renormalization condition
by matching the two-body scattering amplitude. How can we be sure that this renormaliza-
tion condition can work for a system with more than two particles? In general, the answer
is that it may or may not work. If this works, the theory is called renormalizable. If this
does not work, it means some extra high-energy scales emerge in few- or many-body sys-
tems, and these energy scales matter. In fact, as we will see in Chapter 5 and Chapter 6,
theory for spin-1/2 fermion is renormalizable. But for spinless bosons, the renormalization
condition actually does not work. This can be seen from Section 2.6, where we will discuss
the three-body problem for bosons. We will see that an extra high-energy cutoff scale is
required for the energy spectrum being bounded from below.

2.3 Spin-Dependent Interaction

In the discussion above, we do not explicitly include the role of the spin degree of freedom
of the atoms under collision. From Section 1.1 we already know that atoms can have quite
rich spin structures, and we have also discussed in Section 1.3 that in an optical trap, all spin
components can be trapped. In fact, spins of atoms can play very important roles in two-
body collisions, and their roles are different between the zero magnetic field limit and the
finite magnetic field regime. In the zero magnetic field limit, the spin rotational symmetry is
preserved, and the spin rotational symmetry imposes constraints on the form of two-body
interactions, which will be discussed in this section. In the finite magnetic field regime,
the spin rotational symmetry is broken by the Zeeman energy, but the Zeeman energy of
spins can be used as a tool to tune the two-body interactions, which will be discussed in
Section 2.4.

Alkali-Metal Atoms. Let us first consider the collision between two alkali-metal atoms
with spin-f 2. Here the spin refers to the total hyperfine spin. For simplicity, we take bosons
with f = 1 as an example, which includes examples like the ground state of 87Rb and 23Na
atoms. Due to the spin rotational symmetry, the total spin F of two atoms under collision
should be conserved, and for the f = 1 case, the total spin of two atoms can therefore be
either 0, 1, or 2. Thus, the interaction potential can be written in a diagonal form in the
total spin bases as

V̂(r) = 2π!2

m̄
(a0P0 + a2P2)δ(r)∂r · r, (2.32)

where a0 and a2 denote the scattering length in the F = 0 and F = 2 channels, respectively.
Here the F = 1 channel does not enter the s-wave scattering because the spin wave function
is antisymmetric for total spin F = 1, and therefore the spatial wave function also has to
be antisymmetric in order for the total wave function to be symmetric. Thus, the s-wave
scattering is forbidden in this channel.

2 Here we use little f to denote the spin of a single atom and capital F to denote the total spin of two atoms.
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The projection operator PF is to project the spin wave function of two atoms into
subspace with total spin being F. To write PF more explicitly, say, in terms of physi-
cal observables, we can make use of the following two identities. First, by definition, the
identity operator can be written as

∑

F

PF = 1. (2.33)

Second, we consider f1 · f2, and because f1 · f2 = (F2 − f2
1 − f2

2)/2, f1 · f2 only depends on
F as

f1 · f2 =
∑

F

(
F(F + 1)

2
− f (f + 1)

)
PF. (2.34)

By further projecting both sides of Eq. 2.33 and Eq. 2.34 into the Hilbert space of
symmetric total spin wave function, the term P1 can be dropped out. Therefore we have

P0 + P2 = 1 (2.35)

− 2P0 + P2 = f1 · f2. (2.36)

By solving these two equations, one can then express P0 and P2 in terms of identity
operator and f1 · f2, and one obtains [70, 130]

V̂(r) = 2π!2

m̄

(
a(n) + a(s)f1 · f2

)
δ(r)∂r · r, (2.37)

where

a(n) = a0 + 2a2

3
(2.38)

a(s) = a2 − a0

3
. (2.39)

Here a(n) and a(s) represent the density–density interaction and the spin-dependent inter-
action, respectively, and the latter is proportional to the difference in the scattering lengths
between the F = 0 and F = 2 channels. When a0 = a2, the interactions are identical
for different spin channels, and therefore a(s) vanishes. In this case, the interaction only
depends on the total density, which is invariant under an arbitrary SU(3) rotation of all
three spin components. Therefore, the Hamiltonian is SU(3) invariant instead of SU(2)
invariant.

Here we should also emphasize that one needs to carefully distinguish the high-spin
representation of SU(2) symmetry and the basic representation of SU(N) symmetry. For
the SU(2) symmetry, there are only three generators, no matter how large S is, and the
interaction is invariant under the rotation generated by these three generators. In the spin-S
representation, these three generators are represented by (2S+1)× (2S+1) Pauli matrices.
But for SU(N) symmetry, there are in total N2−1 generators, and the interaction is invariant
under the rotation generated by all these N2 − 1 generators.

In reality, for atoms like 87Rb and 23Na, the differences between a0 and a2 are actually
quite small, and consequently, a(s) is only a few percent of a(n). Nevertheless, a(s) plays an
important role for spin-1 alkali-metal atoms. Dynamically, this spin-dependent interaction
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!Figure 2.4 Interaction-induced spin exchanging dynamics. (a) The spin exchanging dynamics for spin-1 87Rb atom. The solid,
dotted, and dashed lines are populations onmf = 0, 1, and−1, respectively. Reprinted from Ref. [30]. (b) The
nuclear spin exchanging between |g〉 and |e〉 states for 173Yb atom. This line is a time-dependent nuclear spin
polarization for atoms in |g〉 state, that is, the population difference between |g〉| ↑〉 and |g〉| ↓〉. Reprinted from
Ref. [27]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

can lead to a spin exchanging process. Because there are terms f +
1 f −

2 + f −
1 f +

2 in f1 · f2,
two incoming atoms with fz = 0 can be scattered into one in fz = 1 and the other in the
fz = −1 state. This process has been observed experimentally, and one of the examples is
shown in Figure 2.4(a). Moreover, a(s) determines the spin structure of the Bose–Einstein
condensate of spin-1 atoms, as we will see in Section 4.3.

Alkaline-Earth-Metal Atoms. As we have discussed in Section 1.1, for the ground state,
the spin of alkaline-earth-metal atoms is purely nuclear spin I. Because the electron spin is
zero, there is no coupling between the nuclear spin and the electronic degree of freedom.
The nuclear spin is nonzero only for the fermionic alkaline-earth-metal atom because all
the bosonic isotopes of alkaline-earth-metal atoms have zero nuclear spin. On the other
hand, for fermionic isotopes, the nuclear spin usually can be quite large, and because of the
decoupling between the nuclear spin and the electronic degree of freedom, the interaction
between two ground-state alkaline-earth-metal atoms is nearly independent of nuclear spin
I [193]. Therefore, all the scattering lengths between any two components are all identical,
and the interaction only depends on the total density. Such an interaction term possesses
SU(2I + 1) symmetry.

Another interesting aspect of alkaline-earth-metal atoms is the interaction between the
ground state 1S0 (usually denoted by |g〉) and the clock state 3P0 (usually denoted by |e〉).
As discussed in Section 1.1, the clock state has long enough lifetime whose single-particle
decay can be safely ignored in practice. In literature, these two states are also referred to
as a doublet of the “orbital” degree of freedom.3 Here we consider the interaction between
two fermionic alkaline-earth-metal atoms, one in |g〉 state and the other in |e〉 state, and

3 Note that here “orbital” labels an internal degree of freedom for atoms, that is, one of the valance electrons is
excited to the excited p-orbit.
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they can be in two (among 2I + 1) different nuclear spin states, denoted by | ↑〉 and | ↓〉,
respectively. Because the total wave function has to be antisymmetric, and because we
consider the s-wave interaction that requires spatial wave function to be symmetric, the
internal wave function has to be antisymmetric, which limits the internal Hilbert space to
either the orbital triplet and the nuclear spin singlet or the orbital singlet and the nuclear
spin triplet, which are

|+〉 = 1
2

(|g〉|e〉 + |e〉|g〉) ⊗ (| ↑〉| ↓〉 − | ↓〉| ↑〉), (2.40)

|−, 0〉 = 1
2

(|g〉|e〉 − |e〉|g〉) ⊗ (| ↑〉| ↓〉 + | ↓〉| ↑〉), (2.41)

|−, 1〉 = 1√
2

(|g〉|e〉 − |e〉|g〉) ⊗ | ↑〉| ↑〉, (2.42)

|−, −1〉 = 1√
2

(|g〉|e〉 − |e〉|g〉) ⊗ | ↓〉| ↓〉, (2.43)

where ± refers to orbital triplet and singlet, respectively, and 0, ±1 in Eq. 2.41–2.43 refers
to the z-component of the total nuclear spin. Here we have ignored two orbital triplet states
where both atoms are in ground states or both atoms are in the clock state, because here
we are interested in the interorbital interaction.

Above we have discussed that the interactions between atoms in the 1S0 state have
SU(2I +1) symmetry. For atoms in the clock state 3P0, because the total electronic angular
momentum is also zero, the nuclear spin is still decoupled from the electronic degree of
freedom, and therefore the interorbital interactions between the 1S0 state and 3P0 state also
possess the SU(2I + 1) symmetry. Here, if we only consider two out of 2I + 1 nuclear spin
components, the interactions possess an SU(2) nuclear spin rotational symmetry. On the
other hand, because the “orbital” degree of freedom is just a label of two different states,
which is similar to the pseudo-spin-1/2 discussed in Box 2.3, there is no rotational symme-
try requirement in the orbital space. This symmetry requirement leads to the following: (1)
the interaction is diagonal in the bases of Eq. 2.40–2.43 listed above and (2) the |+〉 chan-
nel has one scattering length, and all three |−〉 channels share another different scattering
length.

Denoting P+ as projection operator to |+〉 state, and P− as projection operator to the
Hilbert space spanned by three |−〉 (mn = 0, ±1) states, we have

P+ = |+〉〈+| (2.44)

P− = |−, 0〉〈−, 0| + |−, −1〉〈−, −1|, +|−, +1〉〈−, +1|. (2.45)

The interaction can be written as

V̂(r) = 2π!2

m̄

(
∑

±
a±P±

)

δ( r)∂r · r, (2.46)

where a± are two different scattering lengths. For this interaction form, when one atom
in |g〉| ↑〉 state collides with another atom in |e〉| ↓〉 state, there is a channel in which the
outcoming atoms are one in |g〉| ↓〉 state and the other in |e〉| ↑〉 state. In other words,
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Box 2.3 Spin and Spin Rotational Symmetry

In ultracold atom literatures, “spin” can have different meanings. In some cases, spin means the total hyper-
fine spin of an atom, as discussed in this section and in spinor condensate discussed in Section 4.3. In such
cases, interaction between different spin components should obey the spin rotational symmetry at zero field.
In this case, the accuracy of the spin rotational symmetry is guaranteed by the fact that the collision energy
between two atoms is much weaker compared with the hyperfine coupling of a single atom.

In some other cases, spin actually means the pseudo-spin, which are essentially two or more eigenstates
of the total spin Hamiltonian, including both hyperfine coupling and the Zeeman field, as discussed in
Section 1.2. In such cases, it is not necessary for interactions between different pseudo-spin components to
obey the spin rotational symmetry. In this context, we can have pseudo-spin-1/2 Bose gas, which is not
possible with real spins. For pseduo-spin-1/2 bosons, the two intracomponent interaction parameters and
the intercomponent interaction parameter can in principle take arbitrary values. Therefore, there is no spin
SU(2) symmetry. The spin-orbit coupled Bose condensate discussed in Section 4.5 is such an example.

For pseudo-spin-1/2 Fermi gas, at the lowest order, there are intercomponent s-wave interactions and two
intracomponent p-wave interactions, because the intracomponent s-wave interactions vanish due to the
Fermi statistics. In general, the two intracomponent p-wave interactions are different, especially when one
of them possesses a p-wave Feshbach resonance. However, away from the high-partial wave Feshbach res-
onances, the high-partial wave interaction can be safely ignored at ultra low temperature compared with
the s-wave interaction, as discussed in Section 2.1, and we only need to retain the intercomponent interac-
tion. Under this situation, the interaction again possesses an emergent SU(2) symmetry. In this case, the
accuracy of this emergent SU(2) symmetry is guaranteed by the fact that the high-partial wave interaction
energy is much weaker compared with the intercomponent s-wave interaction. The spin-1/2 Fermi gas dis-
cussed in Part III of this book, as well as the Fermi–Hubbard model discussed in Section 8.2, belongs to this
case. In particular, wewill emphasize the role of theSU(2) spin rotational symmetry in the discussion of the
Fermi–Hubbard model.

the nuclear spin between two different orbital states can be exchanged during the collision.
This spin exchanging interaction strength is proportional to the difference between a+ and
a−. This spin exchanging processes have also been observed in experiments [152, 27], as
shown in Figure 2.4(b).

Such a spin-exchanging process can find broad applications in quantum simulation of
many-body physics, for instance, in simulating the famous Kondo physics with ultracold
atoms. The Kondo physics in condensed matter system arises from a localized magnetic
impurity embedded in metal, and this magnetic impurity can exchange spin with itinerant
electrons. Here, because the scalar polarizabilities are different between atoms in the |g〉
state and atoms in the |e〉 state, with the optical lattice scheme discussion in Section 1.3,
one can create a situation that atoms in |e〉 state are localized by a deep potential, and atoms
in |g〉 state experience a shallow potential and remain itinerant [62, 190, 149]. Thus, the
atoms in |e〉 state act as localized impurities embedded in a Fermi sea of the itinerant atoms
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in |g〉 state, and the spin exchanging interaction between them can realize the Kondo effect
[62, 190].

2.4 Feshbach Resonance

The discussion in Section 2.1 has established that the scattering length is an important
quantity for describing the interatomic interaction. Can we tune the scattering length exper-
imentally? In Section 2.1, using the square well potential as an example, we have also
shown that the scattering length can be changed by changing the depth of a square well
potential. However, in practice, it is hard to vary the strength of the Van der Waals potential
over a large energy range. Nevertheless, the discussion in Section 2.1 gives an important
hint, that is, if one can tune the energy of a bound state to be close to the scattering thresh-
old, it can strongly affect the scattering length. This is essentially the key idea behind
all tunable scattering resonances. Here we should first discuss a magnetic field–tunable
Feshbach resonance.

The discussion of magnetic Feshbach resonance involves the internal spin structure of
atoms in a magnetic field. We should recall that in Section 2.3, we have discussed the role
of internal spin structure for two-body collision. The difference between the discussion
here and that in Section 2.3 is that here we consider the regime where the effect of an
external Zeeman field is strong enough. In Section 2.3 we focus on the zero-field regime
where the spin rotational symmetry plays an important role, and we have discussed how
the spin rotational symmetry imposes constraints on the form of interaction. But here the
presence of a finite Zeeman field breaks the spin rotational symmetry, and therefore such a
constraint no longer exists.

Now let us be more specific. We consider interaction between two alkali-metal atoms
whose internal spin structure in a Zeeman field has been discussed in Sec 1.2. Let us label
each internal spin eigenstate of a single atom in a Zeeman field by |q〉, which has a well-
defined quantum number Fz. For instance, for 6Li, the internal spin eigenstates are shown
in Figure 2.5(b). Though there is no SU(2) spin rotational symmetry because of the Zeeman
field, there is still a spin rotational symmetry along the field direction, and thus Fz is still a
good quantum number. When two atoms are far from each other, they are in the eigenstate
of |q1〉 ⊗ |q2〉. Now we can introduce the concepts of two scattering channels. One is the
called the open channel and the other is called the closed channel. These channels are
defined as eigenstates when two atoms are far separated. Here are a few remarks about
these two channels:

• Quantum Number: Due to the rotational symmetry along ẑ, the total F1
z + F2

z + Lz is
conserved. Here Fi=1,2

z is the z-component of the hyperfine spin of these two atoms,
respectively, and Lz is the ẑ-component of their relative angular momentum. Here, for
simplicity, we only consider the s-wave states in both the open and the closed channels,
and Lz = 0. With this simplification, the total F1

z + F2
z of the open channel should equal

to that of the closed channel. For instance, for 6Li, if the open channel is taken as |a〉⊗|b〉
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!Figure 2.5 Interaction channels between two alkali-metal atoms. (a) The electronic spin singlet and triplet interaction potential
of Li2 at short interatomic separation. The inset shows a zoom-in plot of the interaction potential of two 6Li atoms at
large interatomic separation. The five pairs of states all have totalFz = 0. The horizontal line shows a bound state in
the closed channel. (b) The internal eigenstate labeled from a to f of 6Li. The number on each curve is the value ofFz

for each state. Reprinted from Ref. [34]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

with total Fz = 0, there are in total five combinations that have total Fz = 0, and the
other four are |a〉 ⊗ |d〉, |b〉 ⊗ |e〉, |c〉 ⊗ |f 〉, and |d〉 ⊗ |e〉.

• Closed versus Open: When two atoms are far separated, the energy difference between
the open and the closed channel is set by the Zeeman energy, which is normally much
higher than the kinetic energy. Therefore, when two atoms collide from the low-energy
scattering state of the open channel, they cannot be scattered into scattering states of the
closed channel. That is why these channels are called “closed channels.” As shown in
the inset of Figure 2.5(a), all the other four combinations can be taken as closed channels
when |a〉 ⊗ |b〉 is chosen as the open channel.

• Energy Tunability: Usually when the open channel is chosen as the low-lying hyperfine
spin state, as the magnetic field increases, the energy of the open channel decreases with
respect to the closed channel. Thus, it is conceivable that, as magnetic field increases,
the scattering threshold can approach a bound state in the closed channel from above.

• Coupling between Channels: When two atoms are close to each other, the inter-atomic
potential between two atoms mostly depends on the electronic degree of freedom of
two atoms. Here, since each alkali-metal atom has one electron, the interatomic poten-
tial depends on whether their total electronic spin is singlet or triplet,4 an example of
which is shown in Figure 2.5(a). For instance, considering the open channel |a〉 ⊗ |b〉,
their electron spins are polarized by the magnetic field, and their total electronic spin is
more close to a triplet. However, the hyperfine coupling mixes in electron spin singlet

4 In practice, the Van der Waals part is the same for electron spin singlets and triplets, but the short-range
repulsive part depends on electron spin.



51 Feshbach Resonance

component. Hence, the short-range potential couples different channels, though the
coupling is usually weak.

Coupled-Channel Model. With these features of the two channels discussed above, we
can consider a simplified coupled-channel model to demonstrate how the scattering length
can be changed by the magnetic field [34]. The model is schematically illustrated in
Figure 2.6(a). The major considerations are as follows:

• At the distance r > r0, two channels are decoupled, and they are respectively denoted
by the open channel |o〉 and the closed channel |c〉. Because the energy of the closed

!Figure 2.6 Feshbach resonance. (a) A schematic of the simplified two-channel model. (b) The magnetic field dependence of the
scattering length and the bound state energy, whereB0 isBres in the text. (c) The first experimental observation of a
Feshbach resonance in 23Na. (a) and (b) are reprinted from Ref. [34], and (c) is reprinted from Ref. [79]. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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channel is much higher than the typical kinetic energy of incoming scattering states of
the open channel, the wave function of low-lying scattering states only exists in the open
channel |o〉, and the low-energy s-wave wave function is given by $ = χ/r and

χ = sin(kr + δk)|o〉. (2.47)

• At the distance r < r0, the wave function is diagonalized in the |+〉 and |−〉 bases,
written as

χ = χ+|+〉 + χ−|−〉. (2.48)

Here |±〉 are superposition of |o〉 and |c〉 as

|+〉 = cos θ |o〉 + sin θ |c〉 (2.49)

|−〉 = − sin θ |o〉 + cos θ |c〉. (2.50)

Without loss of generality, we consider θ as spatially independent and quite small.

The wave function in the r < r0 regime can now be written as

χ = (χ+ sin θ + χ− cos θ )|c〉 + (χ+ cos θ − χ− sin θ )|o〉. (2.51)

To match the boundary conditions in r = r0, we obtain

χ+ sin θ + χ− cos θ
∣∣∣∣
r=r0

= 0 (2.52)

χ ′
+ cos θ − χ ′

− sin θ
χ+ cos θ − χ− sin θ

∣∣∣∣
r=r0

= k
tan δk

≡ − 1
as

. (2.53)

Eq. 2.52 comes from that the closed channel wave function vanishes at r = r0, and Eq.
2.53 determines the phase shift in the open channel scattering wave function. As discussed
in Section 2.1, here we have assumed that both χ± is independent of energy and r0 is a
small value. These two equations give

− 1
as

= χ ′
+
χ+

∣∣∣∣
r=r0

cos2 θ + χ ′
−
χ−

∣∣∣∣
r=r0

sin2 θ . (2.54)

Since θ is usually quite small, the second term on the r.h.s. of Eq. 2.54 is usually insignif-
icant. In that case, the scattering length is provided by the |+〉 channel only, and we
denote

χ ′
+
χ+

∣∣∣∣
r=r0

= − 1
abg

, (2.55)

where abg is called the background scattering length. Now we have

− 1
as

= − 1
abg

cos2 θ + χ ′
−
χ−

∣∣∣∣
r=r0

sin2 θ . (2.56)

Again because θ is small, we can approximate cos2 θ ≈ 1 and sin2 θ ≈ θ2, and the second
term can give rise to a significant contribution only when χ ′

−/χ−|r=r0 is very large. As we
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will see, this means nothing but a bound state appearing nearby the threshold in the |−〉
channel.

For instance, let us consider the |−〉 channel as a square well with V(r) = −V0 (V0 > 0)
for r < r0, as shown in Figure 2.6(a). In this case, when the energy of the scattering state
can be ignored compared with V0, we have χ− = sin(q1r) and q1 =

√
mV0/!2, therefore,

χ ′
−
χ−

∣∣∣∣
r=r0

= q1 cos(q1r0)
sin(q1r0)

. (2.57)

If there is a bound state with energy Ec, then the bound state wave function is χ−(r) =
sin(q2r) and q2 =

√
m(V0 + Ec)/!2, and to zeroth order of θ , |−〉 channel connects to |c〉

channel at r = r0 and sin(q2r0) = 0. When Ec is small, we can expand q1 around q2 and
obtain

χ ′
−
χ−

∣∣∣∣
r=r0

≈ q1

(q1 − q2)r0
≈ 2q2

1

(q2
1 − q2

2)r0
= − 2!2q2

1

mr0Ec
. (2.58)

In fact, although we derive Eq. 2.58 using a square well potential, it holds for a general
potential that χ ′

−/χ−|r=r0 is inversely proportional to Ec. Denoting γ = 2!2q2
1θ

2/(mr0),
Eq. 2.56 can be rewritten as

1
as

= 1
abg

+ γ

Ec
. (2.59)

Here it is important to note that γ depends on θ , which is the coupling between two
channels. Eq. 2.59 gives

as = abg

(
1 − γ abg

Ec + γ abg

)
. (2.60)

In the presence of a magnetic field, the threshold energies of the open and the closed
channel change as −µoB and −µcB, respectively. In most cases, µ = µo − µc > 0. Ec is
replaced by Ec −µcB+µoB = Ec +µB. Defining* = γ abgµ

−1 and Bres = −µ−1Ec −*,
Eq. 2.60 can be rewritten as

as = abg

(
1 − *

B − Bres

)
. (2.61)

This result shows that, usually for µ > 0, as diverges to +∞ when B → Bres from below
and diverges to −∞ when B → Bres from above, as shown in Figure 2.6(b). Bres denotes
the magnetic field for a scattering resonance, which is close to the position with Ec = 0 but
is shifted away by *. * defines the width of a resonance. From Eq. 2.61, one can see that
as = ∞ when B = Bres and as = 0 when B = Bres +*, and the latter is known as the zero
crossing. Thus,*measures the distance between the magnetic field for resonant scattering
and the magnetic field for the zero crossing. Figure 2.6(c) shows the first experimental
observation of a Feshbach resonance in 23Na [79]. Later Feshbach resonances are found in
almost all alkali-metal and magnetic atoms, which have become the most important tools
for controlling interaction in ultracold atomic physics.
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Wide versus Narrow Resonance. One can further show that at finite energy,

as(E) = abg

(
1 − µ*

µ(B − Bres) − E

)
. (2.62)

Expanding −1/as(E) = −1/as + reffk2/2, with E = !2k2/m, one obtains the effective
range as

reff = − 2!2*

µmabg(B − Bres −*)2 ≈ − 2!2

µ*mabg
, (2.63)

where the second approximate equality is valid nearby the resonance. This equation
shows that the effective range depends on *; that is, it depends on γ or θ . This is a
major difference between the single-scattering channel model discussed in Section 2.1
and the two-channel model discussed here. In the single-channel model, as discussed in
Section 2.1, one can also fine-tune the potential such that there is a bound state at the
threshold, and such a resonance is also called a shape resonance. Usually for an s-wave
shape resonance, reff is usually negligible. But for the two-channel model, depending on
how strong the mixing between the open and the closed channel is, the effective range can
be tuned over a wide range from very small to quite large, and the sign of reff depends on
the sign of abg. That is to say, only when * in the Feshbach resonance is large enough
that reff is sufficiently small, a Feshbach resonance in the two-channel model is equivalent
to a shape resonance in a single-channel model. To characterize the role of the effective
range in a many-body system of degenerate Fermi gas, a dimensionless quantity kFreff is
introduced as

kFreff = 4EF

µ*(kFabg)
. (2.64)

If kFreff , 1, we call it a wide resonance, and if kFreff ! 1, we call it a narrow resonance.
For a narrow resonance, effectively, the scattering length varies a lot over the energy range
of EF; thus the many-body system cannot be described by a single energy-independent
parameter of the scattering length as. In Chapters 5 and 6, when we discuss the many-
body physics of ultracold Fermi gases across a Feshbach resonance, we focus on the wide
resonances.

Zero-Range Two-Channel Model. In Section 2.2, we have introduced a zero-range model
to describe a single-channel scattering problem. We emphasize that a renormalization con-
dition has to be introduced in order to remove the artificial short-range divergency when
taking the range of potential to zero. Above we have introduced a coupled two-channel
scattering problem, and we have also noted that the two-channel model is not always equiv-
alent to the single-channel model when the energy dependence of the scattering length
has to be taken into account for narrow resonances. Hence, it is desirable to introduce a
zero-range version of the two-channel model, which can describe both the wide and the
narrow Feshbach resonances. As we will see, here we also need to be careful about the
renormalization of the model parameters.

Here, similarly to in Section 2.2, we consider two-component fermions as an example.
To capture the two-channel nature of the problem, we explicitly introduce a bosonic b̂
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field to describe the two-body bound state in the closed channel, which is also called the
molecular state. Now the Hamiltonian is written as

Ĥ =
∑

kσ

!2k2

2m
$̂kσ $̂kσ +

∑

k

(
!2k2

4m
+ ν

)

b̂†
kb̂k

+ g
V

∑

k,k1,k2

$̂†
k
2 +k1,↑

$̂†
k
2 −k1,↓

$̂ k
2 −k2,↓

$̂ k
2 +k2,↑

+ α√
V

∑

k,k1

$̂†
k
2 +k1,↑

$̂†
k
2 −k1,↓

b̂k + b̂†
k$̂ k

2 −k1,↓
$̂ k

2 +k1,↑
, (2.65)

where $̂†
σ and $̂σ are the creation and annihilation operators for scattering states in the

open channels. The last term denotes the conversion between the open channel scattering
states and the closed channel molecular state, with the strength given by α. Here ν is the
detuning of the molecular state in the closed channel, and g is the bare interaction between
open channel atoms themselves. This model is a zero-range model because both g and α
are chosen as momentum independent. Here, for the reason discussed above, we do not
include the scattering states in the closed channel. To find the renormalization relations
for ν, α, and g, similarly to our calculation done in Section 2.2, we can sum over the
ladder diagrams for the two-channel model to obtain the two-body scattering T-matrix.
The ladder diagram for the two-channel model is shown in Figure 2.3(b), compared with
the ladder diagrams in the single-channel model. Here we obtain the T2 as

T2(E) =
g + |α|2

E−ν

1 −
(

g + |α|2
E−ν

)
1
V

∑

k

1
E−!2k2/(m)

. (2.66)

By comparing T2(E = 0) = 4π!2as/m with as given by Eq. 2.61, we can obtain the
renormalization conditions that

1
g

= m
4π!2abg

−,, (2.67)

1
α

=
(

1 − 4π!2abg

m
,

)√
m

4π!2abgµ*
, (2.68)

ν = µ(B − Bres) + ,

1 − 4π!2abg
m ,

4π!2abgµ*

m
, (2.69)

where , denotes

, = 1
V

∑

k

1

!2k2/m
. (2.70)

General Schemes of the Feshbach Resonance. From the discussion above, we can
summarize the following three key ingredients in order to support a Feshbach resonance:

• For r > r0, atoms stay in the single-particle eigenstates, and the different quantum
numbers of the single-particle eigenstates define “channels.”
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• The energy spacing between different channels can be tuned by an external parameter.
• The short-range potential at r < r0 does not respect the good quantum number of the

single-particle Hamiltonian and thus mixes different channels.

For the magnetic Feshbach resonance of alkali-metal atoms discussed above, these three
conditions are satisfied as follows:

• The channel is defined in terms of the spin quantum number of a single atom in the
presence of a magnetic field, that is, the eigenstate of both the hyperfine interaction and
the Zeeman field.

• The energy splitting between two channels can therefore be tuned by the Zeeman energy.
• The short-range potential largely depends on the total electron spin of two atoms being

singlet or triplet, which does not conserve the spin quantum number of the single atom.

In the same spirit, we can also have several different types of Feshbach resonance. One
is the optical Feshbach resonance. Here we briefly introduce how the optical Feshbach
resonance satisfies the three ingredients:

• For r > r0, the atoms are labeled by the electronic quantum number of a single atom.
Taking an alkali-metal atom as an example, for the open channel, two atoms are both
in the 2S1/2 ground state, and for the closed channel, one atom is still in the 2S1/2 state
and the other atom is in the excited 2P1/2 state. Here we should note that, although
there presents a laser field, the laser frequency is far detuned from the single-particle
transition, and to very good approximation, the single-particle electronic states are not
affected by the laser when two atoms are far separated.

• In the presence of light, and by rotating wave approximation as discussed in Section 1.3,
the effective energy difference between two channels is the excitation energy subtracted
by the single photon energy. Thus, the energy spacing between two channels can be
tuned by the laser frequency. When the laser frequency is detuned to be resonant with
a bound state energy in the closed channel, the bound state is effectively tuned to the
threshold of the open channel, at which a scattering resonance occurs.

• Since the laser is tuned to be resonant with a bound state in the closed channel, the two
channels are coupled by the laser at the short distance when the molecular wave function
is concentrated.

The optical Feshbach resonances have great advantages that they can provide very fast
temporal control and small spatial resolution control of interactions, because the laser can
be turned on and off much more rapidly than the magnetic field, and the laser intensity
can be varied on the spatial scale of less than 1 µm. However, the disadvantage is that the
excited state (such as 2P1/2 of alkali-metal atoms) usually has finite lifetime due to the
spontaneous emission. The loss, as well as the heating due to the loss, can be quite signif-
icant, preventing the system from reaching equilibrium in the regime nearby a resonance.
In fact, a better stratagem is to combine the optical control with the magnetic Feshbach
resonance, such that one can take the advantages of temporal and spatial control and can
also avoid the heating problem.
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Another example is the orbital Feshbach resonance in alkaline-earth-metal atom, which
has been first theoretically predicted [189] and then experimentally observed in 173Yb
[133, 75] and in 171Yb [18]. As we have seen, the electron spin plays an important role
in the magnetic Feshbach resonance of alkali-metal atoms, because the short-range poten-
tials are labeled by the total electronic spin singlet and triplet. Because the electron spin
of the ground state (1S0) alkaline-earth-metal atom is zero, the short-range potentials do
not have the choice of the total electron spin being singlet or triplet, and therefore, the
mechanism for the magnetic Feshbach resonance in alkali-metal atoms does not hold for
alkaline-earth-metal atoms. Nevertheless, let us recall that in Section 1.1, we have dis-
cussed that alkaline-earth-metal atoms have a long-lived clock state 3P0, and in Section 2.3,
we have discussed the collision between two different nuclear spin states (| ↑〉 and | ↓〉)
of a fermionic alkaline-earth-metal atom, with one in the ground state (1S0 denoted by |g〉)
and the other in the clock state (3P0 denoted by |e〉). In Section 2.3, we focus on the zero
magnetic field limit, and here we consider the presence of finite magnetic field. One crucial
fact is that the nuclear spin Landé g-factor for |e〉 state is slightly larger than that of the |g〉
state [20]. This is because, as we have discussed in Section 1.1, 3P0 state possesses certain
coupling to 3P1 state through the hyperfine coupling, which can be further coupled to 1P1

state. The small but finite coupling to the electronic spin gives rise to a slightly larger g-
factor of 3P0 compared with 1S0 state. With this in mind, let us briefly introduce how these
three conditions can be satisfied in alkaline-earth-metal atoms [191]:

• For r > r0, atoms stay in the single-particle spin eigenstates in the presence of a mag-
netic field. Here, for the open channel, one atom stays in |g ↓〉 and the other atom stays
in |e ↑〉, and the wave function under antisymmetrization reads

|o〉 = 1√
2

(|g ↓〉|e ↑〉 − |e ↑〉|g ↓〉) . (2.71)

For the closed channel, one atom stays in |g ↑〉 and the other atom stays in |e ↓〉, and
the wave function under antisymmetrization reads

|c〉 = 1√
2

(|g ↑〉|e ↓〉 − |e ↓〉|g ↑〉) . (2.72)

• As mentioned above, because the |g〉 state and |e〉 state have slightly different g-factors,
the energy difference between the open and the closed channels can in principle be tuned
by the magnetic field. However, also because this g-factor difference is quite small, the
range of tunability is also rather small. Typically, changing the magnetic field by 1 gauss,
the Zeeman energy between two channels changes about 2π! × 100 Hz. Note that for
alkali-metal atoms, for the same amount of magnetic field, the change of Zeeman energy
between channels is about five orders of magnitude larger. With such limited Zeeman
energy tunability, it is hard to access a bound state with an accessible magnetic field
range in the laboratory. But fortunately, nature is very kind. For both 173Yb and 171Yb
atoms, there exists quite a shallow bound state in the interaction potential, which can be
accessed even with this narrow tunable energy window.

• As we discussed in Section 2.3, for the four states mentioned above, the short-range
potential is diagonal in the bases labeled by |+〉 and |−, 0〉, as shown in Eq. 2.40 and
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Eq. 2.41. Because |+〉 and |−, 0〉 can be written as (|o〉 ± |c〉)/
√

2, respectively, this
short-range potential mixes the open and the closed channels.

With these three conditions satisfied, a magnetic field–tunable Feshbach resonance can
also be reached in the alkaline-earth-metal atoms. However, the role of electronic spin in
the alkali-metal case is now replaced by the so-called orbital degree of freedom that labels
1S0 and 3P0. To highlight this difference, the new Feshbach resonance is named as the
orbital Feshbach resonance. There is a major physical difference between the magnetic
Feshbach resonance and the orbital Feshbach resonance. In the former, as we repeatedly
emphasized, the energy difference between two channels is much larger than the kinetic
energy such that the closed channel cannot be populated by scattering states. But for the
latter, this energy difference is reduced by five orders of magnitude, and therefore it is
no longer much larger than the kinetic energy. Hence, the so-called closed channel can
be populated by low-energy scattering states in a many-body system, and it is no longer
closed [189]. This difference can manifest significantly in a strongly interacting Fermi gas
nearby these resonances [189, 191].

2.5 Confinement-Induced Resonance

When a strong one- or two-dimensional confinement potential is applied, such a geo-
metric confinement can reduce a three-dimensional system to a quasi-two- or quasi-one-
dimensional one. In this section, we will discuss how to deduce the effective interaction
strength for scattering in lower dimensions, starting from the original three-dimensional
scattering problem with confinement potentials. We will show that the effective interaction
strength in lower dimensions can diverge even when the original s-wave scattering length
in three dimensions is finite. This is known as the confinement-induced resonance [131].

Here, as an example, we consider the quasi-one-dimensional situation; that is, a strong
harmonic trap in the transverse xy plane is applied to a three-dimensional system, and
the system remains uniform along the ẑ direction. Note that the center of mass and rela-
tive motions are still separable with the presence of a harmonic trap, and the Schrödinger
equation for the relative motion between two atoms is written as

[
p̂2

z

2m̄
+

p̂2
x + p̂2

y

2m̄
+ m̄ω2

⊥(x2 + y2)
2

+ V(r)

]

$(r) = E$(r) (2.73)

where V(r) is the interatomic potential. Similarly to discussion in Section 2.1, when r > r0,
we can ignore the interaction potential, and the wave function is determined by the free
Hamiltonian. Note that the transverse mode has energy (nx + ny + 1)!ω⊥ (nx, ny " 0).
Here we focus on the energy range !ω⊥ < E < 2!ω⊥. In this energy range, if the atoms
are in the lowest transverse mode, they can be in scattering state along the longitudinal
direction. And if atoms are in the transverse excited states, they can only be in the bound
state along the longitudinal direction. Hence, the general form of the wave function can be
written as
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$ = (eikzz + feveneikz|z|)ϕ0(x)ϕ0(y) +
∑

nx+ny /=0

αnx,nyϕnx (x)ϕny(y)e−κnxny |z|, (2.74)

where E = !ω⊥ + !2k2
z /(2m̄) = !ω⊥(nx + ny + 1) − !2κ2

nxny
/(2m̄). Here feven is the even

parity scattering amplitude, and odd parity scattering amplitude vanishes because of the
requirement of wave function continuity at z = 0. Here ϕn is the eigen-mode of a one-
dimensional harmonic oscillator. Because the second term in the wave function Eq. 2.74
vanishes at large z, the asymptotic form of this scattering wave function is given by the first
term as

$(z, ρ) → (eikzz + feveneikz|z|)ϕ0(x)ϕ0(y). (2.75)

For r < r0, the single-particle energy can be ignored, and the wave function is deter-
mined by the short-range interaction potential. Similarly, for the s-wave channel, we can
match the boundary condition by requiring (r$)′/(r$)

∣∣
r=r0

= −1/as, and for a higher
partial wave channel, we assume the interaction effects are negligible. Nevertheless, the
difficulty here is that the short-range boundary condition is spherical symmetrical but the
wave function Eq. 2.74 is cylindrical symmetrical. After some quite involved calculation
using the frame transformation [187], one finally reaches [131]

feven(kz → 0) = − 1

1 − ikza⊥
2

(
a⊥
as

+ C
) , (2.76)

where a⊥ = √
!/m̄ω and C ≈ −1.46.

Next we consider a real one-dimensional case. We shall also model the one-dimensional
scattering process in terms of a zero-range potential. Unlike the three-dimensional case,
the one-dimensional wave function does not display any singularity when z → 0, and
therefore, a δ-function potential is regular in one dimension. Hence, we write down the
Hamiltonian with δ-function interaction as

[
− !2

2m̄
∂2

∂z2 + g1dδ(z)
]
$(z) = E$(z). (2.77)

When z /= 0, the wave function of the kinetic energy eigenstate is generally written as

$ = eikzz + feveneikz|z|, (2.78)

where E = !2k2
z /(2m̄). For a δ-function potential, we can use the continuity condition that

$ ′(0+) −$ ′(0−) = 2m̄g1d$(0)/!2 to determine feven, which gives rise to

ikzfeven = m̄g1d

!2 (1 + feven); (2.79)

that is

feven = − 1

1 − i !2

m̄g1d
kz

. (2.80)

Introducing “one-dimensional scattering length” a1d as

g1d = − !2

m̄a1d
, (2.81)
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we can write

feven = − 1
1 + ika1d

. (2.82)

To determine the effective one-dimensional interaction scattering length a1d, one
requires that the scattering amplitude feven obtained from the one-dimensional model Eq.
2.82 reproduce feven of Eq. 2.76 obtained from the full three-dimensional calculation with
confinement potential. As we emphasized at the beginning of this chapter, since the ultra-
cold atomic systems are dilute and the typical interatomic separation is much larger than
the range of potential, and the collision energy is also very small compared with the interac-
tion potential, the interaction mostly manifests in the asymptotic wave function. Therefore,
if these two situations give the same asymptotic wave functions, we consider this g1d as
a faithful representation of the interaction in the reduced dimension. Hence, by matching
Eq. 2.82 with Eq. 2.76, we obtain

a1d

a⊥
= −1

2

(
a⊥
as

+ C
)

. (2.83)

This shows that when a⊥/as = −C, a1d = 0 and g1d diverges, which is known as the
confinement-induced resonance [131].

Although the discussion of the confinement-induced resonance appears quite different
from the discussion of Feshbach resonance in Section 2.4, it can be essentially understood
in the same way as a Feshbach resonance [17]. In Section 2.4, we established three points as
the key ingredients for a Feshbach resonance, and here we can show that the confinement-
induced resonance can also be understood in terms of these three points.

• When two atoms are separated, atoms stay in the single-particle eigenstates. Here we
use different eigenstates in the transverse direction to label “channels.” For the open
channel, both atoms are in the transverse ground state. For the closed channel, atoms are
in the transverse excited states

• The energy difference between the open and the closed channels is given by the
transverse confinement energy and can be tuned by the external confinement potential.

• The single-particle eigenstate has cylindrical symmetry, but the short-range potential has
spherical symmetry. The incompatibility of two symmetries naturally leads to coupling
between channels.

With this understanding, resonance occurs when a bound state in the closed channel
matches the scattering threshold of an open channel. Here, the energy offset between the
closed channel and the open channel is typically !ω = 2!2/(ma2

⊥), and the bound state
energy in three dimensions is estimated by −!2/(ma2

s ). Thus, the resonance condition can
be roughly estimated as

!ω − !2

ma2
s

= 0, (2.84)

which leads to
a⊥
as

=
√

2. (2.85)
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This is not that different from the exact results in Eq. 2.83 where
√

2 is replaced by 1.46 . . . .
A similar argument can be applied to confinement into quasi two dimensions, or mixed
dimensions. Here mixed dimensions means that one atom is confined to the d1 dimension
and the other atom is confined to the d2 dimension, where both d1 and d2 can take a value
between 0 and 3.5

2.6 Efimov Effect

In the above sections, we discussed different methods, as well as a general framework,
to tune the two-body interaction potential to a scattering resonance. A quantum many-
body system with such a resonant interaction potential has many intriguing properties, as
we will discuss in Chapter 5 and Chapter 6. Here, before studying many-body physics,
we first study a manifestation of resonant interaction in a three-body system. This prob-
lem can be generally solved by a so-called hyper-spherical coordinate approach [21, 22],
but the calculation is quite involved. Here, to illustrate the essential physics, we take a
simpler case of one light atom interacting with two heavy atoms, and we can utilize the
Born–Oppenheimer approximation to simplify the calculation [141].

Born–Oppenheimer Approximation. First of all, we fix the positions of two heavy atoms
with mass M at R/2 and −R/2, respectively, and study the motion of the light atom with
mass m in the presence of these two heavy atoms. The Hamiltonian for the light atom
therefore reads

Ĥ = −!2∇2

2m
+ 2π!2as

m
δ(R+)

∂

∂|R+| |R+| + 2π!2as

m
δ(R−)

∂

∂|R−| |R−|, (2.86)

where R± = r ± R/2, and we take m , M such that the reduced mass is simplified
as m. In the regime r /= ±R/2, let us consider the following three requirements: (i) the
wave function should be an eigenstate of the kinetic operator; (ii) we consider that the light
atom forms a bound state around both the two heavy atoms; and (iii) the wave function is
symmetric or antisymmetric with respect to exchanging R+ and R−. Thus, we can write
down the wave function as

$±(r) ∝ exp{−κ|R+|}
|R+| ± exp{−κ|R−|}

|R−| , (2.87)

where κ is real and positive. The energy of this wave function is −!2κ2/(2m).
Expanding the wave function around either |R+| or |R−| yields

$± ∝ 1
|R±| − κ ± e−κR

R
+ . . . , (2.88)

5 The exceptions are that they cannot both be 0 where no scattering state can be defined, and they cannot both be
3 when no confinement is applied at all.
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where R = |R|, and the pseudo-potential requires the short-range behavior of the wave
function to be

$± ∝ 1
|R±| − 1

as
. (2.89)

Thus, it leads to

κ ∓ e−κR

R
= 1

as
. (2.90)

Clearly, the term with a plus sign in the l.h.s. of Eq. 2.90 has no solution for negative and
infinite as. So we consider the equation with a minus sign, resulting from the symmetric
wave function in Eq. 2.87. The solution in general has the form

κ = 1
R

f
(

R
as

)
, (2.91)

where f (y) is the solution to the equation x − e−x = y. One can see that at unitarity with
as = ∞ and y = 0, f (0) is a constant. Therefore, κ ∼ 1/R, and the energy is proportional
to −!2/(mR2).

Continuous and Discrete Scaling Symmetry. With the help of the Born–Oppenheimer
approximation, we have found that, at two-body resonance, the light atom induces an effec-
tive potential ∼ −!2/(mR2) between two heavy atoms. Then, the Schrödinger equation for
two heavy atoms is given by

(

−!2∇2
R

M
− !2c2

0

mR2

)

$ = E$, (2.92)

where c2
0 is a constant. The most important feature of this equation is that the interaction

energy scales the same way as the kinetic energy under a scaling transformation R → λR.
Therefore, it looks as though, by applying this scale transformation, if E is an eigenenergy,
E/λ2 is also an eigenenergy. This works for any λ, which is known as the continuous
scaling symmetry. However, if this is true, that also implies that the energy spectrum of
this Hamiltonian is not bound from below. Hence, we need to apply an extra short-range
cutoff to bound the spectrum from below. This short-range boundary condition can be a
nonuniversal one depending on short-range details. And the fact that an extra nonuniversal
high-energy cutoff is required also means that a theory with zero-range interaction potential
is not renormalizable in this case.

Here we explicitly show how the extra short-range boundary condition affects the scaling
symmetry. Since here we are interested in a three-body bound state, and since above we
have considered that the light atom already forms a bound state with both heavy atoms,
we now need only consider the bound state solution between these two heavy atoms. In
the spherical coordinate of R, we write $(R) = χ (R)/R, as we now only consider the s-
wave solution when two heavy atoms are bosons or distinguish particles. The Schrödinger
equation for χ (R) is written as

[

−!2

M
d2

dR2 − !2c2
0

mR2

]

χ = Eχ . (2.93)
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Now we consider a zero-energy solution, or alternatively speaking, we consider the wave
function at a distance when E , 1/R2. Because of the scaling symmetry, we can assume
χ = Rs, and by setting E = 0, Eq. 2.93 gives

s(s − 1) + c2
0M

m
= 0. (2.94)

This leads to s = 1/2 ± is0, where s0 =
√

c2
0M
m − 1

4 , and we consider M ! m such that s0

is always real. Thus, the two independent solutions can be written as

χ± =
√

RR±is0 =
√

Re±is0 ln R. (2.95)

Each of χ± is still invariant under a continuous scaling transformation, but because of
the short-range boundary condition, the general wave function should be a superposition
of both χ+ and χ− to satisfy the boundary condition. Note that the two solutions can
also be written as

√
R cos(s0 ln R) and

√
R sin(s0 ln R), and so a general solution can be

constructed as

χ (R) =
√

R cos(s0 ln R + θ ), (2.96)

where θ should be determined by the short-range boundary condition. Clearly the wave
function Eq. 2.96 is no longer invariant under a continuous scaling transformation, but if
the scaling factor λ = eπn/s0 , where n is an integer, the wave function is still invariant.
This is known as the discrete scaling symmetry, because the scaling factor can only take
values in a set of discrete numbers. Under the discrete scaling transformation, the energy
becomes E → Ee−2π/s0 . That is to say, if E0 denotes the lowest-energy bound state, and
En denotes the nth bound state counting from below, then there is an infinite number of
bound states, and their binding energies satisfy

En = En−1e−2π/s0 . (2.97)

Note that the solutions are actually the binding energies of the three-atom bound state,
which means that the three-body bound state energies obey a geometric sequence. This
result was first obtained by Efimov from solving the problem of three identical bosons
nearby a two-body resonance and thus is named the Efimov effect. The Efimov effect in
a three-body system was first experimentally found in cold 133Cs gas of identical bosons
[94], and later was also found between two bosons and a third distinguishable atom, or three
distinguishable atoms [21, 22]. The discrete scaling symmetry has also been confirmed
experimentally [176, 143].

Here we highlight that, from the symmetry perspective, the defining property of the Efi-
mov effect is the discrete scaling symmetry with a universal scaling factor, which resulted
from a Hamiltonian with continuous scaling symmetry plus a nonuniversal short-range
boundary condition. We emphasize that this defining property has at least two nontrivial
points:

• In many cases, a short-range boundary condition completely breaks the continuous scal-
ing symmetry, but in this case, it still leaves a discrete scaling symmetry. Mathematically,
it happens when Eq. 2.94 for s has a pair of conjugate solutions.
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• Although the short-range boundary condition is nonuniversal, the scaling factor is actu-
ally universal. In this case, one can see that although θ is a nonuniversal value depending
on the details of the short-range boundary condition, and the exact value of the low-
est binding energy E0 is also nonuniversal, the scaling factor eπ/s0 is a constant only
depending on the mass ratio and does not depend on the short-range details.

This definition of the Efimov effect from the symmetry perspective allows one to gener-
alize this effect beyond few-body physics and to find more intriguing manifestations of
this effect in many-body systems. One such example is the quantum many-body expan-
sion dynamics of a scaling-invariant quantum gas in a specially designed expanding
harmonic trap, which follows the same symmetry definition and is named the Efimovian
expansion [48].

Finally, let us briefly discuss how these three-body bound states behave when the inter-
action is tuned away from the resonance. It turns out that when as is negative, the effective
attraction is weaker than ∼ −1/R2 at large distance, which first affects these shallow bound
states whose wave functions are more extended and have more weight on the long-range
part. The energies of these bound states will increase as the interaction is tuned away
from the resonance to the negative side, and they will in turn merge into the three-body
continuum, as shown in Figure 2.7. When one of the three-body bound states meets the
three-body threshold, it yields a three-body scattering resonance. When as is positive, the
effective attraction is deeper than ∼ −1/R2. However, on this side, there also exists a two-
body bound state, and as we have discussed in Section 2.1, the dimer energy is −!2/(ma2

s ).
Hence, the atom-dimer threshold energy is −!2/(ma2

s ). It turns out that the increasing of
the three-body binding energy is slower than the increasing of the two-body binding energy

!Figure 2.7 Three-body Efimov effect. The energy of three-body bound state of spinless bosons as a function of two-body
scattering length as (a in the figure). The three-atom threshold is alwaysE = 0. The atom-dimer threshold
behaves as−!2/(ma2

s ) in the positive as side. Three typical spectrum lines for the three-body bound state energy
are shown. At resonance when 1/as = 0, the binding energies form a geometric sequence. Two arrows label
examples of three-atom scattering resonance and atom-dimer scattering resonance, respectively. Reprinted from Ref.
[55]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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as 1/as increases; therefore, the three-body bound state will in turn merge into the atom-
dimer continuum when the interaction is tuned away from the resonance to the positive
side, as also shown in Figure 2.7. When one of the three-body bound states meets the
atom-dimer threshold, it yields an atom-dimer scattering resonance. Both the three-atom
resonance and the atom-dimer resonance will manifest in the loss rate of atoms, which can
be experimentally measured as evidence of the Efimov effect [94, 176, 143].

2.7 From Few to Many

In this chapter, we have discussed two- and three-body problems. In the next chapter, we
will start to discuss many-body physics in ultracold atomic gases. Here we would like
to point out that there are many connections between few- and many-body problems in
ultracold atomic physics. First of all, few-body problems help us to build up the right
model for many-body physics, as we have discussed in Section 2.2 and Section 2.4. Second,
few-body problems help us to locate the parameter regimes where the many-body physics
can be interesting. We discussed in Section 2.4 and Section 2.5 how to tune the elastic
scattering to be very strong. In addition, there is another important aspect that we do not
discuss in this book, which is about the inelastic part of the scattering process. The inelastic
part of the scattering process leads to atom loss. A strong inelastic scattering can lead to
strong loss and, therefore, a short lifetime of the many-body system. Hence, in order that
intriguing many-body physics takes place, we not only require the elastic scattering to be
strong enough but also require the inelastic scattering not to be too strong. We need the
solutions of the few-body problem to help us locate such regimes.

Third, few-body problems provide an alternative way to analyze correlations in a quan-
tum many-body system. Generally speaking, there are two different approaches to studying
many-body corrections, which are known as the top-down approach and the bottom-up
approach. Here the top-down means starting from large-scale, long-wave length, or low-
energy structures. Various kinds of mean-field theories that we will discuss in the next
chapter belong to the top-down approach. In contrast, the bottom-up approach means
understanding correlations in a many-body system from its microscopic building blocks,
that is to say, from two-body, three-body, and then gradually adding more particles. The
advances in ultracold atomic experiments allow us to control atom number very precisely,
which makes this approach even experimentally possible. In experiments, one can observe
how the many-body correlation gradually builds up by adding to the atom number one by
one [197]. Theoretically, one systematic method to carry out this bottom-up approach is in
fact the high-temperature expansion. This expansion uses the fugacity as a small parame-
ter, and therefore it also works in the resonance when the interaction is very strong. Below
we will briefly discuss this approach.

We consider the partition function Z at high temperature. At high temperature, µ is
very negative and the fugacity z = eµ/(kBT) is very small. Hence we can use z as a small
parameter to expand Z as
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Z = Tre−(H−µN)/(kBT) = 1 + z
∑

n1

e−En1 /(kBT) + z2
∑

n2

e−En2/(kBT) + . . . , (2.98)

where we have taken the N = 1 in the second term of Eq. 2.98 and n1 denotes quantum
numbers of all single-particle eigenstates, and N = 2 for the third term in Eq. 2.98 and n2

denotes the quantum numbers of all two-particle eigenstates. For a uniform system,

∑

n1

e−En1/(kBT) =
∑

k

e−!2k2/(2mkBT) = V
(

mkBT
2π!2

)3/2

= V
λ3 , (2.99)

where λ =
√

2π!2/(mkBT) is the thermal de Broglie wavelength. En2 contains the center-
of-mass motion K2/(4m) and the relative motion with eigenenergies denoted by εrel. Since
the center-of-mass and relative coordinates are separable, we have

∑

n2

e−En2 /(kBT) = V

(√
2
λ

)3∑

εrel

e−εrel/(kBT). (2.100)

Thus, the solution of the two-body problem allows us to obtain the partition function to
the order of z2. Furthermore, with the solutions of the three-body problem, we can obtain
information on the partition function up to z3, and this expansion can be systematically
carried on. Here, for simplicity, we only consider the z2 order.

Up to the z2 order, we can therefore rewrite the partition function as

Z = Z0 + Vz2

(√
2
λ

)3

b2, (2.101)

where Z0 is the partition function in the absence of interactions, and

b2 =
∑

εrel

(
e−εrel/(kBT) − e−ε0

rel/(kBT)
)

. (2.102)

Here b2 is called the second virial coefficient, and ε0
rel is the eigenstate for relative motion in

the absence of interactions. Below we shall discuss how to compute b2 with the knowledge
of two-body problem discussed in Section 2.1 [86].

For the reason we discussed in Section 2.1, we ignore the interaction effect in all high
partial wave channels and only consider the interaction effect in the s-wave channel. Note
that b2 can be rewritten as

b2 =
∑

nb

e−Enb /(kBT) +
∫ +∞

0
dk(g(k) − g0(k))e−!2k2/(mkBT), (2.103)

where the first contribution comes from bound states due to interactions and Enb denotes
binding energies, and the second contribution comes from all scattering states in the s-wave
channel; g(k)dk and g0(k)dk denote the number of eigenstates with wave vector between
k and k + dk for interacting systems and noninteracting systems, respectively. As we have
shown in Section 2.1, the wave function for the relative motion between two particles in
the s-wave channel can be written as

$ = sin(kr + δk)
r

. (2.104)
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Considering a spherical box with radius size R, the wave function has to satisfy the
boundary condition at r = R, which yields

kR + δk = sπ , (2.105)

where s is an integer. Eq. 2.105 gives
(

R + dδk

dk

)
*k = π*s. (2.106)

The number of eigenstates increases by 1 when *s increases by 1, which requires *k
increasing by

*k = π

R + dδk
dk

. (2.107)

Thus, we have

g(k)dk = 1
π

(
R + dδk

dk

)
dk, (2.108)

and for the noninteracting case, g0(k)dk = Rdk/π . Therefore, b2 can be written as

b2 =
∑

nb

e−Enb/(kBT) + 1
π

∫ ∞

0

dδk

dk
e−!2k2/(mkBT)dk. (2.109)

Using tan δk = −kas, one can obtain
∫ ∞

0

dδk

dk
e−!2k2/(mkBT)dk = −sgn(as)

∫ ∞

0

|as|
(k|as|)2 + 1

e−!2k2/(mkBT)dk

= −sgn(as)
π

2
Erfc[α]eα

2
, (2.110)

where sgn is the sign function, Erfc is the complementary error function, and α =
λ/(

√
2π |as|). Hence, if one excludes the contribution from the bound state,

b2 = −sgn(as)
1
2

Erfc[α]eα
2
. (2.111)

As shown in Figure 2.8(a), b2 decreases from zero to −1/2 if as increases from zero to
positive infinite and increases from zero to 1/2 if as decreases from zero to negative infi-
nite. This jump of unity at resonance can be exactly compensated by a zero-energy bound
state contribution. Including the contribution from the bound state, b2 becomes a smooth
function when as changes from negative infinite to positive infinite, and b2 monotonically
increases as −λ/as decreases.

With the help of the partition function, one can show that the total energy can be deduced
as [72]

E = 3nkBT
2

(
1 + nλ3

27/2

)
+ Eint = Ekin + Eint (2.112)

and

Eint = 3nkBT
2

(nλ3)

[

− b2√
2

+
√

2
3

T
∂b2

∂T

]

, (2.113)
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!Figure 2.8 High-temperature expansion. (a) The second virial coefficient b2 as a function of−λ/as. For positive as, the positive
b2 branch includes the contribution from the shallow bound state and smoothly connects to the negativeas side, and
the negative b2 branch excludes the contribution from the shallow bound state. (b–c) The interaction energyEint in
units ofE0 = 3nkBT(nλ3)/2 as a function of−λ/as (b) with and (c) without the bound state contribution.

where n is the density of the system. With b2, one can straightforwardly obtain the inter-
action energy with or without the contribution from the bound state, as shown in Figures
2.8(b) and (c), respectively. One can see that, including the bound state contribution, the
interaction energy is always negative, consistent with the fact that the underlying potential
is attractive. For positive scattering length, when the bound state contribution is excluded,
the interaction energy is positive, which is called the upper branch. When the bound
state contribution is included, the interaction energy is negative, which is called the lower
branch. We will come back to revisit this physics in the discussion of polarons in Section
5.2. When the bound state contribution is excluded, one can see that the interaction energy
becomes small when as is small, consistent with our discussion in Section 2.1 that the
amplitude of as characterizes interaction strength when |as| is small. One can also see that
the interaction energy remains finite even when as is infinite at resonance, and the inter-
action energy becomes proportional to the thermal kinetic energy at resonance. That the
interaction energy scales the kinetic energy characterizes strong interaction effects, as we
will discuss again in Chapter 6.

Exercises

2.1 Calculate the scattering length for a three-dimensional square well interaction poten-
tial V(r) = 0 for r > r0, V(r) = −V0 for r0 > r > 0 with V0 > 0, and V(r) = ∞
for r = 0. Discuss how the scattering length changes as a function of V0, and discuss
when the binding energy satisfies the relation E = −!2/(2m̄a2

s ).

2.2 Calculate the scattering length for a three-dimensional hard core potential V(r) = 0
for r > r0, V(r) = V0 for r0 > r > 0 with V0 > 0, and V(r) = ∞ for r = 0. Discuss
how the scattering length changes as a function of V0 and the difference from the
square well potential above.

2.3 Show that for a finite range interaction V(r) # 0 for r > r0, the phase shift for the lth
partial wave δl ∝ k2l+1.
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2.4 Show that the bound state wave function $ = χ/r with χ given by Eq. 2.12 also
satisfies the Schrödinger equation 2.18 with V(r) given by δ(r)Ô(r) and Ô(r) given
by Eq. 2.21.

2.5 Analytically show that

1
V

∑

p

(
1

E − !2p2/m + i0+ + 1
!2p2/m

)
= − ikm

4π!2 , (2.114)

where k =
√

mE/!2.
2.6 Derive the general interaction form between two spin-2 atoms.
2.7 Show Eq. 2.62 for a finite energy scattering state using the simplified two-channel

model discussed in this chapter.
2.8 (1) Show that the two-body T-matrix for the two-channel model is given by Eq.

2.66, following the same method of summing up the ladder diagram shown in
Figure 2.3(b). (2) Verify the normalization conditions of Eq. 2.67–2.69 by comparing
the two-body T-matrix (Eq. 2.66) with T2(E = 0) = 4π!2as/m and as given by Eq.
2.61.

2.9 Use a variational wave function to show that the lowest eigenenergy of the Hamilto-
nian Eq. 2.92 is not bound from below if no short-range cutoff is imposed.

2.10 With the help of Eq. 2.90, discuss the effective three-body interaction potential when
as is away from infinite.

2.11 Compute the chemical potential and the pressure up to z2 order by using the high-
temperature expansion.
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3 Interaction Effects

Learning Objectives

• Define Bose–Einstein condensation in an interacting boson system in terms of macro-
scopic occupation.

• Introduce the Gross–Pitaevskii equation and its applicable conditions.

• Derive the hydrodynamic equations and various physical consequences of the hydrody-
namics with or without harmonic trap.

• Introduce sound waves and emphasize the difference between wave behavior and
diffusive behavior.

• Introduce the criterion for superfluidity and determine the superfluid critical velocity.

• Introduce two-fluid hydrodynamics.

• Introduce the Bogoliubov theory.

• Introduce various concepts related to quasi-particles, including ground state as a vacuum
of quasi-particles, the zero-point energy of quasi-particles, quasi-particle lifetime, and
vacuum fluctuation.

• Introduce healing length as the characteristic length scale for low-energy physics of an
interacting Bose condensate.

• Summarize the difference between an interacting and noninteracting Bose condensate.

• Introduce Bragg spectroscopy.

• Show that the Bogoliubov theory fails in one dimension due to the infrared divergence.

• Discuss the basic idea of the Bethe-ansatz solution and the Tonks–Girardeau limit.

• Introduce scale-invariant quantum gases.

• Introduce the Josephson effect and self-trapping as two different transport phenomena
driven by phase coherence.

• Discuss the conjugate relation between the relative phase fluctuation and the relative
particle number fluctuation and show that strong enough phase fluctuation renders the
system into a Fock state.

• Discuss an example of quantum measurement that can project two independent conden-
sates to a coherent superposition state.

• Discuss interference effects in density and density–density correlations.

• Discuss the relation between the instability of the Schödinger Cat state and the stability
of symmetry breaking.

73



74 Interaction Effects

3.1 Bose–Einstein Condensation

Before we discuss an interacting system, let us first review the concept of Bose–Einstein
condensation (BEC) in a free boson system. Considering free bosons with dispersion εk =
!2k2/(2m) in three dimensions, at high temperatures, each mode with a given wave vector
k is populated by

n k = 1
e(ε k−µ)/(kBT) − 1

, (3.1)

where µ is the chemical potential and is negative at high temperature. In statistical mechan-
ics, we always consider the thermodynamic limit that N → ∞ and V → ∞ with density
n = N/V fixed. It is important to note that the population fraction n k/V at each mode
vanishes in the thermodynamic limit. This is always true as long as the chemical potential
µ is negative. As temperature decreases, µ increases. Then the question is whether there
exists a critical temperature, denoted by Tc, at which the chemical potential µ will increase
to zero. If such a Tc exists, by setting µ = 0, Tc is given by

N = V
(2π )3

∫
d3k

1
eε k/(kBTc) − 1

= V(mkBTc)3/2
√

2π2!3

∫ ∞

0

√
zdz

ez − 1
. (3.2)

Because the integration in the r.h.s. of Eq. 3.2 is finite, Eq. 3.2 is equivalent to 1/λ3 ∼
n ∼ 1/d3, where d is the mean interparticle spacing and !2/(mλ2) = kBT/(2π ) defines
the thermal de Broglie wave length. The physical meaning of Eq. 3.2 is that the thermal
de Broglie wave length is comparable to the mean inter-particle distance d, or equivalently
speaking, kBTc is comparable to the degenerate energy !2/(md2). It is the same condition
as fermions entering quantum degeneracy.

Below Tc, µ cannot further increase to be positive for free bosons, and µ should retain
zero. In this case, the occupation at k = 0 mode N0 should be considered separately, that is,

N = N0 + V
(2π )3

∫
d3k

1
eε k/(kBT) − 1

. (3.3)

It is easy to show that N0/N += 0 in the thermodynamic limit, and this is taken as the Bose–
Einstein condensate (BEC). That a population fraction at a certain mode is nonzero in the
thermodynamic limit is called the macroscopic occupation. From the discussion of BEC
in a free bosons system, we learn that the Bose condensation is a transition from one sit-
uation that population fractions at all modes vanish in the thermodynamic limit to another
situation that at least one mode is macroscopically occupied. In fact, as we will summarize
at the end of Section 3.3, many properties are different between an interacting BEC and
a noninteracting BEC. In order to define BEC in an interacting system, it is important to
first identify which property of a noninteracting BEC should be regarded as the essential
defining property of a BEC, and we should capture and generalize this defining property
to an interacting system. Here we argue that one should take this macroscopic occupation
as the defining property of a BEC. Nevertheless, in a free system, it is straightforward to



75 Bose–Einstein Condensation

define the occupation in single-particle eigenmodes. Hence, the question is how to prop-
erly define occupation in an interacting system, and the answer to this question leads to the
concept of the off-diagonal long-range order (ODLRO) [183].

General Definition of BEC. Now we present a general definition of BEC in an interacting
system. First of all, let us introduce the concept of the density matrix. When the many-
body system is in a pure state with the many-body wave function /(r1, r2, . . . , rN), the
one-body density matrix is defined as

ρ(r, r′) = N
∫
/∗(r, r2, . . . , rN)/(r′, r2, . . . , rN)d3r2 . . . d3rN . (3.4)

If the system is in a mixed state with probability ps in a many-body wave function
/s(r1, r2, . . . , rN), the one-body density matrix is defined as

ρ(r, r′) = N
∫ ∑

s

ps/
∗
s (r, r2, . . . , rN)/s(r′, r2, . . . , rN)d3r2 . . . d3 rN . (3.5)

Alternatively, in a second quantized form, it can be equivalently defined as

ρ(r, r′) = 〈/̂†(r)/̂( r′)〉, (3.6)

where /̂†(r) and /̂(r) are boson creation and annihilation operators at position r,
respectively. This one-body density matrix ρ(r, r′) can be diagonalized and decomposed as

ρ(r, r′) =
∑

i

Niψ
∗
i (r)ψi( r′). (3.7)

Therefore, the eigenvector ψi defines the wave function of each mode, and Ni defines
the single-particle occupation of each mode. With this definition of occupation of single-
particle modes, we can now introduce the definitions of BEC in an interacting system as
follows:

• If, for all Ni, limN→∞ Ni/N = 0, we call it a normal phase.
• If there is one and only one Ni, limN→∞ Ni/N '= 0, we call it a simple BEC.
• If there are more than one Ni, limN→∞ Ni/N '= 0, we call it a fragmented BEC.

For the latter two cases, we say the system has ODLRO [183].
Similarly, we can introduce a higher-order density matrix. For instance, a two-body

density matrix can be defined as

ρ(r1, r2, r′
1, r′

2) = 〈/̂†( r1)/̂†(r2)/̂(r′
1)/̂( r′

2)〉. (3.8)

Usually we consider the situation that r1 ≈ r2 ≈ r and r′
1 ≈ r′

2 ≈ r′; we can similarly
decompose the two-body density matrix as

ρ(r1, r2, r′
1, r′

2) =
∑

i

Niψ
∗
i ( r1 ≈ r2 ≈ r)ψi(r′

1 ≈ r′
2 ≈ r′). (3.9)

In this way, we can define a boson pair condensate when there exists one or more Ni that
satisfy limN→∞ Ni/N '= 0. In many cases, a fragmented BEC defined by the one-body
density matrix can be a simple BEC defined by the higher order density matrix [123]. We
will come back to revisit this in Section 3.5.
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In ultracold atom experiments, a BEC is achieved after the laser cooling and the evap-
orative cooling. The first measurement proving Bose condensation is the time-of-flight
measurement of the momentum distribution [5, 44], which experimentally determines the
onset of BEC by this property of macroscopic occupation. When the harmonic trap is sud-
denly released, atoms acquire a velocity v = k/m where k is the momentum of atoms
before turning off the trap. Afterward, these atoms flight in free space with this velocity.1

After long enough time, when the size of the initial cloud can be ignored compared with
the distance that atoms have traveled, the initial momentum distribution can be revealed by
measuring the distance that atoms have flighted and dividing the distance by the time that
they have flighted. In other words, the spatial distribution after the time of flight, as shown
in Figure 3.1 as an example, reveals the momentum distribution before turning off the trap.
Two typical sets of measurements from the first BEC experiments are shown in Figure 3.1.
At higher temperature, this reveals the momentum distribution of thermal bosons. And
below certain temperature, there is a sudden onset of peak which expands much slower
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!Figure 3.1 Time-of-flight measurements of momentum distribution of a Bose gas. The onset of a sharp peak in the momentum
distribution marks the Bose–Einstein condensation transition. The number at each curve is called νevap, which labels
the radio-frequency used in the evaporative cooling. The smaller this number is, the cooler is the gas. (a) is reprinted
from Ref. [5], and (b) is reprinted from Ref. [44].

1 If there are other lasers to create optical lattices, or spin-orbit coupling, or other effects, as we will discuss in
later chapters, they will also be turned off at the same time when the trapping laser is turned off. This flighting
velocity k/m is not necessarily the same as the velocity of atoms before turning off the trap, and the latter
is defined as v = ∂Ek/∂k, where Ek is the single-particle dispersion in the presence of optical lattices, or
spin-orbit coupling or other effects. That is to say, the time-of-flight measures initial momentum distribution
not the initial velocity distribution.
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compared with the thermal components, because these atoms are the condensed part and
their expansion dynamics are no longer driven by the kinetic energy. The expansion dynam-
ics of the condensed part will be discussed in Section 3.2. As shown in Figure 3.1, below
Tc, this component increases, and the atom number inside this peak becomes a fraction of
the total number of atoms. This macroscopically occupied component is considered as the
Bose condensate, and the ratio between atoms in this component and the total atom number
is called the condensate fraction.

Below we will first focus on a simple BEC. For a simple BEC, since one eigenvalue
of the density matrix (say, N0) is much larger than any others, we can make a bold
approximation for the density matrix as

ρ(r, r′) ) N0ψ
∗(r)ψ(r′). (3.10)

Here N0 is of the order of N, and ψ(r) is the corresponding eigenvector. Eq. 3.10 means a
long-range correlation because ρ(r, r′), or equivalently speaking, the correlation function
〈%̂†(r)%̂(r′)〉, does not vanish even when |r−r′| is taken to infinity. Here

√
N0ψ(r) is called

the condensate wave function. The focus below is to discuss the equations that govern the
ground state and the dynamical behaviors of this condensate wave function. To this end,
we need to work out a microscopic theory, and we should make a proper approximation
for the underlying many-body wave function. Since here we consider our approximation
equation 3.10 of ρ(r, r′) is the key for BEC, let us ask an inverse question of what kind of
many-body microscopic state can give rise to such a one-body density matrix. In fact, at
least we can come up with the following two ways to satisfy Eq. 3.10.

• We can assume the system is a pure state and the many-body wave function is a product
state as

%(r1, . . . , rN) =
N∏

i=1

ψ(ri). (3.11)

It is easy to verify that the wave function of Eq. 3.11 reproduces the density matrix given
by Eq. 3.10.

• We can assume that the wave function is a coherent state given by

|%〉 = e
∫

d3r
√

N0ψ(r)%̂†( r)|0〉, (3.12)

and using the property of the coherent state, we have %̂(r)|%〉 = √
N0ψ( r)|%〉. Then it

is straightforward to show that

〈%̂†(r)%̂(r′)〉 = N0ψ
∗(r)ψ( r′). (3.13)

Before ending this part, we shall make two remarks:

• Though these two microscopic descriptions look quite different, they give the same one-
body density matrix with ODLRO. As we will show in the following two sections, our
derivation of the hydrodynamic theory ultilizes the first description, and the Bogoliubov
theory is based on the second description. We will see that these two different theories
give the same low-energy excitation spectrum.
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• The density matrix itself does not infer the global phase of the condensate wave function.
However, once a condensate wave function is chosen, we have to choose a fixed global
phase. Nevertheless, the energies of wave functions with different global phases are
degenerate, and we will discuss the connection to the gapless phonon mode in the next
section.

3.2 Hydrodynamic Theory

Now we consider an interacting many-boson system, and we start from the pseudo-
potential model described in Section 2.2:

Ĥ =
N∑

i=1

(
p̂2

i

2m
+ V( ri)

)

+
∑

i<j

4π!2as

m
δ(rij)

∂

∂rij
rij. (3.14)

We evaluate the energy expectation value of this Hamiltonian under the wave function
Eq. 3.11. Here we should note that the wave function Eq. 3.11 remains regular at short-
distance between two atoms, and it does not obey the short-range behavior of two-body
wave function as we discussed in Sec 2.2, which requires that the wave function diverges
as 1/rij when ri approaches rj. The question is that how we reconcile the inconsistency
between this many-body wave function of Bose condensation and the requirement for two-
body wave function at short distance. To this end, we should emphasize that the assumption
of Bose condensation wave function is only able to reproduce the approximate form of the
density matrix Eq. 3.10, which ignores all the modes that are not macroscopically occupied.
In other words, this microscopic wave function only captures the mode that is macroscopi-
cally occupied. Since this macroscopically occupied mode must be a low-lying mode, this
is equivalent to say that this trial wave function only captures the low-energy and the long
wavelength physics, and the wavelength should be much larger than the interparticle spac-
ing. Therefore, it is natural that this wave function fails to capture short-range and high
energy physics at the scale comparable or shorter than the interparticle spacing. We shall
always keep this in mind that the following theory based on this assumption can only be
applied to the length scale larger than interparticle spacing.

Since the wave function Eq. 3.11 is regular at short distance between any two particles,
∂
∂rij

rij will not play any role and it is straightforward to calculate the energy as

E
N

=
∫

d3r
[
ψ∗(r)

(
−!2∇2

2m
+ V( r)

)
ψ(r) + (N − 1)

2
4π!2as

m
|ψ( r)|4

]
. (3.15)

Minimizing the energy with respect to ψ∗, and redefining
√

Nψ as ψ , one obtains

(
−!2∇2

2m
+ V(r)

)
ψ + U|ψ |2ψ = µψ , (3.16)
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where µ is the chemical potential. The dynamical version of this equation is given by
(

−!2∇2

2m
+ V(r)

)
ψ + U|ψ |2ψ = i!

∂ψ

∂t
. (3.17)

Here U denotes 4π!2as/m. Throughout this and next chapter, we always consider posi-
tive as and U > 0, unless specifically stated. Here U > 0 means repulsive interaction
between atoms, as we have discussed in Box 2.1. Eq. 3.16 and Eq. 3.17 are known as
the Gross–Pitaevskii equation, often short-noted as the GP equation. These equations are
also called nonlinear Schrödinger equations. Mathematically, they differ from the single-
particle Schrödinger equation because of the presence of the nonlinear term U|ψ |2ψ . Here
we should also remark the physical difference between this equation and the single-particle
Schrödinger equation, although both of them are equations for single-particle wave func-
tion.2 The single-particle Schrödinger equation describes a system with only one particle
alone, and here the nonlinear Schrödinger equation describes a system with macroscopic
number of particles occupying a single-particle mode, where the nonlinear term presents
the interaction effects between these atoms. Below, we will mostly focus on the interaction
effects. First of all, for a uniform system with V(r) = 0, the density of the ground state
should be uniform, therefore we have the chemical potential µ = Un0, where n0 = |ψ |2
is the mean condensate density. This already differs from the non-interacting case where µ

is always zero for a BEC. To further discuss the dynamical behaviors and excitations, we
proceed to introduce the hydrodynamic equations.

Hydrodynamic Equation. We decompose ψ as
√

neiθ , where n is the density and θ is
the phase. Both n and θ are functions of space and time. Substituting ψ = √

neiθ into the
time-dependent GP equation Eq. 3.17, and after eliminating eiθ from both sides, the real
part of the equation gives

!∂θ
∂t

= −
[
− !2

2m
1√
n
∇2√n + 1

2
mv2

s + V(r) + Un
]

, (3.18)

where vs = !∇θ/m is the superfluid velocity. Taking the derivative ∇ at both sides, we
obtain

m
∂vs

∂t
= −∇

[
− !2

2m
1√
n
∇2√n + 1

2
mv2

s + V(r) + Un
]

. (3.19)

The first term in the bracket of the r.h.s. of Eq. 3.19 is called the quantum pressure, and
other terms are in turn the kinetic energy, the trapping energy and the interaction energy.
Since the gradient of energy is force, the physical meaning of Eq. 3.19 is nothing but
F = ma in the classical mechanics. Thus Eq. 3.19 is also called the Newton equation. The
imaginary part gives

∂
√

n
∂t

= − !
2m

(
2(∇√

n) · (∇θ ) + √
n∇2θ

)
, (3.20)

and by using the definition of vs, it leads to

∂n
∂t

+ ∇ · (nvs) = 0. (3.21)

2 Here single-particle wave function means the wave function has a single spatial coordinate r as its variable.
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This equation means that the change in the local density should be equal to the net flux of
current. This equation is also called the continuity equation. Eq. 3.19 and Eq. 3.21 form
the zero-temperature superfluid hydrodynamic equations.

Hydrodynamic equations refer to equations that govern dynamics of a fluid. Here we
should make an important remark between the hydrodynamics and the BEC. We have
shown that a BEC with interaction naturally leads to the hydrodynamic behavior, but on the
other hand, hydrodynamics does not always require Bose condensation. Strong interactions
can also lead to the hydrodynamic behavior. In normal fluids the strong interaction due to
high density leads to hydrodynamic behavior. In dilute gas strong interaction can arise
from Feshbach resonances. Experiments have also observed the hydrodynamic behavior in
strongly interacting ultracold atomic gases nearby a Feshbach resonance, even when the
system is not cold enough to become a superfluid [129].

Sound Velocity. Let us first consider a uniform system with V(r) = 0, the ground state
has a uniform density n0 and vs = 0. We can expand n = n0 + δn, and simplify
the hydrodynamic equations by focusing on near-equilibrium and low-energy dynamics.
Because of being near equilibrium, we can only keep the leading order of δn and vs, and
because of being low-energy dynamics, we only need to keep the leading order of k and
ignore the higher-order derivative terms. Thus, the hydrodynamic equations can be greatly
simplified as

m
∂vs

∂t
= −U∇δn (3.22)

∂δn
∂t

= −∇(n0vs). (3.23)

Here the density fluctuation and the phase fluctuation are locked together,3 which gives
rise to a single low-energy mode described by

∂2δn
∂t2

= Un0

m
∇2δn. (3.24)

This equation contains both second-order time and spatial derivatives, which is a wave
equation.

Here we should note the general difference between a wave equation and a diffusion
equation. Generally, considering an observable W ,

∂2W
∂t2

= c2∇2W , (3.25)

is called a wave equation, such as Eq. 3.24, where c is a constant velocity. It is easy to
show that if W obeys such a wave equation, when a profile is created in W(r), the shape
of the profile will keep unchanged as time evolves, and its center propagates in space with
the velocity c. That is also the reason why waves can carry information. In nature, sound
wave, electromagnetic wave and gravitational wave all obey wave equations, and they all

3 It will be different in the relativistic case where density and phase modes are decoupled at the lowest order, as
we will discuss in Section 8.1.
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can carry information. In contrast, a diffusive equation contains a first-order time derivative
and a second-order spatial derivative, which can be generally written as W ,

∂W
∂t

= D∇2W , (3.26)

where D is usually called diffusion constant. If W obeys such a diffusion equation, when a
profile is created in W(r), the shape of the profile will gradually smear out as time evolves.
In a normal state, heat and Brownian motion are examples of diffusive motions. Below,
when we discuss the two-fluid hydrodynamics, we will discuss that the propagation of
the heat changes from the diffusive behavior to the wave behavior across the superfluid
transition.

The wave equation Eq. 3.24 gives rise to sound wave, or phonon mode, as the low-energy
excitations, and the phonon mode has a linear dispersion as

ω =
√

Un0/m|k|, (3.27)

where the phonon velocity c = √
Un0/m. The sound wave describes the propagation of

a density deviation from the equilibrium density. Experimentally, one can use a focused
laser beam to create either a local density dip or a density hump at the center of a BEC,
and then watch the motion of this density dip or hump [8]. The results are shown in Figure
3.2. From this measurement one can see that the shape of the density dip or hump does
not change and its location moves from the center toward the edge of the cloud, from
which one can deduce the sound velocity. By repeating such measurements with different
densities, one can obtain the relation between the sound velocity and the density, as shown
in Figure 3.2(d), which verifies Eq. 3.27.

This low energy gapless excitation with linear dispersion is also called the Goldstone
mode. Note that the density and the phase are coupled through the continuity equation, the
phonon mode can be also be viewed as an excitation of spatially twisting phase of the con-
densate wave function. In the long wave length limit by taking k → 0, the excitation turns
to a uniform rotation of the phase of the condensate wave function. As discussed in Section
3.1, since two condensate wave functions with different global phases are degenerate, the
excitation energy vanishes in the long wave length limit.

Superfluidity and Critical Velocity. The phonon mode with linear dispersion is the only
mode at the lowest energy. As we will discuss here, this has very dramatic consequence.
Considering an impurity with mass m0 moving inside a condensate with velocity vi, friction
occurs when this impurity can be scattered to another velocity vf and the momentum is
transferred into an excitation of condensate with momentum q. Here we remark that, for a
system with Galilean invariance, this is equivalent to a system moving with velocity vi in
the presence of a static impurity. However, for a systems without Galilean invariance, the
two cases are not equivalent, which leads to two distinct critical velocities. We will discuss
such an example in the spin-orbit coupled BEC in Section 4.5.

Let us now focus on the situation with a moving impurity in a static BEC. When this
linearly dispersive mode is the only low-lying excitation, the momentum conservation and
the energy conservation together give
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!Figure 3.2 Measurement of the phonon velocity in a BEC. (a–b) A local density dip or a hump is created by a focused laser beam
in the center of a BEC, which propagates toward the edge of a BEC. (c) Propagating of the local density modulation at
different times, from which one can deduce the sound velocity. (d) Measured sound velocity as a function of atom
density. Reprinted from Ref. [8]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

m0vi = m0vf + q (3.28)

m0v2
i

2
=

m0v2
f

2
+ c|q|. (3.29)

Replacing vf = vi − q/m0 in Eq. 3.29, we obtain

vi · q − c|q| = q2

2m0
. (3.30)

Therefore, if |vi| < c, Eq. 3.30 cannot be satisfied. That means if the velocity of a moving
impurity is smaller than the phonon velocity, it cannot be scattered and there is no friction
for its motion. With the Galilean invariance, it is equivalent to say, when the fluid moves
with a velocity smaller than c, there is no friction. This phenomenon is known as superflu-
idity. The upper bound vc for the velocity of a moving fluid without friction is called the
superfluid critical velocity. Thus, the sound velocity here equals to the superfluid critical
velocity. For a more general isotropic quasi-particle dispersion E(|q|), the similar argument
leads to a general condition for the critical velocity given by
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vc = min
(
E(|q|)
|q|

)
. (3.31)

This is known as the Landau criterion for the superfluid critical velocity. From the Lan-
dau criterion it is also very clear that for a noninteracting BEC, the dispersion remains
quadratic and the critical velocity is zero. In other words, a noninteracting BEC is not a
superfluid. Bose condensation and interaction together lead to superfluidity. We will apply
this criterion again when we discuss the Fermi superfluid in Section 6.2.

Soon after the BEC is achieved, the existence of a critical velocity is also experimen-
tally confirmed [146]. Experimentally, they scan a focused beam back and forth in a BEC,
as shown in Figure 3.3(a). Then, after a certain scanning time, they turn off the scan and
let the condensate thermalize again. After that they measure the increasing of the thermal
fraction in the BEC. If there exists a critical velocity, because there is no friction and no
excitation when the scanning velocity is below the critical velocity, the thermal fraction
will not change. But when the scanning velocity is above the critical velocity, thermal frac-
tion increases as the velocity increases. In this experiment [146], they have tried different
scanning frequencies and amplitudes. When they plot the thermal fraction as a function of
the scanning velocity, as shown in Figure 3.3(b), the measurements with different frequen-
cies collapse nearly into the same curve, which clearly displays the behavior of a critical
velocity.

Thomas–Fermi Distribution. Now we consider the physical consequences of the hydro-
dynamic equation in the presence of a trapping potential V(r). By ignoring the quantum

!Figure 3.3 Experimental measurement of the critical velocity of a BEC. (a) Schematic of a local stirring of the condensate with a
fixed velocity v. (b) Thermal fraction after certain duration of stirring as a function of the velocity, for different stirring
amplitudes and frequencies. The dashed line indicates the critical velocity. Reprinted from Ref. [146].
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pressure term in the Newton equation, the equilibrium solution gives vs = 0 and the
equilibrium density distribution

n0(r) = µ − V(r)
U

(3.32)

for the regime with µ > V(r), and n0(r) = 0 for µ < V(r). The equation µ = V(R)
determines the boundary of a BEC. For a harmonic trap, the density profile is an inverted
parabolic function, which is also called the Thomas–Fermi distribution. Note that µ = Un0

is the equation-of-state for a uniform system, the result of Eq. 3.32 can be interpreted as
the local density approximation, that is, we simply replace the chemical potential µ in the
equation-of-state of a uniform system by a “local chemical potential” µ(r) = µ − V(r).
Furthermore, the total number conservation equation is

∫

r⊂R
d3rn0(r) = N, (3.33)

which determines µ for each given N, and fixes the entire density profile. For instance,
considering an isotropic harmonic trap mω2

0r2/2, one can find 4πmω2
0R5 = 15UN, and

thus R ∝ N1/5.
Ignoring the quantum pressure term is crucial for obtaining the Thomas-Fermi distribu-

tion. Is this approximation justified, or consistent with the resulting density profile? Here,
with Eq. 3.32, let us do a “back-of-envelope” estimation. Using the result R ∝ N1/5, we
can estimate that the total interaction energy is proportional to UnN ∝ UN2/R3 ∝ UN7/5,
and the total harmonic trapping energy is ∼ R2N ∝ N7/5. For large number of atoms, since
these two terms have the same dependence on N, they can balance each other. However,
the quantum pressure term is originated from the density inhomogeneity, and is given by
N/R2 ∝ N3/5. Thus, when N is sufficiently large, the quantum pressure energy is always
much smaller compared with both the interaction energy and the harmonic trapping energy,
and therefore, the quantum pressure term can be safely ignored in the hydrodynamic
equation. This is a significant difference between the interacting and the noninteracting
cases. In the noninteracting case, the ground state density profile is determined by the bal-
ance between the harmonic trap potential and the kinetic energy, which gives a Gaussian
distribution. However, in the interacting case with large number of bosons, the ground
state density profile is determined by the balance between the interaction energy and the
harmonic trapping energy, which results in an inverted parabola.

Low-Energy Modes in a Harmonic Trap. Now we consider the low-energy excitations
describing the density fluctuation on top of the equilibrium Thomas-Fermi distribution. Let
us write

n(r, t) = n0(r) + δn(r, t) = µ − V(r)
U

+ δn( r, t), (3.34)

and to the linear order of δn, one obtains

∂2δn
∂t2

= ∇
[(

µ − V(r)
m

)
∇δn

]
(3.35)

= ∇
(

µ − V(r)
m

)
∇δn + Un0(r)

m
∇2δn, (3.36)
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where the first term in Eq. 3.36 varies in space of the order of 1/R. Considering δn varying
in space with a typical wave vector k, and if k 0 1/R, the first term in Eq. 3.36 can be
ignored compared with the second term in Eq. 3.36, then, it yields a sound mode with ω =
c(r)k, where c(r) = √

Un0(r)/m. This is consistent with the local density approximation
where sound propagates with a local sound velocity.

When k ∼ 1/R, the first term becomes important. In this regime, the collective
mode becomes a global motion of entire condensate. For simplicity, let us consider
a three-dimensional isotropic trap as V( r) = mω2

0r2/2, we can expand δn as δn =
P2nr

l (r/R)rlYlm(θ ,φ). Here P2nr
l (r/R) are polynomials of degree 2nr, which only con-

tain even-power terms and satisfy the orthogonality condition. This polynomial contains
n nodes in the radial direction. The solution of frequencies can be obtained as [167, 137]

ω(nr, l) = ω0

√
2n2

r + 2nrl + 3nr + l. (3.37)

This should be compared with the spectrum of noninteracting harmonic oscillator where
the excitation spectrum is given by ω(nr, l) = ω0(2nr + l). The difference is another
manifestation of the interaction effects.

Surface modes. Modes with nr = 0 are called the surface modes because the density
change δn mostly manifests itself around the boundary, as shown in Figure 3.4 (a) and
(b). Their frequencies are given by ω = ω0

√
l. For l = 1, the density changes as δn =

rY1m = x ± y, z. Adding such δn into the Thomas-Fermi distribution in a harmonic trap,
it is easy to see that this mode corresponds to a global shift of the density distribution, as
shown in Figure 3.4(a). It describes the center-of-mass oscillation of the entire condensate
in the harmonic trap. This is called the dipole mode and its frequency is the same as trap
frequency independent of the interactions. Figure 3.4(b) shows the case with l = 2 called
the quadrupole mode, which causes a quadrupole deformation of the surface. In Figure 3.5
we show experimental observation of the quadrupole mode, together with the hexadecapole
mode with l = 4. Other than l = 1, the frequencies of all surface modes are smaller than
that of their noninteracting counterpart.

!Figure 3.4 Schematic of the collective modes of a BEC. (a) The dipole model with nr = 0, l = 1. (b) The quadrupole mode
with nr = 0, l = 2. (c) The breathing mode with nr = 1, l = 0. The solid line denotes the equilibrium
boundary, and the dashed and dotted lines denote the boundary atT/4 and 3T/4, respectively.T is a period of the
collective mode oscillation.
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!Figure 3.5 The observation of the surface modes. (a) Density profile at different times of the oscillation. The upper panel is the
quadrupole mode with l = 2, and the lower panel is the hexadecapole mode with l = 4. (b) Schematic of the
l = 4mode. Reprinted from Ref. [132].

Compressional modes. Modes with nr '= 0 are called the compressional mode. In partic-
ular, δn for the mode with nr = 1 and l = 0 has one node in the radial direction, which
corresponds to either increasing density at the center and decreasing the density at the edge,
or vice versa. This periodic change in the condensate size is called the breathing mode, as
shown in Figure 3.4(c). The frequency of this breathing mode is

√
5ω0.

Anisotropic Expansion. Now let us consider the time-of-flight expansion of a Bose
condensate. As we have discussed above, the time-of-flight expansion of the normal com-
ponent is a ballistically expansion with a velocity !k/m. However, the expansion of the
Bose condensed component follows the hydrodynamic equations. From Eq. 3.19, one can
see that, when the trap is turned off, the acceleration of the velocity in the initial stage of
this expansion is mostly determined by the gradient of the local internal energy ∇(Un0).
Considering an anisotropic trap

V(r) = 1
2

mω2
z z2 + 1

2
mω2

⊥(x2 + y2), (3.38)

and if ωz 2 ω⊥, then the size Rz along ẑ is much longer than the size R⊥ in the transverse
plane, that is,

Rz =
√

2µ

mω2
z

0 R⊥ =
√

2µ

mω2
⊥

. (3.39)

Therefore, it is also easy to see that the gradient term ∂zn(r) along ẑ is smaller than the gra-
dient terms ∂xn(r) or ∂yn(r) in the transverse plane. According to Eq. 3.19, a larger gradient
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term will give rise to a faster acceleration, and therefore, a larger cloud size after expan-
sion. Thus, the aspect ratio of the cloud size is inverted before and after the time-of-flight
expansion. This is sharply in contrast to the thermal cloud where the cloud size will finally
become isotropic after long time time-of-flight, because the momentum distribution of the
thermal atoms are isotropic. This inverted aspect ratio is a hallmark of the hydrodynamic
behavior, which has also been observed in the experiments of BEC [84, 163], and later also
in strongly interacting Fermi gases nearby a Feshbach resonance [129].

Two-Fluid Hydrodynamics. Now we return to the uniform situation but we concern
about the finite temperature effect. Let us now ask ourselves following question. From
the previous discussion of the hydrodynamic equations, we have obtained a sound veloc-
ity c = √

Un0/m, where n0 is the condensate density. If we simply extend this formula
to finite temperature, such a velocity will vanish at the transition temperature Tc. On the
other hand, we know from our daily physical intuition that there is always a sound velocity
even in normal gas above Tc, and such velocity should always be finite at Tc. How shall we
reconcile this contradiction ? This contradiction seems to indicate that we have missed a
sound mode below Tc. To solve this problem, we need to introduce a hydrodynamic theory
for the superfluid at finite temperature, which is known as the two-fluid hydrodynamics.

Here two fluids means one superfluid component describing the macroscopically occu-
pied mode and another normal component describing particles in all the other excited
modes. Landau formulated and solved the two-fluid equations in the non-dissipative limit.
The two-fluid model is described by several variables including the superfluid density ns,
the superfluid velocity vs, the normal density nn, the normal velocity vn and entropy S.
These quantities satisfy following four two-fluid hydrodynamic equations [100]

∂n
∂t

+ ∇j = 0, (3.40)

∂S
∂t

+ ∇(Svn) = 0, (3.41)

∂vs

∂t
= −∇

(
µ + 1

2
v2

s

)
, (3.42)

∂ji
∂t

+ ∂+ij

∂xj
= 0. (3.43)

Here the total density n is a sum of both the superfluid component and the normal com-
ponent as n = ns + nn. ns vanishes at the transition temperature, and nn vanishes at zero
temperature. j is the total current given by j = ns vs +nnvn. Eq. 3.40 is an equation for total
number conservation. Eq. 3.41 is the entropy conservation because the nondissipative limit
is considered here. Here the entropy is only carried by the normal component, and there-
fore the entropy flows with the velocity vn. Eq. 3.42 governs the motion of the superfluid
velocity vs, which in fact takes the same form as Eq. 3.19. Eq. 3.43 governs the motion of
the total current, where +ij is momentum flux density tensor given by

+ij = Pδij + nsvsivsj + nnvnivnj, (3.44)



88 Interaction Effects

where P is the pressure, i and j label spatial directions, and vsi and vni are the i = x, y, z
component of vs and vn, respectively.

We will not further proceed the detailed derivation of solving the two-fluid hydrody-
namics. Here we just briefly mention that the consequence of the two-fluid hydrodynamics
is the existence of another sound mode. The physical meaning is that, the entropy, or the
heating, also propagates as a wave in the superfluid phase. These two waves of the heat and
the density in general are hybridized, which gives rise to the first and the second sounds
in a superfluid. This is a highly unconventional phenomenon and is sharply in contrast to
our daily intuition from a normal fluid, where the motion of heat is diffusive. Approaching
Tc from below, one of the sound waves becomes density wave, which survives above Tc.
The other sound wave becomes heat wave, which undergoes a transition from the wave
behavior to the diffusive behavior across Tc.

3.3 Bogoliubov Theory

Now we take an alternative approach to treat the excitations of a BEC. In the Bogoliubov
theory, we start with a second quantized Hamiltonian with renormalizable contact potential
introduced in Section 2.2:

Ĥ =
∑

k

(ε k − µ)â†
kâ k + g

2V

∑

k1k2k3k4

â†
k1

â†
k2

âk3 âk4 , (3.45)

with k1 + k2 = k3 + k4, where εk = !2k2/(2m). The Bogoliubov theory is a perturbative
approach. Let us first consider the noninteracting limit that bosons are all condensed in the
zero-momentum state. Following our discussion in Section 3.1, we take the unperturbed
wave function as the coherent state given by

|G0〉 ∝ e
√

N0â†
k=0 |0〉, (3.46)

and under this wave function, we have

〈G0|âk=0|G0〉 = 〈G0|â†
k=0|G0〉 =

√
N0. (3.47)

Hence, under this wave function, we can replace both the operator â†
k=0 and âk=0 as

√
N0.

Since
√

N0 is a large number, in the Bogoliubov theory, we perform a systematical expan-
sion of the interaction term in terms of

√
N0. The leading order is that all four k1, . . . , k4

equal zero and all operators in the interaction term are replaced by
√

N0, which gives rise
to condensate mean-field energy

E
V

= −µn0 + g
2

n2
0, (3.48)

where n0 = N0/V . Thus, it gives µ = gn0. Next, if one sets three of four momenta
k1, . . . , k4 to zero, the last momentum also has to be zero. Therefore, it does not lead to
new term.
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In the next order, one can take two of four momenta k1, . . . , k4 to be zero, and replace
the operator â†

k=0 or âk=0 as
√

N0. We shall also use µ = gn0.4 Thus, the Bogoliubov
Hamiltonian for finite momentum modes becomes

Ĥ =
∑

k'=0

(ε k + gn0)â†
kâ k + gn0

2

∑

k'=0

(
â†

kâ†
−k + â−kâ k

)
. (3.49)

Note that the zero-momentum state has been excluded from the momentum summation in
the Bogoliubov Hamiltonian. The second term is the most important process. It appears
that the total number of atoms are not conserved. In fact, it is the total number of atoms
in the finite momentum states that is not conserved, because we have treated the atoms in
the zero-momentum state separately as a condensate. The last term describes that a pair of
bosons can be scattered into finite momentum states from the zero momentum condensate,
or a pair of bosons with finite but opposite momenta can annihilate into the zero momentum
condensate.

It is straightforward to show that by introducing

â k = u kα̂k − vkα̂
†
–k, (3.50)

â†
−k = −v kα̂k + u kα̂

†
–k, (3.51)

and

u2
k = 1

2

(
εk + gn0

Ek
+ 1

)
, (3.52)

v2
k = 1

2

(
εk + gn0

Ek
− 1

)
, (3.53)

the Bogoliubov Hamiltonian can be diganoalized as

Ĥ =
∑

k'=0

Ekα̂
†
kα̂k + 1

2

∑

k'=0

(Ek − (ε k + gn0)) , (3.54)

with

Ek =
√

(ε k + gn0)2 − (gn0)2 =
√
εk(ε k + 2gn0). (3.55)

Here we should note that Eq. 3.50 and Eq. 3.51 are not a unitary transformation, since a
unitary transformation of â k and â†

−k does not keep the boson commutative relation, but
Eq. 3.50 and Eq. 3.51 can.

Here we should also remark that it is a subtle issue of how to relate g to as in such
a perturbative calculation. The relation Eq. 2.31 between g and as derived from the two-
body calculation in Section 2.2 is valid up to all orders. When this relation is applied to
a many-body calculation, it should be used in a way that is consistent with the degree
of approximation in the many-body calculation. Here at the leading order, the order of
approximation in the many-body calculation corresponds to the first order in the ladder
summation of the two-body calculation discussed in Section 2.2, and therefore we simply
take g = U = 4π!2as/m. Then, the spectrum becomes

Ek =
√
εk(ε k + 2Un0). (3.56)

4 This treatment is to enforce the Hugenholtz–Pines relation such that the excitation remains gapless [78].
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Here we should introduce the concept of quasi-particle, which is one of the most fun-
damental concepts in quantum many-body physics. In a uniform system, “quasi-particle”
refers to eigenmodes with well-defined energy-momentum dispersion relation. Because of
interactions, a quasi-particle is normally different from the constitution particle of the sys-
tem. For example, in this case the operator for the constitution particle of this system is â k
but the operator for quasi-particle is α̂k. Because Ek is always positive for all k, the ground
state should be a vacuum of all quasi-particles, that is, α̂ k|G〉 = 0. This leads to the ground
state |G〉 that is modified from |G0〉 by interactions, and

|G〉 = e
√

N0â†
k=0e

− ∑

k $=0

v k
u k

â†
kâ†

−k |0〉. (3.57)

Up to this level of the Bogoliubov Hamiltonian, α̂†
k|G〉 creates an eigenmode with well-

defined dispersion relation Ek. In contrast, the original boson operator â†
k does not generate

an eigenmode, and |G〉 is also not the vacuum of â k. That is to say, there will always be
finite population on these finite momentum states, which is called the quantum depletion as
we will discuss below. The last term in Eq. 3.54 represents a zero-point energy associated
with the quasi-particle at each momentum, and this vacuum energy will lead to the Lee–
Huang–Yang correction [105] discussed below.

We should also note that there are also residual interactions between quasi-particles,
which will give rise to a finite lifetime τk for each quasi-particle. Thus, in order for a
quasi-particle to be well defined, we require !/τk % Ek. The finite lifetime leads to a
broadening of quasi-particle energy, which is given by !/τk. If this broadening is compa-
rable or even larger than the excitation energy itself, the excitation energy will be smeared
out by the broadening. Another way to understand the well-defined quasi-particle is to con-
sider a superposition between a vacuum state and a state with one quasi-particle, which will
undergo Rabi oscillation with period 2π!/Ek. !/τk % Ek also means that τk & 2π!/Ek.
That is to say, for a well-defined quasi-particle, one can observe many periods of Rabi oscil-
lations before it damps out. In the opposite limit when !/τk & Ek, the oscillation decays
even before finishing one period, and the quasi-particle is no longer well defined. Such
a system without quasi-particle description remains as a theoretical challenge in modern
quantum many-body theory.

The Healing Length. As shown in Figure 3.6, the quasi-particle dispersion Eq. 3.56
exhibits a linear dispersion !ck at small k, consistent with what we have derived from the
hydrodynamic theory in Section 3.2. In this regime, u2

k ∼ v2
k ∼ Un0/(2!ck), which means

that each quasi-particle mode contains equal contribution of particle and hole. This regime
is called the phonon regime where the excitation is collective. At large momentum the
asymptotic behavior of Ek is ε k + Un0, which is simply a Hatree–Fock energy shift to the
free-boson dispersion. At the same time u k → 1 and vk → 0, and α̂k approaches â k. This
regime is therefore called the free-particle regime where the excitation behaves more like a
free-particle. There exists a characteristic momentum regime where the quasi-particle dis-
persion undergoes a crossover from the phonon regime to the free-particle regime. Roughly
speaking, it is determined by !2k2

0/(2m) = !ck0 and k0 = 2mc/!. This sets a length scale
ξ =

√
2/k0 = !/(

√
2mc) and ξ is called the healing length. We have !2/(2mξ2) = Un0.

In other words, for k % 1/ξ , interaction energy dominates over the kinetic energy and that
is why the excitation is collective. And for k & 1/ξ the kinetic energy dominates over the



91 Bogoliubov Theory

!Figure 3.6 The Bogoliubov excitation spectrum. Eq. 3.56 is shown by the solid line and is compared with the linear dispersion
!ck (dashed line) at small momentum and the free-particle dispersion with a constant offset εk + Un0 (dotted
line) at large momentum. Here ξ is the healing length, andEξ = !2/(mξ2). A color version of this figure can be
found in the resources tab for this book at cambridge.org/zhai.

interaction energy so that the excitation becomes free-particle like. The healing length ξ
is an important quantity that has a few important physical meanings. We will encounter it
again below.

The Lee–Huang–Yang Correction. The summation of the second term in Eq. 3.54 repre-
sents the zero-point energy of each quasi-particle mode. For a single harmonic oscillator,
even without any excitation, there is a zero-point energy that is half of the harmonic fre-
quency. Here it can be viewed as that there is a harmonic oscillator on each k mode, and
the summation of all zero-point energies gives rise to the so-called vacuum energy. Here,
this summation is given by

1
2

∑

k!=0

(Ek − ε k − gn0) = 1
2

∑

k

−(gn0)2

Ek + ε k + gn0
. (3.58)

In the micro-canonical ensemble, the total energy density up to this order is given by

E
V

= gn2

2
+ 1

2V

∑

k

−(gn)2

E k + εk + gn
, (3.59)

where the first term comes from the mean-field interaction energy of the zero-momentum
condensate. Here we have used the fact that, for weakly interacting regime, the quantum
depletion is small as we will show below, and we take n0 ≈ n. We can see that the second
term diverges as

∑
k m/(!2 k2). Therefore, we need to use the renormalization condition

to eliminate this divergency. However, since this energy contribution is only a perturbative
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correction to the next order of mean-field, we shall only use the renormalization condition
up to the second-order scattering processes. More explicitly, we should use

g = U + U2

V

∑

k

1
2εk

(3.60)

in the first term of Eq. 3.59 and replace g with U in the second term of Eq. 3.59. This leads
to the total energy density given by

E
V

= Un2

2
+ (Un)2

2V

∑

k

(
1

2ε k
− 1

Ek + εk + Un

)
. (3.61)

The first term of Eq. 3.61 is the mean-field energy. The summation in the second term of
Eq. 3.61 now converges, which gives rise to the leading-order correction to the mean-field
energy. This result was first obtained by Lee, Huang and Yang using the pseudo-potential
model [105] and is now named as the Lee–Huang–Yang correction, and

ELHY

V
= Un2

2
128

15
√
π

√
na3

s . (3.62)

Hence, it is now clear that the LHY correction comes from the zero-point quantum fluc-
tuation of all quasi-particles modes. To observe the LHY correction, the dimensionless
parameter na3

s cannot be too small. Using the tunability of the scattering length by Fes-
hbach resonance, one can make the LHY correction visible. In the past years, the LHY
correction has been observed in several ultracold atom experiments [126].

Here let us make a short comment on more general role of such a correction. When
the ground state is unique at the mean-field level, the correction is quantitative. Never-
theless, there are also cases that the correction is qualitative rather than quantitative. It
happens when the mean-field ground states have degeneracy, but such degeneracy is not
protected by an exact symmetry of the full Hamiltonian. This usually occurs in many frus-
trated models. When this happens, the mean-field energy alone cannot determine a unique
ground state, and this fluctuation energy will play a crucial role in selecting out the actual
ground state, because the fluctuation energy usually can lift the degeneracy between dif-
ferent degenerate mean-field states. Usually, the intuition is that the fluctuation energy is
smaller if the sound velocity is smaller. This is because for smaller sound velocity, the exci-
tation energy of the phonon mode increases slower, and a smaller excitation energy also
means a smaller contribution of the zero-point energy. This phenomenon of selecting out
the ground state by fluctuation energy is the order by disorder mechanism. Here the word
“order” refers to that a unique mean-field state is selected out, and the word “disorder”
actually means the fluctuation energy.

The Quantum Depletion. Below we will check two issues in order for the Bogoliubov
theory to be a self-consistent theory. First, we have mentioned that the Bogoliubov theory
is a perturbative approach, which treats the noninteracting Bose condensate as the unper-
turbed wave function. We should first check that the condensate remains as the dominate
component when interactions are turn on. In other words, when interactions are turned on,
there exists population on the finite momentum state. The total number of atoms populated
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at finite momentum states is called the quantum depletion. In order for the Bogoliubov
theory to be valid, the quantum depletion should remain small compared with the total
number of atoms.

To compute the quantum depletion Ndp, we note that the ground state |G〉 is a vacuum
of quasi-particle operator α̂ k but not for atom operator â k. Using Eq. 3.50 and 3.51, it can
be straightforwardly calculated that

Ndp = 〈G|
∑

k!=0

â†
kâ k|G〉 =

∑

k

v2
k, (3.63)

and the density of quantum depletion ndp = Ndp/V is given by

ndp = 1
V

∑

k!=0

v2
k = 1

3π2

(mc
!

)3
∝ 1
ξ3 . (3.64)

That is to say, the depleted bosons is of the order one in a volume of ξ3, which gives another
physical meaning for the healing length. Thus, the density of quantum depletion is much
smaller than the total density when ξ ( d, where d is the mean interparticle distance.
In other words, the ratio between the density of quantum depletion to the total density is
given by

ndp

n
= 8

3
√
π

(na3
s )1/2, (3.65)

and ndp/n ) 1 in the weakly interacting regime when na3
s ) 1. Hence, this assumption of

the Bogouliubov theory is valid in the weakly interacting regime.

The Beliaev–Landau Damping. Another thing to check is whether the Bogoliubov quasi-
particles are really well-defined quasi-particles. To this end, we note that the Bogoliubov
Hamiltonian only retains the quadratic terms in terms of the creation and annihilation
operators, and at this order the quasi-particles are well-defined eigenmodes. But all these
quasi-particles acquire a finite lifetime when we go beyond this order. Here, we only
replace one of momentum of k1, . . . , k4 as zero momentum, which gives

Vint = g
√

N0

V

∑

k1k2k3

â†
k1

â†
k2

âk3 + â†
k1

âk2 âk3 . (3.66)

At this order, the Bogoliubov quasi-particle interact with each other.
Rewritting the boson operator into quasi-particle operators, Vint contains four differ-

ent types of terms like (i) α̂†
k1
α̂†

k2
α̂k3 , (ii) α̂†

k1
α̂k2 α̂k3 , (iii) α̂†

k1
α̂†

k2
α̂†

k3
and (iv) α̂k1 α̂k2 α̂k3 .

The first term (i) describes one quasi-particle decays into two, and the second term (ii)
describes two quasi-particles scatter and merge into one quasi-particle. The terms (iii) and
(iv) describe simultaneously creation or annihilation three quasi-particles. The energy con-
served on-shell processes (i) and (ii) give rise to a damping rate and a finite lifetime of the
quasi-particles. The off-shell processes (iii) and (iv) do not satisfy energy conservation, but
they together can produce a second-order perturbation. For instance, three quasi-particles
can first be simultaneously created from the vacuum and then all of them are annihilated
together, which gives a correction to the quasi-particle energy. This effect is called the
vacuum polarization.
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Here, it is inspiring to compare the discussion here with the discussion of the hydrogen
atom in atomic physics.

• When we only consider the Coulomb interaction, as we have discussed in Section 1.1,
the energy levels are exact eigenstates. This is at the same level as the Bogoliubov
Hamiltonian.

• When we consider the spontaneous emission, electron can decay from one excited state
to a lower energy state by simultaneously emitting a photon, and such processes give
rise to level broadening for all excited states. This spontaneous emission process is very
much like processes (i) discussed here, which gives rise to a finite lifetime for all quasi-
particles.

• When we further consider the quantum electrodynamics, the vacuum polarization means
that an electron-positron pair can be created from the vacuum and then annihilate each
other. This process can modify the Coulomb energy and gives the famous Lamb shift
for the energy level of the hydrogen atom. The shift of quasi-particle energy due to
the second-order process combining (iii) and (iv) is similar as the effect of the vacuum
polarization.

Here let us focus on the quasi-particle lifetime due to processes (i) and (ii). First, let us
consider the zero-temperature case. We consider that a quasi-particle with momentum k is
excited on top of the vacuum, and then we monitor how long it will decay. In this case,
since there is no other quasi-particle, only the first term contributes to the quasi-particle
lifetime. This is known as the Beliaev damping. For instance, let us consider a term as

Mq,k−q,kα̂
†
k−qα̂

†
qα̂k, (3.67)

where M is a matrix element made of u’s and v’s resulting from the expansion, and the
damping rate for quasi-particle with momentum k is given by the Fermi-Gorden rule as

1
τ

= 2π
!

∑

q,k−q

|Mq,k−q, k|2δ(Ek − Eq − Ek−q). (3.68)

Straightforward calculation of this integration will lead to !/τ ∝ k5 when the momentum
k is in the phonon regime. Of course, the proportional constant depends on the interaction
strength. This strong suppression at small momentum is partly because of the restriction
of the phase space due to the energy conservation constraint, that is to say, due to the
energy conservation, |q| must be smaller than |k|. Here the most important point is that
k5 is much smaller than linear k for small k, which means that the energy level broaden-
ing due to quasi-particle lifetime is much smaller than the excitation energy itself, that is,
!/τk ) E k. This satisfies the condition for a quasi-particle to be well defined as discussed
above. Experimentally, the Bogoliubov quasi-particles with a fixed momentum can be first
excited by the two-photon Bragg pulse, as we will discuss below. And then by monitoring
the number of excited atoms, the collision section can be determined, and the experimen-
tal results are shown in Figure 3.7(a). Indeed, one can see a strong suppression at low
momentum.

At finite temperature, the second term (ii) can also contribute to damping. This is known
as the Landau damping. In fact, each term in (ii) can find a conjugate process in (i), thus,
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!Figure 3.7 Experiments on the quasi-particle damping rate. (a) At low temperature, damping is dominated by the Beliaev
damping. The suppression of quasi-particle collision at lowmomentum is measured. Here the quasi-particles are first
excited by the Bragg pulse. Reprinted from Ref. [87]. (b) The damping rate of a low-energy collective mode as a
function of temperature. Reprinted from Ref. [84].

we consider a term like Kk+q,q,k(α̂†
k+qα̂qα̂k + h.c.). On one hand, a quasi-particle at

momentum k can decay to another momentum k + q by merging another quasi-particle
at momentum q, and this rate is given by

df k

dt
= −2π

!
∑

q
|Kk + q, q, k|2f kf q(1 + f k+q)δ(Ek+q − E q − Ek), (3.69)

where f k is the boson population at momentum k and 1+f k+q is due to the boson enhance-
ment factor. On the other hand, another quasi-particle with momentum k + q can decay
into two quasi-particles with momentum k and q, and the rate for this inverse process is
given by

df k

dt
= 2π

!
∑

q
|Kk+q,q, k|2(1 + f k)(1 + f q)f k+qδ(Ek+q − E q − Ek). (3.70)

So the net rate is given by

df k

dt
= 2π

!
∑

q
|Kk+q,q, k|2

× [(1 + f k)(1 + f q)f k+q − f kf q(1 + f k+q)]δ(Ek+q − Eq − Ek).

(3.71)

Note that in the equilibrium distribution, if f k is given by the boson distribution function
denoted by f 0

k , this rate vanishes because (1 + f 0
k )(1 + f 0

q )f 0
k+q = f 0

k f 0
q (1 + f 0

k+q) if
Ek+q = Eq + Ek. This is known as the detailed balance condition. Hence, to study the
quasi-particle lifetime, we consider the situation that f k slightly deviates its equilibrium
value as f k = f 0

k + δf k, then we have

dδf k

dt
= 2πδfk

!
∑

q
|Kk+q,q,k|2(f 0

k+q − f 0
q )δ(Ek+q − Eq − Ek) (3.72)
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and the damping rate

1
τ

= −2π
!
∑

q
|Kk+q,q, k|2(f 0

k+q − f 0
q )δ(Ek+q − E q − Ek). (3.73)

Computation of this integration is quite involved. In the regime with ck < kBT < kBT∗, it
gives [144, 177]

1
τ k

∝
(

T
T∗

)4

ck, (3.74)

where T∗ is defined as kBT∗ = Un0. The Landau damping is less suppressed by the
momentum factor compared with the Beliaev damping, because this damping process is
through scattering with another thermally populated quasi-particle at high energy, and
therefore the phase space restriction from the energy conservation is less important. But the
Landau damping is still suppressed by the temperature factor because it requires thermal
population of other quasi-particles. In any case, again, the quasi-particle is well defined at
low temperature because !/τk is suppressed by a factor of (T/T∗)4 compared with Ek, and
therefore, the level broadening is smaller than the excitation energy itself. In Figure 3.7(b),
we show the experimental measurement of how the damping rate of a low-lying excitation
depends on temperature, which can be well explained by the Laudau damping mechanism.

The Bragg Spectroscopy. Spectroscopy refers to a probe by a time-periodical perturba-
tion with varying frequency, from which one can investigate how the response of a system
changes as the frequency varies. Here we will discuss the Bragg spectroscopy as an exam-
ple of the spectroscopy measurement in ultracold atomic physics. This probe is a powerful
experimental tool to measure the quasi-particle properties discussed above. For the Bragg
spectroscopy, two lasers with same polarization, for instance, along ẑ, are applied to an
ultracold atom system, and the two lasers have different momenta k1 and k2 and different
frequencies ω1 and ω2, as shown in Figure 3.8(a). The electric field is then given by

E = E1eik1r−iω1t ẑ + E2eik2r−iω2t ẑ, (3.75)

!Figure 3.8 Experiment of the Bragg spectroscopy. (a) Schematic of the experimental scheme for the Bragg spectroscopy
measurement. Two laser beams with different momenta and different frequencies are applied to the condensate.
Typical absorption images (b, d) before and (c, e) after the Bragg pulse. (d) and (e) are integrated density from (b) and
(c), respectively. A portion of atoms is transferred into momentumwith finite q = k1 − k2. Reprinted from
Ref. [163].
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where E1 and E2 are intensities of the two lasers. With the previous discussion of the scalar
light shift in Section 1.3, these laser beams give a scalar light shift as

V(r) ∝ cos(k · r − ωt), (3.76)

where k = k1 −k2 and ω = ω1 −ω2. In the second quantized form, this perturbation Ĥperp

acts as
∫

d3rV(r)n̂(r), and more explicitly,

Ĥperp ∝ ρ̂ke−iωt + h.c., (3.77)

where ρ̂k = ∑
q â†

q+kâ q.
After applying the Bragg pulse, part of the atoms are transferred from zero to finite

momentum state, as shown in Figure 3.8(b). Using the perturbation theory, one can show
that the transition probability is proportional to Sρ k (ω). Here, for a general operator F̂,
SF(ω) is called the dynamic structure factor and is defined as

SF(ω) = 1
Z
∑

m,n

e−Em/(kBT)|〈n|F̂|m〉|2δ(!ω − (En − Em)), (3.78)

which reduces to

SF(ω) =
∑

n

|〈n|F̂|0〉|2δ(!ω − (En − E0)) (3.79)

at the zero temperature limit. SF(ω) is always positive. It is easy to show that the dynamic
structure factor defined in this way can also be written as temporal correlation function
given by

SF(ω) =
∫

dteiωt〈F̂(t)F̂(0)〉. (3.80)

For each fixed momentum k, one can vary ω and the resonant frequency of Sρ k (ω) deter-
mines the excitation dispersion E(k), and the width can be related to the quasi-particle
lifetime as !/τk.

A typical measurement of the Bogoliubov spectrum E(k) of Eq. 3.56 by the Bragg spec-
troscopy is shown in Figure 3.9(a). In the zoom-in plot, it is shown that the dispersion is
linear for the small momentum regime. When the momentum becomes larger than 1/ξ , the
spectrum becomes quadratic again and is parallel to !2k2/(2m). As shown in Figure 3.6(b),
E(k)−!2k2/(2m) indeed saturates to a constant value in large k. This constant value in fact
is the chemical potential of the system.

Interaction Effect on a BEC. In the above two sections, we have used both the hydrody-
namic theory and the Bogoliubov theory to address the interaction effects in a BEC. After
these discussions, we now understand better why we emphasize the macroscopic occupa-
tion as the essential ingredient and the defining property for a BEC. This is because many
other properties are actually different between a non-interacting BEC and an interacting
one. We summarize these differences in Table 3.1. Before ending this section, we should
also summarize that, in an interacting BEC, as the interaction strength increases, following
effects occurs:
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Table 3.1 Comparison of physical properties between a noninteracting BEC and a weakly interacting BEC in
three dimensions

Noninteracting BEC Weakly interacting BEC

Chemical potential µ µ = 0 µ = Un0 (mean-field level)
Low energy dispersion Quadratic Linear
Superfluidity No Yes
Density in harmonic trap Gaussian Inverted parabola
Expansion dynamics Ballistic Hydrodynamic
Low-energy modes in trap Equal spacing Unequal spacing
Quasi-particle Original bosons Bogoliubov quasi-particle
Quantum depletion at T = 0 Zero ∼ 1/ξ3

Quasi-particle lifetime Infinite Finite

!Figure 3.9 Measurement of the Bogoliubov dispersion. (a) The Bogoliubov dispersionω(k) (i.e.,E(k) in Eq. 3.56) measured by
the Bragg spectroscopy. The inset shows the zoom-in plot of the small momentum regime. The dashed line shows
ω0(k) = !2k2/(2m). (b)ω(k) − ω0(k) as a function of k. Reprinted from Ref. [165].

• The mean-field interaction energy and the chemical potential increase.

• The phonon velocity and the superfluid critical velocity increase.

• The zero-point energy and the LHY correction increase.

• The healing length ξ becomes smaller.

• In the momentum space, the regime of collective excitation expands.

• The quantum depletion increases.

• The quasi-particle lifetime becomes shorter.
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3.4 One-Dimensional Bosons

In this section, we will study interacting bosons in one dimension. In the literatures of
ultracold atomic physics, “one dimension” sometimes means “real one dimension” and
sometimes means “quasi one dimension.” We clarify these two different cases in Box 3.1.
Here we consider the situation of real one dimension. By the Bogoliubov theory, we can
see from Eq. 3.53 that the occupation on single-particle mode with momentum k is always
given by n k = v2

k, and in the small k regime, the momentum distribution behaves as

n k = v2
k → gn0

!ck
. (3.81)

This behavior holds for any dimension as long as that the Bogoliubov theory is valid.
In three dimensions, the integration over the entire momentum converges, which gives a
finite quantum depletion shown in Eq. 3.64. And as we have discussed in Section 3.3, this
depletion is small compared with the total density, as long as the interaction is weak. How-
ever, in one dimension, it is easy to show that

∫
) v2

k dk diverges as log) when taking the
infrared cutoff ) to zero. As we discussed in Box 2.2, an infrared divergence means the
low-energy and long-range physics is not treated correctly. In this case, it means that in
one dimension, the low-energy quantum depletion diverges if one assumes a Bose con-
densate. Therefore, the Bogoliubov theory is no longer a self-consistent theory and fails
in one dimension. This difference between one dimension and three dimensions is essen-
tially due to their difference in the single-particle density-of-state. In three dimensions,
the low-energy density-of-state vanishes as

√
ε when the energy ε approaches zero. In

Box 3.1 One Dimension and Quasi One Dimension

In the ultracold atom system, “one dimension” is achieved by applying a confinement potential in the trans-
verse direction, and this confinement potential is usually a harmonic trap with large trapping frequency
ω⊥. In the ultracold atom literature, the term “one dimension” sometimes means “real one dimension” and
sometimes means “quasi one dimension.” By “real one dimension,” it means that the harmonic confinement
energy !ω⊥ is much larger than the chemical potentialµ, i.e., !ω⊥ ( µ, such that the population in
the single-particle excited state of the transverse direction is negligible. In this case, the wave function in
the transverse direction is almost frozen to the ground state Gaussian wave function, as we discussed in the
confinement-induced-resonance in Section 2.5. Such a strong confinement can usually be achieved either by
using a strong two-dimensional optical lattice or by using atomic chip. As we discussed here, Bose condensa-
tion is absence in real one dimension. However, by “quasi one dimension,” for bosons, it is still a condensate
in three dimensions, but the Thomas–Fermi radius along the transverse direction is about the healing length
ξ , i.e.,

√
µ/(mω2

⊥) ∼ ξ . Since !2/(mξ 2) ∼ µ, this is equivalent to !ω⊥ ∼ µ. This situation can
usually be satisfied by an anisotropic harmonic trap. In this case, the dynamics of the condensate is mostly
along the longitudinal direction, and therefore the system is called quasi-one-dimensional. The soliton in a
Bose condensate discussed in Section 4.1 belongs to this situation.
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one dimension, the low-energy density-of-state diverges as 1/
√
ε when ε approaches zero.

Because of the large low-energy density-of-state in one dimension, Bose condensate is
strongly depleted. Note that this argument is independent of the strength of interactions.
That is to say, even for very weak interactions, the condensate will be destroyed inevitably.
Hence, we need to introduce an alternative theory to capture the interacting effects in one
dimension.

Bethe–Ansatz Solution. In Section 2.5 we have discussed that, unlike the three-
dimensional case, the δ-function potential is well defined in one dimension. There, with
a two-body problem, we have shown how to determine the interaction strength of the
δ function potential from the three-dimensional scattering length. Here we will discuss
that one-dimensional Bose gas interacting with the δ function potential is actually exactly
solvable [111].

The reason that such one-dimensional models are exactly solvable is in fact due to a
special feature of one dimension. Considering two atoms with position x1 and x2, suppose
in the regime x1 < x2, their momenta are respectively k1 and k2, and the wave function
is eik1x1+ik2x2 . In the regime when x1 > x2, suppose their momenta are k′

1 and k′
2, the

momentum conservation gives

k1 + k2 = k′
1 + k′

2. (3.82)

And outside the interaction range, the energy is purely kinetic energy and therefore, for the
same eigenstate, it requires

k2
1 + k2

2 = k′2
1 + k′2

2 . (3.83)

In one dimension, it is easy to show that Eq. 3.82 and Eq. 3.83 together determine that
either (k1, k2) = (k′

1, k′
2) or (k1, k2) = (k′

2, k′
1). That is to say, in the regime x2 > x1, the

momenta of two atoms are either the same as, or a permutation of two momenta as in the
regime x2 < x1. This property is unique for one dimension and does not hold in higher
dimension.

The property can be straightforwardly generalized to a multiparticle situation. Consid-
ering N particles whose coordinates are labeled by x1, . . . , xN , suppose that in the region
x1 < x2 < · · · < xN , the momenta of each particle are k1, . . . , kN and the wave function
is given by ei

∑
i kixi . In the same region and other spatial regions, if the many-body wave

function also contains other components such as ei
∑

i k′
ixi , it can be shown that {k′

1, . . . , k′
N}

can only be a permutation of {k1, . . . , kN}. Therefore, for a given set of {k1, . . . , kN}, all
the wave functions ei

∑
i k′

ixi with {k′
1, . . . , k′

N} being a permutation of {k1, . . . , kN} form a
closed Hilbert space, whose dimensionality is always finite. In general, the many-body
wave function is a superposition of all of them, and the coefficients in the superposition
are determined by matching the boundary conditions when any two xi = xj. This will
eventually reduce the Schrödinger equation to a set of algebraic equations. In this sense,
this model is exactly solvable. The same method can be used to solve interacting spinful
fermions in one dimension [184].

Note that in the weakly interacting limit, the interaction energy is estimated by g1dn1d,
where g1d is the one-dimensional interaction strength discussed in Section 2.5 and n1d is
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the one-dimensional density. The typical kinetic energy is given by !2n2
1d/(2m). Hence, the

ratio of the interaction energy to the kinetic energy is given by

γ = g1dn1d

!2n2
1d/(2m)

= 2mg1d

!2n1d
. (3.84)

It is interesting to note that the smaller the density, the larger the γ . The system is in a
strongly interacting regime when γ ( 1. This is in contrast to the three-dimensional case
where the high density regime is strongly interacting. In practices, there are several differ-
ent ways to achieve the γ ( 1 regime. One can tune g1d to be very large by utilizing the
confinement-induced-resonance as discussed in Section 2.5. And one can also achieve the
γ ( 1 regime by reducing the density [90]. Moreover, an alternative tool is to increase the
mass. The single-particle effective mass is defined through the single-particle dispersion,
which can be tuned by applying an extra optical lattice along the longitudinal direction, as
we will show in Section 7.1 [134].

In the limit γ ( 1, the ground state should first try to minimize the interaction energy. To
maximumly minimize the interaction energy of a δ-function repulsive potential, it requires
that the wave function vanishes when the coordinates of any two particles coincide. If we
write an antisymmetric wave function of two particles as

+ = eik1x1+ik2x2 − eik1x2+ik2x1 , (3.85)

this wave function satisfies the requirement + = 0 when x1 = x2. And it also requires
k1 != k2 for otherwise the wave function vanishes everywhere. However, this wave function
does not satisfy the Bose statistics. Hence, we should modify the wave function as

+ = |eik1x1+ik2x2 − eik1x2+ik2x1 | =
∣∣∣sin

(
(k1 − k2)

x
2

)∣∣∣ , (3.86)

where x = x1 − x2. This consideration can be generalized to a many-body situation and the
many-body wave function can be written as

+ = Abs



Det

∣∣∣∣∣∣∣∣

eik1x1 eik1x2 . . . eik1xN

eik2x1 eik2x2 . . . eik2xN

. . . . . . . . . . . .

eikN x1 eikN x2 . . . eikN xN

∣∣∣∣∣∣∣∣



 , (3.87)

where “Det” denotes Slater Determinant and “Abs” denotes taking an absolute value. The
Slater determinant is the many-body wave function of free fermions. However, because of
taking the absolute value of the Slater determinant, the momentum distribution is different
from that of free fermions and it does not display a sharp Fermi surface structure. Neverthe-
less, the momentum distribution is much more flat in the momentum space compared with
that of the Bose condensation case. In fact, it can be shown that there is no macroscopic
occupation in any modes, and the system is not a Bose condensate.

Since the interaction energy vanishes for this wave function, the total energy is given by
the kinetic energy alone, and

E =
N∑

i=1

!2k2
i

2m
, (3.88)
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Box 3.2 Scale Invariant Quantum Gases

We consider the scaling transformation that the coordinates of all particles scale as ri → λri. A quantum
many-body system is called scale invariant if the total energy E scales as E → E/λ2 under the scal-
ing transformation. Obviously noninteracting Bose and Fermi gases are scale invariant, since the Hamiltonian
only contains the kinetic energyT = ∑

i !2∇2
i /(2m) that is scaled by1/λ2 under the scaling transfor-

mation. For an interacting gas, if the total energy is proportional to the Fermi energyEF only, such a system
is also scale invariant because EF is always scaled by 1/λ2 under the scaling transformation. Such exam-
ples include the one-dimensional Tonks–Girardeau gas discussed here and the three-dimensional unitary
Fermi gas discussed in Chapter 6. Both are strongly interacting systems. There are also examples of weakly
interacting systems that are scale invariant, for instance, a weakly interacting two-dimensional Bose gas.
At the mean-field level, the interaction energy of weakly interacting bosons is always proportional to the
two-dimensional densityn2d. In two dimensions, the densityn2d also scales as1/λ2 under the scaling trans-
formation, and therefore, both T and V scale as 1/λ2. Hence, the total energy also scales with 1/λ2.
However, in this system, the scale invariance will be broken when quantum effects beyond mean field are
included, which is known as an anomaly as in high-energy physics.
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!Figure 3.10 Experimental measurements of Tonks gases. (a)T1D measures the total energy of the system and is plotted as a
function of γ . The horizontal dashed line indicates the fermionized energy in the Tonks–Girardeau limit. The solid
line is theory based on the Bethe–Ansatz solution. The deviation is attributed to the system not being in a pure
one-dimensional regime, as indicated by the squares. (b) Momentum distribution with γ ≈ 200. The solid line is
theory based on the fermionized wave function in the Tonks–Girardeau limit. (a) is reprinted from Ref. [90], and (b) is
reprinted from Ref. [134]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

where ki = 2πn/L and L is the system size. Since all ki should be different from each
other, to minimize the total energy, ki should be as small as possible. Thus, n should take
all integers from −N/2 to N/2. This is reminiscent of filling the Fermi sea for a free Fermi
gas. It also says that when g1d → ∞, the ground state energy of such a strongly interacting
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Bose gas approaches the total kinetic energy of a free Fermi gas with same density. In
this sense, we state that the system is fermionized, and such system is called the Tonks–
Girardeau gas [174, 60]. This Tonks–Girardeau gas is one of the examples that are scale
invariant. There are other systems in ultracold atomic gases that are scale invariant, and we
summarize them in Box 3.2.

The first experimental evidences of the Tonks–Girardeau gas were reported in Ref. [90]
and Ref. [134], where the γ ( 1 regime is achieved either by reducing the density or
by increasing the effective mass. The main experimental observations are presented in
Figure 3.10. In Ref. [90], they observe that the energy of this one-dimensional system satu-
rates to that of a free Fermi gas with the increasing of γ . In Ref. [134], they observe that the
momentum distribution becomes more and more flat when γ increases. Both experimental
measurements agree with the theoretical calculations using the Bethe–Ansatz method and
agree with a fermionized wave function Eq. 3.87 in the large-γ limit.

3.5 Phase Coherence and Fragmentation

In previous sections, we mainly focus on the interaction effects on energy. In this section,
we focus on the interaction effects on phase coherence. Here “phase” actually means the
relative phase between different positions or different subsystems of the Bose conden-
sate. To this end, we consider a simple “toy model” of interacting bosons with two spatial
modes, and therefore, the “phase” simply means the relative phase between these two
spatial modes.

Double-Well Model. Let us consider interacting bosons in a double-well potential, as
shown in Figure 3.11. At each well, we only consider the lowest energy state, whose spatial
wave functions are denoted by ψ1(r) and ψ2(r), respectively. When the barrier is suffi-
ciently high and the tunneling is much weaker compared with the level separation in each

!Figure 3.11 Illustration of the double-well model. The solid line is the double-well potential. Two dotted lines represent wave
functionψ1(r) andψ2(r) of the two lowest energy states in each well. The horizontal black dashed lines indicate
the energy levels in absence of tunneling, which is much larger than the tunneling energy and the interaction energy
considered here. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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well, tunneling can hardly couple these two low-lying states to other excited levels. More-
over, when we include interactions, we assume that the interaction energy is also much
weaker compared with the level separations. Hence, we only need to consider the lowest
energy mode in each well. Although in practical situations, these conditions are hard to
be fully satisfied, this model can still serve as a sufficiently simple toy model to illustrate
many key physical concepts.

Because of tunneling, the single-particle ground state ψg(r) is given by

ψg(r) = 1√
2

(ψ1(r) + ψ2(r)) , (3.89)

and the first excited state +e(r) is given by

ψe(r) = 1√
2

(ψ1(r) − ψ2( r)) . (3.90)

For a symmetric double-well, the Hamiltonian possesses the parity symmetry of x ↔ −x.
Hence, both ψg and ψe respect this symmetry. And the symmetric superposition ψg is
the ground state, following from the Feynman’s argument that the ground state of a real
Hamiltonian should be nodeless.

We can expand the field operator as

+̂(r) = ψ1(r)â1 + ψ2(r)â2, (3.91)

where â1 and â2 are boson annihilation operators in each well, and the second-quantized
Hamiltonian for this system can be given by

Ĥ = −J
(

â†
1â2 + â†

2â1

)
+ U

2

(
n̂1(n̂1 − 1) + n̂2(n̂2 − 1)

)
, (3.92)

where J denotes the single-particle tunneling rate between two wells, and U is the
interaction strength between atoms in the same well.

There are two ways to solve this model. First, we can take the mean-field approximation
as we discussed in Section 3.1. Assuming that all bosons are condensed in the same single-
particle state, we can write down the mean-field wave function as

|+MF〉 = 1√
N!

(
cos

α

2
e−iθ/2â†

1 + sin
α

2
eiθ/2â†

2

)N
|0〉, (3.93)

where the state is taken as a general superposition of two modes. It is straightforward to
show that for this wave function,

〈â†
1â1〉 = N cos2 α

2
, 〈â†

2â2〉 = N sin2 α

2
, 〈â†

1â2〉 = N sin
α

2
cos

α

2
eiθ , (3.94)

and the energy of this mean-field state is given by

E = 〈+MF|Ĥ|+MF〉 = −JN sinα cos θ + UN2

4
cos2 α. (3.95)

Since J > 0, it is easy to see that the kinetic energy always favors θ = 0. And for repulsive
interaction U > 0, both kinetic and interaction term favor α = π/2. Thus, as long as
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U > 0, regardless of the value of U/J, the ground state determined by the mean-field
ansatz is always

|+MF〉 = 1√
N!

(
â†

1 + â†
2√

2

)N

|0〉. (3.96)

This state means that all bosons occupy the same single-particle state, which is exactly the
single-particle ground state Eq. 3.89.

Let us consider the situation that the interaction is attractive and U < 0.5 When 2J >

|U|N, the minimum is still located at α = π/2. When 2J < |U|N, minimizing E with
respect to α will yield two degenerate minima at α0 = arcsin(2J/(|U|N)) and π − α0,
respectively. In the limit U → −∞, α → 0, and these two degenerate solutions approach
â†N

1 |0〉 and â†N
2 |0〉, respectively. It is easy to see that these two mean-field solutions break

the parity symmetry between left and right wells.
Another way to solve this model is to write down the most general form of the wave

function under the Fock bases as

|+〉 =
∑

l

+l

∣∣∣∣
N
2

+ l,
N
2

− l
〉

=
∑

l

+l
â†N1

1 â†N2
2√

N1! N2!
|0〉, (3.97)

where N1 = N/2 + l and N2 = N/2 − l. Here since we take the two-mode approximation,
the Hilbert space dimension increases linearly with the number of atoms, and we can easily
solve this model up to a few thousands of atoms. Later we will compare the solution from
these two approaches.

Josephson Effects. Let us first consider the U > 0 regime. According to the mean-field
results, we have α = π/2 and θ = 0, thus 〈/N̂〉 = 〈N̂1 − N̂2〉 = 0. That is to say, there are
equal number of atoms residing in each well and the relative phase between them is also
zero. Now we consider the situation when either α or 〈/N̂〉 deviates from this equilibrium
situation and study their dynamics.

First, we have

d〈/N̂〉
dt

= −2J
!

〈Î〉, (3.98)

and in this two-mode case, the current operator Î is defined as −i(â†
1â2 − â†

2â1). With
Eq. 3.94, we have −〈Î〉 = −N sinα sin θ . We assume 2JN sinα is nearly a constant
throughout the dynamics, denoted by EJ following the convention in literatures, and we
will see that it is indeed the case in the two regimes that we will discuss below. Then, we
have

d〈/N̂〉
dt

= −EJ

!
sin θ . (3.99)

In the weak tunneling regime, the phase dynamics of each mode is mainly governed by
the local interaction energy. Therefore, on one site the phase evolves as e−iUN1(N1−1)t/2 and
on the other site the phase evolves as e−iUN2(N2−1)t/2. Thus the time evolution of phase

5 As a toy model with two discrete modes, let us disregard the issue that the condensate with attractive
interactions is unstable because of the negative compressibility.
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difference is proportional to /N. Also following the convention in literatures, we denote
the proportional coefficient as Ec and therefore, we have

dθ
dt

= Ec

!
〈/N̂〉. (3.100)

From Eq. 3.99 and 3.100, one can already see that θ and/N are two quantities that form
two coupled equations. Eq. 3.99 and 3.100 lead to

d2θ

dt2
= −EcEJ

!2 sin θ , (3.101)

which coincides with the classical equation-of-motion of a simple pendulum. It is known
that there are two solutions for a classical pendulum, depending on the initial velocity.
Here these two solutions are respectively known as the Josephson oscillation and the
Self-trapping. We shall remark that both two phenomena are consequences of the phase
coherence and are absent in a normal gas.

• If the initial 〈/N̂〉0 and θ are sufficiently small, it gives a simple harmonic oscillation
with frequency

ωJ =
√

EcEJ

!
. (3.102)

In this case, both the atom number imbalance, current and phase oscillate in time with
this frequency. This is known as the Josephson oscillation. Here we should remark that,
even initial 〈/N̂〉0 = 0, as long as θ is nonzero, a finite current will be induced. This is
counterintuitive and is strongly in contrast to a normal gas, where a macroscopic current
is not possible if there is no bias voltage or particle imbalance applied between two sides.

• If initial 〈/N̂〉0 is much larger than EJ/Ec, from Eq. 3.100, one finds that θ increases
linearly in time as tEc〈/N〉0/!. And if θ changes sufficiently fast, from Eq. 3.99, we
can see that at the zeroth order the current averages out and 〈/N̂〉 remains as a constant
〈/N̂〉0. This is also a counterintuitive result and also cannot happen in a normal gas. In
a normal gas, when a strong density imbalance is applied between two sides, the system
should gradually relax to the balanced situation. In contrast, here when the initial state
strongly deviates from the ground state with balanced population, the system retains this
far-from-equilibrium situation instead of relaxing back to the ground state. This regime
is known as the self-trapping.

Therefore, as initial 〈/N̂〉0 increases, the dynamics changes from the Josephson oscilla-
tion regime to the self-trapping regime. This has been demonstrated experimentally with a
BEC in double-well potential [4]. Figure 3.12(a) shows the case with small atom number
imbalance, where both the relative atom number and the relative phase oscillate around
zero. Figure 3.12(b) shows the case with large atom number imbalance, where one can see
that θ increases monotonically in time and the relative atom number is nearly a constant
around its initial value.

Fragmentation and Phase Fluctuation. Now we return to another method to solve the
Hamiltonian with the general wave function Eq. 3.97. First of all, in the noninteracting
limit U = 0, it is easy to see that the ground state is given by



!Figure 3.12 Experimental observation of the Josephson oscillation and the self-trapping. Each figure shows how the atom numbers in two wells, the relative population
〈/N̂〉/N , and the relative phase θ change as a function of time t. (a) Josephson oscillation. (b) Self-trapping. Reprinted from Ref. [4]. A color version of this
figure can be found in the resources tab for this book at cambridge.org/zhai.
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|+〉 = 1√
N!

(
â†

1 + â†
2√

2

)N

|0〉, (3.103)

and this wave function is also the mean-field state for all positive U/J. We expand the wave
function Eq. 3.103 in terms of Eq. 3.97, and with the help of the Stirling’s approximation
log N! = N log N − N, we can obtain

+l =
√

N!

2N
(N

2 + l
)

!
(N

2 − l
)

!
3 e−2l2/N

(πN/4)1/4 . (3.104)

That is to say, +l obeys a Gaussian distribution with the width σ 2
/N being proportional to

N, and it is straightforward to show that 〈(/N̂)2〉 ∼ N. This is actually a natural result of
the central limit theorem.

Now when U is finite, we consider the Schrödinger equation [71]

E+l = −Jl+1+l+1 − Jl+l−1 + Ul2+l, (3.105)

where Jl = J
√

(N/2 + l)(N/2 − l + 1). For sufficiently large and positive U, the wave
function is localized around l = 0. For l ) N, approximately we have Jl ≈ JN/2 as a
constant, and Eq. 3.105 is reduced to a discrete version of the single-particle Schrödinger
equation in a harmonic trap. The ground state solutions gives

+l = 1

(πσ 2
/N/2)1/4

e−l2/σ 2
/N , σ 2

/N ∝
√

JN
U

. (3.106)

Thus, as U increases, the width of the Gaussian distribution σ 2
/N varies from being propor-

tional to N to being proportional to
√

JN/U. The particle number fluctuation 〈(/N̂)2〉 ∼
σ 2
/N is strongly suppressed as U increases. This is illustrated in Figure 3.13. In the limit

JN/U ) 1, this state approaches a Fock state

!Figure 3.13 Schematic of atom number fluctuations. Here we plot+l as a function of l = (N1 − N2)/2 for different regimes
ofU/J. HereU/J < 0 and |U| ( J for (a),U > 0 butU ) J for (b), andU > 0 andU ( J for (c). A
color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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|+〉 = â†N/2
1 â†N/2

2

(N/2)!
|0〉. (3.107)

This state becomes an eigenstate of /N̂.
For noninteracting quantum state Eq. 3.103, the single-particle density matrix can be

easily computed as

ρ =
(

〈â†
1â1〉 〈â†

1â2〉
〈â†

2â1〉 〈â†
2â2〉

)

= N
2

(
1 1
1 1

)
. (3.108)

This density matrix can be diagonalized as

ρ = N
(

1 0
0 0

)
. (3.109)

That is to say, only the population on one of the modes is of the order N and the population
on the other mode is zero. According to the definition given in Section 3.1, the system is a
simple BEC. For strong repulsive interaction discussed above, because

〈â†
1â2〉 =

∑

l

√
(N/2 − l)(N/2 + l + 1)+l+1+l ≈ (N/2)e−1/(2σ 2

/N ), (3.110)

the single-particle density matrix is given by

ρ = N
2

(
1 e−1/(2σ 2

/N )

e−1/(2σ 2
/N ) 1

)

. (3.111)

Two eigenvalues are λ = (N/2)(1± e−1/(2σ 2
/N ), and both eigenvalues are of the order of N.

In the limit U → +∞ and σ/N → 0, the quantum state becomes the Fock state Eq. 3.113,
and it is easy to see that the density matrix becomes

ρ = N
2

(
1 0
0 1

)
. (3.112)

According to the definition given in Section 3.1, the system is a fragmented condensate.
Note that the Fock state can also be viewed as a single condensate in terms of two-particle
density matrix, because this state can be written as

|+〉 = 1
(N/2)!

(
â†

1â†
2

)N/2
|0〉, (3.113)

and â†
1â†

2 can be viewed as a boson pair operator.
To better understand what happens from the small U regime to the large U regime, we

revisit the mean-field description. We can expand the mean-field energy Eq. 3.95 around
its minimum α = π/2 and θ = 0, and it yields

E = JN
2
θ2 + UN2

4
(/α)2, (3.114)

where /α = α − π/2. If we consider /α and θ as a pair of conjugate variables like x̂
and p̂, Eq. 3.114 can be considered as a harmonic oscillator, and the width of the phase
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fluctuation is given by σ 2
θ ∝ √

UN/J. When
√

UN/J ( 2π , we can consider that the
phase can freely fluctuate between zero and 2π . Using the identity that

∫ π

−π
dθ

1√
2NN!

(â†
1eiθ/2 + â†

2e−iθ/2)N |0〉 ∝ â†N/2
1 â†N/2

2

(N/2)!
|0〉, (3.115)

we can state that a strong enough phase fluctuation renders the system from a single con-
densate to a fragmented condensate with fixed relative particle numbers. We shall revisit
similar physics in Section 4.3 when we discuss spinor condensate.

It is also interesting to note that σ 2
/Nσ

2
θ ∼ N. It is actually better to state that the relative

atom number difference 〈/N̂〉 and the relative phase θ can be viewed as a pair of conjugate
variables. In the weakly interacting regime, there is a well-defined relative phase, meaning
that the phase fluctuation is strongly suppressed, therefore, the relative atom number fluc-
tuation is as large as 〈(/N̂)2〉 ∼ N. As U increases, the relative atom number fluctuation is
gradually suppressed and the phase fluctuation increases. Eventually, in the strongly repul-
sive interaction limit, the relative atom number fluctuation is strongly suppressed such that
the system becomes a Fock state, but the phase fluctuation becomes very large such that
the phase coherence between two sides is completely lost.

Quantum Measurement. When talking about interference in a quantum system, the
double-slit experiment always the first one that occurs to one’s mind. In order to see an
interference pattern in the usual double-slit experiment, there are essentially two condi-
tions. First, the waves passing through two slits have to have well-defined relative phase.
Second, the particles have to be identical particles when they are detected. In other words,
the detectors do not know which slit the particle comes from. If the particle are labeled by
the path, the interference will disappear.

Decades ago, Anderson has asked the question that, if two superfluids have never met
before, whether they can interfere when they meet. This question can be studied in ultracold
atom experiments. The answer to this question has to involve the measurement process.
Let us prepare a Bose condensate in a double-well potential. If the barrier is shallow, the
system initially is a simple condensate with well-defined relative phase between two sides.
Then, we turn off the potential and let the system expand. When atoms from two sides met
and overlap, the density distribution will show interference pattern, similar as in the usual
double-slit interference experiment. However, if we start with sufficiently high barrier, the
system initially is a Fock state like Eq. 3.113. And as shown by Eq. 3.115, there is no well-
defined relative phase between two sides. The question is whether we can still observe the
interference pattern when the double-well potential is turned off and atoms overlap.

First of all, we consider an ensemble measurement, that is to say, we repeat the same
measurements under identical conditions and take an average over them. In this case, the
density is given by

n(r) = 〈+̂†(r)+̂(r)〉 = 〈(+∗
1 (r)â†

1 ++∗
2 (r)â†

2)(+1( r)â1 ++2(r)â2)〉, (3.116)

where +1(r) and +2(r) label the wave function evolving from the left and the right sides,
respectively. Note that 〈â†

1â2〉 = 〈â†
2â1〉 = 0 for the Fock state Eq. 3.113, Eq. 3.116

becomes
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!Figure 3.14 Experimental observation of interference pattern. A BEC is separated into two by a high barrier created by laser. When
these two initially separated BECs are released from the trap, and when they overlap after expansion, an interference
pattern can be observed in each run of measurements. Reprinted from Ref. [7]. A color version of this figure can be
found in the resources tab for this book at cambridge.org/zhai.

n(r) = 〈â†
1â1〉|+1(r)|2 + 〈â†

2â2〉|+2(r)|2. (3.117)

It is obvious that no interference exists after the ensemble average.
However, if one actually performs such an experiment, one can observe the interference

pattern in each run of measurement, as one can see in Figure 3.14. As we will explain
below, this is a quantum measurement effect. Quantum measurement can be viewed as a
projection. As we have shown in Eq. 3.115, a Fock state can be viewed as a superposition of
single condensate with all possible relative phases. Thus, each measurement projects this
state into one of the states in the superposition with fixed relative phase. To illustrate how
this quantum measurement projects the Fock state into a state with fixed relative phase, we
present following two-step arguments [28].

• First, it is important to emphasize again that the atoms are identical particles, and when
one atom is detected, one cannot distinguish which side the atom comes from. When
the first atom is detected, without loss of generality, we can assume that this atom has
equal probability of coming from the left side or coming from the right side, with a
relative phase φ. The many-body wave function after the first atom being detected |21〉
is given by

|21〉 = â1e−iφ/2 + â2eiφ/2
√

2

∣∣∣∣
N
2

,
N
2

〉

=
√

N
2

(
e−iφ/2

∣∣∣∣
N
2

− 1,
N
2

〉
+ eiφ/2

∣∣∣∣
N
2

,
N
2

− 1
〉)

. (3.118)
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Now considering that the second atom is detected, this atom is also assumed to be in
a superposition state with a relative phase ζ , then, the many-body wave function |22〉
after the second atom being detected is given by

|22〉 = â1e−iζ/2 + â2eiζ/2
√

2
|21〉 (3.119)

∝
√

N
2

− 1
(

e−i(φ+ζ )
∣∣∣∣
N
2

− 2,
N
2

〉
+ ei(φ+ζ )

∣∣∣∣
N
2

,
N
2

− 2
〉)

+ 2 cos(φ − ζ )

√
N
2

∣∣∣∣
N
2

− 1,
N
2

− 1
〉

, (3.120)

and

〈22|22〉 = (N − 2) + 2N cos2(φ − ζ ). (3.121)

This shows that 〈22|22〉 has the largest amplitude when φ = ζ . That is to say, the
possibility is the largest when successively two atoms with the same relative phase are
detected.

• Second, if successively k-atoms are detected with same relative phase, we have
(

â1e−iφ/2 + â2eiφ/2
√

2

)k ∣∣∣∣
N
2

,
N
2

〉

∝
(

â1e−iφ/2 + â2eiφ/2
√

2

)k ∫ π

−π
dθ

(
â†

1eiθ/2 + â†
2e−iθ/2

√
2

)N

|0〉 (3.122)

∝
∫ π

−π
dθ (cos(θ/2 − φ/2))k

(
â†

1eiθ/2 + â†
2e−iθ/2

√
2

)N−k

|0〉. (3.123)

It is easy to see that (cos(θ/2 − φ/2))k quickly approaches the delta function δ(θ − φ)
as k increases, because for any number x < 1, xk quickly approaches zero as k increases.
Therefore, such a measurement picks up a coherent state with fixed relative phase, that is,

(
â1e−iφ/2 + â2eiφ/2

√
2

)k ∣∣∣∣
N
2

,
N
2

〉
→
(

â†
1eiφ/2 + â†

2e−iφ/2
√

2

)N−k

|0〉. (3.124)

From above discussion, we see that quantum measurement can project a Fock state
without phase coherence to a simple condense state with a well-defined relative phase.
However, this relative phase is randomly picked up by the measurement process, and
therefore, for different runs of experiment, the relative phases are different and one can
see different interference pattern. Hence, after averaging over many measurements, the
interference pattern is smeared out, which recovers the result of ensemble measurement
discussed above.

The Hanbury–Brown–Twiss Effect. For a Fock state, above discussions have shown that
although the ensemble measurement of density does not show interference pattern, the
identical boson nature of atoms enables that each individual measurement does show inter-
ference. Here we can further show that, also due to the nature of identical bosons, the
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density-density correlation can also show an interference pattern even after the ensem-
ble average. This is known as the Hanbury–Brown–Twiss effect. We summarize whether
interference pattern can appear or not under different situations in the Table 3.2.

Following the same spirit of Eq. 3.116 and considering the density-density correlation
function, we have

〈+̂†(r)+̂(r)+̂†(r′)+̂(r′)〉
= n(r)n(r′) + 〈â†

1â1〉〈â†
2â2〉(+∗

1 (r)+∗
2 (r′)+2(r)+1(r′) + h.c.), (3.125)

where n(r) and n(r′) are given by Eq. 3.117. Here we also take 〈â†
1â2〉= 〈â†

2â1〉= 0
because of the absence of phase coherence in the initial state. The interference appears
in the second term of Eq. 3.125.

This effect has been first observed in ultracold atomic system by using the Mott insulator
phase of bosons in optical lattices [56]. We will discuss the Mott insulator in Section 8.1.
The basic idea is to use a deep optical lattice potential to localize atoms inside each well,
such that there is no phase coherence between wells. Then, after turning off the lattice, the
wave functions of atoms expand from different sites, and then they will overlap with each
other, as shown in Figure 3.15(a). As shown in Figures 3.15(b) and (d), when measuring the
density after the time-of-flight and averaging over a number of measurements, one cannot
see any signal of interference pattern in the density profile. However, when one analyzes

!Figure 3.15 Experimental observation of the Hanbury–Brown–Twiss effect. (a) Illustration of the basic idea of this experiment.
Atoms are initially prepared in a deep optical lattice, and density distributions are measured after the time of flight.
(b) and (d) show the density after ensemble average, and (c) and (e) show the density-density correlation after the
ensemble average. (d) and (e) are integrated results of (b) and (c), respectively. Reprinted from Ref. [56]. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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Table 3.2 On interference pattern of density and density-density correlation measurements

Single measurement Ensemble measurement

〈n(r)〉 Yes No
〈n(r)n(r′)〉 Yes Yes

Note: “Yes” and “No” denote the presence and the absence of interference pattern,
respectively.

Box 3.3 Symmetry Breaking

Let us first introduce two concepts of the symmetry group of the wave function and the symmetry group of
the Hamiltonian. The symmetry group of the Hamiltonian is the group of operations that keep the Hamilto-
nian invariant, and the symmetry group of the wave function is the group of operations that keep the wave
function invariant. Whenwe say that a state breaks symmetry, it means that the symmetry group of the wave
function is a subgroup of the symmetry group of the Hamiltonian. A direct consequence of symmetry breaking
is degeneracy. For the single-particle case, we have emphasized that the ground state has no degeneracy, and
therefore, it cannot break symmetry. However, symmetry breaking is a common phenomenon in the ground
state of a many-body system, the reason for which will be explained in this section. In the Landau theory of
phase transition, different phases are characterized by different symmetry groups of the wave function. In
Section 4.5, we will discuss an example of a Bose system with various symmetry-breaking phases, and we
shall discuss how symmetry breaking helps us determine the properties of phase transitions. In Section 8.2,
we will discuss an example of a Fermi system with various symmetry-breaking phases.

the density-density correlation from these images, the interference peaks are clearly visible,
as shown in Figures 3.15(c) and (e).

The Schrödinger Cat and Spontaneous Symmetry Breaking. Now we turn into the
discussion of attractive interaction with U < 0. As mentioned above, when |U|N >

2J, the mean-field energy has two degenerate minima respectively located at α0 =
arcsin(2J/(|U|N)) and π−α0. In the limit U → −∞, these two solutions approach â†N

1 |0〉
and â†N

2 |0〉.
In Box 3.3, we have introduced the concept of the symmetry group of the wave function

and the symmetry group of the Hamiltonian, and the important concept of symmetry break-
ing. Here the Hamiltonian has a Z2 symmetry of exchanging â1 and â2. The mean-field
states for very negative U do not respect this Z2 symmetry, and consequently, the mean-
field ground states are two-fold degenerate. It is noted in Box 3.3 that symmetry breaking is
a common phenomenon in nature. However, we also note that, for a real Hamiltonian such
as this case, the ground state should be unique and cannot has degeneracy. How should we
resolve this paradox ?

Indeed, if we solve the Hamiltonian Eq. 3.105 with the general wave function Eq. 3.97,
the system should have a unique ground state, and the corresponding +l respects the Z2

symmetry and exhibits a double peak distribution
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+l ∝ e−(l−l0/2)2/(2σ 2) + e−(l+l0/2)2/(2σ 2), (3.126)

as shown in Figure 3.13. In the limit U → −∞, the ground state wave function, denoted
by |++〉, is a superposition as

++ = 1√
2

(|N, 0〉 + |0, N〉) , (3.127)

which is also known as the NOON state. These two states |N, 0〉 and |0, N〉 in the super-
position are macroscopically distinct, because one corresponds to all atoms in the left
well and the other corresponds to all atoms in the right well. Such a superposition of
macroscopically distinct states is well known as the Schrödinger Cat state.

The Schrödinger Cat state has the same one-body density matrix as the Fock state
discussed above, that is,

ρ = N
2

(
1 0
0 1

)
, (3.128)

therefore it is also a fragmented state. However, in contrast to the Fock state, its particle
number fluctuation is 〈(/N̂)2〉 ∝ N2. It also differs from the Fock state in terms of two-
body density matrix. The Fock state can be viewed as a pair condensate in terms of two-
body density matrix, but the Schrödinger Cat state cannot.

However, why is such a Schrödinger Cat state very rare in nature ? In fact, in this model,
there exists the first excited state |+−〉 whose energy is very close to the ground state, and
the wave function is given by

|+−〉 = 1√
2

(|N, 0〉 − |0, N〉) . (3.129)

One can show that the energy difference between |++〉 and |+−〉 exponentially decreases
as the atom number N increases. Thus, even for N being of the order of ten, this energy
separation is already extremely small. This is because, in order to couple |N, 0〉 state to
|0, N〉 state, there have to go through N-steps of single-particle tunneling as

|N, 0〉 → |N − 1, 1〉 → |N − 2, 2〉 → · · · → |1, N − 1〉 → |0, N〉, (3.130)

and during this process, the interaction energy keeps increasing. Such a process is called
macroscopic quantum tunneling. Therefore, the tunneling rate is strongly suppressed as N
increases, and consequently, the energy splitting between |++〉 and |+−〉 is strongly sup-
pressed. In fact, this is not a specific feature of this particular model. It applies universally
to all Schrödinger Cat states. We recall that the Schrödinger Cat state refers to superpo-
sition of macroscopically distinct states, and if two states are macroscopically distinct, it
means that there are macroscopic number of degrees of freedom that are different between
these two states. In nature, nearly all physical systems possess locality, which means each
term can only change few number of degrees of freedom. Hence, in order to couple two
macroscopically distinct states, one needs macroscopic number steps. Therefore, the cou-
pling coefficient becomes extremely small. For instance, let us consider two low-lying
ferromagnetic states whose spins point to different directions. In order to couple them, one
needs to flip each spin from one direction to another direction, and the intermediate states
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are not ferromagnetic, which have higher energies. Hence, such a coupling will be strongly
suppressed as the number of spins increases.

Because of this extremely weak coupling between macroscopically distinct states due
to the macroscopic quantum tunneling, a Schrödinger Cat state is very unstable in nature.
For instance, in this case, if we add infinitesimal small energy difference between the left
and the right sides, that is, ε(â†

1â1 − â†
2â2), which is inevitable in reality, the energy dif-

ference between |N, 0〉 and |0, N〉 is εN. This energy difference can easily overwhelm the
exponential small coupling between |N, 0〉 and |0, N〉. Hence, the actual ground state is
either |N, 0〉 or |0, N〉. Another way to view this problem is to consider a dynamical pro-
cess. For instance, suppose that initially all atoms are condensed in one of the well because
of this ε energy difference, when we turn off the energy difference such that the Hamilto-
nian restores the Z2 symmetry, the system should oscillate between two wells to restore the
symmetry. However, because of the extremely small tunneling rate, the oscillation period is
extremely long, which can easily exceed the lifetime of our universe for system with large
number of particles. In case of ferromagnetism, the presence of an infinitesimal magnetic
field can pin the spins to certain direction and breaks the SU(2) spin rotational symmetry.
When the infinitesimal small magnetic field is turned off, it also takes extremely long time
to rotate all spins from one to another direction and to restore the SU(2) spin rotational
symmetry.

In summary, we have shown that the instability of the Schrödinger Cat state and the
stability of the symmetry-breaking phenomenon in nature are two sides of the same coin.
From the discussion above, it is important to realize that symmetry breaking is a unique
phenomenon in many-body system with large number of degrees of freedom.

Exercises

3.1 Discuss the Bose–Einstein condensation temperature for free bosons at one and two
dimensions.

3.2 Calculate the two-body density matrix ρ(r, r′) for noninteracting bosons above and
below the Bose–Einstein condensation temperature.

3.3 Show that if we define α̂k and α̂†
−k as a unitary transformation of â k and â†

−k, α̂k

and α̂†
−k do not obey the boson commutative relation.

3.4 Show that the wave function Eq. 3.57 is the ground state wave function of the
Bogoliubov Hamiltonian that satisfies 〈G|âk=0|G〉 = √

N0 and α̂k|G〉 = 0.
3.5 Show that the detailed balance condition

(1 + f k)(1 + f q)f k+q = f kf q(1 + f k+q) (3.131)

can be satisfied if f k satisfies the Bose distribution

f k = 1
eβE k − 1

(3.132)

and Ek + Eq = Ek+q. Also show that the detailed balance condition

(1 − f k)(1 − f q)f k+q = f kf q(1 − f k+q) (3.133)
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can be satisfied if f k satisfies the Fermi distribution

f k = 1
eβE k + 1

(3.134)

and Ek + Eq = Ek+q.
3.6 Calculate Sρ k(ω) with the Bogoliubov Hamiltonian and show the Feynman relation

Sρ k(ω) = !2k2/(2m)
Ek

. (3.135)

3.7 Considering two atoms in a one-dimensional ring with size L, compute the ground
state energy as a function of g1d.

3.8 Verify Eq. 3.94 for the mean-field state Eq. 3.96.
3.9 Numerically solve the Hamiltonian Eq. 3.92 for a finite number of particles, and

discuss the wave function, density matrix, and relative particle fluctuations in three
regimes (i) U > 0 and U ! J; (ii) U > 0 and U ( J; and (iii) U < 0 and |U| ( J.
In regime (iii), also discuss the excitation gap between the first excited state and the
ground state as a function of total particle number N.

3.10 Discuss the Hanbury–Brown–Twiss effect for noninteracting fermions and compare
its difference with noninteracting bosons.



4 Topology and Symmetry

Learning Objectives

• Introduce soliton in quasi-one-dimensional time-dependent Gross–Pitaevskii equation.
• Introduce the basic idea of topology and the homotopy groups.
• Introduce vortex in spinless condensate as a typical example of topological defect.
• Introduce the Berezinskii–Kosterlitz–Thouless transition as a topological defect-driven

phase transition, and emphasize the topological and energy requirements for such a
transition.

• Discuss the geometric configuration that minimizes the energy of a vortex lattice.
• Introduce the Majorana stellar representation as a useful tool to visualize the symmetry

of a high-spin wave function.
• Introduce two different phases of spin-1 condensate.
• Introduce the relation between a mean-field state and the singlet pair condensate.
• Introduce the spin vortex and half vortex in a spinor condensate, and discuss various

possibilities of a spin vortex core.
• Introduce two categories of topological excitations in a Bose condensate, and introduce

monopole and skyrmion as the typical example of each category.
• Introduce the simulating Dirac monopole in a synthetic magnetic field.
• Discuss the symmetry of the Hamiltonian and the symmetry of various phases in a spin-

orbit coupled BEC.
• Discuss the relation between symmetry and phase transitions, using spin-orbit coupled

condensate as an example.
• Discuss the Galilean invariance and the superfluid critical velocity.

4.1 Soliton

Soliton is an excitation widely existed in many nonlinear systems in different branches
of physics. In this section we will first discuss soliton as an exact solution of a type of
excitations in one-dimensional GP equation, which describes a quasi-one-dimensional con-
densate. The difference between quasi one dimension and real one dimension has been
clarified in Box 3.1. For quasi one dimension, we consider a Bose condensate in a very
elongated trap whose transverse confinement is much stronger than the longitudinal one,
and the size of condensate in the transverse direction is comparable with the healing length.
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Thus, we can first consider that the motion in the transverse direction is frozen, and we shall
also first ignore the harmonic confinement along the longitudinal direction. Therefore we
start with a one-dimensional GP equation as

i!
∂ψ

∂t
= − !2∂2

2m∂2x
ψ + U|ψ |2ψ . (4.1)

Now let us consider a special wave function ansatz as

ψ(x) = √
n0 tanh

(
x√
2ξ

)
, (4.2)

where n0 is the ground state density, and ξ is the healing length. It is easy to show that

− !2∂2

2m∂2x
ψ + U|ψ |2ψ

= !2

2mξ2

(
sech2

(
x√
2ξ

)
+ tanh2

(
x√
2ξ

))√
n0 tanh

(
x√
2ξ

)

= Un0ψ , (4.3)

where we have used the relations d2 tanh(y)/dy2 = −2sech2(y) tanh(y), sech2(y) +
tanh2(y) = 1 and !2/(2mξ2) = Un0 = µ. This proves that the soliton wave function
e−iµtψ satisfies the time-dependent GP equation Eq. 4.1.

The soliton wave function has following properties that limx→∞ ψ(x) = √
n0 and

limx→−∞ ψ(x) = −√
n0, that is to say, the wave function has a π phase different between

two ends, as shown in Figure 4.1(b). This means that the global phase structure has been
changed once such a soliton is presented. In other words, if one measures the phase of the
condensate even far away from the center of the soliton, one can still notice the presence
of the soliton. The phase jumps occurs around x = 0 where the density depletes to zero.
And around the phase jump, there exists a regime with size ξ where the condensate den-
sity is strongly depleted, as shown in Figure 4.1(a). The rapid phase change creates a large
velocity that locally destroys condensate. That is also the reason why ξ is called the healing
length. The word “healing length” means the distance it takes for the condensate density

!Figure 4.1 Soliton wave function. (a) The density n(x) = |ψ(x)|2 (a) and (b) the phase argψ(x) as a function of the
coordinate in the comoving frame (x − vt)/ξ . Three different velocities v/c = 0 (solid line), v/c = 0.5
(dashed line), and v/c = 0.8 (dash-dotted line) are plotted. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.
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to recover its bulk value when the condensate density is locally destroyed. We will revisit
this concept again when we discuss vortex core in Section 4.2. Here this soliton is called a
dark soliton. In superconductors, such an excitation is also called the phase slip.

The soliton wave function Eq. 4.2 can be generalized to a moving soliton with velocity
v, whose wave function is given by [93]

ψ(x, t) = √
n0



i
v

c
+
√

1 − v2

c2 tanh





√

1 − v2

c2

x − vt√
2ξ







 , (4.4)

where c is the sound velocity. With the help of the Galilean transformation, it is
straightforward to show that in a comoving frame the GP equation is written as

− !2∂2

2m∂2x′ψ + i!v
∂ψ

∂x′ + U|ψ |2ψ = i!
∂ψ

∂t
, (4.5)

where x′ = x − vt. It is straightforward to calculate that

− !2∂2

2m∂2x′ψ = !2√n0

2mξ2 s3 sech2 (sx̃) tanh (sx̃) , (4.6)

U|ψ |2ψ = !2√n0

2mξ2

[
v2

c2 + s2 tanh2 (sx̃)
] [

i
v

c
+ s tanh (sx̃)

]
, (4.7)

i!v
∂ψ

∂x′ = !2√n0

2mξ2 i
v

c
s2 sech2 (sx̃) , (4.8)

where s =
√

1 − v2/c2 and x̃ = (x − vt)/(
√

2ξ ), and therefore

− !2∂2

2m∂2x′ψ + i!v
∂ψ

∂x′ + U|ψ |2ψ = Un0ψ . (4.9)

Here we have used the relation !c/(
√

2ξ ) = Un0. Therefore e−iµtψ(x, t) with ψ(x, t) given
by Eq. 4.4 is also a solution of time-dependent GP equation Eq. 4.1. In Figure 4.1 we also
plot the density and the phase for solitons with finite velocity. The larger v/c, the smaller
the density dip at the center of soliton, and the smaller the phase jump. We also notice that
in the limit v → 0, Eq. 4.4 recovers Eq. 4.2, and in the limit v → c, Eq. 4.4 recovers
a ground state wave function.1 That v cannot be larger than the sound velocity c is also
consistent with the fact that a soliton cannot move faster than the sound velocity.

Now regarding the excitation energy of these solutions, we consider

E =
∫

dx

(
!2

2m

∣∣∣∣
∂ψ

∂x

∣∣∣∣
2

+ U
2

|ψ |4 − µ|ψ |2
)

, (4.10)

1 In this regard, soliton is not a strictly defined topological excitation since it can be deformed back to the ground
state continuously.
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where µ = Un0. For a uniform ground state solution, |ψ |2 = n0 and the ground state
energy Eg = −Un2

0/2. For the soliton solution, Es can also be computed exactly with
Eq. 4.4 and Eq. 4.10, and we obtain [93]

Es − Eg = 8

3
√

2

!2n0

2mξ

(
1 − v2

c2

)3/2

= 4!m
3U

(c2 − v2)3/2. (4.11)

Interestingly, the excitation energy of a soliton decreases with the increasing of the velocity
v, and the excitation energy vanishes when v approaches c.

Now we include the effect of a smooth confinement potential V(x) along the longitudinal
direction. Since the contribution to the energy cost of a soliton mostly comes from the
center regime of a soliton, with the help of the local density approximation, the energy for
a soliton can be obtained by replacing c in Eq. 4.11 with local sound velocity c(X) at X,
where X is the center of soliton. Considering that the soliton energy is conserved during its
motion, one obtains that [93]

4!m
3U

(
c(X)2 − v2

)3/2
= constant, (4.12)

where c(X)2 = Un(X)/m = c2
0 − V(X)/m. With the soliton velocity v defined as dX/dt, we

obtain

m
(

dX
dt

)2

+ V(X) = constant. (4.13)

This energy conservation implies that the oscillation of a soliton in a harmonic trap can
be equivalent to an oscillation of a single particle with mass 2m, which yields that the
oscillation frequency of a soliton is 1/

√
2 of the trap frequency [93].

Experimentally, soliton can be created by the so-called phase imprinting method. As
shown in Figure 4.2(a), a laser beam is applied to the left-half of a BEC, which generates
a constant potential difference between the left and the right regions, say, denoted by U0.
The laser is applied for a duration T0 such that U0T0 = π/! and then a π -phase difference
is created between two ends. This will generate a dark soliton. If this dark soliton is not
generated right at the center of the trap, it will start to oscillate. The oscillation of a dark
soliton can be recorded by imaging the density of a BEC, as shown in Figures 4.2(b)
and (c). In Figure 4.2(d), we show the center position of the dark soliton as a function
of time, from which one can extract the oscillation frequency. With the consideration of
unharmonicity and other experimental imperfections, the experimental result is consistent
with a soliton mass equaling 2m.

Before concluding this section, we shall also remark that soliton is a stable solution
only in the quasi-one-dimensional regime when the healing length ξ is comparable to the
transverse confinement. If the transverse size is much larger than ξ , the motion in the
transverse direction becomes important. In that case, the dark soliton can also couple to
other modes in the transverse direction. Actually, a pair of vortices in the transverse plane
can also create a π phase difference between two different sides of the transverse plane. In
fact, it has been observed experimental that a dark soliton can indeed decay into a vortex
ring or a pair of vortices [50, 98]. We will discuss vortex in the next section.
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!Figure 4.2 Experiment on soliton oscillation inside a harmonic trap. (a) Phase imprinting method for generating soliton. (b–c)
Imaging for the motion of a soliton at different time slots after creation. (c) is the integrated density of (b). (d) Center
position of a soliton as a function of time. Reprinted from Ref. [15]. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.

4.2 Vortex

The terminology topology refers to global properties that are invariant under continuous
deformation. Here, global property and invariant under continuous deformation are two
key words. For example, considering a closed sphere with arbitrary shape, the famous
Gauss-Bonnet theorem in topology says that integration the local Gauss curvature over the
entire sphere always gives 4π . Here integration over the entire sphere means that this is
a global property of the sphere. If one distorts the shape of the sphere, this value of 4π
cannot be changed as long as one does not break the sphere. This means that this property
is invariant under continuous deformation.

Homotopy Group. One of the useful tools to characterize topology is called the homotopy
group. Here let us briefly discuss a few simple examples of the homotopy groups. One
can find references such as Ref. [118] for more details. We consider a mapping from one-
dimensional circle, denoted by S1, to a target space M, which can either be space of wave
functions or be the space of order parameters. If one of such mapping, say f0, can be
continuously deformed to another mapping, say f ′

0, we say that these two mappings belong
to one equivalent class, and we use [f0] to denote this equivalent class. All the equivalent
classes form a group, which is called the first homotopy group, denoted by $1(M). If a
mapping maps all points in the preimage space to the same point in the image space, this
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is called a trivial map. And if a map can be continuously deformed into this trivial map,
it belongs to the same class of trivial map. A homotopy group is called a trivial one if it
only contains the trivial map class as its only element. In other words, all mappings can be
continuously deformed into a trivial map. A homotopy group is called a nontrivial one if
it contains equivalent classes other than the trivial map class. In other words, there exists
some mappings that cannot be continuously deformed into the trivial map. Moreover, we
can also consider a mapping from two-dimensional sphere S2 to a target space M. All
the equivalent classes of such mappings form the second homotopy group, denoted by
$2(M). In general, we can consider the mapping from Sn to a target space M, and the
equivalent classes form the nth homotopy group, denoted by $n(M). Below we discuss a
few examples of homotopy groups that are used most often in physics problems.

• Let us consider that M is also S1, this homotopy group is denoted by$1(S1). Now let us
consider the following mapping, that is, when the preimage walks around the entire S1

space clock-wisely, the image also winds around the entire S1 space clock-wisely. One
can see this mapping cannot be continuously deformed into the trivial mapping, and
therefore, it belongs to another class. Moreover, when the preimage walks around the
entire S1 space clock-wisely once, the image can wind around the target S1 space integer
times, either clockwise or counterclockwise. This integer is call the winding number.
Here clockwise winding and counterclockwise winding of image are characterized by
positive and negative winding numbers, respectively. And notice that a clockwise wind-
ing can be untwisted by a counterclockwise winding such that the net winding number
is zero. Hence, the net winding number is the integer that characterizes each equivalent
class. Therefore, we reach the conclusion that $1(S1) = Z .

• Let us consider that M is S2, this homotopy group is denoted by $1(S2). Since the
image of an S1 circle is always a circle in the S2 space, it is easy to see that all the circles
in the sphere can always be continuously shrink to one single point, no matter how many
times it winds. That is to say, all mappings from S1 to S2 are smoothly connected to the
trivial map. Therefore, $1(S2) is a trivial one.

• For the similar reason as $1(S1) = Z , it can be shown that $2(S2) is also the integer
group Z . That is to say, each equivalent class is also characterized by an integer, which
is called the Chern number.2 In this case, the Chern number describes that when the
preimage covers the entire S2 space, how many times the image covers the target S2

space.
• For the similar reason that $1(S2) is trivial, $2(S3) is also a trivial one.
• Both $3(S3) and $3(SO(3)) are Z .
• The mapping from S3 to S2 is called the Hopf map. $3(S2) also equals to Z , and the

topological number is called the Hopf number.

In this section and Section 4.4, we will discuss various topological objects in a BEC
characterized by these homotopy groups.

Vortex. In Section 3.2 and Section 3.3, we have discussed the phonon excitation which
only changes the density and phase of a Bose condensate locally. One cannot observe

2 There is a more general definition of Chern number using the integration of local curvatures.
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the physical effect of a phonon excitation at a distance far away from it. Here we will
discuss vortex in a quasi-two-dimensional condensate. Strongly in contrast to the phonon
excitation, it changes the global property of a condensate, namely, the presence of a vortex
can be detected by walking around a loop enclosed the vortex, even when the loop is far
away from the vortex center.

For simplicity, let us consider an isotropic vortex wave function written as

ψ(r) = √
n0eiκϕ f

(
r
ξ

)
, (4.14)

where we have taken the cylindrical coordinate. Here f is taken a real function, and ξ is
the healing length. r measures the in-plane distance to the center of vortex and ϕ is the
azimuthal angle in the two-dimensional plane. Here the phase θ of the condensate wave
function is taken to be proportional to the azimuthal angle ϕ with the coefficient κ , which
is required to be an integer to ensure the single-value condition of the wave function.

Using the relation that the velocity is defined as v = !∇θ/m, this wave function gives a
circulating velocity field

v(r) = !κ
mr

ẑ × r̂. (4.15)

It is very important to note that the amplitude of the velocity field has a 1/r dependence on
the radial coordinate. This has two important consequences:

• At small distance when r → 0, there will be a singularity of the velocity field at the
vortex center

∇ × v = 2π!κ
m

δ2(r)ẑ. (4.16)

Generally speaking, the velocity field of any excitation can be decomposed into two
components. One component has vanishing divergence everywhere, which corresponds
to phonon excitation. The other component displays singularities in its curl, which cor-
responds to vortices. As we will show later, this singularity is the vortex center where
density vanishes, and this feature is directly related to the fact that vortex is a topological
excitation. We will explain this in detail below.

• At large distance, the 1/r dependence of the velocity field will lead to the logarithmical
dependence of the vortex energy on the system size. As we will also explain below, this
system size dependence has exact the same form as how entropy depends on system
size, and this directly leads to the Kosterlitz–Thouless topological phase transition.

Below we will elaborate these two aspects in detail.

Vortex Core and Topological Defects. First of all, the energy of vortex wave function
Eq. 4.14 is given by

E =
∫

d2r
{

!2n0

2m

[
− f

r
∂

∂r

(
r
∂f
∂r

)
+ κ2f 2

r2

]
+ U

2
n2

0f 4 − µn0f 2
}

. (4.17)

We now first consider the density distribution in the presence of a vortex. It is convenient
to normalize r by the healing length ξ , and by using the relation !2/(2mξ2) = Un0 = µ,
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the energy minimization can yield an equation for f as a function of dimensionless quantity
r̃ = r/ξ as

− 1
2r̃
∂

∂ r̃

(
r̃
∂f
∂ r̃

)
+ κ2f

r̃2 + f 3 = f , (4.18)

which gives f → 1 as r/ξ ' 1, and f → 0 as r̃ → 0. f deviates from unity and decreases
toward zero when r̃ is of the order of unity. That is equivalent to saying, the density starts
to deviate from n0 and decreases toward zero when r is smaller than ξ , which determines
that the size of the vortex core is of the order of ξ . This is similar to the size of soliton
core, which is also of the order of ξ , as discussed in Section 4.1. Physically, this is because
the amplitude of the local velocity becomes ∼ !/(mξ ) at r ∼ ξ , and it is easy to see
that !/(mξ ) ∼ c. Hence, when r < ξ , the amplitude of the local velocity field becomes
larger than the sound velocity. The condensate is depleted when the amplitude of the local
velocity is greater than the critical velocity.

Now if we consider any physical region and we draw a boundary of this region. In
this case, the physical region is a two-dimensional one and therefore the boundary is a
one-dimensional loop. When the density of the wave function at the boundary is nonzero
everywhere, the phase of the wave function is well defined, and it can take any value
between zero and 2π . Because zero and 2π correspond to the same wave function, they
are equivalent, and therefore the manifold of the phase of a wave function is also a one-
dimensional loop. Thus, this defines a mapping from S1 to S1. As we have discussed, this
mapping is characterized by the first order homotopy group $1(S1), and because π1(S1) =
Z , there are integer number of equivalent classes of mappings.

For instance, as shown in Figure 4.3, the four different cases correspond to four dif-
ferent mappings. In Figure 4.3(a) there is no vortex and the phase around the loop is a
constant, that is to say, all points in the spatial loop S1 (preimage) are mapped to one point
in the manifold S1 of the wave function phase (image). This is of course a topological

!Figure 4.3 Four different vortex configurations. (a) No vortex. (b) Two vortices with winding number+1 and−1, respectively.
(c) One vortex with winding number+1. (d) One vortex with winding number−1. (a) and (b) are topological
equivalent, and they are not topologically equivalent to (c) and (d). (c) and (d) are also not topologically equivalent to
each other.
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trivial mapping. In Figure 4.3(b), there exists two vortices with opposite winding num-
bers. In this case, if one goes around the spatial loop, there is certainly some variation of
the wave function phase. However, this mapping belongs to the same class as the trivial
mapping shown in Figure 4.3(a), because one can continuously bring together these two
vortices until they meet and annihilate, after which this mapping becomes the same as
Figure 4.3(a). Figures 4.3(c) and (d) contain a single vortex with winding number +1 or
−1, respectively. They are topologically distinct from Figures 4.3(a) and (b) and also they
are not topologically equivalent to each other. In this case, the net winding number inside
the loop is the topological invariant.

Since the change of the topological invariant must break the continuity in deforming the
mapping, the topological nature of vortices directly connects to the fact that the vortex den-
sity vanishes at the vortex center. For instance, one can continuously move a vortex from
outside to inside the loop, then the mapping of Figure 4.3(a) becomes that of Figure 4.3(c).
Or vice versa, one can move the vortex from inside to outside of the loop, then the mapping
of Figure 4.3(c) becomes that of Figure 4.3(a). Similarly, one can also move the antivortex
outside the loop, then the mapping of Figure 4.3(b) becomes that of Figure 4.3(c). How-
ever, in all these cases, either a vortex or an antivortex has to cross the loop. Precisely
because the density vanishes at the vortex center, when the vortex or the antivortex crosses
the loop, the density in the loop vanishes at the crossing point, and consequently, the phase
of the wave function is not well defined there. This breaks the continuity in deforming
the mapping. Because the singularity plays an important role in defining the topology for
vortices, this kind of topological object is also called topological defects.

Berezinskii–Kosterlitz–Thouless Transition. Second, we consider the excitation energy
in the presence of a single vortex with κ = 1. Comparing the energy given in Eq. 4.17
to the ground state energy, only the contribution from κ2f 2/r2 logarithmically depends on
the system size, and the rest terms all give finite contributions. To estimate the logarithmic
contribution, we approximate f as a step function with f = 1 for r > ξ and f = 0 for
r < ξ . This results in a simple expression of the energy of a single vortex in a disk with
radius R as

E = π!2n0

m
ln
(

R
ξ

)
, (4.19)

where n0 should be taken as the superfluid density. The error made by this step function
approximation of f is also finite, and all these finite contributions can be ignored compared
with the logarithmical energy dependence on system size for a large system.

Now let us turn to consider a finite temperature situation. The entropy of having a single
free vortex in the disk is associated with the possible choices of the locations of the vortex,
and all possible choices can be simply estimated as R2/ξ2. Thus, the entropy is given by

S = kB ln
R2

ξ2 . (4.20)

It is an important observation that both energy and entropy scale with the system size R in
the same way as log(R/ξ ). With this observation, Berezinskii, and independently, Kosterlitz
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and Thouless proposed a transition at finite temperature due to the proliferation of vortices,
which is now known as the Berezinskii–Kosterlitz–Thouless (BKT) transition.

The free-energy of a single free vortex at finite temperature is given by

F = kBT
(
π!2n0

mkBT
− 2

)
ln

R
ξ

= kBT
2

(
n0λ

2 − 4
)

ln
R
ξ

, (4.21)

where λ =
√

2π!2/(mkBT) is the thermal de Broglie wavelength. Thus, the BKT theory
predicts that at low-temperature when n0λ

2 > 4, the presence of vortex causes positive free
energy that logarithmically depends on the system size. Therefore, the thermal fluctuation
of a single free vortex will be strongly suppressed. The low-energy thermal fluctuation
is dominated by strongly confined vortex-anti-vortex pairs. This phase is also known as
vortex confined phase. In this phase, a quasi-long-range order of phase coherence can
be established and the system will be in a superfluid phase. As temperature increases, λ
decreases, and when n0λ < 4, the entropy term dominates and the free energy F for a
single vortex becomes negative. In this case, the thermal fluctuation of a single free vor-
tex will be strongly enhanced. Therefore, the system contains lots of thermally excited
free vortices or antivortices, which is called the proliferation of vortices. Once vortices
are proliferated, it destroys the long-range phase coherence and the correlation function
is exponentially decayed spatially. There will be no superfluidity at all, and the super-
fluid density n0 vanishes. Thus, the BKT transition predicts a universal jump of superfluid
density from n0λ

2 = 4 to zero at the transition point. This transition can also be viewed
as the confinement-deconfinement transition of vortices, and is known as a topological
phase transition. We discuss different meaning of the terminology of “topological phase
transition” in Box 4.1 in different context.

The first experiment on the BKT physics in the ultracold atomic system was reported
in Ref. [66]. Experimentally, they prepare two layers of two-dimensional (xy plane) ultra-
cold Bose gases, as shown in Figure 4.4(a). Then, the confinement along the ẑ direction
is released. As discussed in Section 3.2, the gas expands mostly along the confinement

Box 4.1 Topological Phase Transition

Conventionally, different phases are distinguished by their different symmetry properties or different correla-
tion properties. There are also cases that different phases are distinguished by different topological properties,
such as by topological number of the band structure for band insulators, as wewill discuss in Section 7.3, or by
topological degeneracy, such as in the case of the fractional quantum Hall effect. In literature, the terminol-
ogy “topological phase transition” means different contexts in different systems. In some cases, “topological
phase transition” actually means topological defect-driven phase transition, such as the BKT transition dis-
cussed here. However, phases at different sides of the BKT transition are distinguished by their correlation
properties, and in terms of topology, both are topologically trivial phases. In some other cases, “topologi-
cal phase transition” can also mean transition between two different phases defined by distinct topological
properties. Nevertheless, these transitions are usually not driven by topological defects.
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!Figure 4.4 Experiment on the Kosterlitz–Thouless phase transition. (a-b) Schematic of experimental setup and measurement.
(c–d) Two typical interference patterns with dislocations. (e) The number of free vortices changes as temperature
varies. Reprinted from Ref. [66]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

direction. Therefore, after expansion, two systems will overlap along the z direction and
form an inference pattern, which can be measured by imagining beam perpendicular to the
ẑ direction, as shown in Figure 4.4(b). Then, if a free vortex is presented in one layer
but not in another layer, it manifests itself as a dislocation in the interference pattern.
Thus, the number of dislocations in the interference pattern reveals the number of free
vortices. Figures 4.4(c) and (d) show examples where one (c) or several (d) free vortices
are found. With this method, as shown in Figure 4.4(e), experimentally one finds that the
vortex number suddenly increases as temperature increases beyond a critical temperature.
Later, as shown in Figure 4.5, the critical velocity has also measured by stirring the Bose
gas with a focused beam, and a jump of critical velocity is also found across a critical
temperature [49], consistent with the universal jump of superfluid density predicted by the
BKT theory.

From the discussion made above, it is clear that the existence of the BKT transition does
not depend on the microscopic details of the system, but requires following two conditions:

• The first condition is the topological condition, which requires the existence of stable
topological defects. This stable topological defect is ensured by a nontrivial $d−1(M),
where d is the spatial dimension. For instance, we can also consider the BKT transition
in two-dimensional spin models with short-range interactions. In some models such as
the XY model, the spins are restricted to the equator of the Bloch sphere, and therefore,
the manifold of the spin is also U(1). There are also vortices as topological defects
and the same kind of BKT transition can occur. However, if the spin is free to choose
any direction in the two-dimensional Bloch sphere, such as in the isotropic Heisenberg
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!Figure 4.5 Experiment on the jump of superfluid density. The critical velocity as a function ofµ/(kBT). Reprinted from Ref.
[49]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

model, the manifold of the spin is S2. Because $1(S2) is trivial, there is no topological
defect in this model and therefore the BKT type transition does not exist in this model.

• The second condition is the energy condition, which requires the energy of the topologi-
cal defect scales with system size in the same way as the entropy. Again, considering the
isotropic spin models, as we will discuss in Section 4.4, there exists topological defects
in three-dimensional system because of $2(S2) = Z , which is known as monopole.
However, as we will discuss in Section 4.4, the energy of monopole does not scale the
same way as entropy, and therefore, the BKT transition also cannot occur there.

Fast Rotation and the Vortex Lattices. Finally, let us turn into the case that the system
is rotated along ẑ with a fixed rotational frequency +. In the moving frame there exists
an additional term −+ · Lz which is originated from the Coriolis force. This term gives
an energy ∼ −!+πκR2n0, which favors increasing the number of net vorticity. Thus,
the ground state changes from a vortex free state to a state with vortices above a critical
velocity, and this critical velocity is estimated by

π!2n0

m
ln
(

R
ξ

)
− !+cπR2n0 = 0, (4.22)

which gives

+c ∼ !
mR2 ln

(
R
ξ

)
. (4.23)

For typical parameters of ultracold atomic systems, +c is smaller than the trapping fre-
quency ω. In Figure 4.6 we show an experimental measurement of vortex number which
changes from zero to nonzero above a critical rotational frequency, and increases with the
increasing of the rotational frequency.

As the rotational frequency further increases, more and more vortices enter the conden-
sate and the question is how these vortices arrange themselves into an energetically stable
configuration. In fact, a natural expectation is that these vortices form a lattice. Then the
next question is what is the lattice structure is the most stable one that minimizes the total
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!Figure 4.6 Experiment on vortex generation. Vortex number increases when the rotational frequency increases. Reprinted from
Ref. [116].

energy. This question is first answered by Abrikosov in 1957 in the context of type-II super-
conductor. He showed that the most stable lattice structure is a triangular lattice, using a
variational wave function approach. Therefore, this vortex lattice is also called abrikosov
vortex lattice. The similar variational wave function can also be applied to a fast rotating
Bose–Einstein condensate and one can reach the same conclusion that the triangular lat-
tice is the most stable one [122]. Below we will briefly discuss the key idea behind this
variational wave function approach [122].

To this end, we first consider the single-particle Hamiltonian

Ĥ0 = −!2∇2

2m
+ 1

2
mω2r2 −+L̂z. (4.24)

One can find the eigenspectrum is given by Enr ,m = nr!ω−m!+, where nr and m are both
integers. In the fast rotating limit when + → ω, all states with the same nr − m become
nearly degenerate, and the states with nr = m form the lowest Landau level. The reason
we call them the Landau levels is because Eq. 4.24 can be rewritten as

Ĥ0 = 1
2m

[
(p̂x + m+y)2 + (p̂y − m+x)2

]
+ 1

2
m(ω2 −+2)r2. (4.25)

Eq. 4.25 can be viewed as a particle in a magnetic field, with Ax = −m+y and Ay = m+x.
Hence effectively, the magnetic field is given by Beff = ∇ × A = 2m+ẑ. Therefore, the
vortex density is directly related to the flux density of the effective magnetic field. When
+ → ω, the residual trapping potential vanishes, and the Hamiltonian is purely a particle
in a magnetic field, whose eigenstates are the Landau levels. The wave function of states
in the Landau level are given by

ψm ∝ zme−|z|2/(2a2), (4.26)

where a = √
!/(m+) is the harmonic length. These wave functions are analytical function

of z = x + iy, aside from an exponential factor e−|z|2/(2a2). Therefore, any superposition of
the lowest Landau level wave functions can be expressed as

ψ = f (z)e−|z|2/(2a2), (4.27)

and the zeros of f (z) determine the location of vortices. Thus, if vortices form a lattice,
without loss of generality, we can choose the two lattice vectors as B1 = b1x̂ and B2 =
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b1(ux̂ + vŷ). It means if z0 is a zero of f (z), z0 + b1 and z0 + b2 are also zeros of f (z), where
b2 = b1(u + iv).

Therefore, what we should look for is an analytical function whose zeros form a regular
lattice. In fact, the Jacobi Theta function is such an analytical function and therefore, we
can use the Jacobi Theta function as a variational wave function to determine the lattice
structure. We will not go into the details of the derivations here. In the end, using the
mathematically properties of the Jacobi-theta function and the cylindrical symmetry, we
can eventually obtain the density profile of such a vortex lattice state as [122]

n(r) =
[

1
vc

∑

K

nKeiKr

]

e−r2/σ 2
. (4.28)

Here vc = b2
1v is the area of a unit cell, and

1
σ 2 = 1

a2 − π

vc
. (4.29)

Eq. 4.29 shows that

1. vc is limited by πa2. This is because the rotational frequency + has to be smaller than
the trapping frequency ω, which imposes a constraint on the upper limit of the effective
flux density.

2. In the fast rotation limit + → ω, vc approaches πa2. In this case, σ 2 becomes much
larger than πa2 and the cloud size is significantly expanded.

In Eq. 4.28, K = l1K1 + l2K2, and the two reciprocal vectors K1 and K2 are given by
K1 = 2πB2 × z/vc = (2π/b1)(x̂ − uŷ/v) and K2 = 2πB1 × z/vc = −(2π/b1)ŷ/v. nK is
a function of K1 and K2 and the functional form can be obtained explicitly with the help
of the Jacobi Theta function. Since we have made the lowest Landau level approximation
at the beginning, the single-particle energy is already degenerate. Thus, the vortex lattice
structure is eventually determined by minimizing the interaction energy given by

Eint = U
2

∫
n2(r)d2r, (4.30)

where U is the interaction strength. Using Eq. 4.28, minimizing the interaction energy can
determine the vortex lattice structure. From this calculation one can find out that u and v of
a triangular lattice gives the lowest energy. That is why vortex lattices are always triangular
in superfluid and superconductor. In Figure 4.7 we show an experimental observation that
vortices in a single component BEC always arrange themselves into a triangular lattice,
when the vortex number varies from dozens to hundreds. The same variational wave func-
tion method can also be generalized to studying vortex lattices in other situations such as
two-component Bose condensate [122], Bose condensate with dipolar interaction [188] or
even Bose–Fermi superfluid mixture [83].
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!Figure 4.7 Experiment on triangular vortex lattice in BEC. The number of vortices is (a) 16, (b) 32, (c) 80, and (d) 130. In all these
cases, the vortices are arranged into a triangular lattice. Reprinted from Ref. [2].

4.3 Spinor Condensate

So far we have focused on Bose–Einstein condensate of bosons without internal spin
degree of freedom. However, as we discussed in Section 1.1, most atoms have spins. Tak-
ing alkali-metal atoms as an example, at the low-field limit the hyperfine spin F naturally
gives the spin degree of freedom for an alkali-metal atom, which usually takes value either
one or two. In Section 1.3, we have discussed that all these spin states can be simultane-
ously trapped in an optical trap. In Section 2.3, we have also discussed the spin-dependent
two-body interaction between two spinful atoms, subjected to the total spin rotational
symmetry. In this section, we will discuss the properties of Bose–Einstein condensate
of these spinful atoms due to the spin-dependent interactions. We will discuss both the
ground state property in this section and the topological excitations in these systems in
next section.

Majorana Stellar Representation of High Spins. Before proceeding to discussing the
property of a BEC, let us first address the question that what is the most intuitive way
to represent a spin-F state. F = 1/2 is the situation that we are mostly familiar with,
where we always represent a spin-1/2 as a unit vector in the unit sphere of the three-
dimensional space, or a point in the Bloch sphere. This is a faithful representation of a spin-
1/2. Because in the |F, Fz〉 bases, a spin-1/2 wave function can be written as a normalized
two-component spinor (ψ 1

2
,ψ− 1

2
). Aside from a total phase, the wave function can be

written as (cos(θ/2), eiφ sin(θ/2)), and the degree of freedom is the same as a point in the
Bloch sphere. Nevertheless, for a spin-F wave function, it is represented by a normalized
2F + 1-component spinor (ψF ,ψF−1, . . . ,ψ−F). Aside from the total phase, the degree
of freedom are 4F real numbers. Thus, a single point in the Bloch sphere is certainly
not a sufficient geometric representation of the state. By counting the degree of freedom,
one may guess that such a spin state should be represented by 2F points in the Bloch
sphere. In fact, such a representation indeed exists and it is known as the Majorana Stellar
Representation of high spins [117, 10, 13, 164, 110].
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To determine these 2F points for a given state, we first introduce the Schwinger boson
representation of the spin operators. Let us introduce â and b̂ as two bosonic operators, we
denote

F̂x = 1
2

(â†b̂ + b̂†â), (4.31)

F̂y = 1
2i

(â†b̂ − b̂†â), (4.32)

F̂z = 1
2

(â†â − b̂†b̂). (4.33)

It is easy to check that when â and b̂ satisfy boson commutation relations, F̂x, F̂y and F̂z

defined in this way satisfy the spin commutation relations. Using the Schwinger boson
representation, the quantum state |F, Fz〉 can be represented by

|F, Fz〉 = 1√
(F + Fz)! (F − Fz)!

â†F+Fz b̂†F−Fz |0〉, (4.34)

where |0〉 represents the vacuum of both â and b̂ bosons. In this way, for a given state
described by a spinor (ψF ,ψF−1, . . . ,ψ−F), the wave function can be written as

|ψ〉 =
F∑

Fz=−F

ψFz |F, Fz〉 =
F∑

Fz=−F

ψFz

1√
(F + Fz)! (F − Fz)!

â†F+Fz b̂†F−Fz |0〉. (4.35)

Eq. 4.35 can be viewed as a homogeneous polynomial of â† and b̂† of degree 2F, therefore,
without loss of generality, it can be factorized as

|ψ〉 = 1
N

2F∏

i=1

(uiâ† + vib̂†)|0〉, (4.36)

where {ui, vi} are a pair of complex numbers, and N is a normalization factor to ensure that
we can normalize all {ui, vi} as |ui|2 +|vi|2 = 1. By absorbing an overall phase into N , we
can always write ui = cos(θi/2) and vi = eiφi sin(θi/2), such that each pair of {ui, vi} can
be represented by a unit vector n̂i in the Bloch sphere with polar angle {θi,φi}. In this way,
we determine 2F points in the Bloch sphere that form a complete description of a spin-F
quantum state. This is the Majorana Stellar Representation.

The advantage of this representation is that it is very intuitive to visualize the symmetry
operator acting on a state. Let {n̂i, i = 1, . . . , 2F} be 2F Majorana points for state |ψ〉, one
can show following two results [13, 110]

• If one applies a spin rotation Û to state |ψ〉, the Majorana stellar representation of Û |ψ〉
corresponds to a Cartesian rotation of all n̂i vectors simultaneously in the Euclidian
space with the same rotational angles.

• If one applies a time-reversal operator R̂ to state |ψ〉, R̂|ψ〉 is described by 2F points of
−n̂i as a central reflection of the original vectors.

With these two results, the advantage of this representation becomes quite clear:
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• It very intuitively illustrates the symmetry of a state. As discussed before, by “symmetry
of a state,” it means a group of symmetry operators and when these operators act on the
state |ψ〉, it results in the same state up to a global phase. Thus, if the distribution of all
these 2F points is invariant under certain kind of rotation or a reflection, it means that
such a state has certain spin rotational symmetry or the time reversal symmetry.

• It can also help to easily identify whether two states are related by a spin rotation or
the time-reversal symmetry. If the distribution of the 2F points of one state can coincide
with the distribution of the 2F points of another state upon a rotation or reflection, that
means these two states are related by a spin rotation or the time reversal symmetry.
Furthermore, if the Hamiltonian is also invariant under the spin rotation or the time
reversal symmetry, these two states should have same energy.

New we discuss a few examples:

• Let us consider a spin-1 state (1, 0, 0), one can show that these two points sit together
at the north pole, as shown in Figure 4.8(a). It is clear that this state is invariant under
a U(1) rotation along the ẑ axes, but it is not invariant under rotation along other axes
and is not invariant under the time reversal symmetry. Similarly, the state (0, 0, 1) is
represented by two points sitting together at the south pole, as shown in Figure 4.8(b).
We can also conclude that states (1, 0, 0) and (0, 0, 1) can be related to each other either
by a spin rotation or by the time reversal symmetry.

!Figure 4.8 Examples of the Majorana stellar representation. (a–d) Four different spin-1 wave functions as shown below the
figures. (e) A spin-2 wave function. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.
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• Considering another spin-1 state (0, 1, 0), its Majorana stellar representation is given by
one point sitting at the north pole and the other point sitting at the south pole, as shown
in Figure 4.8(c). For this state, in addition to the rotational symmetry along the ẑ axes,
it is clear that this state is also invariant under the time reversal symmetry. Considering
another state (1, 0, eiδ)/

√
2, its Majorana stellar representation are two points sitting

at the equator and being opposite to each other, as displayed in Figure 4.8(d). Hence,
states (0, 1, 0) and (1, 0, eiδ)/

√
2 can also be related to each other by a spin rotation. But

neither (1, 0, 0) nor (0, 0, 1) can be rotated to (0, 1, 0) or (1, 0, eiδ)/
√

2 by spin rotation.
Thus, for a spin rotational invariant Hamiltonian, the energies of (1, 0, 0) and (0, 0, 1)
states are degenerate, and the energies of (0, 1, 0) and (1, 0, eiδ)/

√
2 states are degenerate.

However, the energies of (1, 0, 0) and (0, 0, 1) are not degenerate with the energies of
(0, 1, 0) and (1, 0, eiδ)/

√
2.

• Let us consider a spin-2 state as (1/
√

3, 0, 0,
√

2/3, 0), the four points form a tetrahedron
in the Bloch sphere [13], as shown in Figure 4.8(e). Thus, this state has the full point
group symmetry of a tetrahedron. This symmetry contains four different C3 (rotation by
2π/3) rotation along four different symmetry axes. This example illustrates the power
of this representation, because, if not using the Majorana stellar representation, it is very
difficulty to visualize that this spin state has such point group symmetry just from the
five components spin wave function.

Ferromagnetic versus Polar Condensate. Now let us consider spin-1 bosons as an exam-
ple. The many-body Hamiltonian is similar as Eq. 3.14, and the difference is that the
interaction part is replaced by the form of Eq. 2.37 between two spin-1 bosons discussed
in Section 2.3, that is,

Ĥ =
N∑

i=1

(
p̂2

i

2m
+ V( ri)

)

+
∑

i<j

4π!2

m

(
a(n) + a(s)Fi · Fj

)
δ(rij)

∂

∂rij
rij. (4.37)

Similar to the discussed made in Section 3.1, we consider a simple Bose condensate state
where all bosons are condensed in the same state and the many-body wave function is
given by

/ =
N∏

i=1

(ψ−1(ri)|1, −1〉 + ψ0( ri)|1, 0〉 + ψ1(ri)|1, 1〉) . (4.38)

Here, without loss of generality, the condensate wave function can be represented by
ψ(r) = (ψ−1(r),ψ0(r),ψ1(r)) = √

n( r)eiθ ζ (r), where ζ (r) satisfies ζ (r)ζ †(r) = 1. Using
this as the variational wave function, and following similar discussion as in Section 3.2,
and rescaling

√
Nψ(r) → ψ(r), we reach the energy function

E
N

=
∫

d3r

[

ψ∗,T (r)

(

−!2∇2

2m
+ V(r)

)

ψ(r) + 2π!2

m
n2( r)(a(n) + a(s)〈F〉2)

]

, (4.39)
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where 〈F〉2 explicitly means (ζFxζ
†)2 + (ζFyζ

†)2 + (ζFzζ
†)2, and Fx,y,z here denotes the

spin-1 representation of the three generators for the SO(3) group,3 that is,

Fx =





0 1√
2

0
1√
2

0 1√
2

0 1√
2

0



 ; Fy =





0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0



 ;

Fz =




1 0 0
0 0 0
0 0 −1



 . (4.40)

We consider a repulsive density-density interaction with a(n) > 0. As we discussed
in Section 2.3, typically the absolute value of a(s) is much smaller than a(n), such that
a(n) + a(s)〈F〉2 is always positive that ensures the stability of the condensate. a(s) can be
either positive, such as in the case of 23Na, or negative such as in the case of 87Rb. As
we will see, the sign of a(s) is crucial for determining the spin structure of the condensate
[70, 130, 164]. Here we first consider a uniform system with V(r) = 0, where bosons are
condensed in a zero-momentum state and n(r) is a constant. Therefore, minimization of
energy simply becomes minimizing a(s)〈F〉2.

Here we are interested in finding out the degenerate space of the ground state spin wave
function. First of all, it is important to note that this Hamiltonian, as well as its mean-
field version, is invariant under a U(1) phase rotation eiδ and a SO(3) spin rotation U =
e−iF̂zαe−iF̂yβe−iF̂zγ , and we denote G = U(1) × SO(3). That to say, a state |ζ 〉 has the same
energy as the state G|ζ 〉. Then, we should determine the symmetry group H under which
the state is invariant. Hence, the degenerate space is given by G/H. We will see that the
Majorana stellar representation is very useful for this purpose.

For a(s) < 0, energy minimization favors maximizing 〈F〉2. This means that |〈F〉| should
be taken as unity and it can be satisfied by choosing ζ = (1, 0, 0). This is called the ferro-
magnetic state. Therefore, all elements in G acting on ζ = (1, 0, 0) generate all degenerate
ferromagnetic states, that is,

ζ †
F = eiδU




1
0
0



 = ei(δ−γ )




e−iα cos2 β

2
1√
2

sinβ

eiα sin2 β
2



 . (4.41)

As we have shown above using the Majorana stellar representation, the state (1, 0, 0) is
invariant under a U(1) rotation along the ẑ axes. Hence, H = U(1). Thus, the degenerate
space of the ferromagnetic state is characterized by the coset

M = U(1) × SO(3)/U(1) = SO(3). (4.42)

It can also be viewed intuitively from Eq. 4.41 that δ−γ can be combined as a single phase,
and then the entire wave function can be viewed as a SO(3) rotation applied to ζ = (1, 0, 0).

For a(s) > 0, energy minimization favors minimizing 〈F〉2. This means that |〈F〉| should
be taken as zero and it can be satisfied by choosing ζ = (0, 1, 0). This is called the

3 Note that SO(3) group is isomorphic to SU(2) group.
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antiferromagnetic state or the polar state. Similarly, all degenerate polar states can be
generated by applying all elements in G to ζ = (0, 1, 0), that is,

ζ †
P = eiδU




0
1
0



 = eiδ





− e−iα√
2

sinβ

cosβ
eiα√

2
sinβ



 . (4.43)

As we have also shown above using the Majorana stellar representation, the (0, 1, 0) state
is invariant under a U(1) rotation along ẑ axes and a Z2 time-reversal symmetry. Hence,
H = U(1) × Z2. Thus, the degenerate space of the polar state is given by the coset

M = U(1) × SO(3)
U(1) × Z2

= U(1) × S2

Z2
, (4.44)

where S2 denotes the space of a two-dimensional unit sphere. It is easily to show that
〈 F〉 = (0, 0, 0) for all polar states. Unlike the spin-1/2 case, here all three spin components
can vanish simultaneously. In fact, the spin part of the wave function Eq. 4.43 can be
represented by a nematic vector n = (sinβ cosα, sinβ sinα, cosβ), where α and β are
respectively the azimuthal angle and the polar angle on the unit sphere. The wave function
Eq. 4.43 can be rewritten as

ζ †
P = eiδ




− 1√

2
(nx − iny)

nz
1√
2

(nx + iny)



 . (4.45)

Actually, this n vector is one of the points in the Majorana stellar representation of the
polar state. Because the polar state is represented by a pair of two opposite points n and
−n, thus, n and −n actually represent the same state. That is why this vector is called the
nematic vector, because nematic refers to an orientation without direction. From the wave
function, one can also see that if (α,β) is changed to (α + π ,π − β), that is, n is changed
to −n, the spinor part of the wave function only differs by a minus sign, which can be
absorbed by changing δ → δ + π . Thus, these two states become identical. By noticing
this Z2 redundancy, the actual degenerate space is U(1) × S2/Z2.

Singlet Pair Condensate. Here we consider a simpler situation that the spatial wave func-
tion is fixed and the spatial fluctuation and dynamics of the wave function is frozen, and we
only consider the spin wave function. This is also known as the single spatial mode approx-
imation. Let â0,±1 be the annihilation operators for these three different Fz components on
this single mode, the Hamiltonian Eq. 4.37 reduces to

Ĥ = a(s)F̂
2
, (4.46)

where F̂x + iF̂y =
√

2(â†
1â0 + â†

0â−1) and F̂x − iF̂y =
√

2(â†
0â1 + â†

−1â0), and F̂z =
â†

1â1 − â†
−1â−1. It can be shown that when a(s) > 0, the exact ground state of this spin

Hamiltonian is a total spin singlet given by [104]

|S〉 ∝ (−2â†
1â†

−1 + â†2
0 )N/2|0〉. (4.47)
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This state is a fragmented state in terms of one-body density matrix, similar as the Fock
state that we have discussed in Section 3.5. In terms of two-body density matrix, it is
a simple Bose condensation. Here the operator −2â†

1â†
−1 + â†2

0 creates a pair of bosons
that form a spin singlet of two S = 1 atoms. Intuitively, Eq. 4.47 means that two bosons
form a singlet pair and these singlet pairs condense. Therefore, it is also called the pair
condensate.

It is quite obvious that this exact ground state Eq. 4.47 is very different from a mean-field
state. With the expression Eq. 4.45, the mean-field state can be written as

|MF〉 = 1√
N!

(

− â†
1√
2

(nx − iny) + nzâ
†
0 +

â†
−1√
2

(nx + iny)

)N

|0〉

= 1√
N!

(
n · Â

†)N
|0〉, (4.48)

where Â†
x = (â†

−1 − â†
1)/

√
2, Â†

y = i(â†
−1 + â†

1)/
√

2 and Â†
z = â0. To show the relation

between the total spin singlet state and the mean-field state, it can be shown that [123]
∫

dn
1

4π
(n · A†)N |0〉 ∝ (A† · A†)N/2|0〉. (4.49)

And it is easy to show that

A† · A† = −2â†
1â†

−1 + â†2
0 . (4.50)

That is to say, if we start from a mean-field state and let the mean-field order strongly
fluctuate and spread over the entire S2 sphere, it yields a singlet pair condensate phase. This
is actually the same physics as we have discussed in Section 3.5, where we have shown that
a strong phase fluctuation can yield a fragmented condensate. In fact, it is generally true
that strong fluctuation of mean-field order parameters can render a simple condensate into
a boson pair condensate.

Quadratic Zeeman Effect. Finally, let us mention the role of a Zeeman field. As discussed
in Section 1.2, Zeeman field creates both linear and quadratic Zeeman effects. Because
the linear Zeeman effect is given by hFz, and the total Fz is conserved during the spin-
exchanging collision, the linear Zeeman field is therefore always a constant and does not
play any role in determining the spin structure. Thus, we mainly focus on the quadratic
Zeeman effect given by qF2

z . q can be tuned to be either positive or negative. Here let us
focus on the case with positive q. A positive q favors minimizing 〈F̂2

z 〉. For a ferromagnetic
state described by the wave function Eq. 4.41, 〈F̂2

z 〉 = 1− (1/2) sin2 β. Thus, minimization
of 〈F̂2

z 〉 favors β = π/2, and the ferromagnetic wave function reduces to

ζ 〉†
F = ei(δ−γ )





1
2 e−iα

1√
2

1
2 eiα



 . (4.51)

This corresponds to an in-plane ferromagnetic state, where 〈F〉 = (cosα, sinα, 0). So the
physical meaning of α is the azimuthal spin angle. The degenerate manifold is reduced to



139 Topological Excitations in Spinor Condensate

U(1)×U(1). For a polar state described by Eq. 4.43, 〈F̂2
z 〉 = − cos(2β). Thus, minimization

of 〈F̂2
z 〉 favors β = 0, and the polar wave function reduces to

|ζ †
P = eiδ




0
1
0



 . (4.52)

This degenerate manifold becomes U(1) alone.

4.4 Topological Excitations in Spinor Condensate

In Section 4.2 we have discussed that the topological defects can be classified by the homo-
topy group of the order parameter degenerate manifold. For a spinless condensate, the order
parameter manifold is the U(1) phase. In Section 4.3 we have shown that the order param-
eter manifold for a spinful condensate can possess much richer structure, therefore, it can
host much richer topological excitations. We will discuss some typical ones in this session.

Spin Vortex in Ferromagnetic Condensate. Before we discuss more complicated topo-
logical structures, let us revisit vortex that we have discussed in Section 4.2. In Section 4.2
we have discussed vortex as topological excitation in a spinless condensate, which cre-
ates a point defect in the U(1) phase of the order parameter. Now we revisit it for a spin
vortex. Let us first consider the situation of the ferromagnetic condensate under a positive
quadratic Zeeman field q > 0, whose ground state wave function is given by Eq. 4.51. It is
quite clear that there are two U(1) phases. The overall phase is δ − γ , and a vortex in this
phase is the same as a vortex in the spinless condensate, which manifests itself as a circulat-
ing density current. The new type of vortex is a vortex in the phase α, for instance, α = κϕ,
where κ is an integer and ϕ is the spatial azimuthal angle. This vortex does not generate
circulating density current. Because as one can see from Eq. 4.51, this corresponds to that
the |1, 1〉 component has a vortex with winding number +κ and the |1, −1〉 component has
a vortex with winding number −κ , therefore, the total density current cancels out. On the
other hand, as discussed above, because the physical meaning of α is the azimuthal spin
angle along the equator of the Bloch sphere, the geometric picture of this vortex is that the
spin winds around the equator of the Bloch sphere for κ times. Hence, it is named as spin
vortex.

A question here is what happens to the core of a spin vortex. Because both the |1, 1〉 and
|1, −1〉 components contain vorticity that diverges at the vortex core, the densities of these
two components must vanish at the vortex core for the same reason as we discussed in the
spinless case. One can at least think about following three possibilities for the fate of the
core of a spin vortex. As we will discuss below, the energy costs are different for different
cases.

• Empty Core Vortex: The total density n vanishes and the core is completely empty, as
shown in Figure 4.9(a). This costs the density-density interaction energy a(n)(n − n̄)2
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!Figure 4.9 Different types of spin vortex. In a ferromagnetic condensate with positive quadratic Zeeman energy, there are three
types of spin vortex with different core structures. (a) Empty core vortex where the total density vanishes inside the
vortex core. (b) Polar core vortex where the spin wave function becomes a polar state inside the vortex core. (c)
Mermin-Ho vortex where spins point out of the plane inside the vortex core. A color version of this figure can be found
in the resources tab for this book at cambridge.org/zhai.

inside the vortex core, because the density deviates from the average density n̄. In this
case, the vortex core size is of the order of healing length ξ .

• Polar Core Vortex: Let us write a wave function ansatz as

ei(δ−γ )





1
2 f (r)e−iκθ

1√
2

√
2 − f 2(r)

1
2 f (r)eiκθ



 . (4.53)

where f (r) → 1 for r ' ξs and f (r) → 0 for r → 0. When f = 1 the wave function
recovers a ferromagnetic state Eq. 4.51. When f = 0, the wave function becomes a polar
state Eq. 4.43. Thus, from r ' ξs to r → 0, the density of the wave function remains
a constant, and the spin wave function interpolates between a ferromagnetic state and a
polar state. This is called polar core vortex, as shown in Figure 4.9(b). This vortex core
causes the spin-dependent interaction energy a(s)〈F〉2n2. Hence, ξs should be determined
by the balance between the spin-dependent interaction energy and the kinetic energy,
such that ξs is called the spin healing length determined by 1/

√
8πa(s)n. Typically the

spin healing length is larger than the healing length introduced in Section 3.3 because
a(n) is usually much larger than a(s).

• Mermin-Ho Vortex: Let us consider a wave function ansatz



cos2 β(r)

2
eiκθ 1√

2
sinβ(r)

e2iκθ sin2 β(r)
2



 = eiκθ




e−iκθ cos2 β(r)

2
1√
2

sinβ(r)

eiκθ sin2 β(r)
2



 , (4.54)

and β(r) → 0 for r → 0 and β(r) → π/2 for r → ∞. This is a combination of regular
vortex with winding number κ in the total phase δ − γ and a spin vortex with the same
winding number κ in α, as shown in Eq. 4.54. Consequently, the wave function shows no
vortex in the |1, 1〉 component, a vortex with winding number κ in the |1, 0〉 component
and a vortex with winding number 2κ in the |1, −1〉 component. Because β(r) → 0 as
r → 0, the density in |1, 0〉 and |1, −1〉 components vanish as we expected. From the
spin configuration point of view, the vortex in the total phase does not affect the spin
configuration, and at long distance, spins still wind around the equator for κ time. But
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in short distance, when β → 0, spins no longer lie in the equator but point to the north
pole, as shown in Figure 4.9(c). This is known as the Mermin-Ho vortex [119]. Unlike
the polar-core vortex, this wave function always stays in the ferromagnetic manifold in
the entire space, and the lengths of the spins are always maximized. Thus, this state does
not cause any interaction energy. However, because spins point out the equator, this state
causes quadratic Zeeman energy for positive q.

In summary, the empty core vortex causes density interaction energy, the polar core vor-
tex causes spin-dependent interaction energy and the Mermin-Ho vortex causes quadratic
Zeeman energy. In reality, the energy competition determines which situation should take
place.

Half-Vortex in Polar Condensate. Here we consider the polar condensate and return to
consider the phase vortex. Usually for a phase vortex, the phase change around any closed
loop should be integers times of 2π to ensure the uniqueness of the wave function. How-
ever, there exists such a phase vortex in polar condensate whose phase can only change by
π for a closed loop. Such a vortex is called a half vortex.

Let us consider the wave function ansatz

eiϕ/2





− e−iα√
2

sin(ϕ/2)

cos(ϕ/2)
eiα√

2
sin(ϕ/2)



 , (4.55)

where ϕ is the spatial azimuthal angle, and around any closed loop, ϕ changes by 2π .
Nevertheless, for this wave function, the total phase only changes by π , but the spin part
also acquires a minus sign, such that the total wave function retains invariant. This property
is because the spin wave function has a Z2 symmetry which can be combined with the phase
twist. In more sophisticated situation like spin-2 condensate with tetrahedral symmetry, one
can combine the phase twist with the tetrahedral point group symmetry of the spin part to
realize vortices with richer structure. Since the tetrahedral symmetry group is a non-abelian
one, this realizes non-abelian topological defects [118].

Monopole versus Skyrmion. In Section 4.2, we have introduced vortex as a topological
defect in two-dimensional space. We have discussed that the topological defects are clas-
sified by mapping from boundaries of a physical region to the order parameter space M.
With the help of the homotopy group, in two-dimensional space, such mappings are clas-
sified by $1(M). When this mapping is nontrivial, for instance, when M is a U(1) group,
the boundary cannot be shrink to one point without crossing singularity of the mapping.
Thus, this gives rise to a point topological defect called vortex. With similar spirit, we can
consider a point defect in three dimensions. In this case, we consider a two-dimensional
sphere as a boundary of three-dimensional physical region, and the mappings from this
sphere to the order parameter manifold M are classified by $2(M). If this mapping is
nontrivial, one also cannot shrink the sphere to a point without crossing singularity. This
gives rise to a point defect in three-dimensional space known as monopole. Thus, in order
to find a system that can support a topological stable monopole excitation, one has to find
a condensate whose order parameter manifold has nontrivial second homotopy group. The
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!Figure 4.10 Schematic of monopole versus skyrmion: (a) Monopole as a singular topological defect in three-dimensional space.
(b) Skyrmion as a non=singular topological object in compacted two-dimensional space. Both are mathematically
described by$2(S2) = Z . A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

simplest nontrivial example of $2(M) is that M is also a two-dimensional sphere S2,
such as the n space in the polor condensate discussed in Section 4.3. Hence, there is stable
monopole excitation in a polar condensate. We shall note that because$2(SO(3)) is a trivial
one, there does not exist stable topological monopole in the ferromagnetic condensate.

Let us now concretely construct a monopole excitation. We take n(r) = r̂, as shown
in Figure 4.10(a). In this way, the order parameter n always fully covers the entire Bloch
sphere for any surface enclosed r = 0, and the n field displays a singularity when the
sphere shrinks toward r = 0. This gives rise to a monopole sitting at r = 0 with Chern
number being unity. It is not difficult to show that the kinetic energy of this monopole
configuration is given by

!2

2m

∑

i=x,y,z

(∂in)2 ∝ !2

2mr2 . (4.56)

Therefore, on one hand, similar as the vortex core, the density has to vanish when r → 0,
which gives rise to a monopole core of the order of healing length ξ . And on the other
hand, at the long distance, the integration depends on the system size as

!2

2m

∫ R

ξ
r2dr

1
r2 = !2

2m
R
ξ

. (4.57)

In the case of vortex, the energy of a vortex logarithmically depends on system size, which
scales the same way as the entropy. However, in this case, the energy of a monopole
depends linearly on the system size. For sufficiently large system, the energy cost is always
larger than the entropy gain. Therefore, at finite temperature the system is always in a
monopole confinement phase. That is why the BKT transition does not exist in such a
three-dimensional spin system.
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Table 4.1 Different types of topological objects

Singular defects Nonsingular objects

Mapping From Boundary of a Region Sd−1 From compactified space Sd
to Order Parameter Space M to order parameter space M

Homotopy group $d−1(M) $d(M)
Examples in 2D $1(S1): Vortex in 2D $2(S2): Skyrmion in 2D

(winding number) (Chern number)
Examples in 3D $2(S2): Monopole in 3D $3(S2) Knots in 3D

(Chern number) (linking number)

Unlike the topological defects, there also exists another type of nonsingular topological
object. This topological object is defined through a mapping from the entire spatial space
to the order parameter space. However, there is an obstacle if one wants to classify such
mapping with homotopy group. Because the homotopy groups are defined by mapping
from Sn to the order parameter space M, and Sn is a closed manifold without boundary.
However, a physical spatial space is an open manifold with boundary. Therefore, in order to
classify such excitations with topology, one needs to first compactify the spatial space. This
can be done by imposing a boundary condition that the wave function approaches the same
value as r approaches infinity from different directions. When this boundary condition is
imposed, as far as such mappings are concerned, all the infinite can be regarded as the
same point, and a d-dimensional space is compacified as Sd. Hence, in d dimensions, such
topological objects are classified by $d(M).

For instance, considering two-dimensional space with order parameter space M = S2,
an example of nontrivial mapping is shown in Figure 4.10(b) and such topological object
is called Skyrmion. For example, we can write

n = (sinβ(r) sinϕ, sinβ(r) cosϕ, cosβ(r)), (4.58)

where r = (r sinϕ, r cosϕ) and ϕ is the azimuthal angle. β(r → 0) → 0 and β(r →
∞) → π . In this configuration, spin points to the north pole at r = 0, and all spins
point to the south pole at r = ∞ regardless the azimuthal angle ϕ. Thus, it satisfies the
boundary condition to compactify the two-dimensional space. It is easy to see that, for the
entire two-dimensional space, the S2 space is also fully covered once, and therefore, the
topological invariant is unity. By continuously deforming the mapping, one can show that
the topological charge cannot be changed as long as the boundary condition is not changed.
From this example, it is also easy to show that this topological object is different from a
topological defect, because the mapping is smooth everywhere and there is no singularity
of the n(r) field in the entire space.

In Table 4.1 we compare two different types of topological objects as discussed above.
As one can see, although both monopole in three dimensions and skyrmion in two
dimensions are mathematically described by $2(S2), physically they are distinct topo-
logical excitations. In Sections 7.2 and 7.3, we will discuss band theory with nontrivial
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topology, where we will also use the homotopy group to characterize the mapping from
the momentum space to the Bloch wave function space. Similarly, we will discuss two
types of band structures. One is semimetal with singularities and the other is a band insu-
lator without singularity. The semimetal has similar mathematical structure as topological
defect, and the topological band insulator has similar mathematical structure as nonsingu-
lar topological object. As far as the mathematical structure is concerned, it is inspiring to
compare Table 4.1 with Table 7.1. However, the physics contents are very different. Here,
we are discussing the excitations in a condensate of bosons, and there, we will discuss
classifying ground state with bands filled by noninteracting of fermions.

Dirac Monopole. In the Maxwell theory, Dirac Monopole refers to a singularity in the
magnetic field, that is, for a single monopole, we have

∇ · B = 4πδ(r). (4.59)

Such a monopole so far has not been discovered in real electromagnetic field in nature.
However, in Section 1.2 we have discussed the idea of simulating a synthetic gauge field
Bsyn coupled to the spatial motion of a neural atoms by spatially varying the spin direction
of an atom. Thus, one may wonder whether we can create a spin configuration such that a
Dirac magnetic monopole can exist in the resulting synthetic magnetic field Bsyn, that is,

∇ · Bsyn = 4πδ(r). (4.60)

To this end we have to consider the ferromagnetic spinor condensate with wave function
given by Eq. 4.41. Let us consider a spatial varying magnetic field B(r) and a simplified
linear coupling −hB · F (h > 0) between magnetic field and spins. To be consistent with
Eq.4.41, we denote B = (sinβ cosα, sinβ sinα, cosβ), such that Eq. 4.41 is the low-
energy state polarized by this magnetic field. Here we consider that both α and β vary
spatially. As one can show, this coupling can be diagonalized by a unitary matrix U(α,β)
as

U†(α,β)(−hB · F)U (α,β) = −h| B|




1 0 0
0 0 0
0 0 −1



 , (4.61)

and the resulting synthetic gauge field is given by

A = i!U†∇U = −!(I − cosβFz − sinβFx)∇α. (4.62)

For atoms staying in the lowest energy adiabatic spin bases, only the first diagonal compo-
nent A11 matters, and A11 = −!(1 − cosβ)∇α, which gives rise to a synthetic gauge field
Bsyn = ∇ × A11.

Now let us consider the quadrupole trap with a uniform bias field, where B = B0xx̂ +
B0yŷ + (−2B0z + Bbias)ẑ. Let us make a coordinate transformation x → x, y → y and
2z − Bbias/B0 → z. This coordinate transformation corresponds to stretching and shifting
the coordinate along the ẑ direction and will not change the topology of the gauge field.
In the new coordinate, one can find that this magnetic field configuration corresponds to
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β = π − θ ≡ θ ′ and α = ϕ, where θ and ϕ are polar and azimuthal angles in the spatial
spherical coordinate, and using Eq. 4.62, we can obtain [147]

A11 = −!
1 + cos θ

r sin θ
ϕ̂ (4.63)

Bsyn = !
r2 r̂. (4.64)

From Eq. 4.64, it is clear that the synthetic magnetic field corresponds to a magnetic
monopole sitting at the zero of the new coordinate.

The wave functions of this Dirac monopole can always be written as



e−2iϕ cos2 θ ′

2
1√
2

e−iϕ sin θ ′

sin2 θ ′
2



 , (4.65)

which can be viewed as a doubly quantized vortex in mz = 1 component and a singly
quantize vortex in mz = 0 component. Hence, there is a line singularity with θ ′ = 0,
which is also the line singularity in Eq. 4.63 of A11. This corresponds to the so-called
Dirac string. Note that in the Maxwell theory, the location of the Dirac string depends on
the gauge choice. Here the location of the Dirac string also depends on the gauge choice.
Note that the −hB · F coupling only fixes the spin direction, we can choose another wave
function written as 


cos2 θ ′

2
1√
2
eiϕ sin θ ′

ei2ϕ sin2 θ ′
2



 , (4.66)

and this wave function does not change the spin direction compared with the wave function
Eq. 4.65. However, the singly quantized and doubly quantized vortices move to the mz = 0
and mz = −1 components, respectively, and the line singularity now appears at θ ′ =
π . The wave function Eq. 4.65 and Eq. 4.66 differ by a total phase ei2ϕ , and therefore,
their gauge fields differ by 2!ϕ̂/(r sin θ ). This change of gauge field also moves the line
singularity from θ ′ = 0 to θ ′ = π .

Experimentally, one can control the bias field Bbias to move the monopole position in
and out of the condensate. When the monopole is below the condensate, the synthetic
magnetic field at the condensate point to nearly the same direction, which results in a
classical Hall effect from the Lorentz force [36]. When the monopole is gradually moved
into the condensate, the singularity of the Dirac string can be observed by directly imaging
the condensate [147].4

Finally, we should emphasize that the Dirac monopole is not the topological excitations
we discussed above. Above, we have classified topological excitation by considering the
mappings from the real space to the wave function space, but here the Dirac monopole
refers to singularity in the synthetic gauge field. Since here we consider a ferromagnetic

4 Here we should note that although the location of the Dirac string depends on the gauge choice, it can still
be observed experimentally. This is because nearby the singularity, the spins rotate so fast that the adiabatic
approximation breaks down.
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condensate with SO(3) degenerate manifold, and because $2(SO(3)) is trivial, this Dirac
monopole is in fact not a topological stable object in terms of our definition of topological
excitation discussed above. To see this, taking the wave function Eq. 4.65 as an example,
we can construct a path β = (1 − t)θ ′ + tπ . When t = 0, the wave function is Eq. 4.65, but
when t = 1, the wave function becomes (0, 0, 1)T, which corresponds to a uniform wave
function. Hence, the wave function for Dirac monopole can be continuously deformed into
a topological trivial state.

4.5 Spin-Orbit-Coupled Condensate

In the spinor condensate discussed above, the kinetic energy is always the same for all spin
components. In Section 1.3, we have discussed a scheme based on atom-light interaction
to couple the spin degree of freedom with the spatial motion, which realizes the spin-orbit
coupling effect as given by Eq. 1.51. Spin-orbit coupling has been extensively studied in the
electronic systems in condensed matter physics. Realizing spin-orbit coupling in ultracold
atomic systems, for the first time, introduces this effect into a Bose gas. In this section,
we will focus on the effects of the spin-orbit coupling on Bose–Einstein condensate and
superfluidity.

In Box 3.3, we have introduced the concepts of symmetry of wave function GW and the
symmetry of the Hamiltonian GH . We have introduced the concept of symmetry breaking
for the situations that GW is a subgroup of GH . In the Landau theory of phase transitions,
two states, labeled by a and b, belong to different phases if their symmetry groups GW,a

and GW,b are different. The order of phase transition between them is largely determined
by their symmetry properties. The spin-orbit coupled BEC exhibits various symmetry-
breaking phases and phase transitions. Below we will discuss the phase diagram of this
system, and we will emphasize the role of symmetry in determining these phase transitions.
Therefore, we will first discuss the symmetry of the Hamiltonian and the symmetry of
possible phases.

Symmetry of the Hamiltonian. We first consider the symmetry of the single-particle
Hamiltonian as we have described in Eq. 1.51:

Ĥ = !2

2m
(kx − k0σz)2 + !2k2

⊥
2m

+ δ

2
σz ++σx. (4.67)

The symmetry properties of this Hamiltonian include following aspects:

• This Hamiltonian possesses the spatial translational symmetry, and the momentum is a
good quantum number.

• Because spin and momentum are locked, the Hamiltonian loses the spin rotational sym-
metry and also loses the spatial reflection symmetry x̂ → −x̂. But when δ = 0,
the system possesses a Z2 symmetry of simultaneously reflecting both spin and space
together, that is, x̂ → −x̂, k̂ → −k̂ and σz → −σz. If δ 0= 0, this symmetry is also
explicitly broken.
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• The system loses the Galilean invariance. When performing the Galilean transformation
r → r − vt, the system acquires an additional term −!v · k. Normally this term can

be further absorbed by performing a gauge transformation and the Hamiltonian is left
invariant. But in this case, when applying the same procedure, it yields an extra term
!k0vxσz, where vx is the x-component of v. Therefore, the Hamiltonian is no longer
invariant. Physically, this is because of the spin-momentum locking, atoms in different
frame have different momentum, and consequently, have different spin states.

Therefore, the single-particle Hamiltonian possesses the translational symmetry and a
Z2 symmetry when δ = 0, and only translational symmetry for δ 0= 0. Now we include the
interaction between atoms, given by

V̂ =
∫

d3r[U↑↑n2
↑(r) + 2U↑↓n↑( r)n↓(r) + U↓↓n2

↓(r)], (4.68)

where U↑↑, U↓↓ and U↑↓ are the intracomponent and intercomponent interaction strengths,
respectively. The interaction part is always invariant under spatial translation. However,
since the “spin” here is in fact the pseudo-spin, and as we have discussed in Box 2.3,
there is no spin rotational symmetry for interaction between different pseudo-spins. Hence,
generally U↑↑, U↑↓ and U↓↓ are all different. When we choose U↑↑ = U↓↓ = U, the
interaction is also invariant under the Z2 symmetry introduced above. Below we will always
focus on this situation.

Symmetry of the Wave Function. Considering the spin-orbit coupled single-particle
Hamiltonian Eq. 4.67, and the single-particle spectrum for δ = 0 is shown in
Figure 4.11(a). Here we mainly focus on the following three phases:

• When δ = 0 and + < 4Er, where Er denotes the recoil energy !2k2
0/(2m), the single-

particle ground state is doubly degenerate, and the two minima of the single-particle
spectrum are located at ±kmin (kmin 0= 0). The wave functions of these two degenerate
single-particle ground states are given by

|ψ+〉 = eikminx
(

sinα
cosα

)
; |ψ−〉 = e−ikminx

(
cosα
sinα

)
, (4.69)

where the parameter α depends on +/Er. These two states have opposite momenta,
and due to the spin-momentum locking, the spins of these two states are also polarized
to opposite directions along ẑ. |ψ+〉 and |ψ−〉 are invariant under the spatial translation
x → x+a, under which the wave function only acquires a phase factor e±ikmina. However,
this wave function does not possess the Z2 symmetry, because the Z2 operation transfers
kmin to −kmin and inverts the spin direction along ẑ. If bosons all condense into one of
the minima, it is called a plane wave state (PW). This phase breaks the Z2 symmetry but
respects the spatial translational symmetry. When δ 0= 0, the Hamiltonian also breaks
the Z2 symmetry, and these two states are no longer degenerate.

• This single-particle degeneracy can significantly modify the scenario of Bose–Einstein
condensation, because any superposition of these two degenerate ground states has
the same single-particle energy. Thus, it has to rely on the interaction energy to pick
up a unique ground state. Now Let us consider a superposition as sinβeiθ/2|ψ+〉 +
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!Figure 4.11 Schematic of the phase diagram of spin-orbit coupled bosons. Three different phases are plotted in terms of δ and+
for the caseU2

↑↓ < U2. “ST” stands for the stripe phase, “PW” stands for the finite momentum plane wave phase,
and “ZM” stands for the zero-momentum phase. The solid line and the point at δ = 0 and+ = +2 represent the
second-order phase transition, and the points at δ = 0 and+ = +1 represent a first-order phase transition. The
dashed lines stand for crossover instead of phase transitions. Inset: (a) Schematically shows single-particle dispersion
and three phases. (b) Density wave of the stripe phase. (c) Quasi-particle spectrums in the ST phase (c1), the PW
phase (c2), at the transition point of δ = 0 and+ = +2 (c3), and at the ZM phase (c4). Inset (a) is reprinted from
Ref. [81], and inset (b) is reprinted from Ref. [74]. A color version of this figure can be found in the resources tab for
this book at cambridge.org/zhai.

cosβe−iθ/2|ψ−〉 with sinβ 0= 0, 1. The superposition of two states with different
momenta leads to a spatial density modulation, and such a density modulation breaks
the spatial translational symmetry, as shown in Figure 4.11(b). A Bose condensation
into such a phase is first discovered in the Rashba spin-orbit coupled Bose gas and is
named as the stripe phase (ST)[180]. When δ = 0, sin θ = cos θ = 1/

√
2, this stripe

phase respects the Z2 symmetry. When δ 0= 0, such a superposition state can still persist
in certain parameter regime, but the Z2 symmetry is broken.

• When δ = 0 and+ approaches 4Er from below, kmin approaches zero. When+ > 4Er, it
becomes a single minimum at k = 0 without degeneracy. When bosons all condense into
this state, we call it the zero-momentum phase(ZM). This phase respects the translational
symmetry, and it respects the Z2 symmetry. When δ 0= 0, there is also only one single
minimum at large +, but the location of the minimum is not at the zero momentum and
the state does not obey the Z2 symmetry if δ 0= 0.

Symmetry and Phase Transitions. Now we discuss the basic structure of the phase dia-
gram of this spin-orbit coupled Bose condensate [74, 109, 186]. The transitions between
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these phases can be either a first-order one or a second-order one. The order of phase
transitions can be determined by symmetry and the general principles are as follows. Con-
sidering two phases and the symmetry group of these two phases denoted by GW

1 and GW
2 ,

respectively, if GW
1 is a subgroup of GW

2 , then generically, the transition between them
is a second-order phase transition. If GW

1 is not a subgroup of GW
2 , and if there is still a

direct phase transition between them, then the transition must be a first order one. Such a
first order transition is enforced by symmetry and is stable against perturbations. A phase
diagram of spin-orbit coupled BEC is schematically shown in Figure 4.11, which can be
precisely determined by minimizing the total energy. With this symmetry principle, we can
determine the first order and the second order of phase boundaries as discussed below, and
the orders of phase transitions are also marked in Figure 4.11.

• For δ = 0, because the ZM phase has both spatial translational symmetry and Z2 symme-
try, and the PW phase only has spatial translational symmetry. Thus GW

PW is a subgroup of
GW

ZM , and therefore, the transition between them can be a second-order phase transition.

• For δ = 0, because the ST phase preserves the Z2 symmetry and breaks the spatial
translational symmetry, and the PW phase preserves the spatial translational symmetry
and breaks the Z2 symmetry. Thus, GW

ST and GW
PW are not mutually subgroup of each

other, and therefore, when there is a direct transition between them, it has to be a first-
order one.

• For δ 0= 0, the Hamiltonian does not have the Z2 symmetry, and consequently, both the
PW states and the ZM states do not have the Z2 symmetry. Thus, there is no symmetry
distinction between the PW state and the ZM states, and therefore, there is no phase
transition between them.

• For δ 0= 0, both GW
ST and GW

PW loss the Z2 symmetry. Hence, GW
ST has no symmetry

and GW
PW still has spatial translational symmetry. Thus, GW

ST is a subgroup of GW
PW , and

therefore, the transition between them can be a second-order one.

This phase diagram has also been observed in the first spin-orbit coupled Bose gas
experiment using 87Rb atoms [114], as shown in Figures 4.12(a)–(c). In this experiment,
they show that in the ST phase regime, two spin components are mixed, and in the PW
phase regime, two spin components tend to separated [114]. This result is shown in Figure
4.12(c). Another evidence of the stripe phase is provided by magnetization histogram [81],
as shown in the inset of Figure 4.12(d). For the PW phase, bosons either condense into |ψ+〉
or condense into |ψ−〉, thus, the magnetization histogram shows two peaks at opposite
magnetizations. Instead, for the ST phase, the magnetization histogram shows a Gaussian
distribution centered at zero. This feature has also been observed and has been used to
determine the phase diagram at finite temperature [81], as shown in Figure 4.12(d). Finally
a direct evidence of the ST phase is observing the density wave structure that breaks spa-
tial translational symmetry. In a solid, the density order of a crystal can be observed by
the Bragg spectroscopy, and similar Bragg spectroscopy experiment can also be performed
in ultracold atom experiments [107]. This provides a direct evidence of the ST phase, as
shown in Figure 4.12(e).
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!Figure 4.12 Experiments on spin-orbit coupled Bose condensate. (a) Observed phase diagram of the spin-orbit coupled
condensate in terms of δ/Er and+/Er. (b) A zoom-in of (a) for small δ/Er and small+/Er. (c) The evidence from
mixed two-spin components to separated two-spin components, as Raman coupling+ increases. (d) The finite
temperature phase diagram of the spin-orbit coupled bosons in terms of temperature and Raman coupling. The inset
shows two typical histograms that are used for distinguishing ST and PW phases. (e) Bragg spectroscopy shows a peak
in the ST phase, which is strong evidence of breaking translational symmetry. (a–c) are reprinted from Ref. [114], (d)
is reprinted from Ref. [81], and (e) is reprinted from Ref. [107]. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.

Symmetry not only can determine the order of phase transitions, but also can impose
strong constraints on the low-energy excitation. The low-energy gapless modes are usu-
ally associated with the fact that the ground state breaks continuous symmetry. Usually a
Bose condensate breaks the U(1) phase symmetry, and therefore, there is one linear gap-
less mode that is the Bogoliubov phonon mode discussed in Section 3.3. For instance, the
quasi-particle spectrum in the ZM phase displays such a linear gapless mode as shown in
(c4) of Figure 4.11. In the ST phase, the Bose condensate not only breaks the U(1) phase
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symmetry, but also breaks the spatial translational symmetry. Spatial translational sym-
metry is another continuous symmetry. Breaking spatial translational symmetry leads to
another gapless mode. This is essentially the same as the gapless acoustic phonon mode in
a crystal, which is also caused by breaking the spatial translational symmetry. More explic-
itly, when we write the wave function of a ST phase as sin βeiθ/2|ψ+〉 + cosβe−iθ/2|ψ−〉,
varying θ corresponds to sliding the density wave spatially, which does not cause energy
as long as θ remains spatially uniform. Therefore, the ST phase exhibits two gapless linear
modes, as shown in (c1) of Figure 4.11.

For the PW phase, say, if bosons are condensed in |ψ+〉, then there exists a mode with
linear dispersion and being gapless at kmin. Meanwhile it exhibits a local minimum at
−kmin with a finite gap, as shown in Figure 4.11(c2) [195]. This is known as the roton
structure in the excitation spectrum. Similarly, roton structures have also been found in
the liquid helium, and in dipolar Bose condensate and Bose condensate in cavity. There
is a common physics behind the roton structure in different systems. Although the state
itself is not a crystal and does not break the spatial translational symmetry, there is a strong
crystallization tendency in this phase. Therefore, the excitation at the corresponding crystal
momentum displays a minimum. When + decreases and the system approaches the transi-
tion to the ST phase, the gap at −kmin becomes smaller and smaller. At the transition, the
roton gap vanishes, indicating an instability of the PW phase toward forming the density
wave order. The roton structure and vanishing roton gap at the transition have been suc-
cessfully observed experimentally with the help of the Bragg spectroscopy [82]. Thus, at
the zero-temperature phase transition between these two phases, the low-energy excitation
displays two linear gapless modes on the ST phase side, and displays one linear mode and
a quadratic mode with vanishing small gap on the PW phase side. Comparing these two
low-lying excitations, the latter has larger density-of-state. Therefore, at low temperature,
the PW phase acquires more entropy and is more favorable. This explains the experimen-
tal measurement shown in Figure 4.12(d) that the ST phase is suppressed and the PW
phase is expanded as the temperature increases [81]. This gives an example that symmetry
consideration can also help in determining the finite temperature phase diagram.

Finally, let us comment on a physical consequence of the absence of the Galilean invari-
ance. In Section 3.2, we have discussed the critical velocity for superfluidity. We consider
an impurity moving in the superfluid with velocity v, and we have discussed that the Lan-
dau criterion of the critical velocity is determined by whether this moving impurity can
excite quasi-particles in a static superfluid. Alternatively, another way to discuss the crit-
ical velocity is to consider a superfluid moving in the presence of static impurities. With
the Galilean invariance, these two critical velocities are equivalent. For this spin-orbit cou-
pled system without the Galilean invariance, these two critical velocities are no longer
equal [195]. The difference is most significant at the transition point from the PW phase
to the ZM phase, where the two degenerate minima at finite momenta merge into a single
minimum at k = 0 [195]. At this critical point, the single-particle dispersion behaves as
k4

x around its minimum, and according to Eq. 3.55, the quasi-particle dispersion behaves
as k2

x , as shown in Figure 4.11(c3). Then, according to the Landau criterion Eq. 3.31, the
Landau critical velocity vanishes. This critical velocity is for a moving impurity in a static
superfluid, however, the critical velocity for a moving superfluid is different [195]. For
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a moving superfluid, the Hamiltonian acquires an extra term !k0vxσz as discussed above
in the comoving frame, because of which the k4

x dispersion no longer exists. Thus, in that
case, the critical velocity is always finite.

Exercises

4.1 Considering a quasi-one-dimensional condensate along ẑ, show that the following
two cases give the same phase difference between two ends. In one case, there is a
soliton located at z = 0 plane, and in the other case, there is a vortex and antivortex
pair in the xy plane with z = 0. Estimate and compare their energies.

4.2 Let {n̂i, i = 1, . . . , 2F} be 2F Majorana stellar points for state |ψ〉. Show that (i) if
one applies a spin rotation Û to state |ψ〉, the Majorana stellar representation of Û |ψ〉
corresponds to a SO(3) rotation of all n̂i vectors simultaneously, and (ii) if one applies
a time-reversal operator R̂ to state |ψ〉, R̂|ψ〉 are described by 2F points of −n̂i as a
central reflection of the original vectors.

4.3 Calculate the Majorana stellar representation for states (i) (1, 0, 0); (ii) (0, 0, 1); (iii)
(0, 1, 0); (iv) 1√

2
(1, 0, eiφ); (v) (1/

√
3, 0, 0,

√
2/3, 0), and (vi) ( 1

2 , 0, − i√
2
, 0, 1

2 ).

4.4 Show that 〈ζ |F|ζ 〉2 is invariant under a SU(2) rotation of |ζ 〉.
4.5 Consider the Hamiltonian Ĥs = −hB · F, where F is the Pauli matrix for a spin-1

atom and B = (sinβ cosα, sinβ sinα, cosβ). Show (1) the explicit forms of U(α,β)
that diagonalize Ĥs; (2) that the gauge field from this U(α,β) is given by Eq. 4.62;
(3) Eq. 4.63 and Eq. 4.64 for α = ϕ and β = π − θ (θ and ϕ are the polar and the
azimuthal angles in the spherical coordinate).

4.6 Considering the spin-orbit coupled Hamiltonian Eq. 4.67 with δ = 0, compute the
single-particle dispersion and the spin polarization at different momentums. Deter-
mine the critical coupling +c at which the single-particle ground state changes from
doubly degenerate to single minimum.

4.7 Considering the spin-orbit coupled Hamiltonian Eq. 4.67 with δ = 0, in the regime
when the single-particle ground states are doubly degenerate as given by Eq. 4.69,
compare the interaction energy between ψ+ or ψ− and (ψ+ + ψ−)/

√
2, with the

interaction part of the Hamiltonian given by Eq. 4.68 and U↑↑ = U↓↓ = U.
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5 The Fermi Liquid

Learning Objectives

• Introduce density distribution and momentum distribution of noninteracting Fermi gas.
• Discuss the transport property of a Fermi gas through a quantum point contact.
• Discuss the Fermi surface as a key of a noninteracting Fermi gas and its generalization

to a Fermi liquid.
• Introduce the effective mass and the quasi-particle residue as two key parameters of the

Fermi liquid.
• Introduce the self-energy and the universal relations between the effective mass, the

quasi-particle residue, and the self-energy.
• Discuss the Fermi polaron as an example of the Fermi liquid, and show these universal

relations with this example.
• Discuss the divergence of the effective mass and vanishing of quasi-particle residue

when Fermi liquid description fails.
• Introduce radio-frequency spectroscopy and how it measures the polaron energy and the

quasi-particle residue.
• Summarize different spectroscopy measurements in ultracold atomic systems.

5.1 Free Fermions

Momentum and Density Distributions. For a noninteracting Fermi gas, each plane wave
state with wave vector k is a single-particle eigenstate, and the many-body eigenstate can be
labeled by the occupation n(k) on each of these plane wave states, with 0 " n(k) " 1. For
the ground state, all fermions fill the Fermi sea up to the Fermi energy, and the many-body
wave function is given by

|FS〉 =
∏

k<kF

c†
k|0〉, (5.1)

where ĉ†
k and ĉk are creation and annihilation operators of fermions at momentum k, and

!kF is the Fermi momentum. For this ground state, n0(k) = 1 for k < kF and n0(k) = 0 for
k > kF, as shown in Figure 5.1(a).

Considering excitations above the Fermi sea, one can either add a particle above the
Fermi sea or take a particle away below the Fermi sea, which are called the particle exci-
tation and the hole excitation, respectively. The wave function for the particle excitation is
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ĉ†
k>kF

|FS〉, whose excitation energy is given by Ek = εk − µ, where εk = !2k2/(2m)
and µ = !2k2

F/(2m). The wave function for the hole excitation is ĉk<kF |FS〉, whose
Ek = µ − εk. Hence, the excitation energy is always positive and can be given by

Ek = |εk − µ| . (5.2)

For a general deviation from the ground state, the excitation energy is measured by the
deviation from the equilibrium momentum distribution n0(k), that is, δn(k) = n(k)−n0(k),
and the change of the total energy is given by

δE =
∑

k

(εk − µ) δn(k). (5.3)

δE is therefore always positive.
At finite temperature and in the presence of the harmonic trap V(r), it can be shown that

when the total fermion number N is very large, the semiclassical approximation can be
safely applied and the distribution is given by

f (r, k) = 1
eβ(εk+V( r)−µ) + 1

, (5.4)

where β = 1/(kBT). And the local density n(r) is given by

n(r) = 1
(2π )3

∫
d3kf (r, k). (5.5)

This is nothing but the local density approximation we have discussed in Section 3.2, by
which we can replace µ as µ − V(r) in the equation-of-state for a uniform system. The
chemical potential can be determined by the conservation of the total number of atoms as

N =
∫

d3rn(r). (5.6)

Here are a few remarks about this distribution:

• At zero temperature, the density will become

n(r) ∝ (µ − V(r))3/2 (5.7)

for µ > V(r) and n(r) = 0 for µ < V(r). This density distribution actually is simi-
lar as the density distribution of interacting bosons, which is proportional to µ − V(r).

!Figure 5.1 Schematic of the momentum distribution. The momentum distribution for (a) the noninteracting Fermi gas and (b)
the Fermi liquid. Here kF labels the Fermi wave vector, andZ labels the quasi-particle residue.
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However, the physical difference is that, in that case of interacting bosons, the den-
sity distribution is determined by the balance between the interaction energy and the
potential energy. And in this case of noninteracting fermions, the density distribution is
determined by the balance between the kinetic energy and the potential energy.

• At zero temperature, we can determine µ = (6N)1/3!ω̄, where ω̄ = (ωxωyωz)1/3 and ωi

(i = x, y, z) is the trapping frequency along direction-i. This dependence can be under-
stood intuitively in the following way. For chemical potential µ, the radius of the cloud

along direction-i will be Ri =
√

2µ/(mω2
i ). Therefore, roughly speaking, the density

will be

n ∝ N
RxRyRz

∝ Nm3/2ω̄3

µ3/2 , (5.8)

hence,

µ ∝ !2

m
n2/3 ∝ !2ω̄2N2/3

µ
. (5.9)

Solving Eq. 5.9, it leads to µ ∝ N1/3!ω̄.
• In an anisotropic trap, although the density distribution is anisotropic, the momentum

distribution obtained by

n(k) =
∫

d3rf (r, k) (5.10)

is always isotropic. This is similar as the thermal gas of bosons above Bose condensa-
tion temperature. Thus, in the time-of-flight measurement, the aspect ratio of the cloud
should finally approach unity after sufficiently long expansion time. As we have dis-
cussed in Section 3.2, hydrodynamical expansion leads to an anisotropic expansion with
inverted aspect ratio. Therefore, the time-of-flight expansion can distinguish a free Fermi
gas from a Fermi system with hydrodynamic behavior, and the latter can be either due
to superfluidity or due to strong interactions.

• With the distribution n(k) one can also extract the kinetic energy per particle EK from
the time-of-flight measurement as

EK = V
N

1
(2π )3

∫
d3k

!2k2

2m
n( k). (5.11)

At high temperature, EK is proportional to kBT , and at low temperature, it approaches a
constant due to the Fermi statistics. Thus that EK/(kBT) deviates from a constant is taken
as an evidence for the onset of the Fermi degeneracy, which has been observed experi-
mentally [47] soon after the Fermi gas of atoms has been cooled to quantum degeneracy
in 1999 [46]. The experimental results are shown in Figure 5.2.

Quantized Conductance through a Quantum Point Contact. Transport measurements
play an important role in studying Fermi gases. In condensed matter physics, most of the
states are characterized by and named after the transport properties of electrons, such
as conductor, insulator and superconductor. Various kind of transport experiments have
also been carried out in ultracold atom experiments, such as hydrodynamics expansion
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0.5 1.0 1.5!Figure 5.2 Kinetic energy versus temperature. The kinetic energy of a noninteracting Fermi gas is measured at different
temperatures. Here the kinetic energy is measured by releasing atoms from the trap and performing the
time-of-flight measurement. Reprinted from Ref. [47]. A color version of this figure can be found in the resources tab
for this book at cambridge.org/zhai.

dynamics discussed in Section 3.2, Bloch oscillation driven by an external forces to be dis-
cussed in Section 7.1, as well as diffusion dynamics and loss induced transport. In general,
these transport dynamics can also be classified into two categories. One is near-equilibrium
dynamics driven by small deviation from the equilibrium state, which usually probes the
equilibrium properties. The other is far-from-equilibrium dynamics, which sometimes can
also reveal properties in equilibrium, such as the quench dynamics of a topological band
that we will discuss in Section 7.3. And in many other situations, the far-from-equilibrium
dynamics can also reveal novel physics with no correspondence at equilibrium.

Here we focus on a near-equilibrium transport and consider a typical setup in condensed
matter systems, called the two-terminal transport. This kind of transport measurement now
can also be realized in ultracold atom systems [96]. In this setup, two reservoirs, denoted
by the left and the right reservoirs, are connected by a one-dimensional tunneling channels,
as shown in Figure 5.3. In this case, each reservoir is a noninteracting three-dimensional
Fermi gas. Here two reservoirs have different chemical potentials, denoted by µL and µR,
respectively. Without loss of generality, we assume µL > µR. Hence, driven by this poten-
tial difference, particles can flow from the left reservoir to the right reservoir, and the
current is given by the Landauer–Büttiker formalism as [96]

I =
∑

n

∫
dEv(E)g(E)Tn(E)[f (E, µL) − f (E, µR)]. (5.12)

Here the index n labels the tunneling channels, and Tn(E) denote the transmission coef-
ficients for each channel. Generally, 0 < Tn(E) < 1. In ideal situation, for ballistic
transmission, we have Tn(E) = 1 for an open channel.1 Because of the Fermi statistics,
in order to contribute to the current from the left to the right reservoirs, it has to satisfy two
conditions: i) the states with energy E has to be occupied in the left reservoir, and ii) the
states with energy E has to be empty in the right reservoir. The energy window that satisfy

1 Here the meanings of open channel and closed channel are different from those used in the discussion of
Feshbach resonances.
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!Figure 5.3 Schematic of two-terminal transport. (a–b) Schematic of quantum point contact. In this case, a quantum point
contact is made of a confinement potential along x̂, a confinement potential along ẑ, and a gate potential. (c)
Schematic of the Landauer–Büttiker formalism for transport of fermions between the left and the right reservoirs. A
color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

these two conditions is marked by the shaded area in Figure 5.3(c), and at low temperature
with #µ # kBT , it is counted by the factor f (E, µL) − f (E, µR) in Eq. 5.12. Here, v(E)
denotes the group velocity and g(E) denotes the density-of-state. In one dimension, since
v(E) = (1/!)∂E/∂k and g(E) = 1/(2π |∂E/∂k|), we obtain v(E)g(E) = 1/h, and Eq. 5.12
is written as

I = 1
h

∑

n

∫
dETn(E)[f (E, µL) − f (E, µR)]. (5.13)

In general, the transmission coefficient has to be determined by solving the Schrödinger
equation for each tunneling channel. Here we are interested in a specifically designed tun-
neling channel called quantum point contact (QPC), where Tn(E) can reach nearly unity
for all open channels. In ultracold atom systems, such a QPC is made of three laser beams,
and the potential is given by [96, 95]

VQPC = 1
2

mω2
z (y)z2 + 1

2
mω2

x (y)x2 − Vgfg(y). (5.14)
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Here we have set ŷ direction as the transport direction. The first term in Eq. 5.14 creates a
confinement potential along ẑ, such that the system becomes a two-dimensional one. The
confinement is only applied to the central regime around y = 0, and ωz = ω0

z e−y2/l2z . The

second term in Eq. 5.14 creates another confinement potential along x̂, and ωx = ω0
x e−y2/l2x .

With the first two terms, a one-dimensional tunneling channel is created. Here lz > lx. That
is to say, the tunneling channel is first confined into a two-dimensional one, and then further
confined into a one-dimensional one, as shown in Figures 5.3(a)–(b). Finally, the last term
in Eq. 5.14 is called the gate potential, which can tune the relative energy between the
tunneling channels and the reservoirs. It is also a focused Gaussian potential around y = 0
with fg = e−y2/l2g and lg ≈ lz.

With the semiclassical approximation along ŷ, the potential Eq. 5.14 gives rise to a set
of discrete tunneling channel and the potential curves along ŷ are given by

Vmn(y) =
(

m + 1
2

)
!ω0

z e−y2/l2z +
(

n + 1
2

)
!ω0

x e−y2/l2x − Vge−y2/l2g , (5.15)

which exhibit maximum at y = 0 as schematically shown in the central regime of
Figure 5.3(c). The design of the QPC potential as described above is to ensure following
three conditions:

• The tunneling channel is one-dimensional. This ensures v(E)g(E) = 1/h as discussed
above.

• The tunneling channel is discrete. Here the transverse modes have discrete energy levels,
and the level separation has to be larger than temperature, for otherwise the discreteness
is smeared out by temperature effect.

• The backward scattering is forbidden. This requires that the potential curve along ŷ
should be smooth enough and

〈(
∂V2

mn(y)
∂y2

)〉

〈Vmn(y)〉 ' k2
F. (5.16)

As we discussed above, the incoming fermions are mainly from the Fermi surface. Thus,
when Eq. 5.16 is satisfied, the potential can hardly scatter the incoming fermions to the
backward direction. Therefore, we can show that the transmission coefficient T (E) ≈ 1
if E > Vmn(0), and these tunneling channels are called open channel. And T (E) ≈ 0 if
E < Vmn(0), and these tunneling channels are called closed channels.

With these three conditions satisfied, Eq. 5.13 becomes

I = 1
h

∑

mn

∫
dE%(E − Vmn(0))[f (E, µL) − f (E, µR)]. (5.17)

where %(x) is the Theta-function with %(x) = 1 when x > 0 and %(x) = 0 when
x < 0. In the zero-temperature limit, f (E, µ) approaches %(µ − E), and therefore∫

dE[f (E, µL) − f (E, µR)] = #µ, where #µ = µL − µR is the bias voltage. Hence,
we reach the quantization of conductance

G = I
#µ

= 1
h

Nopen, (5.18)
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!Figure 5.4 Experiment on quantized conductance. The conductance through a quantum point contact as a function of gate
voltage. The gate voltage tunes the number of tunneling channels. The observed conductance is quantized in units of
1/h. Reprinted from Ref. [95]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

where Nopen denotes the number of open channels and Nopen can be tuned by varying gate
voltage Vg. The experimental results are shown in Figure 5.4, where the quantization of
conductance in unit of 1/h has been observed. Hence, we have demonstrated that when
these three conditions are satisfied, the conductance is quantized. In Section 7.3, we will
show that these three conditions can also be satisfied in a two-dimensional topological band
insulator, which lead to quantized Hall conductance known as the Quantum Anomalous
Hall Effect.

Concepts of the Fermi Liquid Theory. In Section 3.1, in order to generalize the concept
of BEC from noninteracting to interacting boson system, we first discuss BEC in a non-
interacting Bose gas, from which we identify the macroscopic occupation as the essential
defining property of a BEC that can be generalized to an interacting system. Here, we also
first study the noninteracting Fermi gas, and the purpose is also to identify a defining prop-
erty that can be generalized to interacting cases. Here the defining property is the Fermi
Surface, and the generalization is called the Landau’s Fermi liquid. In a uniform Fermi
liquid, the quasi-particles are fermionic with a well-defined wave vector k. The notion of
Fermi surface remains, and it is defined through two features: i) The momentum distribu-
tion n0(k) of the ground state displays a discontinuity at the Fermi surface, as shown in
Figure 5.1(b), although the jump of n0(k) is not unity. The discontinuity in n0(k) is called
the quasi-particle residue Z, and 0 < Z < 1 for the Fermi liquid. ii) The quasi-particle
excitations are gapless at the Fermi surface. We emphasize that although the momentum
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distribution and the excitation spectrum appear as two different quantities, the discontinu-
ity of momentum distribution and the gapless excitation spectrum occur simultaneously at
the Fermi surface. These two are defining properties of a Fermi liquid. If we alter n0(k) by
δn(k), the change of total energy, to the first order of δn(k), is given by

δE =
∑

k

Ekδn(k), (5.19)

where Ek = δE/δn(k) is introduced as energy of the quasi-particle with wave vector k. The
quantized conductance through a QPC also holds when the reservoirs are Fermi liquids
instead of noninteracting fermions.

Similar as the noninteracting fermions, in an isotropic system, we can define the velocity
of the quasi-particle as

vk = 1
!
∂Ek

∂k
, (5.20)

and we can further define an effective mass m∗ as

vk = !k
m∗ . (5.21)

In an interacting system, in general, Ek is not a simple parabolic function, thus, m∗ should
depend on k. At finite density, we shall be particularly interested in the m∗ nearby the
Fermi momentum. If the system is anisotropic, m∗ is in general a tensor. The effective
mass m∗ and the quasi-particle residue Z are two of the most basic parameters for describ-
ing a Fermi liquid, which are known as the Fermi liquid parameters. These Fermi liquid
parameters largely determine the low-energy properties of a Fermi liquid. For instance,
since the density-of-state nearby the Fermi surface can be straightforwardly calculated as

D(EF) = VkFm∗

2π2!2 , (5.22)

one can obtain that the low-temperature specific heat only depends on effective mass as

Cv = Vk2
BkFTm∗

3!2 . (5.23)

Expanding δE to the next order of δn(k), it gives

δE =
∑

k

Ekδn(k) + 1
2V

∑

kk′
f (k, k′)δn(k)δn(k′), (5.24)

where the second term is interpreted as interaction between quasi-particles. There are
other Fermi liquid parameters that describe interaction between quasi-particles. In the next
Sec 5.2, we will not discuss these parameters in detail and focus mainly on m∗ and Z.

Finally, we should note that not all interacting Fermi systems satisfy the condition of a
Fermi liquid. That is to say, there are other possible phases for an interacting Fermi system,
as we summarized in Box 5.1. When the system approaches a transition at which the Fermi
liquid description fails, m∗ diverges and Z vanishes.
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Box 5.1 Fate of Interacting Fermi Gases

Here we summarize several possible phases of interacting Fermi gases at low temperature. In this section
we have discussed one possibility of being a Fermi liquid, which is characterized by the existence of the
Fermi surface defined by discontinuity in momentum distribution and gapless excitation. Another possibil-
ity is developing orders and breaking certain symmetry. In Chapter 6, we will introduce BCS pairing order
as one such example. In the discussion of the Fermi–Hubbard model in Section 8.2, we will introduce other
orders like the spin-density-wave and the charge-density-wave. At last, there is the third possibility, that is,
the system neither satisfies the conditions of a Fermi liquid nor breaks any symmetry. This situation is called
a non-Fermi liquid. Usually there is an absence of well-defined quasi-particle description in the non-Fermi
liquid phase. Possible non-Fermi liquid states include interacting fermions in one dimension, a unitary Fermi
gas above superfluid transition discussed in Section 6.2, and the Fermi–Hubbard model slightly away from
half-filling discussed in Section 8.2.

5.2 Fermi Polaron

Here we consider a concrete example of the Fermi liquid. We will introduce an important
concept called the self-energy, and the self-energy is a function of momentum p and energy
ω, denoted by '(p,ω). For a Fermi liquid, both the effective mass and the quasi-particle
residue Z are determined from ' as

m∗

m
= 1 − ∂'

∂ω

1 + ∂'
∂p2/(2m)

(5.25)

and
1
Z

=
(

1 − ∂

∂ω
'(p,ω)

)
. (5.26)

It can be proved that these two relations hold for all Fermi liquid states. Here we will not
discuss the general proof, instead, and we will show them in a specific example of the
Fermi polaron.

Let us first consider a fully spin polarized Fermi gas in the thermodynamic limit with all
atoms in the spin-up state. Only considering the s-wave interaction between fermions, the
spin polarized Fermi gas is a noninteracting one. Now let us add one spin-down into this
fully polarized Fermi sea, this spin-down atom can interact with all other spin-up atoms by
the s-wave interaction and it will form a dressed state due to this interaction. This dressed
state is called the Fermi polaron. In condensed matter physics, polaron is a concept first
proposed by Landau, which describes a fermionic quasi-particles of an electron dressed up
by the cloud of phonons. Here it is also a fermionic quasi-particle, but it describes fermions
of spin-down fermion dressed up by the spin-up fermions. Hence it is called Fermi polaron
to emphasize the difference that the constitution of the dressing cloud are fermions instead
of phonons.
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The Hamiltonian of this single impurity problem is written as

Ĥ =
∑

kσ

εkσ ĉ†
kσ ĉ kσ + g

V

∑

k,k′,q

ĉ†
k+q↑ĉ†

−k+q↓c−k′+q↓ck′+q↑, (5.27)

where ĉ†
kσ and ĉkσ are the creation and annihilation operators of fermions with wave vector

k and spin σ , and g obeys the renormalization condition that

1
g

+ 1
V

∑

k

1
2εk

= m
4π!2as

. (5.28)

Here, we use εk = !2k2/(2m) to denote the free particle dispersion. Since the spin-up is in
the thermodynamic limit and the spin-down is a single atom, hence, we distinguish them
as εk↑ = εk − µ, where µ = !2k2

F/(2m), and εk↓ = εk.

Variational Wave Function. First we consider that the total momentum of this single
impurity system is zero. The polaron wave function consists of the single spin-down atom
and the particle-hole pairs on top of the Fermi sea of the spin-up atoms. Here we use a trial
wave function [33]

|*〉p=0 = ψ0ĉ†
p=0↓|FS〉 +

∑

| k|>kF,|q|<kF

ψk,qĉ†
q-k↓ĉ†

k↑ĉq↑|FS〉, (5.29)

with normalization condition |ψ0|2 +∑kq |ψkq|2 = 1. Here the first term describes simply
adding a spin-down atom without disturbing spin-up atoms, and the second term describes
that the spin-down atom excites one particle-hole pair on top of the Fermi sea. In principle,
this spin-down atom can also excite more particle-hole pairs in the Fermi sea. Here, for
simplicity, we truncate the wave function by only including one particle-hole pair, which
has been justified as a good approximation [38].

The total energy of this variational wave function is given by

E =
∑

kq

|ψkq|2(ε k,↑ + εq-k,↓ − εq,↑)

+ g
V




∑

q
|ψ0|2 +

∑

kk′q

ψk′qψ
∗
kq +

∑

kq

(ψ∗
0ψkq + ψ0ψ

∗
kq)



 , (5.30)

where we have ignored the term
∑

kqq′ ψkqψ
∗
kq′ because this summation converges

and therefore it vanishes after applying the renormalization condition for g. Then, by
minimizing Eq. 5.30 with respect to ψkq and ψ0, it yields

Ekqψkq + g
V
χq = Eψkq (5.31)

g
V

∑

q
χq = Eψ0, (5.32)

where Ekq denotes εk,↑ + ε q-k,↓ − εq,↑, and

χq =
∑

k

ψkq + ψ0, (5.33)
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and the Lagrange multiplier E is the polaron energy. From Eq. 5.31 one can obtain

ψkq = g
V

χq

E − Ekq
. (5.34)

Then, by substituting Eq. 5.34 into Eq. 5.33, we obtain

χq = ψ0

1 − g
V

∑

|k|>kF

1
E−E kq

. (5.35)

Further substituting Eq. 5.35 into Eq. 5.32, and eliminating a nonzero ψ0 from both
sides, and using the renormalization condition for g, it yields a self-consistent equation
for eigenenergy E as

E = 1
V

∑

|q|<kF

1
m

4π!2as
− 1

V

∑

k

1
2εk

− 1
V

∑

|k|>kF

1
E−Ekq

. (5.36)

Solving Eq. 5.36 yields the zero-momentum polaron energy E as a function of −1/(kFas),
as shown in Figure 5.5(a). Here the horizontal axis −1/(kFas) is a useful convention in
studying strongly interacting gases across a scattering resonance, and we will always use
this notation in this and next chapter. As we have shown in Section 2.1, for a square well
potential, as the attraction monotonically increases, the scattering length first becomes
more and more negative until it diverges to negative infinity, and then decrease from
positive infinity to a finite positive value. This corresponds to −1/(kFas) monotonically
decreases from large positive value to very negative value.

Eq. 5.36 has two solutions. The negative energy one is called the attractive polaron [33]
and the positive energy one is called the repulsive polaron [40]. This is reminiscent of the
upper and the lower branches of the two-body problem, as we discussed in Section 2.7.
The attractive polaron can be used to determine the critical Zeeman field for stabilizing
a fully polarized a Fermi gas in attractive interacting Fermi gas [33], and the repulsive

!Figure 5.5 Polaron energy. (a) The energy of attractive polaron (negative energy solution) and repulsive polaron (positive energy
solution) in units ofEF as a function of−1/(kFas). (b) The energy of the attractive polarons measured from the
peak energy of the rf spectroscopy. The dashed and dotted lines are calculated from the variational wave function
calculation without (dashed) and with (dotted) the final state correction. The solid line is obtained from the Monte
Carlo calculation. (b) is reprinted from Ref. [153]. A color version of this figure can be found in the resources tab for
this book at cambridge.org/zhai.
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polaron can be used for determining the critical interaction strength for stabilizing a fully
polarized ferromagnetism in repulsive interacting Fermi gas [40], which is also related to
the ferromagnetism issue to be discussed again in Section 8.2. At unitarity with 1/(kFas) =
0, E/EF becomes a universal constant, meaning that the interaction energy becomes the
same order as the kinetic energy. For the attractive polarons, we find E ≈ −0.6EF at the
unitarity.

The Effective Mass Relation. This calculation can be straightforwardly generalized to
polaron with finite momentum p, with wave function

|*〉p = ψ0ĉ†
p↓|FS〉 +

∑

|k|>kF,| q|<kF

ψk,qĉ†
p+q−k↓ĉ†

k↑ĉ q↑|FS〉, (5.37)

and the self-consistent equation becomes

Ep = εp + 1
V

∑

|q|<kF

1
m

4π!2as
− 1

V

∑

k

1
2εk

− 1
V

∑

|k|>kF

1
E p−Ekq(p)

, (5.38)

where Ekq(p) = εk,↑ + εp+q−k,↓ − εq,↑. By introducing the self-energy '(p,ω) as

'(p,ω) = 1
V

∑

|q|<kF

1
m

4π!2as
− 1

V

∑

k

1
2εk

− 1
V

∑

|k|>kF

1
ω−E kq(p)

. (5.39)

Ep is a solution of the equation

ω − εp −'(p,ω) = 0. (5.40)

The self-energy includes all the interaction effects in a Fermi liquid. Eq. 5.39 is a specific
form of the self-energy of this problem under this variational wave function approximation.
However, Eq. 5.40 is a general equation and actually, one of the essential equations of the
Fermi liquid. It shows how the self-energy determines quasi-particle dispersion. In the
dilute limit, the effective mass m∗ can be defined as ∂ω/∂p2 = 1/(2m∗), thus Eq. 5.40
gives

∂ω

∂p2 − 1
2m

− ∂'

∂ p2 − ∂'

∂ω

∂ω

∂p2 = 0, (5.41)

from which the effective mass m∗ can be obtained as

m∗

m
= 1 − ∂'

∂ω

1 + ∂'
∂ p2/(2m)

, (5.42)

where the derivatives are taken at p = 0 and ω = Ep=0. Hence, we have reached Eq. 5.25,
which in fact is a general relation for all Fermi liquids.

For the attractive polaron, at unitary, one finds m∗/m = 1.17. In fact, no matter the inter-
action is repulsive or attractive, the general expectation is that m∗/m > 1, because dressing
up always makes the quasi-particle heavier than the bare one. On the other hand, it also
shows that even the interaction energy is already as large as the Fermi energy, the change
of effective mass can still be small. However, when attractive interaction further increases,
the spin-down atom turns to form a bound state with one spin-up atom, and this bound
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!Figure 5.6 Cartoon of the polaron to molecule transition. (a) The noninteracting case. (b) The polaron state where the majority
atomic cloud is polarized by the minority atom. (c) The molecular state where the minority atom bounds together
with one majority atom and forms diatomic molecules. Reprinted from Ref. [153]. A color version of this figure can be
found in the resources tab for this book at cambridge.org/zhai.

state is bosonic, which is different from the fermionic polaron. This leads to a polaron
to molecule transition. The different scenarios of polaron and molecule are schematically
shown in Figure 5.6. After the transition, with finite density of spin-down atoms, these
molecules can condense at the low-temperature and the system becomes a mixture of the
molecule BEC and the excess majority fermions. When this happens, the Fermi liquid
picture breaks down.

The Quasi-Particle Residue Relation. Returning to the wave function Eq. 5.29, the first
term does not disturb the Fermi surface, and therefore, the jump of the momentum dis-
tribution retains. For the second term in Eq. 5.29, the particle-hole excitation smears out
the jump in the momentum distribution. Since the entire wave function is normalized, the
jump of the momentum distribution at the Fermi surface is therefore proportional to the
coefficient of the first term, that is, Z = |ψ0|2. Defining

-q = 1
m

4π!2as
− 1

V

∑

k

1
2εk

− 1
V

∑

|k|>kF

1
ω−E kq(p)

(5.43)

and

'(p,ω) = 1
V

∑

|q|<kF

-q( p,ω), (5.44)

the finite q version of Eq. 5.34 and Eq. 5.35 can be rewritten as

ψkq = 1
V

-q

ω − Ekq( p)
ψ0, (5.45)

and using the normalization condition, we obtain

1
|ψ0|2

= 1
Z

=



1 + 1
V2

∑

|k|>kF, |q|<kF

-2
q

(ω − Ekq( p))2



 . (5.46)
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Table 5.1 Comparison of different types of spectroscopy measurements, including the Bragg
spectroscopy, the Raman spectroscopy, and the radio-frequency spectroscopy

Operator Realization

Bragg
∑

q â†
q+kâqe−iωt + h.c. Two lasers with same polarization

Raman
∑

q ĉ†
q+k↑ĉq↓e−iωt + h.c. Two lasers with different polarization

Radio-frequency
∑

k ĉ†
k3ĉk↓e−iωt + h.c.. A radio-frequency laser

Noting that

∂-−1
q

∂ω
= − 1

-2
q

∂- q

∂ω
= 1

V

∑

|k|>kF

1
(ω − Ekq( p))2 , (5.47)

we have

1
V2

∑

|k|>kF,|q|<kF

-2
q

(ω − Ekq(p))2 = − 1
V

∑

|q|<kF

∂-q

∂ω
= −∂'(p,ω)

∂ω
, (5.48)

and we obtain
1
Z

=
(

1 − ∂

∂ω
'(p,ω)

)
. (5.49)

Hence, we reach the quasi-particle residue relation Eq. 5.26.

Radio-Frequency Spectroscopy. In Table 5.1 we have listed and compared several differ-
ent types of spectroscopy measurements in ultracold atomic systems. Both the Bragg and
the Raman spectroscopy can change the momentum of atoms, and the radio-frequency
spectroscopy cannot. Both the Raman and the radio-frequency spectroscopy change
internal states of atoms, and the Bragg spectroscopy does not.

Here we focus on the radio-frequency spectroscopy detection of the properties of the
polarons. There are two ways to perform the radio-frequency spectroscopy measurement.
The first way is that the radio-frequency wave brings a spin-down particle to a third internal
state |3〉, and the third state |3〉 is out of the two-component Fermi gas system. The second
way is that the atom is initially prepared in the |3〉 state, and the radio-frequency wave
injects the atom to the spin-down state. The latter is also known as the spin-injection spec-
troscopy. Here we focus on the former. Note that the wave length of the radio-frequency
wave is much larger than the size of the system, and therefore, the momentum transfer dur-
ing the transition is negligible, and the atom in the final state |3〉 has the same momentum
as the atom in the initial spin-down state. In performing the radio-frequency spectroscopy,
either we can collect atoms in all momenta in the third state, which corresponds to the inte-
grated radio-frequency spectroscopy, or we can also record the momentum of atoms in the
third state, which corresponds to the momentum-resolved radio-frequency spectroscopy.
The latter is equivalent to the angle-resolved photoemission spectroscopy (ARPES) in con-
densed matter experiments. In ARPES, X-ray laser ejects electrons outside of a solid, and
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one records both the momentum of electrons detected and energy of the X-ray laser. Similar
to the radio-frequency spectroscopy, the photon momentum is relatively small compared
with the electron momentum, and the momentum transfer can be ignored during the transi-
tion. Hence, the electron detected outside solid also has the same momentum as the initial
electron inside solid.

Thus, the radio-frequency spectroscopy measurement can be modeled as

V̂ = !.R
∑

k

ĉ†
k3ĉk↓e−iωt + h.c. (5.50)

Similar as the Bragg spectroscopy discussed in Section 3.3, the radio-frequency transition
rate from an initial state |i〉 to a final state |f 〉 can also be calculated by the Fermi’s golden
rule as

S(ω) = 2π
!
∑

f

|〈f |V̂|i〉|2δ(!ω − (Ef − Ei)), (5.51)

where Ei and Ef are energy of the initial and the final states, respectively. Here for the
case of the Fermi polaron, the initial state wave function is taken as Eq. 5.37, and the
final state can be either (i) a particle in the third state with momentum p embedded in a
Fermi sea of spin-up atoms, denoted by c†

p,3|FS〉, or (ii) a particle in the third state with
momentum p + q − k embedded in a Fermi sea with a particle-hole excitation, denoted by
ĉ†

p+q−k,3ĉ†
k↑ĉq↑|FS〉. Therefore we obtain the spectrum as

S(ω) ∝



Zδ(!ω − (εp − Ep)) +
∑

k,q,|k|>kF,|q|<kF

|ψk,q|2δ(!ω − (E kq(p) − Ep))



 .

(5.52)

The first part is a sharp peak at ω = εp − Ep with weight |ψ0|2, which comes from the
contribution of the (i)-type of the final state. This part is named as the coherent peak. It is
also this part of the initial state wave function that contributes to the discontinuity of the
momentum distribution, and therefore, its coefficient is proportional to the quasi-particle
residue Z. The second part is a broad distribution for ω > εp − Ep, which comes from the
contribution of the (ii)-type of the final state. This part is called the incoherent broadening.
The typical radio-frequency spectroscopy for the spin-down atoms are shown by the red
lines in Figures 5.7(b)–(d). From the location of the coherent peak in the frequency domain,
we can extract the polaron energy. From the weight of the coherent peak, we can determine
the quasi-particle residue Z. As shown in Figure 5.5(b), the polaron energy is plotted as a
function of 1/(kFas). Eq. 5.52 does not include the final state interaction effect between
the |3〉 state and the spin-up atoms. In practice, the strength of this final state interaction
effect depends on the choices of atomic species and the internal states. When this final state
interaction effect is not negligible, it can also be taken into account in the Fermi’s golden
rule calculation, yielding certain corrections to the spectroscopy. By taking the final state
interaction effect into account, the theoretical results from this variational wave function
approach agrees reasonably well with the experimental data, as shown in Figure 5.5(b).
This quasi-particle residue Z is plotted in Figure 5.8 in terms of the impurity density and the
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!Figure 5.7 Radio-frequency spectroscopy measurement. The rf spectroscopy for the spin-up majority atoms (the solid line always
peaked at zero frequency) and for spin-downminority atoms (another solid line), for 1/(kFas) = (a) 0.76, (b) 0.43,
(c) 0.20, and (d) 0. Reprinted from Ref. [153]. A color version of this figure can be found in the resources tab for this
book at cambridge.org/zhai.

!Figure 5.8 The quasi-particle residue.Z obtained from the radio-frequency spectroscopy measurement and plotted in terms of
impurity density and 1/(kFas). Inset shows thatZ vanishes at the polaron to molecule transition. The shaded area is
the area that is under the minority peak and is not included by the majority atom’s response, and the weight of the
shaded area is counted asZ. Reprinted from Ref. [153]. A color version of this figure can be found in the resources tab
for this book at cambridge.org/zhai.

interaction parameter 1/(kFas), and indeed it shows that Z vanishes at a critical interaction
strength, at which the Fermi liquid undergoes a transition to the molecular BEC.

Similarly, one can also perform the radio-frequency spectroscopy on the majority spin-
up atoms. In the polaron state, the change to the Fermi sea is negligible when annihilating
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one majority atom, and therefore, the polaronic state is not affected. Hence, the radio-
frequency spectroscopy will be the same as that for free atoms, as shown in Figures 5.7(b)–
(d). When entering the molecular regime, each spin-down atom should pair up with a spin-
up atom. If the radio-frequency transition is acted on a spin-up atom in the pair, it requires
the same amount energy to break the pair as the radio-frequency wave acted on the spin-
down atom. Hence, the spectroscopy displays the same line-shape for the spin-up atoms
and for the spin-down atoms in that energy regime. If the radio-frequency transition is
acted on the excess spin-up atoms, it displays the same spectroscopy as the free atoms. This
double peak structure is shown in Figure 5.7(a), which is taken in the molecular regime.

Exercises

5.1 Considering single component noninteracting fermions in a three-dimensional
isotropic trap V( r) = mω2r2/2 with total number N, compute the density profile
with two methods: (1) by filling the single-particle eigenstates from the lower energy
to the higher energy; (2) by the local density approximation. Compare the density
distribution obtained by these two methods when N is large enough.

5.2 Considering a two-component Fermi gas in three dimensions, compute the total Sz =
N↑ − N↓ when the chemical potential µ↑ ,= µ↓. Defining h = µ↑ − µ↓, when h is
small, compute the spin susceptibility given by Sz/h in the limit of h → 0.

5.3 Solve Eq. 5.36 perturbatively when as is a small positive value or a small negative
value, and show that the results of polaron energy are consistent with the perturbation
theory.

5.4 Considering a fully polarized Fermi gas with spin-up atoms only, now let us flip
one spin-up fermion into a spin-down fermion, and this spin-down fermion forms a
repulsive polaron with the rest of the spin-up fermions. Estimate when this spin flip
process is energetically favorable and the fully polarized ferromagnetic state is not
energetically stable.

5.5 Considering a Fermi gas fully polarized by a Zeeman field −h(N↑ − N↓), now let
us flip one spin-up fermion into a spin-down fermion, and this spin-down fermion
forms an attractive polaron with the rest of the spin-up fermions. Estimate the critical
Zeeman field hc above which the spin flip process is not energetically favorable and
the fully polarized spin-up Fermi gas is energetically stable.



6 The Fermi Superfluid

Learning Objectives

• Compare the difference between the two-body problem in a vacuum and on top of the
Fermi sea.

• Introduce the BCS mean-field theory and the BCS ground state wave function and its
excitation.

• Introduce the physical picture of BCS pairing.
• Introduce the concept of contact using the BCS state as an example.
• Discuss how the BCS state responds to a Zeeman field.
• Discuss different pairing symmetries.
• Discuss how the BCS-BEC crossover mean-field equation recovers features in both the

BCS and the BEC limit.
• Discuss different behaviors of the excitation spectrum in the BCS and the BEC regimes

and determine superfluid critical velocity from the excitation spectrum.
• Discuss how the superfluid transition temperature changes from the BCS regime to the

BEC regime.
• Introduce a list of experimental observations on the BCS-BEC crossover.
• Discuss the challenging issues in studying the unitary Fermi gas.
• Introduce the concept of holographic duality and the prediction of the η/s bound.

6.1 BCS Pairing

In the previous Section 5.2, we have considered interacting spin-1/2 fermions, but we only
consider the situation that few minority spin-down fermions are embedded in the major-
ity spin-up fermions. In this chapter, we consider spin-1/2 fermions, and in most cases,
with equal density of spin-up and spin-down fermions. We will still use the renomalizable
contact potential introduced in Section 2.2 and the Hamiltonian is given by

Ĥ =
∑

k

(εk − µ)ĉ†
kσ ĉkσ + g

V

∑

kk′q

ĉ†
k+ q

2 ↑ĉ†
−k+ q

2 ↓ĉ−k′+ q
2 ↓ĉk′+ q

2 ↑, (6.1)

where εk = !2k2/(2m). Here the density of each spin component is fixed as n = k3
F/(6π2).

EF = !2k2
F/(2m) and TF = EF/kB are the Fermi energy and the Fermi temperature for
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noninteracting Fermi gas, respectively. They will be taken as energy units in following
discussions.

Pairing Instability of Fermi Surface. Now we first revisit the two-body problem we
have studied in Section 2.1, but with a different approach. Considering two-particle with
opposite spins in vacuum with zero center-of-mass momentum, the wave function can be
generally written as

|*〉 =
∑

k

ψkĉ†
k↑ĉ†

−k↓|0〉. (6.2)

Below we will compare the two-body problem in vacuum and the two-body problem in
the presence of a Fermi sea. And as an important difference between these two cases, the
chemical potential is set as zero for the former case but is nonzero for the latter. Hence, the
Schrödinger equation for the former case becomes

2εkψk + g
V

∑

k′
ψk′ = Eψk, (6.3)

which leads to a self-consistent equation

1
g

= 1
V

∑

k

1
E − 2εk

. (6.4)

Using the renormalization condition for g, we have

m
4π!2as

= 1
V

∑

k

(
1

E − 2ε k
+ 1

2εk

)
. (6.5)

Next we consider a two-body problem on top of a Fermi sea. Such a problem is first
analyzed by Cooper and is known as the Cooper problem [39]. For this problem the wave
function is modified as

|*〉 =
∑

|k|>kF

ψkĉ†
k↑ĉ†

−k↓|FS〉, (6.6)

where we have replaced |0〉 in Eq. 6.6 by the Fermi sea |FS〉, and |FS〉 is given by

|FS〉 =
∏

|k|<kF

ĉ†
k↑ĉ†

k↓|0〉. (6.7)

The momentum summation of these two extra particles is restricted to |k| > kF because
of the Pauli exclusion principle. Here we have ignored the distortion of the Fermi sea due
to the presence of two extra particles, and µ is taken as EF. Correspondingly, Eq. 6.5 is
modified as

m
4π!2as

= 1
V




∑

|k|>kF

1
E − 2(ε k − µ)

+
∑

k

1
2εk



 . (6.8)
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0–2–3 –1!Figure 6.1 Solution of two-body problem. This plot shows the f -function of Eq. 6.9 forE < 0. The dashed line is the f -function

for the two-body problem in vacuum, and the solid line is the f -function for the two-body problem in the presence of
a Fermi sea. The solution of Eq. 6.9 can be obtained by looking at the intersection of a constant 1/(kFas)with the
f -functions. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

Using EF as the energy unit and 1/kF as the length unit, both Eq. 6.5 and Eq. 6.8 can be
casted into

1
kFas

= f
(

E
EF

)
. (6.9)

The function-f for Eq. 6.5 and Eq. 6.8 are shown in Figure 6.1, and the intersection between
a constant 1/(kFas) and the f -function gives rise to the solution to these equations. Here
we would like to make two remarks regarding these solutions.

• For negative as, because the f function given by Eq. 6.5 is always positive for E < 0 and
it terminates at f = 0 when E = 0, Eq. 6.5 does not have a E < 0 solution for negative
as. But the f function given by Eq. 6.8 approaches −∞ as E → 0. Hence, it always
has a bound state with energy E < 0 for any as. That is to say, for negative as, two
particles cannot form a bound state if they are alone, but they can form a bound state
with the presence of a Fermi sea. In other words, pairing is a collective effect in this
regime. The existence of the bound state solution means that the two-particle excitation
of a free Fermi sea always has negative excitation energy with any attractive interaction,
which in fact indicates the Fermi sea is unstable toward fermion pairing. Therefore, one
has to reconstruct a many-body state that includes this pairing effect, which leads to the
famous Bardeen-Cooper-Schrieffer theory for superconductors, well known as the BCS
theory [12].

• For positive as, pairing occurs even for a two-body system in vacuum. It is easy to show
that Eq. 6.5 has a bound state solution with E = −!2/(ma2

s ) when as > 0, which is
consistent with our analysis in two-body problem with the first quantization quantum
mechanics approach in Section 2.1. One can see that for very negative E, these two f -
functions approach each other. Hence, one can find when as becomes small and positive,
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the solution of Eq. 6.8 approaches the solution for Eq. 6.5 for two-body problem in vac-
uum. In this limit, the size of the two-body bound state becomes much smaller compared
with the inter-particle distance, and hence, it does not make much difference if these two
fermions are in a many-body environment or by themselves alone. It can also be shown
that the bound state behaves as a diatomic bosonic molecule in this limit, therefore, at
low temperature these bosonic molecules can Bose–Einstein condense (BEC).

Below we shall first briefly review the BCS theory, and in the next Section 6.2, we will
discuss the crossover from a BCS state to a BEC state.

The BCS Mean-Field Hamiltonian. The BCS mean-field theory follows from a standard
mean-field approach summarized in the Box 6.1. Here we only focus the center-of-mass
q = 0 scatterings sector in Eq. 6.1, and the reason we only include q = 0 sector will be
explained later. By taking q = 0, the interaction term in Eq. 6.1 can be written as

g
V

∑

kk′q

ĉ†
k+ q

2 ↑ĉ†
−k+ q

2 ↓ĉ−k′+ q
2 ↓ĉk′+ q

2 ↑ = g
V

(
∑

k

ĉ†
k↑ĉ†

−k↓

)


∑

k′
ĉ−k′↓ĉk′↑



 , (6.10)

which is the general form of interaction potential discussed in Box 6.1 by choosing Â =
−∑k c−k↓ck↑. Then, following the procedure discussed in Box 6.1, the BCS mean-field
Hamiltonian becomes

HBCS =
∑

kσ

(εk − µ)c†
kσ c kσ −#

∑

k

c†
k↑c†

−k↓ −#
∑

k

c−k↓ck↑ − #2V
g

, (6.11)

where # is defined as

# = − g
V

∑

k

〈c−k↓ck↑〉. (6.12)

We note that the definition of Â and # can be defined up to a free phase factor, and here
we choose the phase factor in such a way that # can be taken as real positive number.

Box 6.1 Self-Consistent Mean-Field Theory

In this book we will employ the self-consistent mean-field theory in this section and in Section 8.1 in dis-
cussing the Bose–Hubbard model. Here we will describe the general scheme. Considering a term gÂ†Â,
we write gÂ†Â = 〈gÂ†〉Â + Â†〈gÂ〉 +

(
gÂ†Â − 〈gÂ†〉Â − Â†〈gÂ〉

)
. Furthermore, by tak-

ing the expectation value of the last term in the bracket and factorizing 〈Â†Â〉 ≈ 〈Â†〉〈Â〉, we can
approximate the last term in the bracket as−〈gÂ†〉〈gÂ〉

g , which is equivalent to ignoring the fluctuation term

g(Â†−〈Â†〉)(Â−〈Â〉). With this approximation, we havegÂ†Â ≈ 〈gÂ†〉Â+Â†〈gÂ〉− 〈gÂ†〉〈gÂ〉
g .

We can introduce 〈gÂ〉 as the order parameter, and finally the order parameter has to be determined
self-consistently.
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This mean-field Hamiltonian HBCS is a quadratic Hamiltonian which can be diagonal-
ized as

HBCS =
∑

k

[

(ĉ†
k↑, ĉ−k↓)

(
εk − µ −#
−# −(ε k − µ)

)(
ĉk↑
ĉ†

-k↓

)

+ (εk − µ)

]

− #2V
g

=
∑

k

[
Ek

(
α̂†

kα̂ k − β̂kβ̂
†
k

)
+ (ε k − µ)

]
− #2V

g

=
∑

k

[
Ek

(
α̂†

kα̂ k + β̂†
kβ̂k

)
+ (εk − µ) − E k

]
− #2V

g
, (6.13)

where

Ek =
√

(εk − µ)2 +#2, (6.14)

and α̂k and β̂†
k are a unitary rotation of ĉ k↑ and ĉ†

−k↓ as

α̂k = ukĉk↑ − vkĉ†
−k↓ (6.15)

β̂†
k = vkĉk↑ + ukĉ†

−k↓, (6.16)

and therefore

α̂
†
k = ukĉ†

k↑ − vkĉ−k↓ (6.17)

β̂k = vkĉ†
k↑ + ukĉ−k↓. (6.18)

Here both uk and vk are real and positive values, and

u2
k = 1

2

(
1 + εk − µ

Ek

)
; v2

k = 1
2

(
1 − εk − µ

Ek

)
. (6.19)

Similar as the Bogoliubov Hamiltonian for bosons discussed in Section 3.3, the new
quasi-particles α̂ and β̂† operators mix the creation and annihilation operators of origi-
nal fermions. There we have mentioned a unitary transformation of the bosonic creation
and annihilation operators do not obey bosonic commutation relations. However, here α̂
and β̂† is a unitary rotation of original fermionic creation and annihilation operators, but
they obey the fermionic commutation relations.

Diagonalizing the Bogoliubov Hamiltonian can determine following results:

• First, it determines the ground state wave function. Since Ek is always positive, the
ground state wave function |&BCS〉 has to be a vacuum of quasi-particles α̂†

k and β̂†
k , that

is to say, one needs to find out a wave function that satisfies

α̂k|&BCS〉 = 0, β̂ k|&BCS〉 = 0. (6.20)

And it is easy to show that such |&BCS〉 is given by

|&BCS〉 =
∏

k

(uk + vkĉ†
k↑ĉ†

−k↓)|0〉. (6.21)

With this wave function, it is easy to see that the momentum distribution nkσ = |v k|2.
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• Second, it determines the ground state energy. For the vacuum of the quasi-particles, the
ground state energy is also determined by Eq. 6.11 as

EBCS =
∑

k

[((εk − µ) − E k] − #2V
g

. (6.22)

To determine the value of #, we can compute the r.h.s. of Eq. 6.12 with respect to the
BCS wave function Eq. 6.21, and it gives

# = − g
V

∑

k

ukvk = − g
V

∑

k

#

2Ek
. (6.23)

Here we again use the renormalization condition for g to eliminate the divergency in the
summation of r.h.s. of Eq. 6.23, which yields

− m
4π!2as

= 1
V

∑

k

(
1

2E k
− 1

2εk

)
. (6.24)

Alternatively, we can also minimize the energy of the BCS ground state energy Eq. 6.22
with respect to #, and ∂EBCS/∂# = 0 yields the same equation as Eq. 6.23. Eq. 6.24 is
called the gap equation.

• Third, it determines the excitation spectrum and the wave function of excitations. It is
straightforward to show that

α̂†
k0

|&BCS〉 = ĉ†
k0↑

∏

k*=k0

(uk + vkĉ†
k↑ĉ†

−k↓)|0〉 (6.25)

β̂†
k0

|&BCS〉 = ĉ†
−k0↓

∏

k*=k0

(uk + vkĉ†
k↑ĉ†

−k↓)|0〉. (6.26)

The excited energy of these two excited states are Ek0 . Furthermore, we can consider
another excited state

α̂†
k0
β̂†

k0
|&BCS〉 = (−vk0 + uk0 ĉ†

k0↑ĉ†
−k0↓)

∏

k*=k0

(uk + vkĉ†
k↑ĉ†

−k↓)|0〉. (6.27)

The excitation energy of this state is 2Ek0 . At the Fermi surface when εk0 = µ, the
excitation energy Ek0 = # for exciting a single quasi-particle described by Eq. 6.25 and
Eq. 6.26, and 2E k0 = 2# for exciting two quasi-particles described by Eq. 6.27.

It is interesting to discuss the limit # → 0, and in this limit µ → EF. For |k| < kF,
uk → 0 and vk → 1, and therefore, α̂†

k → ĉ−k↓ and β̂†
k → ĉk↑, both of which create

hole excitation below the Fermi sea. For |k| > kF, uk → 1 and vk → 0, and therefore,
α̂†

k → ĉ†
k↑ and β̂†

k → ĉ†
−k↓, both of which create particle excitation above the Fermi sea.

In the limit # → 0, Ek also becomes |εk − µ|, which is the excitation energy for a hole
with |k| < kF or for a particle with | k| > kF in a free Fermi sea, and |&BCS〉 recovers
to the filled Fermi sea. These are all consistent with the noninteracting fermions discussed
in Section 5.1. When # is finite, Ek is always nonzero and it acquires a minimum value
# as the excitation gap. The momentum distribution is a smooth function and does not
display any discontinuity. Hence, the BCS state does not obey the condition of a Fermi
liquid discussed in Section 5.1, and it belongs to the ordered phase discussed in Box 5.1.
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!Figure 6.2 Schematic of the BCS mechanism. (a) Consider two modes k, ↑ and−k, ↓with k located at the Fermi surface. The
Hilbert space contains four states as a doubly occupied state, two singly occupied states, and a vacuum state. The
doubly occupied and the vacuum states are hybridized by#. (b) The hybridization lowers the energy of the BCS wave
function by#. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

This discussion of # → 0 also applies to the momentum regime away from the Fermi
surface even for finite# case, as long as |εk−µ| + #. In other words, for the BCS pairing,
the reconstruction of the many-body wave function mainly takes place in an energy window
∼ # around the Fermi surface where εk−µ = 0. Hence, below we only focus on the Fermi
surface in order to gain an intuitive picture of the BCS pairing.

Physical Interpretation of the BCS Pairing. Here we will offer a physical picture of the
BCS pairing, which is illustrated by Figure 6.2. Here we consider an arbitrary momentum
k0 at the Fermi surface, and because of the time-reversal symmetry, −k0 is also located
at the Fermi surface. At this point we should explain why we focus on q = 0 sector of
the scattering process. Because when q *= 0, for a general k0, if k0 + q/2 is located at the
Fermi surface, −k0 +q/2 is not located at the Fermi surface.1 As we will see below, for the
BCS pairing, it is important that both k0 and −k0 are simultaneously located at the Fermi
surface. In this case, let us consider a pair of state k0, ↑ and −k0, ↓. Before turning on
interactions, there are four zero-energy degenerate states, which are the doubly occupied
state ĉ†

k0↑ĉ†
−k0↓|0〉, two singly occupied states ĉ†

k0↑|0〉 and ĉ†
−k0↓|0〉, and the fully empty

state |0〉, as shown in Figure 6.2(a). The #-term in the BCS Hamiltonian Eq. 6.11 couples
the doubly occupied state to the fully empty state. Thus, the BCS wave function Eq. 6.21 is
a superposition between the doubly occupied state and the fully empty state, whose energy
is lowered by# due to the level repulsion, as shown in Figure 6.2(b). The BCS Hamiltonian
leaves the singly occupied states unchanged, thus, they correspond to excitations Eq. 6.25
and Eq. 6.26, whose energy is higher than the BCS state by the amount of #. The energy
of another superposition orthogonal to the BCS wave function is increased by# due to the
level repulsion, thus, its energy is higher than the ground state by 2#, which corresponds
to the excited state Eq. 6.27 with two quasi-particles.

1 For some specific shape of Fermi surface, it is possible that there exists a nonzero q such that for most k0, if
k0+q/2 is at the Fermi surface, −k0+q/2 is also at the Fermi surface. In this case, pairing with nonzero q is also
possible. Such a BCS pairing state is called the Fulde-Ferrell-Larkin-Ovchinnikov state, usually short-noted as
the FFLO state [57, 103].
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This discussion reveals that the key of the BCS wave function is so-called pairing in
the momentum space. The precise meaning of pairing in momentum space is that a pair
of states with opposite momenta are either both occupied or both empty. In other words,
the singly occupied states are excluded. The physical insight is that when the two states
are both occupied, two atoms can be scattered into another pair of momenta. And if both
states are empty, two atoms in other pair of momenta can be scattered into this state. Thus,
these two states can enjoy the interaction energy. However, the singly occupied state can
neither be the initial state nor be the final state of the scattering process, therefore, it cannot
participate in the scattering processes and cannot benefit from the interaction energy. Here
we should particularly stress that the pairing in momentum space is different from our
intuitive picture of pairing in real space. In real space, one can image that two particles
come close to each other in order to gain attractive interaction energy. However, this is not
the physical picture of the BCS pairing. As we will show in Section 6.2, the typical size of
a Cooper pair is about ∼ 1/kF, which is not smaller than the typical interparticle spacing.

The Contact. For the BCS wave function, the momentum distribution nk is given by |vk|2,
and it can be shown that for sufficiently large k,

nk = |vk|2 → m2#2

!4k4 . (6.28)

The momentum distribution nk behaves ∼ 1/k4 at large momentum. It can be shown that
this is a general feature of a many-body system with zero-range interaction in three dimen-
sions, and this feature is quite general and holds independent of statistics, temperature, and
even independent of whether the system is at equilibrium or not [171, 192]. In fact, this
1/k4 tail of momentum distribution is a consequence of the behavior of the short-range
wave function discussed in Section 2.1, which says that the wave function should always
behaves as 1/|ri − rj| when any ri gets close to another rj. Hence, we can define a quan-
tity C called Contact [171, 192], and it is defined through the large momentum asymptotic
behavior of momentum distribution as

C = lim
k→∞

k4nk. (6.29)

In the case of the BCS wave function, with Eq. 6.28, C is given by

C = m2#2

!4 . (6.30)

Now considering the total energy given by Eq. 6.22, we consider ∂EBCS/∂a−1
s , it leads to

∂EBCS

∂a−1
s

= ∂EBCS

∂#

∂#

∂a−1
s

+ ∂EBCS

∂g−1

∂g−1

∂a−1
s

= −m#2V
4π!2 . (6.31)

Here we have used the gap equation ∂EBCS/∂# = 0 and the renormalization condition
Eq. 2.31. By comparing Eq. 6.30 and Eq. 6.31, we find a relation [171, 192]

dE

da−1
s

= − !2V
4πm

C. (6.32)
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Though we obtain this Eq. 6.32 using the BCS theory as a specific example, this iden-
tity holds for any equilibrium state in three dimensions with zero-range interaction. This
relation connects the total energy and the large-k asymptotic behavior of momentum
distribution.

Since the large momentum part refers to the ultraviolet behavior, and therefore, it should
also be related to the short-range behavior. Here we consider the local density-density
correlation written as 〈n̂↑(r)n̂↓(r)〉. Using the BCS wave function Eq. 6.21, it is easy to
show that

g2〈n̂↑(r)n̂↓( r)〉 = g2

V2

(
∑

k

ukv k

)2

= #2, (6.33)

where we have used the gap equation Eq. 6.23. Thus, we have reached another relation that
is [171, 192]

!4

m2 C = g2〈n̂↑(r)n̂↓( r)〉. (6.34)

Again, this relation also holds for general many-body systems in three dimensions with
zero-range interaction.

Response to Zeeman Field. As one can easily see from the BCS wave function Eq. 6.21,
there are always equal number of spin-up and spin-down fermions in this ground state.
Now let us consider adding a Zeeman field term as

h
∑

k

(ĉ†
k↑ĉk↑ − ĉ†

k↓ĉk↓). (6.35)

This simply modifies the kinetic energy term in the BCS mean-field Hamiltonian
Eq. 6.11 as

∑

kσ

(εk − µ)ĉ†
kσ ĉ kσ →

∑

kσ

(εk − µσ )ĉ†
kσ ĉkσ , (6.36)

where µ↑ = µ − h and µ↓ = µ + h. It is straightforward to show that this modified
mean-field Hamiltonian can still be diagonalized, and it yields a very similar diagonalized
Hamiltonian as Eq. 6.13, except that

∑

k

Ek

(
α̂†

kα̂ k + β̂†
kβ̂k

)
→
∑

k

(Ek + h)α̂†
kα̂k + (E k − h)β̂†

kβ̂k. (6.37)

However, the expression for uk and vk remain unchanged. The excitation spectrums are
changed from Ek to Ek ± h. This can be understood because the BCS ground state is a
spin singlet, and α̂†

k and β̂†
k create excitations of spin-1/2 with Sz = ±1/2, respectively.

Hence, the energy of the BCS ground state cannot be changed by the Zeeman field, and
the energies of two quasi-particles are increased or lowered by h, respectively. However,
since the minimum of Ek is #, therefore, as long as h < #, both two excitation energies
are still positive and the ground state is still the vacuum of two quasi-particles. That is to
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say, the BCS ground state cannot be affected by the Zeeman field as long as h < #. This
in fact is not a surprise. Because the spin excitation is gapped for the BCS state, it means
that the spin susceptibility is zero and the response of the system to the external Zeeman
field vanishes.

As we discussed above, the energy of the BCS wave function does not change with
the increasing of h. In contrast to the BCS state, we can also consider the normal state
with # = 0. For the normal state, fermions nearby the Fermi surface can immediately
be polarized by the Zeeman field. In other words, the Fermi surfaces for the spin-up and
the spin-down particles are split by the Zeeman field. Thus, the energy of the normal state
decreases as the Zeeman field increases. In the absence of the Zeeman field, the energy of
the BCS state is lower than the normal state. As the Zeeman field h increases, there exists
a critical Zeeman field hc, above which the normal state has a lower energy than the BCS
state. This critical Zeeman field is usually smaller than #, and in the weakly interacting
limit, hc = #/

√
2. Then, a first order phase transition from the BCS pairing state to the

normal state takes places. This critical field is also known as the Chandrasekhar–Clogston
limit [29, 37]. Before the transition, the spin-up and spin-down atoms have equal densities
and the spin polarization vanishes. There exists a jump of spin polarization at the first order
transition, after which the spin polarization increases with the increasing of the Zeeman
field.

Here a Zeeman field actually means difference in chemical potential between two
spin components,2 and in ultracold atom experiments, it can be realized by mixing two spin
components with different number of atoms in each spin component. By the local density
approximation, we have µσ = µ0

σ −V(r), and µ0
↑ > µ0

↓ supposing that total number of N↑
is greater than N↓. Hence, we have h = µ↑−µ↓ = µ0

↑−µ0
↓, which is a constant throughout

the system, but the averaged density, controlled by µ̄ = (µ↑+µ↓)/2 = 1
2 (µ0

↑+µ0
↓)−V(r),

decreases as r increases. Thus, as r increases, the Fermi energy EF decreases, and there-
fore,# decreases. Hence, as shown in Figure 6.3(a1) and (b1), there exists a critical radius
Rc at which h/# reaches the Chandrasekhar–Clogston limit, and a first order phase tran-
sition takes place. In the regime r < Rc denoted by I in Figures 6.3(a1) and (b1), it is
the BCS state with equal densities of two spin components and zero spin polarization. At
r = Rc, spin polarization jumps to a finite value. Then, in the regime denoted by II, the spin
polarization continuously increases as r increases, until the density of spin down fermions
vanishes. Then the spin polarization remains the constant unity in the regime denoted by
III. This phenomenon has been observed in experiments, as shown by Figures 6.3(a2) and
(b2). Note that in ultracold atom experiments, what can be measured by the absorption
imaging is an integrated density along the light propagation direction, and the integra-
tion smears out the jump of polarization. Hence, in the experiment Ref. [159], in order to
see the jump associated with the first order transition, they have to use the inverse Abel
transformation to reconstruct the three-dimensional density from the integrated column
density.

2 Unlike the inevitable spin flip processes in the solid state materials, in ultracold atom systems there is no spin
flip term and the total number of atoms in each spin component is conserved individually, an energy offset
between these two spin states actually does not play a role of Zeeman field.
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!Figure 6.3 Spin-imbalanced Fermi gas. (a) Density for two spin components in a harmonic trap. (b) Spin polarization in a
harmonic trap. (a1, b1) Theoretical expectation. (a2, b2) Experimental observation. Reprinted from Ref. [159]. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

Pairing Symmetry. Above we have focused on the s-wave pairing because we only con-
sider interaction in the s-wave channel. In general, the BCS state can have different pairing
symmetries. We now consider a general interaction form in the center-of-mass momentum
q = 0 sector and between two spin components, written as

− 1
V

∑

kk′
Vkk′ ĉ†

k↑ĉ†
−k↓ĉ−k′↓ĉk′↑. (6.38)

We decompose Vkk′ as

Vkk′ =
∑

i

λif i(k)f i( k′), (6.39)

where f i(k) is called the form factor. Let us only focus on the channel with the largest λi,
say, denoted by λ, the interaction term can be written as

− λ

V

∑

kk′
fkfk′ ĉ†

k↑ĉ†
−k↓ĉ−k′↓ĉk′↑ = − λ

V

(
∑

k

fkĉ†
k↑ĉ†

−k↓

)


∑

k′
f k′ ĉ−k′↓ĉk′↑



 . (6.40)
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Introducing

# = λ

V

∑

k

〈fkĉ−k↓ĉ k↑〉, (6.41)

the BCS mean-field Hamiltonian Eq. 6.11 still takes similar form with a small modifica-
tion as

−#
∑

k

c†
k↑c†

−k↓−#∗∑

k

c−k↓ck↑ → −#
∑

k

fkc†
k↑c†

−k↓−#∗∑

k

fkc−k↓ck↑. (6.42)

The following discussion of the BCS state still holds except one needs to replace #
everywhere with #fk, for instance, the excitation spectrum will be changed to

Ek =
√

(εk − µ)2 + |#fk|2. (6.43)

The symmetry of fk therefore plays an important role. For instance, if f (k) ∝ kx or f (k) ∝
ky, then f (k) has the p-wave symmetry in the momentum space, and such BCS state is
called the p-wave pairing. If f (k) ∝ kxky or f (k) ∝ k2

x − k2
y , then f (k) has the d-wave

symmetry in the momentum space, and such BCS state is called the d-wave pairing. We
will mention the d-wave pairing in the Fermi–Hubbard model in Section 8.2. For the p-
wave pairing, fk changes sign once in the entire momentum space and hence there is a
nodal line where fk = 0. When this nodal line intersects with the Fermi surface defined as
εk = µ, the excitation spectrum displays a gapless excitation at this point, around which
the excitation spectrum shows a Dirac cone. Similarly, for the d-wave pairing, fk changes
sign twice and there are two nodal lines. Their intersections with the Fermi surface also
gives rise to gapless excitations there.

6.2 BCS-BEC Crossover

Although the BCS state is not a Fermi liquid anymore, it retains lots of features as a
fermionic system. For negative as and when |as| 0 1/kF, the pairing gap is much weaker
compared with the Fermi energy, and the reconstruction of many-body state is limited to
the momentum space around the Fermi surface. This is pairing in the momentum space
discussed in the previous section, and no real space two-body bound state can exist in
low-energy. This regime is considered as the BCS limit.

On the other hand, for positive as, there exists stable two-body bound state. Such a bound
state, in contrast to the Cooper pairs, is pairing in real space. Two fermions in each bound
state do stay closer in the real space, and the size of the pair is ∼ as. This bound state
is considered as a diatomic bosonic molecule. When as 0 1/kF, the size of bound state
is much smaller than the interparticle distance, hence, the system can be viewed a gas of
bosonic molecules. as 0 1/kF is also equivalent to !2/(ma2

s ) + !2k2
F/(2m), that is to say,

the molecular binding energy is much larger than the Fermi energy. Hence, the system loses
its fermionic characters. At low temperature, these bosonic molecules can Bose condense.
This is considered as the BEC limit.
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!Figure 6.4 Schematic of the BEC and BCS states.−1/(kFas) is used as the tuning parameter; as < 0 and |as| 0 1/kF is the
BCS limit, where pairing occurs in the momentum space; and as > 0 and |as| 0 1/kF is the BEC limit, where
pairing occurs in the real space. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

The physics of these two limits look quite differently and these two limits are schemat-
ically shown in Figure 6.4. It is an important observation that one can tune the parameter
−1/(kFas) to connect these two limits. Hence, a natural question is that, as one tunes
−1/(kFas) from the BCS limit to the BEC limit, whether there exists a phase transition
in between, or it is a smooth crossover. The answer to this question crucially depends
on whether there exists a wave function that can smoothly interpolate the wave func-
tion of BCS pairing in momentum space and the wave function for Bose condensation
of molecules. In fact, it has been pointed out that this BCS wave function can also capture
the physics of molecule BEC [52, 106], because

|&BCS〉 ∝
∏

k

(
1 + vk

u k
ĉ†

k↑ĉ†
−k↓

)
|0〉 = exp

{
∑

k

vk

u k
ĉ†

k↑ĉ†
−k↓

}

|0〉. (6.44)

Here we have used the fact that (ĉ†
k↑)n|0〉 = (ĉ†

− k↓)n|0〉 = 0 for n # 2. Introducing

g̃k = vk

uk
= #

E k + (εk − µ)
(6.45)

and a normalization factor A = ∑
k |g̃k|2, we define g k = g̃k/

√
A and introduce operator

b̂† as a Cooper pair operator

b̂† =
∑

k

gkĉ†
k↑ĉ†

−k↓. (6.46)

It is clear that b̂ describes a composite object of two fermions and k is the relative
momentum. Therefore, we can define the Cooper pair wave function as

ψ(r) = 1
√

(2π )3

∫
d3kgkeik· r. (6.47)
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In order that the wave function Eq. 6.44 can describe a Bose condensation, it is important
for b̂ to obey the bosonic commutation relation. It is straightforward to show that

[b̂, b̂†] =
∑

k

|gk|2(1 − n̂k↑ − n̂−k↓). (6.48)

One can see that in the r.h.s. of Eq. 6.48, if n̂k↑ and n̂−k↓ can be ignored, then we reach
[b̂, b̂†] = 1 and the boson commutation relation is satisfied. Later we will discuss when
n̂k↑ and n̂−k↓ can be ignored, and we shall also show that, under the same condition,
ψ(r) becomes a tightly bounded wave function with size ∼ as. The many-body wave
function Eq. 6.44 can then be written as exp{

√
Ab̂†}|0〉. When b̂ is a bosonic operator,

this is a coherent state representation of the Bose condensate wave function as we have
discussed in Section 3.1. Therefore, it is possible that the BCS wave function Eq. 6.21 can
be continuously evolved into a wave function for a BEC state. This is called the BCS-BEC
crossover.

Here we should note a key insight for the BCS-BEC crossover is the change of chemical
potential. Chemical potential corresponds to the energy cost of adding a particle into the
system. In a Fermi gas, particle can only be added above the Fermi surface, and therefore,
the chemical potential in the BCS limit is close to the Fermi energy. However, in the BEC
limit, if one adds a pair of fermions with opposite spins, they form a bound state with
binding energy −!2/(ma2

s ). Hence, the chemical potential should be half of this binding
energy. In order to take this change of the chemical potential into account, one needs to
include another equation for conservation of the total number of fermions

n = 1
2V

∑

k

(
1 − εk − µ

Ek

)
. (6.49)

We should solve gap equation Eq. 6.24 together with the number equation Eq. 6.49. Note
that n = k3

F/(6π2), using kF as the momentum unit, and correspondingly, 1/kF as the length
unit and EF as the energy unit, the two equations Eq. 6.24 and Eq. 6.49 can be written into
a dimensionless form. The only tunable dimensionless parameter is −1/(kFas). By solving
these two equations, we can determine #/EF and µ/EF as functions of −1/(kFas). The
results are shown in Figure 6.5. One can see that from the BCS side to the BEC side, the

!Figure 6.5 BEC-BCS crossover. (a) The pairing gap#/EF and (b) the chemical potentialµ/EF as a function of−1/(kFas).
The dashed line in (a) shows#/EF = 4/

√
3πkFas, and the dashed line in (b) showsµ/EF = −1/(kFas)2. A

color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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pairing gap#/EF monotonically increases and the chemical potential µ/EF monotonically
decreases.

We divide the system into three different regime. The BCS limit with −1/(kFas) + 1,
the BEC limit with −1/(kFas) 0 −1 and the unitary regime where the scattering length
is very large and −1/(kFas) ∼ 0. Below we will first show that the mean-field theory can
recover the right physics in the BCS limit and the BEC limit, respectively, and finally we
will address the unitary regime.

The BCS Limit. In this limit we expect # 0 µ so that the number equation can be
approximated by that of a free Fermi gas, and thus µ 1 EF. Substituting µ = EF into the
gap equation Eq. 6.24, one can obtain an approximate solution [139]

# = 8EF

e2 exp
{

π

2kFas

}
, (6.50)

where e ≈ 2.71828 is the Euler’s number. Here the gap is exponentially small in terms of
1/(kFas). π/(2kFas) can be rewritten as 1/(D(EF)U), where D(EF) = mkF/(2!2π2) is the
density-of-state at the Fermi energy, and U = 4π!2as/m. This is consistent with a weakly
interacting picture that shows only fermions nearby the Fermi surface are significantly
affected by pairing, and therefore, only the density-of-state at the Fermi energy matters.
As we show in Figure 6.6(a) the momentum distribution deviates from the momentum
distribution of free Fermi gas in an energy window ∼ # around the Fermi energy. In
Figure 6.6(b), we show that the size of Cooper pair wave function is of the order of ∼ 1/kF.

The BEC Limit. In this limit, each spin-up fermion form a bound pair with a spin-down
fermion. When µ is negative and assuming (−µ) + #, we have |εk − µ| # −µ + #.
Below we will discuss how to recover the BEC limit properly in orders of #.

• The zeroth order of # recovers the two-body bound state.
To the zeroth order of #, Ek becomes εk − µ and the gap equation Eq. 6.24 becomes

− m
4π!2as

=
∑

k

(
1

2ε k − 2µ
− 1

2εk

)
. (6.51)

!Figure 6.6 The BCS-BEC crossover. (a) The momentum distribution nk and (b) the pair wave function gk . The blue dashed line is
for the BCS side−1/(kFas) = 2, the red solid line is for the unitary regime−1/(kFas) = 0, and the green
dotted line is for the BEC side−1/(kFas) = −2. A color version of this figure can be found in the resources tab for
this book at cambridge.org/zhai.
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By equaling 2µ in Eq. 6.51 as E in the two-body equation Eq. 6.5, we can see that
Eq. 6.51 is equivalent to the two-body equation Eq. 6.5, and therefore, we obtain

µ/EF = −(1/(kFas))2. (6.52)

This is consistent with our expectation of chemical potential being half of two-body
binding energy. We have compared this approximated result with the solution of the
mean-field equation in Figure 6.5(b). By taking Ek = εk − µ, we also obtain v2

k ≈ 0
and nkσ ≈ 0, as we can also see in Figure 6.6(a). This satisfies the requirement that we
can ignore nk↑ and n−k↓ in Eq. 6.48, and hence b̂ and b̂† satisfy the boson commutation
relation. In this regime, one can see that the momentum distribution is a broad smooth
function, as shown in Figure 6.6(a), with no feature reminiscent of the Fermi surface.
With the same approximation, we can see that the pair wave function Eq. 6.45 behaves as

g̃k = vk

uk
= #

E k + (εk − µ)
≈ #

−2µ + 2εk
≈ #

−2µ

(
1 − k2a2

s

)
. (6.53)

This gives rise to a pair wave function whose size is ∼ as in real space, consistent with
the two-body bound state.

• The first order of # reveals the interaction effects between molecules.
To the leading order of #, the number equation Eq. 6.49 gives

16
3π

=
(
#

EF

)2
√

EF

−µ
. (6.54)

Substituting µ/EF = −(1/(kFas))2 into Eq. 6.54, we find # = 4EF/
√

3πkFas. We have
also compared this approximated formula with the solution to mean-field equations in
Figure 6.5(a). Hence, #/(−µ) ∼ (kFas)3/2 0 1 in the BEC limit. This justifies the
approximation of small # expansion that we have taken. To the first order of #, the gap
equation Eq. 6.24 becomes

− π

4kFas
= −π

4

√−µ

EF
−

√−µ/EFπ

64

(
#

−µ

)2

, (6.55)

and this gives the first-order correction to the chemical potential as [59]

µ

EF
= − 1

(kFas)2

[

1 − 1
8

(
#

−µ

)2
]

= − 1

(k2
Fa2

s )
+ 2kFas

3π
. (6.56)

Here we introduce the chemical potential of a diatomic molecule µm as 2µ, because
adding a diatomic molecule corresponds to adding two atoms, and

µm = − !2

ma2
s

+ 4π!2(2as)
(2m)

nm, (6.57)

where we have used nm to present the density of molecules, and nm = n↑ = n↓ =
k2

F/(6π2). The first term in Eq. 6.57 is the binding energy of a single molecule, and the
second term is proportional to the density of molecules, the physical meaning of which
is the interaction between molecules. Compared with the mean-field equation-of-state
of interacting bosons discussed in Section 3.2, it shows that the interaction between
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molecules is repulsive, and the scattering length between molecules can be defined as
am = 2as.

A more rigorous value of the molecule-molecule scattering length can be obtained by
solving a four-body problem with two spin-up and two spin-down fermions, which gives
am = 0.6as [59]. Despite of difference in the coefficient, this mean-field theory captures
the key feature that am is proportional to as. This is in fact originated from the Pauli
exclusion principle and the composite nature of the diatomic molecules. Note that here
each molecule is a composite object of two fermions with opposite spins, and the size of
molecule is about as. Therefore, when the distance between two molecules is close to the
size of each molecule, the Pauli exclusion principle starts to play a role, and molecules
start to feel repulsion. That is to say, roughly speaking, we can view each molecule as
a hard core boson with the hard core radius about as. As discussed in Section 2.1, the
scattering length between such hard core particles is about the radius of the hard core,
and in this case, it is proportional to as.

Excitation and Superfluidity. Above we have discussed that the ground state of the BCS
wave function can qualitatively recover the physics of the BEC limit. Here we shall focus
on excitation modes. We have discussed the excitation of breaking of the Cooper pairs, and
the excitation energy is given by the mean-field theory discussed above. This excitation
creates singly occupied fermion mode, therefore, it is fermionic excitation. When µ > 0,
the minimum of the excitation gap occurs at εk = µ and is given by #. When µ < 0,
the minimum of the excitation gap occurs at k = 0 and is given by

√
µ2 +#2. From

Figure 6.5(a), we can conclude that the excitation gap of this fermionic mode monotoni-
cally increases from the BCS limit to the BEC limit. We schematically show in Figure 6.7
the different behavior of this fermionic mode in the BCS and the BEC sides, respectively.

Recalling the discussion of Bose condensate in Section 3.2, we always emphasize the
phonon mode of the BEC with a linear and gapless dispersion. The physical meaning of

!Figure 6.7 Schematic of the excitation across the BCS-BEC crossover. Schematic of the excitation spectrum on the BCS side and
the BEC side. The solid line stands for the fermionic excitation of pair breaking, and the dashed line stands for bosonic
excitation of center-of-mass motion of pairs. Note that the bosonic excitation becomes heavily damped once it enters
the particle-hole continuum of the fermionic modes, as indicated by the slash lines. The dotted line stands for the
slope that determines the critical velocity. A color version of this figure can be found in the resources tab for this book
at cambridge.org/zhai.
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this mode is the motion of bosons, and in this case, it should be the finite momentum
motion of the diatomic molecules. The corresponding bosonic mode should also exist in the
BCS regime, which describes the finite center-of-mass momentum motion of the Cooper
pairs. However, such a mode is not included in the mean-field theory described above,
because the mean-field theory starts with the Hamiltonian that only includes the scattering
processes in the zero center-of-mass momentum sector. Here we take a phenomenological
hydrodynamic approach, which is given by [59]

∂2δn
∂t2

= 1
m

∇
[

n∇
(
∂µ

∂n
δn
)]

. (6.58)

This leads to a low-energy phonon dispersion ω = ck with mc2 = n(∂µ/∂n). In the
BCS regime, we take µ ≈ EF and c will saturate to the value of noninteracting Fermi
gas as vF/

√
3. In the BEC regime, µ = µm/2 with µm given by Eq. 6.57, hence, c =√

4π!2amnm/2m, which increases as as increases at the positive as side. To rigorously
deduce this mode for the entire BCS-BEC crossover regime, one has to go beyond the
mean-field theory and perform the random phase approximation (RPA) calculation [6].
This calculation will show that the sound velocity monotonically decreases from the BCS
limit to the BEC limit, as we show schematically in Figure 6.7.

To show that the Fermi gas in the BCS-BEC crossover is indeed a superfluid, we recall
the Landau criterion Eq. 3.31 for the critical velocity. In Figure 6.7 we draw the dotted
line to indicate the slope for determining the critical velocity. In the BCS regime, the
bosonic excitation has a relatively large velocity, and the fermionic excitation has a small
gap. Thus, the low-energy response is dominated by the fermionic quasi-particles, and the
critical velocity is determined by the fermionic excitation. Hence, vc = #/

√
2mµ/!2,

which increases from the BCS limit toward unitary regime. In the BEC regime, the veloc-
ity for bosonic mode becomes small, and fermionic quasi-particles acquire a large gap.
Thus the low-energy response is dominated by this bosonic mode. The critical veloc-
ity is determined by the phonon velocity of the molecular BEC, which also increases
from the BEC side toward unitary regime. Therefore, critical velocity reaches a maxi-
mum in the intermediate regime where the superfluidity is the most robust. A finite critical
velocity is another hallmark evidence of superfluidity. Similar as discussed in Section 3.2,
critical velocity can be measured by looking at the thermal excitations excited by a mov-
ing object, which can be a weak lattice optical potential in ultracold atom experiments.
The critical velocity has been measured for different interaction strengths, as shown in
Figure 6.8. Indeed, it shows a peak at the intermediate regime between the BCS and the
BEC regimes.

Transition Temperature. Above we have discussed the zero-temperature case and here
we will discuss the finite temperature situation, and we focus on the transition tempera-
ture from the normal state to the Fermi superfluid phase. Let us first start with the BCS
mean-field Hamiltonian. Above Tc, when # = 0, this mean-field Hamiltonian returns to
the Hamiltonian for noninteracting Fermi gas, whose free energy is denoted by F0. Con-
sidering the normal to the superfluid transition as a second-order one, the order parameter
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!Figure 6.8 The critical velocity across the BEC-BCS crossover. Experimental measured critical velocity at different values of
−1/(kFas). Reprinted from Ref. [120].

! can be arbitrarily small on the vicinity of the phase transition, and therefore, we can con-
sider the !-term as perturbations. Using the finite temperature perturbation theory [101],
it is straightforward to obtain the free energy expansion as

F = F0 +
(
∑

k

−1 − 2f (εk − µ)
2(ε k − µ)

− V
g

)

!2 + . . . , (6.59)

where f is the Fermi distribution function. This gives a standard example of the Landau
phase transition, where ! plays a role as the order parameter. In the Landau theory, the
free energy can be expanded in terms of order parameter as F = r|!|2 + b|!|4. Here
one can show b is always positive. When r > 0, the minimum of the free-energy occurs
at ! = 0, and when r < 0, the minimum of the free-energy occurs at finite !. Hence the
transition takes place at r = 0. A more systematic study can also include the spatial and
temporal fluctuations of order parameter ! and can give rise to the full Ginzburg–Landau
function. We will come back to revisit this topic in the discussion of the Bose–Hubbard
model in Section 8.1.

In this case, the phase transition is determined by r = 0, which is explicitly given by

r = V

[
1
V

∑

k

(
−1 − 2f (εk − µ)

2(ε k − µ)
+ 1

2εk

)
− m

4π!2as

]

= 0. (6.60)
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This is known as the Thouless criterion for the BCS transition temperature. In the BCS
limit, if we fix µ at EF, it gives a Tc as

kBTc = 8γ
πe2 EF exp

{
π

2kFas

}
, (6.61)

where γ = 0.5772 denotes the Euler–Mascheroni constant. This shows that the ratio of
kBTc to the zero-temperature gap # given by Eq. 6.50 is a universal constant γ /π .

One of the important lessons we learn from above discussion of the zero temperature sit-
uation is that we need to seriously consider the change of chemical potential from the BCS
regime to the BEC regime. Thus, we need the number equation to determine the chemical
potential. Note that the BCS mean-field Hamiltonian recovers free fermion Hamiltonian
above Tc, it gives the number equation

nσ = nfree =
∑

k

1
e(εk−µ)/(kBT) + 1

. (6.62)

This number equation, together with Eq. 6.60, determines a Tc as shown by the dashed line
in Figure 6.9. However, this result does not look physical, as it keeps increasing toward
the BEC side. As we have discussed in Section 3.1, for a given density of bosons, the
Bose–Einstein condensation temperature is fixed as

kBTBEC ≈ 3.31
!2n2/3

m

2m
≈ 0.218EF. (6.63)

This inconsistency is because the mean-field Hamiltonian only captures the pair forma-
tion, and therefore, the dashed line can be interpreted as the temperature scale that pairs
start to form. However, if this temperature is too high, these bosonic pairs cannot Bose
condense, and therefore, the system is still not a superfluid. Thus, to obtain the superfluid

–2 –1 0 1 2!Figure 6.9 The superfluid transition temperature across the BCS-BEC crossover.Tc/TF as a function of 1/(kFas). The dashed
line is the result without including the pair fluctuations, and the solid line includes the pair fluctuations. The point
with error bar is the experimental results measured by Ref. [97]. Reprinted from Ref. [135]. A color version of this
figure can be found in the resources tab for this book at cambridge.org/zhai.
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transition temperature properly, we need to capture the possibility of noncondensed pairs.
To this end, one needs to incorporate the thermal fluctuation of pairs, or in other words,
one needs to include the noncondensed pairs with finite center-of-mass momentum. This
can be done by including an extra term in the number equation to count for the contribution
from these noncondensed pairs, which modifies the number equation as

nσ = nfluc + nfree. (6.64)

The simplest way to compute nfluc approximately is to include the Gaussian fluctuations,
or equivalently to say, to include the summation of all ladder diagrams [128, 151]. We have
performed the summation of all ladder diagrams in the discussion of the two-body problem
in Section 2.2. Summation over the ladder diagram is exact for the two-body problem,
but it is an approximation for a many-body problem. This approximation is known as the
Noziéres–Schmitt-Rink (NSR) approach [128, 151]. We will not discuss this in details here,
and the result of Tc from the NSR calculation is shown by the solid line in Figure 6.9. In the
BCS limit nfree # nfluc at Tc, and the contribution from pairs fluctuation is insignificant.
The NSR approach recovers the result of Eq. 6.61. In the BEC limit, nfluc # nfree at Tc,
and approximately, one can show that

nfluc = 1
V

∑

k

1

e

(
!2 k2

4m − !2

ma2
s
−2µ

)
/(kBT)

− 1

. (6.65)

In the BEC limit, 2µ → −!2/(ma2
s ), n ≈ nfluc determines the Bose–Einstein condensation

temperature of these diatomic molecules, as given by Eq. 6.63. Indeed the solid line in
Figure 6.9 approaches a constant consistent with Eq. 6.63.

Experimental Observations. In ultracold atom systems, one can use the Feshbach reso-
nance discussed in Section 2.4 as a major tool to tune the scattering length and to study
the BCS-BEC crossover. There have been extensive experimental studies of the BEC-BCS
crossover. Aside from measuring the critical velocity discussed above, here we list a few
important ones:

• Pairwise Projection and the Time-of-Flight Imaging: As discussed in Section 3.1, the
hallmark of Bose condensation is the macroscopic occupation of the zero momentum
state. The way to measure this macroscopic occupation is to measure the momentum
distribution through the time-of-flight imaging. In the BCS state, the Cooper pairs also
have zero center-of-mass momentum. However, if one directly performs the time-of-
flight imaging at the BCS side, the Cooper pairs immediately break when the density
drops significantly during the time-of-flight. Hence, the experimental method is to sweep
the magnetic field from the BCS side to the BEC side. On one hand, the sweep speed
should be slow enough to ensure efficiently converting each Cooper pair into a tightly
bound molecule. On the other hand, the sweep speed should be fast enough to avoid
collisions between pairs, such that the momentum of molecule after projection equals to
the center-of-mass momentum of Cooper pair before projection. Hence, the condensate
fraction measured after magnetic field sweeping can reveal the center-of-mass momen-
tum distribution of pairs before magnetic field sweeping. In this way, we can measure the
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!Figure 6.10 The condensate fraction across the BCS-BEC crossover. The molecular condensate fractionN0/N measured after
sweeping the magnetic field reveals the fraction of zero-momentum Cooper pairs before sweeping. HereN0/N is
measured as a function of initial magnetic field and temperature before sweeping. Negative#B is the BEC side, and
positive#B is the BCS side.#B = 0 corresponds to the Feshbach resonance point. Reprinted from Ref. [148]. A
color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

condensate fraction for different interaction −1/(kFas) and different temperature T/TF

before sweeping, and the results are shown in Figure 6.10. It shows that for a given tem-
perature, the condensed fraction is higher at the BEC side. One can also see a critical
temperature for a given scattering length, which increases from the BCS limit to the
BEC limit, and saturates in the BEC regime.

• Vortex Lattices: As we discussed in Section 4.2, another hallmark of the superfluid is the
existence of stable quantized vortices, and these vortices form a triangular Abrikosov
lattice. Such vortex lattices have also been observed in the entire BEC-BCS crossover
regime, as shown in Figure 6.11.

• Radio-Frequency Spectroscopy Measurement of the Pairing Gap: As discussed in
Section 5.2, the radio-frequency spectroscopy brings an atom in | ↓〉 to the third internal
state without changing its momentum. Here, the momentum-resolved radio-frequency
spectroscopy can be calculated via the Fermi Golden rule as

S(k,ω) = 2π
!
∑

f

|〈f |ĉ†
k,3ĉk,↓|'BCS〉|2δ(!ω − (ε k + Ek))

= 2π
!

|vk|2δ(!ω − (εk + E k)), (6.66)

and the integrated radio-frequency spectroscopy is given by

S(ω) =
∫

d3kS(k,ω). (6.67)



194 The Fermi Superfluid

P

F

!Figure 6.11 Vortex lattice across the BEC-BCS crossover. Triangular vortex lattices have been observed in three different scattering
lengths with 1/(kFas) = 0.7, 0, and−0.25. Reprinted from Ref. [196].

The results of both integrated and momentum-resolved radio-frequency spectroscopy
are shown in Figure 6.12. Compared with the excitation frequency of the normal gas,
denoted by zero in Figure 6.12, the threshold frequency of the spectroscopy is shifted
by the presence of pairing. One can see that the threshold frequency increases from the
BCS limit to the BEC limit.

• Equation-of-State: The equation-of-state can be determined through measuring the pres-
sure P , with the help of the local density approximation. The experimental results are
shown in Figure 6.13. Here we define P = P0h, where P0 refers to the pressure of
noninteracting gas. h should be a function of the scattering length. In Figure 6.13 we
have introduced µ̃ = µ for negative as and µ̃ = µ − Eb/2 for positive as, where
Eb = −!2/(ma2

s ). In Figure 6.13, h is plotted as a function of dimensionless parameter
δ, defined as !/(

√
2mµ̃as). In the BCS side, µ ≈ EF and therefore

√
2mµ̃/! ≈ kF, and

δ is essentially the same as 1/(kFas). In the BEC side, since we have removed the contri-
bution of the two-body binding energy in µ̃, h(δ) only counts for the interaction effects
between molecules. Because at the BEC side the scattering length between molecules am

increases when as increases, the beyond mean-field LHY effect discussed in Section 3.3
becomes visible when a3

mn becomes larger. Indeed, the experimental results shown in
Figure 6.13 are closer to the equation-of-state of an interacting Bose gas including the
LHY corrections.

The Unitary Regime. So far our discussions are mainly focused on the BCS regime with
−1/(kFas) # 1 or the BEC regime with −1/(kFas) ( −1. Here we move to discuss the
unitary regime with −1/(kFas) ∼ 0, where the two-body interaction potential is tuned to
the vicinity of a Feshbach resonance, and the scattering length diverges. For the ground
state, since we have shown that the mean-field theory can correctly recover physics in the
two limits, and since the entire process is a crossover, we can believe that the physics in
the intermediate regime is also fairly captured, at least qualitatively. For instance, when
as diverges, the mean-field theory predicts that both µ/EF and #/EF are constant, which



!Figure 6.12 The radio-frequency spectroscopy. (a–b) Integrated radio-frequency spectroscopy. (a) Schematic of the radio frequency spectroscopy for the BCS regime
(lower one) and the BEC regime (upper one). (b) Measured spectroscopy for−1/(kFas) = −0.4 (upper one), 0 (middle one), and 0.3 (lower one). (c)
Momentum-resolved radio frequency spectroscopy for weakly interacting case (left and upper one), unitary with−1/(kFas) = 0 (left and lower one), and
the BEC side with−1/(kFas) = −1 (right one). (a) and (b) are reprinted from Ref. [155], and (c) is reprinted from Ref. [166]. A color version of this figure
can be found in the resources tab for this book at cambridge.org/zhai.
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!Figure 6.13 The equation-of-state across the BEC-BCS crossover. The pressureP = P0hs, whereP0 is the pressure of the
noninteracting single-component Fermi gas; hs is the vertical axis. See text for the definition of horizontal axes δ. The
solid lines are fitting functions. The two dashed lines stand for the equation-of-state for interacting bosons at the
mean-field level, denoted by MF, and the equation-of-state including the LHY correction, denoted by LHY. Reprinted
from Ref. [125]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

means that the pairing energy is proportional to the kinetic energy. However, beyond the
ground state physics, this regime is difficult to understand theoretically, at least for the
following two reasons:

• In the superfluid state, as far as the low-energy physics is concerned, in the BCS side
only the fermionic excitations are important, which can be well studied by the BCS
mean-field approach discussed above, and in the BEC side only the bosonic excita-
tions are important, which can be well studied by the Bogoliubov theory as discussed
in Section 3.3. However, in the unitary regime, both the fermionic and the bosonic
excitations are important, and they need to be treated on equal footing.

• In the normal state, when −1/(kFas) # 1, the system is a weakly interacting Fermi gas
and kFas can be treated as perturbation parameter. When −1/(kFas) ( −1, although
attraction in two-body interaction potential is quite strong, the main contribution of the
interaction effect is counted by forming the two-body bound state. Once we subtract the
binding energy in the total energy, the system can be considered as a weakly interacting
Bose gas. As we discussed in Section 3.3, a3

mnm can be treated as perturbation parameter,
where am is the scattering length between molecules and nm is the density of molecules.
In the unitary regime, the system is neither a weakly interacting Fermi gas nor a weakly
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Box 6.2 Holographic Duality and AdS/CFT

Holographic duality states that some quantum field theory in spacetimeD dimension can have a gravity the-
ory dual in spacetimeD + 1 dimension [69]. Here “dual” means that the correlation functions in the field
theory can always be equivalent to some correlation functions in the gravity theory. Usually, the field theory
possesses the conformal symmetry, known as the conformal field theory (CFT), and the gravity theory is usu-
ally defined in the anti–de Sitter (AdS) geometry, since the symmetry of AdS geometry is compatible with the
conformal symmetry. Therefore, the holographic duality is also known as the AdS/CFT correspondence. This
duality is also a “strong-weak” duality. Usually the field theory is a strongly interacting theory and the interac-
tion is so strong that there is an absence of well-defined quasi-particles. But hopefully, the dual gravity theory
is a weak coupling classical gravity. Thus, we can compute the correlation functions in the gravity side and use
themapping to determine the correlation functions in the field theory side. That is how the holographic dual-
ity can help us study quantummany-body systems. So far, the holographic duality has been firmly established
only in a very few examples. One example in string theory is the duality between supersymmetric Yang–Mills
and an AdS supergravity theory. Another example in condensed matter physics is the duality between the
Sachdev–Ye–Kitaevmodel and AdS2 gravity. Nevertheless, we havemany examples of quantummany-body
systems that have emergent conformal symmetry and are absent of quasi-particle description, such as the
unitary Fermi gas discussed here and the quantum critical regime discussed in Section 8.1. It is an inter-
esting open research subject whether some properties of these systems are close to that predicted by the
holographic duality.

interacting Bose gas. In the unitary regime, the total interaction energy is proportional
to the total kinetic energy, which makes the system intrinsically nonperturbative.

The challenges in solving strongly interacting quantum systems such as the unitary
Fermi gas call for new ideas, and the holographic duality discussed in Box 6.2 is one
of such new ideas. When as diverges, the system lacks of any relevant length scales and
the Fermi energy is the only energy scale of the problem. Thus, the unitary Fermi gas
is one of the examples of scale invariant quantum many-body systems, as discussed in
Box 3.2. Moreover, it can be shown that the unitary Fermi gas possesses the Schrödinger
symmetry, which is a nonrelativistic version of the conformal symmetry and is a sym-
metry group larger than the usual Galilean symmetry [162, 161]. In addition, because of
the strong interaction effects in the unitary Fermi gas, it is still an open issue whether the
system is a Fermi liquid or non-Fermi liquid right above the superfluid transition temper-
ature. If there is no well-defined quasi-particles in the low-temperature normal state of a
unitary Fermi gas, together with the presence of the conformal symmetry, it is interest-
ing to ask whether the system shares similar properties as predicted by the holographic
duality.

One prediction from the holographic theory is a universal lower bound for η/s. Here
η is the shear viscosity, which is defined as the ratio of the shear force to the velocity
gradient in a fluid, and s is the entropy. In a quantum theory, it is not obvious that these two
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quantities are related. However, if a quantum theory has a gravity dual, these two quantities
are related in the dual gravity theory. With the holographic dual to an Einstein gravity, it
can be shown that

η

s
= !

4πkB
. (6.68)

It is very intriguing to note that this equality holds as long as the quantum theory has a
gravity dual, and this ratio only depends on ! and kB, and is independent of the details
of physical models. In general situations, it is speculated that for all fluids, η/s is always
bounded by

η

s
! !

4πkB
. (6.69)

It is also speculated that, the more a quantum system is close to a theory with gravity
dual, the more its η/s is close to the lower bound. In Figure 6.14 (a) we have shown the
experimental measurements of η/s on unitary Fermi gas over different temperatures. It is
found that the measured η/s indeed approaches the bound when the system enters quantum
degenerate regime, but it does not violate the bound. In Figure 6.14 (b), we also compare
η/s for different fluids, and all fluids we know so far obey the bound. It is interesting to note
that the unitary Fermi gas and the quark-gluon plasma are two systems whose η/s is the
closest to the bound. These two systems are the coldest and the hottest systems in human’s
laboratory. However, both of them share the same feature of being strongly interacting
Fermi gas, whose interaction energy is comparable to the kinetic energy.

!Figure 6.14 η/s and the holographic prediction. (a) η/smeasured for the unitary Fermi gas as a function of temperature. Here
the horizontal axisE determines temperature. The inset makes a comparison with the dashed line indicating the
bound predicted by holographic duality. (b) η/s for different kinds of fluids. It is plotted in units of!/kB (!/k in the
figure vertical axes) so 1/(4π ) indicated by the horizontal dashed line shows the bound predicted by holography.
(a) is reprinted from Ref. [26], and (b) is reprinted from Ref. [3]. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.
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Exercises

6.1 Solve the Cooper problem Eq. 6.8 and compare the solution with the solution of the
two-body problem in a vacuum of Eq. 6.5 for positive as.

6.2 Calculate the ground state energy of the BCS mean-field Hamiltonian as a function
of #, and minimize this ground state energy with respect to # to obtain the gap
equation.

6.3 Discuss the self-consistent solution of the BCS problem for the Hamiltonian

HBCS =
∑

k,σ

(εk − µσ )c†
kσ ckσ +

∑

k

#c†
k↑c†

−k↓ +
∑

k

#∗c−k↓ck↑ (6.70)

when µ↑ ,= µ↓, and compare the energy of the BCS state with the free Fermi gas for
different h = µ↑ − µ↓.

6.4 Derive Eq. 6.59 using the second-order perturbation theory.
6.5 Compute the radio-frequency spectroscopy using the mean-field theory of the BCS-

BEC crossover, and discuss the threshold energy for the BCS limit and the BEC limit,
respectively.
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Optical Lattices





7 Noninteracting Bands

Learning Objectives

• Introduce the basic concepts of single-particle dispersion in a lattice.
• Introduce maximally localized Wannier wave functions and their importance in con-

structing interacting models.
• Introduce the basic idea of quantum simulation.
• Introduce the Dirac point in the honeycomb lattice and the concept of a semimetal.
• Illustrate the Dirac and the Weyl points as topological defects in the momentum space.
• Introduce the concept of the symmetry protection for the topological stability of the

Dirac point.
• Introduce the Su–Schrieffer–Heeger model and the concept of symmetry-protected

topology.
• Introduce the Haldane model and the topological phase transition in the Haldane model.
• Summarize the common mathematical structures between topological characters of a

band theory and topological excitation in a Bose condensate.
• Discuss the physical consequences of topological invariants for a band insulator in both

near-equilibrium transport and far-from-equilibrium quench dynamics.
• Discuss the equivalence between neural atoms in a moving lattice and charged particles

in an electric field.
• Introduce the Floquet theory and the Floquet effective Hamiltonian from the high-

frequency expansion.
• Discuss various applications of periodical-driven optical lattices.
• Introduce the Hamiltonian for an atom-cavity system and highlight the role of the

Langevin force term.
• Introduce the superradiant quantum phase transition of a Bose condensate coupled to

cavity light.

7.1 Basic Band Theory

As we have discussed in Section 1.3, when atoms are placed in a pair of counter-
propagating laser beams along x̂ and with wave vector k0, and these two lasers have the
same polarization, atoms can experience a scalar light shift given by Vx cos2(k0x), where
Vx is proportional to the strength of the laser fields. Similarly, one can apply another two

203
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pairs of counterpropagating laser beams along ŷ and along ẑ directions, respectively. Inside
these laser fields, the single-particle Hamiltonian is then given by

Ĥ = −!2∇2

2m
+ Vlat(r) (7.1)

Vlat(r) = Vx cos2(k0x) + Vy cos2(k0y) + Vz cos2(k0z), (7.2)

where Vx, Vy, and Vz are controlled by the laser intensities of these three pairs of laser
beams. This Hamiltonian describes a particle moving in a three-dimensional cubic lattice.
To understand the physics of optical lattices, we first need to review the basics of the
single-particle dispersion in such a periodical potential, namely, the band theory.

One-Dimensional Lattices. Since the Hamiltonian of Eq. 7.2 is separable along these three
different directions, for simplicity, let us first consider a one-dimensional Hamiltonian

Ĥ = −!2∂2
x

2m
+ Vx cos2(k0x). (7.3)

In the absence of the lattice, the system possesses the translational symmetry, that is, an
operation x → x + x0 can leave the Hamiltonian invariant for any x0, and the eigenstate
can be chosen as the plane wave eikx. Here the momentum k is a good quantum number
and can take any real value. In the presence of the lattice, the system is no longer trans-
lational invariant but it still maintains a discrete translational symmetry, that is to say, x0

can only choose a set of discrete values of πn/k0 with n being any integer. Due to the
lattice potential, a plane wave state eikx can be mixed with all other plane waves ei(k+2nk0)x,
where n can be any integer. Thus, we restrict k between −k0 and k0, which is called the
first Brillouin zone of this case, and k is now called the quasi-momentum. For each quasi-
momentum k, the mixing of all states {ei(k+nk0)x} leads to infinite many eigenstates, which
are labeled by another quantum number m called the band index. After the restriction, the
quasi-momentum is still a good quantum number, which is in fact ensured by the discrete
translational symmetry.

More explicitly, the eigenstate of this Schrödinger equation can always be written as a
Bloch wave function labeled by the quasi-momentum k and the band-index m,

ψm
k (x) =

∑

n

um
n (k)ei(k+2nk0)x. (7.4)

um
n (k) can be obtained by diagonalizing the Hamiltonian, that is,

!2

2m
(k + 2nk0)2um

n (k) + Vx

4
um

n−1(k) + Vx

4
um

n+1(k) = Em
k um

n (k), (7.5)

where the upper index m denotes the mth eigenvalue of this matrix with the eigen-values
sorted from the lower to the higher. The eigenenergy Em

k is the single-particle dispersion
for the mth band in the lattice.

The weak lattice regime is called the free particle limit and the lattice effect can be
treated perturbatively. The effect is most significant at the edge of the Brillouin zone where
the kinetic energies of the two plane wave states, e−ik0x and eik0x, are degenerate in the
absence of lattices. Since their momenta are differed by 2k0, the lattice potential can cou-
ple them. The lattice effect manifests itself as a degenerate perturbation, which lifts the
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!Figure 7.1 (a) Schematic of the band theory. The solid line is the schematic of the real space lattice structure. The dotted line
shows the lowest Wannier wave function, and the dashed line shows a Gaussian function as the approximate
envelope of the Wannier wave function. (b) Schematic of the band structure. The band dispersion is plotted in the first
Brillouin zone. Both the bandwidth of the lowest band and the band gap between the lowest and the first excited
band are marked. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

Box 7.1 Different Kinds of Insulators

Insulator refers to a state whose charge excitation is gapped. Therefore, it cannot conduct mass current, or
charge current if particles are charged, when the applied potential gradient is smaller than the charge gap.
There are different kinds of insulators based on the origin of the charge gap. If the charge gap is originated
from the band structure, as discussed in this chapter, it is called a band insulator. If the charge gap is originated
from the interaction effect, as we will discuss in Chapter 8 for the Hubbardmodel, it is called a Mott insulator.
A band insulator can be further classified as a topological trivial band insulator and a topological nontrivial
band insulator, depending on the topological invariants of the occupied band, aswewill discuss in Section 7.3.
Note that this discussion does not include the disorder effect.

degenerate and opens up a band gap proportional to Vx, as one can see from a typical band
structure shown in Figure 7.1(b).

In this case, the band gap refers to an energy window where the density-of-state van-
ishes. For fermions in such a lattice, when the chemical potential lies inside the band gap,
the particle and the hole excitation always cost finite energy. Therefore, changing density
of the system costs finite energy, which is called the charge gap. A system with finite
charge gap is called an insulator, and we have summarized different kinds of insulators in
Box 7.3. A system with vanishing charge gap is a metallic state. For instance, the noninter-
acting fermions and the Fermi liquid discussed in Section 5.1 are metallic states. When an
infinitesimal small potential gradient is applied to the system, a metallic state can always
conduct charge, but an insulator cannot.



206 Noninteracting Bands

From the Bloch wave function one can construct the Wannier wave function as

wm(x − xi) = 1√
Ns

∑

k

e−ikxiψm
k (x), (7.6)

where Ns is the total number of sites, and xi = (2i + 1)π/(2k0) labels the site index, as
shown in Figure 7.1(a). Equivalently, we can write

ψm
k (x) = 1√

Ns

∑

i

eikxiwm(x − xi). (7.7)

It is important to note that all the wannier functions form an orthonormal and complete
bases, that is,

∫
w∗

m(x − xi)wm′ (x − xj)dx = δmm′δij. (7.8)

Maximally Localized Wannier Wave Function. Here we should mention that, given a
set of the Bloch wave functions, the construction of the Wannier wave functions are not
unique. It is because we can add a momentum dependent phase into each Bloch wave
function, that is,

ψ̃m
k (x) = eiθm(k)ψm

k (x), (7.9)

where θm(k) can be any smooth function of k satisfying the periodic boundary condition
in the first Brillouin zone, that is, θm(−k0) = θm(k0). By replacing ψm

k (x) by ψ̃m
k (x) in

the Eq. 7.6, it yields a different set Wannier wave functions with different shape. In the
later discussion of interacting atoms in optical lattices, we expand the field operators in
the Wannier wave function bases. For this purpose, we want to make the Wannier wave
function as localized as possible. This is because when the Wannier function is sufficiently
localized, the kinetic energy can be captured mainly by the short-range hopping and the
interaction can be captured mainly by the on-site interaction, such that the Hamiltonian
takes the simplest form in this bases. To this end, we need to choose a proper function of
θm(k) such that the resulting Wannier wave functions are maximally localized. The maxi-
mally localized Wannier wave function is an important research topic in the band theory,
and we will not go into details here [91]. In the simple case discussed here, in order for the
Wannier wave function to be maximally localized, θm(k) should be chosen in such a way
that the phases of the Bloch wave functions are uniform in k.

When the lattice potential becomes deep enough, one can expand the lattice potential
around the bottom of each minimum xi, and up to the quadratic order we obtain a harmonic
potential

Ĥ = −!2∂2
x

2m
+ Vxk2

0(x − xi)2. (7.10)

It is convenient to introduce the recoil energy ER = !2k2
0/(2m) as the energy unit, and we

denote Vx = αxER, then it is easy to show that the effective harmonic frequency is

!ω = 2
√
αxER, (7.11)
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and the effective harmonic length is given by

ahar = 1

k0α
1/4
x

. (7.12)

The deep lattice regime is called the tight binding limit. It can be shown that the envelope of
the maximally localized Wannier wave function for the lowest band w0(x−xi) is very close
to the Gaussian wave function with the harmonic length ahar, as shown in Figure 7.1(a).

Nevertheless, one should pay attention to the difference between a Gaussian wave func-
tion and the actual Wannier wave function. Because the Gaussian wave function is always
positive definite, two Gaussian wave functions with different xi cannot be orthogonal with
each other. Nevertheless, two Wannier wave functions with different xi are orthogonal with
each other. Thus, to be more precise, only the envelope of w0(x−xi) is close to a Gaussian.
Away from the center xi the actual Wannier wave function displays oscillatory behavior
between positive and negative values, as also shown in Figure 7.1(a).

The harmonic potential approximation also shows that the band gap can be roughly esti-
mated as !ω ∝ √

Vx, which is different from the weak lattice regime discussed above.
One should also caution that this harmonic potential approximation only works for a few
lowest energy bands. It is because when n >

√
αx/2, n!ω > Vx, which means that the

eigenenergies of the harmonic levels exceed the lattice potential height, and therefore,
the harmonic expansion Eq. 7.10 is no longer valid. In other words, for a given lattice
potential, the tight-binding approximation works for low-lying bands, and the free particle
approximation works for high-energy bands.

High-Dimensional Lattices. The discussion below can be generalized straightforwardly to
two-dimensional square or three-dimensional cubic lattices. For a two-dimensional square
lattice, the band index m is characterized by two integer numbers as (mx, my). For the
ground band m = (0, 0), and two of the first excited bands are m = (0, 1) and m = (1, 0),
which are degenerate if Vx = Vy. They are called the px and the py bands because their
corresponding maximally localized Wannier wave functions have the same symmetry as
the px and py orbital in the centrifugal potential problem. Similarly, for a three-dimensional
cubic lattice, the band index m is labeled by (mx, my, mz).

In Figure 7.2 we plot the density-of-state for a three-dimensional cubic lattice. There are
two notable new features in this plot that are worth emphasizing.

• Direct versus Indirect Band Gap: Considering two neighboring bands, if the minimum
energy state of the upper band and the maximum energy state of the lower band occur
at the same quasi-momentum, it is called a direct band gap. If they occur in different
quasi-momentum, it is called an indirect band gap. Taking the band gap between the
ground and the first excited band as an example, in one dimension, the bottom of the
first excited band and the top of the ground band are both at the edge of the Brillouin
zone. This is a direct band gap. In this case, since the gap opens for any finite value
of the lattice potential, there is always a real gap defined by vanishing density-of-state
in certain energy window. When the dimension is higher than two, indirect band can
occur, and the bottom of the first excited band does not necessarily occur at the same
quasi-momentum as the top of the ground band. Under this situation, the lowest energy
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!Figure 7.2 The density-of-state (DOS) for an optical lattice. The density-of-state (DOS) is plotted as a function of energy ε/ER for
a three-dimensional cubic lattice. Here we have takenVx = Vy = Vz = V0, andV0/ER = 2 for the dashed
line, andV0/ER = 3 for the solid line.

state of the first excited band can be lower than the highest energy state of the ground
band, as shown by the dashed line in Figure 7.2 when the lattice is sufficiently shallow.
Therefore, there is no real gap in terms of vanishing density-of-states. So a band gap
with vanishing density-of-state exists only when the strength of the lattice is larger than
certain critical value, as shown by the solid line in Figure 7.2.

• Van Hove Singularity: As one can also see from Figure 7.2, another notable feature
is that there exist kinks in the density-of-state where the derivative is not continuous.
This is known as the Van Hove singularity. It happens when |∇εm(k)| = 0 for certain
k-points of the equal energy contour, that is to say, when the band dispersion has a
local maximum, or a local minimum or a saddle point. In the simple one-dimensional
lattice discussed above, such a singularity can only happen at the band edge. For a two-
dimensional or three-dimensional lattice, such singularities can also happen inside a
band.

Momentum Mapping versus Band Mapping. There are two different ways to perform
the time-of-flight measurement of the momentum distribution for atoms in optical lattices,
which are known as the momentum mapping and the band mapping, respectively. For the
momentum mapping, the optical lattices and the external harmonic trap are turned off
abruptly and simultaneously. In this case, the measurement projects the quantum state with
lattice into the eigenstate in free space, that is, the plane wave state. Thus, the occupation nm

k
of a Bloch state ψm

k transfers into occupation in a series plane wave states with momentum
k + 2nk0, which are given by nm

k |um
n (k)|2. That is to say, for a given plane wave momentum

p, one can always find out an integer n such that p − 2nk0 lies between −k0 and k0, the
occupation np measured by this time-of-flight is given by

np =
∑

m

|um
n (p − 2nk0)|2nm

p−2nk0
. (7.13)

The momentum distribution shown in Figure 8.4 of Section 8.1 is a momentum map-
ping experiment. As one can see from (b-e) of Figure 8.4, when bosons are condensed
in the lowest energy state in the optical lattices, that is, when the state with the band index
m = 0 and the quasi-momentum k = 0 is macroscopically occupied, the momentum
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distribution measured in this way not only shows peak at k = 0 but also shows peaks at all
the reciprocal momentum vectors.

For the band mapping, first the optical lattice potential is slowly turned off, after which
the external harmonic potential is turned off abruptly to measure the momentum distribu-
tion. During the first stage, um

n (k) gradually approaches either zero or unity because the
coupling between different plane wave states is provided by the lattice potential. As the
lattice potential is gradually turned off, the Bloch state ψm

k adiabatically approaches one of
the plane wave state ei(k+2nk0)x. For instance, the Bloch state ψm

k of the lowest band with
m = 0 is adiabatically connected to the plane wave state eikx with k lying in the first Bril-
louin zone between −k0 and k0, and ψm

k of the second band with m = 1 is adiabatically
connected to the plane wave state ei(k+k0)x for k > 0 and ei(k−k0)x for k < 0, that is to say,
the plane wave momentum lies in the second Brillouin zone. In this way, the Bloch states
in the higher bands are mapped to the plane wave states in the higher Brillouin zone. Now
the question is whether the occupation nm

k of the Bloch state ψm
k before turning off the lat-

tice can also be transferred into the occupation of the corresponding plane wave state after
turning off the lattice. This crucially depends on the speed of how fast the lattice potential
is turned off. First of all, the speed has to be slow enough such that the lattice decreases
adiabatically with respect to the energy difference between different Bloch bands. This is
always difficult for certain momentum points where the energy separation between Bloch
bands becomes vanishing small as the lattice potential vanishes, for instance, the edge of
the first Brillouin zone. Thus, the band mapping is always not so accurate around these
points. Another condition is that the speed has to be faster than all the other time scales
that relax the momentum distribution, for instance, the period of the harmonic trap or the
interatomic collision time. Under these two conditions, the population of different Bril-
louin zone in the time-of-flight reflects the initial population of different bands. Thus, this
scheme is called the band mapping. Figure 7.3 shows a band mapping measurement of
noninteracting fermions in optical lattices [99]. One can see that as the characteristic den-
sity increases from the left to the right, the Fermi surface changes from a circular shape to
a square shape reflecting the geometry of the first Brillouin zone [99].

Bloch Oscillation. In free space, the single-particle dispersion is εk = !2k2/(2m), which
leads to the velocity v = (1/!)∂εk/∂k = !k/m. The velocity always monotonically

!Figure 7.3 Time-of-flight measurement with band mapping. Band mapping measurement of the quasi-momentum distribution
for noninteracting fermions in an optical lattice. As the characteristic density increases from (a) to (e), the Fermi
surface geometry also changes from a small circle to a square. Reprinted from Ref. [99].
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increases with the increasing of k. However the situation is very different with lattice.
As the velocity is still defined as

v = 1
!
∂Em

k
∂k

, (7.14)

it vanishes at the band edge. Taking the one-dimensional band structure as an example, as
k varies from the band bottom toward the band edge, the velocity first increases from zero
and then decreases back to zero at the band edge. As we will discuss later in this section,
in this tight binding limit the band dispersion of the lowest band can be well approximated
by Ek = −2J cos(πk/k0), where 4J is the bandwidth. Taking this tight binding dispersion
as an example, we will have

v

vR
= Jπ

ER
sin
(
πk
k0

)
, (7.15)

where vR = !k0/m. Eq. 7.15 shows that the velocity v is a periodic function in k. which
has a dramatical consequence known as the Bloch oscillation.

We consider a constant force Fx̂ applied to the particle. In solid state materials, this
can be realized by applying an electric field to electrons. In ultracold atom systems, this
can be realized by applying a gravity field. Or alternatively, when the optical lattice is
moving with a constant acceleration, in the comoving frame the lattice becomes stationary
but the atoms experience an inertial force proportional to the acceleration, which simulates
charged particle placed in the electric field. This will be discussed in detail in Section 7.4.

Let us first consider the case with nonzero band gap, and the force F is weak enough that
the interband transition induced by this force is negligible. In this case, by a semiclassical
analysis, we have

!dk
dt

= F. (7.16)

Thus

k(t) = k0 + F
!

t, (7.17)

where k0 is the initial quasi-momentum at t = 0. Substituting Eq. 7.17 into Eq. 7.15, we
find that the velocity shows an oscillatory behavior as

v(t)
vR

= Jπ
ER

sin
[
π

k0

(
k0 + F

!
t
)]

. (7.18)

This oscillatory behavior in v can also lead to a spatial oscillation, and this is known as
the Bloch oscillation. In the solid state materials, it is very difficult to observe the Bloch
oscillation of electrons because the scattering between electrons or between electrons and
impurities can change the momentum of electron in a time scale much faster than the Bloch
oscillation period. The ultracold atom systems can be impurity free and the interaction
between atoms can also be suppressed by keeping the system dilute enough and by keeping
the scattering length between atoms small enough. Thus, it offers an ideal platform to
observe the Bloch oscillation. Indeed, as shown in Figure 7.4, the Bloch oscillation has
been observed by loading atoms in an accelerated moving optical lattice, and the mean
velocity is directly measured by the time-of-flight measurements after certain duration of
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!Figure 7.4 Experimental measurement of the Bloch oscillation. Mean value of atom velocity 〈v〉, in units of vR, is measured as a
function of the acceleration time t. Three different lattice potentials are considered, with (a)V = 1.4ER, (b)
V = 2.3ER, and (c)V = 4.4ER. The horizontal axisFt is in units of!k0, and the negativeFt is measured by
changing the sign ofF. Reprinted from Ref. [16].

lattice acceleration [16]. One can see that the oscillation amplitude decreases with the
increasing of lattice potential, and this is because the bandwidth J/ER decreases as the
lattice potential increases, which is consistent with Eq. 7.18.

The Hubbard Model. We consider interacting bosons and fermions in optical lattice, and
derive the Hamiltonian that is well known as the Hubbard model. We will show below
that, by expanding the field operators in terms of the maximally localized Wannier wave
function bases, both the kinetic energy and the interacting model can take the simplest
form. First considering interacting bosons in a three-dimensional cubic lattice, ψ̂(r) is the
field operator for bosons and we expand

ψ̂(r) =
∑

m,Ri

b̂m,iwm(r − Ri), (7.19)

where b̂m,i is the annihilation operator of bosons with site index i and band index m. The
most general form of the lattice model reads

Ĥ = −
∑

ijm

Jm
ij b̂†

m,ib̂m,j + 1
2

Umnm′n′
ijkl

mnm′n′∑

iji′j′
b̂†

m,ib̂
†
m′,i′ b̂n,jb̂n′,j′ − µ

∑

i,m

b̂†
m,ib̂m,i, (7.20)

where

Jm
ij = −

∫
d3rwm(r − Ri)

(
−!2∇2

2m
+ Vlat( r)

)
wm(r − Rj) (7.21)

and

Umnm′n′
ijkl = 4π!2as

m

∫
d3rwm(r − Ri)wn(r − Rj)wm′ (r − Rk)wn′ (r − Rl). (7.22)

Now we shall discuss how this general Hamiltonian can be simplified.

• The interaction energy is estimated as ∼ !2as/(ma3
har), where ahar denotes the typical

width of the Wannier wave function, and ahar = 1/(k0α
1/4) for a potential depth V =

αER. The band gap is of the order !2/(ma2
har). Here we focus on the situation that the

interaction potential is away from a scattering resonance, that is, kFas * 1 with kF

defined as (6π2n)1/3. And because for a typical density of ultracold atomic gas, kF ∼ k0.
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Hence we have k0as * 1. Thus, the ratio of the interaction energy to the band gap is of
the order ∼ as/ahar ∼ k0as * 1.

• In the ultracold regime, temperature can also be much smaller than the band gap, and
the thermal population in the higher bands can also be safely ignored. Because of these
two reasons, we can only keep the lowest band with m = 0. Hereafter we shall ignore
the band index.

• Since the wannier wave function for the lowest band is as localized as a Gaussian wave
function, the hopping matrix element Jij decays as ∼ e−|Ri−Rj|2/a2

har . So we can only
keep Jij for the nearest neighboring sites, short-noted as J.

• For similar reasons as discussed above, compared with the on-site interaction term, all
the other interactions between two different sites will be suppressed by an exponential
factor. And compared with the nearest hopping term, the interaction between two nearest
neighboring sites is suppressed by a factor of ∼ as/ahar ∼ k0as. Therefore, except for
the on-site interaction, all the other interaction terms can be safely ignored. Hence, we
only keep Umnm′n′

ijkl with m = n = m′ = n′ = 0 and i = j = k = l, short-noted by U.

With these justifications, we arrive at a simple single-band Bose–Hubbard model (BHM)

ĤBHM = −J
∑

〈ij〉
b̂†

i b̂j + U
2

∑

i

n̂i(n̂i − 1) − µ
∑

i

n̂i. (7.23)

With similar analysis, for spin-1/2 fermions, we can also reach a single-band Fermi–
Hubbard model (FHM), with one more condition that the filling of fermions is always
smaller than unity, otherwise the Pauli exclusion principle can also push fermions to
populate the higher bands. The Hamiltonian for the FHM is given by

ĤFHM = −J
∑

〈ij〉,σ
ĉ†

iσ cjσ + U
∑

i

n̂i↑n̂i↓ − µ
∑

iσ

n̂iσ . (7.24)

Here we can introduce a lattice version of the Fourier transformation, for instance, for the
BHM in a three-dimensional cubic lattice,

b̂i = 1√
Ns

∑

k

b̂keik· ri , (7.25)

where ri = ni,xâx + ni,yây + ni,zâz, âx = (1, 0, 0)a, âx = (0, 1, 0)a and âz = (0, 0, 1)a, and
{ni,x, ni,y, ni,z} are three integers, with a = π/k0. Here k are limited in the quasi-momentum
inside the first Brillouin zone. Then the kinetic energy becomes

− J
∑

〈ij〉
b̂†

i b̂j = −2J
∑

k

(cos(k · ax) + cos( k · ay) + cos(k · az))b̂
†
kb̂ k. (7.26)

In this case, the bandwidth is 12J. J decreases as the lattice depth increases, and when
U - J, the interaction energy overwhelms the kinetic energy and the system enters the
strongly interacting regimes. We summarize different ways to entering strongly interacting
regimes in Box 7.2.

The above discussion is a good example for discussing the central idea of Quantum Sim-
ulation. The final goal of the quantum simulation is to understand real material. Using the
high-Tc cuprate superconductivity as an example, it is widely believed that the FHM in the
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Box 7.2 Ways to Entering the Strongly Interacting Regimes

Here we should remark that there are two different ways of entering the strongly interacting regime. In
Section 6.2, we consider the situation that the kinetic energy term is not changed, but the interaction energy
is increased significantly, by bringing the system to the vicinity of two-body resonances. In the optical lattices,
in contrast, the interaction potential is always away froma resonance, and the scattering length remains small
comparedwith the inter-particle distance. However, we suppress the kinetic energy using the lattice effect. In
both cases, the interaction energy eventually becomes comparable to or larger than the kinetic energy. In the
conventional perturbative treatment of the interactingmany-body system,we use the interaction strength as
the small parameter to perform the perturbation expansion. Such an approach fails in the strongly interacting
regime. Therefore, studying strongly interacting quantum many-body systems is a major research direction
nowadays.

strongly interacting regime can describe many properties of the high-Tc superconductor.
However, on one hand, because of the complicated material structure, there is no ab-initio
derivation of the FHM from the high-Tc materials, and therefore the connections between
experimental observations in materials and the properties of the FHM are usually uncer-
tain. On the other hand, there is neither an exact solution nor reliable theoretical treatment
of the strongly interacting FHM away from the half-filling, except for in one dimension.
The applications of numerical methods are also limited. The quantum Monte Carlo simula-
tion fails for the FHM in most regimes because of the fermion sign problem, and the exact
diagonalization is limited for very small size with the capability of classical computers.
Therefore, one can neither obtain reliable theory for the FHM nor reliably relate the results
of the FHM to experimental observations in high-Tc materials, which makes the studies of
high-Tc materials so difficult. From the discussion above, we see that by using ultracold
atoms in optical lattices, one can reliably build up a physical system described by the FHM
with high accuracy, because here the FHM can be derived step by step from the micro-
scopic model with controlled approximations. Therefore, the experimental results of this
system can be unambiguously related to the properties of the FHM. For instance, one can
try to determine experimentally whether the ground state of the FHM in certain regime is
superconducting or not. In summary, we can build a quantum system to simulate a model
that cannot be solved by classical computers, which can be viewed as a special purpose
quantum computer called quantum simulator.

7.2 Dirac Semimetal

As we have discussed in Section 4.2, topology refers to global property of a system that is
invariant under continuous deformation. In Sections 4.2 and 4.4, we have discussed various
examples of topological excitations in a Bose condensate. These topological properties
are characterized by the homotopy group of mapping from the real space to the space of



214 Noninteracting Bands

condensate wave function, as summarized in Table 4.1. From the discussion of the band
theory in the previous section, we know that for each given band, there is a Bloch wave
function at each quasi-momentum in the first Brillouin zone. For each band it defines a
mapping from the first Brillouin zone to the space of the Bloch wave function, therefore,
we can also discuss the topological properties of these mappings, which will be the focus
of this and the next session.

Honeycomb Lattices. As we will explain below, the honeycomb lattice is one of
the simplest lattice geometry that can exhibit nontrivial topological band structure. By
straightforward interference of counterpropagating pairs of lasers, we can realize a two-
dimensional square lattice. Honeycomb lattice can be realized by adding an extra pair of
laser beams, for instance, by using the three pairs of counter-propagating laser beams X, Y
and X̄, as shown in the Figure 7.5(a). The X and Y beams are phase locked and they can
also interfere with each other, and the X̄ beam is slightly detuned, which creates an extra
one-dimensional lattice. Thus, the total lattice potential is given by

V(x, y) = − VX̄ cos2(k0x + θ/2) − VY cos2(k0y)

− VX cos2(k0x) − 2α
√

VxVy cos(k0x) cos(k0y) cosφ, (7.27)

where all three lattice depths VX , VY and VX̄ , as well as parameters θ , φ and α, can be inde-
pendently adjusted by controlling the relative phases and the polarization of lasers. This
allows one to realize different lattice configurations including chequerboard, dimerized
and honeycomb lattices. In the situation when VX̄ , VY > VX , θ = π , the potential minima
for the first two terms occur at a square lattice at (x, y) = ((2n − 1)π/(2k0), mπ/k0), where
n and m are integers. The last two terms shift the minima and the shift is mostly dominated
by the last term. When φ = 0, for even or odd m, the last term shifts minima along x̂ to
opposite directions. It is easy to show that such a distortion leads to an energy landscape
as shown in Figure 7.5(b), where the energy minima form a honeycomb lattice.

!Figure 7.5 Honeycomb lattice realized in the experiment. (a) The laser configuration for creating honeycomb lattice. (b) The
potential energy landscape whose minima form a honeycomb lattice. Here t1, t2, and t3 label J1, J2, and J3

discussed in the main text. (c) The merging transition of the Dirac points, by tuningVX andVX̄ . Reprinted from Ref.
[173] with modifications. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.
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!Figure 7.6 Band structure of the honeycomb lattice. (a) The Bravais lattice and the primitive vectors of a honeycomb lattice in the
real space. (b) the Brillouin zone of the honeycomb lattice used in this section. (c) The dispersion of the tight-binding
model that shows two Dirac points. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

Dirac Point. A major difference between the honeycomb lattice and the simple square or
cubic lattice is the number of sites in each the unit cell. A unit cell is the smallest unit
of a lattice, and the whole lattice can be constructed by repeating discrete translations of
the unit cell. It is easy to see that for a square or cubic lattice, there is only one site in
each unit cell, but for a honeycomb lattice, a unit cell must contain two sites, denoted by
A and B, as shown in Figure 7.6(a). In other words, the honeycomb lattice is not invariant
under the translation of a single site. Let us start with a honeycomb lattice where all nearest
neighboring bonds are of equal spacing, denoted by a. We choose the primitive vectors of
the Bravais lattice as

a1 =
(

0,
√

3
)

a, a2 =
(

3
2

, −
√

3
2

)

a, a3 =
(

−3
2

, −
√

3
2

)

a. (7.28)

Note that here only a1 and a2 are independent, and a3 = −a1 − a2. The reciprocal lattice
vectors are given by the relation ai · bj = 2πδij as

b1 = 2π
a

(
1
3

,
1√
3

)
, b2 = 2π

a

(
2
3

, 0
)

. (7.29)

With these reciprocal lattice vectors, the first Brillouin zone can be constructed as shown
in Figure 7.6(b), where

K = 2π
a

(
0,

2

3
√

3

)
, K′ = 2π

a

(
0, − 2

3
√

3

)
(7.30)

are two unequivalent corners of the Brillouin zone. Note that the choice of the first Bril-
louin zone is not unique. Figure 7.6(b) is just one choice that is commonly used by most
literatures.

Now we consider a tight-binding model of the honeycomb lattice. First let us only
include the nearest neighboring hopping, which only occurs between A and B sublattices.
The tight-binding Hamiltonian is given by
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Ĥ = −J1
∑

〈ij〉

(
ĉ†

B,jĉA,i + h.c.
)

, (7.31)

where 〈ij〉 denotes all the nearest neighboring bonds connected by three displace vectors as

d1 = (−1, 0) a, d2 =
(

1
2

,

√
3

2

)

a, d3 =
(

1
2

, −
√

3
2

)

a. (7.32)

As we have discussed in the previous section, quasi-momentum is a good quantum number
because of the discrete translational symmetry. Hence, when we write the Hamiltonian in
the quasi-momentum space, the bases have to preserve the discrete translational symme-
try such that the quasi-momentum is a good quantum number. Thus, for the honeycomb
lattice, this tight-binding Hamiltonian has to be written in a two-component spinor bases
representing the two sites in each unit cell. Here we take two sites connected by d1 as a
unit cell, and therefore the tight-binding model can be written as

Ĥ =
∑

k

(
ĉ†

A (k) , ĉ†
B (k)

)
H (k)

(
ĉA (k)

ĉB (k)

)
, (7.33)

where the matrix is given by

H (k) =
(

0 −J1
(
1 + eik·a3 + e−ik·a2

)

−J1
(
1 + e−ik·a3 + eik·a2

)
0

)
. (7.34)

It is straightforward to check that this H(k) is a periodic function in the Brillouin zone, that
is, H(k + b1) = H(k) and H(k + b2) = H(k).

The facts that the honeycomb lattice has two sites in each unit cell, and the resulting
two-component representation of the wave function, are of crucial importance for this dis-
cussion, as well as the later discussion of topological band insulator in Section 7.3. Because
H (k) is a 2×2 matrix, it can be expanded in terms of the Pauli matrix as H (k) = B (k) ·σ ,
and it represents a pseudo-spin in a Zeeman field. In other words, only when each unit cell
contains more than one site, we can introduce a pseudo-spin degree of freedom to describe
the internal structure within each unit cell, and the Hamiltonian can be viewed as a Zeeman
field acting on this pseudo-spin degree of freedom. Thus, the energy of the upper and the
lower bands are given by the strength of the Zeeman field as ±|B(k)|, and the spin wave
function is determined by the direction of the Zeeman field B̂(k) = B(k)/|B(k)|. Here the
important feature is that the Zeeman field depends on the quasi-momentum k. The momen-
tum dependence of B(k) is also reminiscent of the spin-orbit coupling effect discussed in
Sections 1.3 and 4.5.

In this case, it is easy to see that

Bx(k) = −J1 (1 + cos(k · a3) + cos(k · a2)) (7.35)

By(k) = J1 (sin(k · a3) − sin(k · a2)) , (7.36)

and Bz(k) = 0. So the band structure can be obtained as

E± (k) = ±|B(k)| = ±
√

B2
x(k) + B2

y( k). (7.37)
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It is straightforward to check that for K or K′ points, both Bx(K) and By(K) vanish, and
since Bz(k) is always zero in this model, the energies of upper and lower bands are degener-
ate at K and K′ points. Hence, the band gap is closed, as shown in Figure 7.6(c). Expanding
the dispersion nearby K or K′ point, one can find a linear dispersion. Nearby the K and K′

point, the linear dispersion is E(k) = ±3J1|q|a/2, where q = k − K or k − K′. K and K′

points are therefore called the Dirac points.
When fermions are loaded in such a honeycomb lattice and when the number of fermions

in each spin component equals to the number of unit cell, the lower band is completely
filled and the Fermi surface is right at the Dirac point. This state is not an insulator because
there is no band gap in the system, and the charge excitation is not gapped. However,
this state is also somewhat different from the normal metallic phase because the density-
of-state at the Fermi surface is zero. This kind of state is called a semimetal. Since here
the semimetal behavior is caused by the Dirac point, this state is therefore called a Dirac
semimetal.

Stability of the Dirac Point. We have shown that a pair of Dirac points appear in the
honeycomb lattice model with only nearest neighboring hoppings. Now the question is
whether the Dirac points are stable against small perturbations. For instance, in the exper-
imentally realized honeycomb lattice discussed above, the lattice is stretched along one
of the spatial direction and this honeycomb lattice does not possess the C3 symmetry, as
shown in Figure 7.5(b). In this experimental geometry, the tight-binding model is differ-
ent from Eq. 7.31 for at least two aspects. (i) The hopping amplitude along the horizontal
nearest neighboring site, say, denoted by J′

1, is larger than the other two nearest hopping
amplitudes denoted by J1 [173]; and (ii) the next nearest tunneling processes such as J2

and J3 denoted in Figure 7.5(b) are not negligible [173]. Nevertheless, these effects only
shift the positions of the Dirac points but cannot open up the gap, as long as these extra
terms are not strong enough. This is because introducing the difference between J1 and
J′

1, as well as adding the J3 term, only modifies the function form of Bx(k) and By(k),
and introducing the J2 term adds a term proportional to identity matrix I in the Hamilto-
nian. With all these distortions, Bz(k) is still zero. Considering the equations Bx(k) = 0
and By(k) = 0, since one is looking for solutions from two equations with two variables
(kx and ky), there always exist two real solutions in the neighborhood of original model
Eq. 7.36. Therefore, the momentum k that satisfies Bx(k) = 0 and By(k) = 0 is still a
Dirac point. Adding these perturbations, only the locations of the Dirac points are shifted
away from K and K′ points and the velocity of the Dirac dispersions are modified. The
system is still a semimetal phase when the lower-band is completely filled. This demon-
strates the stability of the Dirac semimetal phase against these perturbations. Only when
the honeycomb lattice is strongly distorted such that these two Dirac points are moved to
the same point in the first Brillouin zone, they will merge and annihilate each other. Math-
ematically, it corresponds to the situation that the solutions to these two equations are no
longer real. After the annihilation of the Dirac points, the band dispersion becomes fully
gapped, and the free Fermi system at half-filling undergoes a transition from a semimetal
to an insulator. The moving and merging of the Dirac points have been observed in Ref.
[173], as shown in Figure 7.5(c).
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Now we ask the question that whether there exists such terms that can open up the band
gap at the Dirac point with infinitesimal small strength. Based on the analysis above, we
can see that if there exists a Bz( k)σz term in Ĥ(k), it can immediately open up the band gap,
because generally a momentum (kx, ky) cannot make all three functions of Bx(k), By(k) and
Bz(k) simultaneously vanish. In other word, the stability of the Dirac point is guaranteed
by the fact that Bz(k) has to vanish.

Dirac Point as Topological Defect. When Bz(k) is always zero, we consider the Hamilto-
nian written as Bx(k)σx + By(k)σy. At different momentum, the pseudo-spin is polarized to
different direction given by B̂. In this case, it is very important to notice that the pseudo-
spins always lie along the equator and has no ẑ component. If we draw a closed loop in
the momentum space, we can define a mapping from this closed loop to the Bloch wave
function space. In this case, such mappings can be classified by +1(S1) and the topologi-
cal invariant is the winding number as discussed in Section 4.2. Mathematically, here the
winding number can be computed as

w = 1
π

∫

C
dkB̂x(k)∂kB̂y(k), (7.38)

where
∫
C denotes the integration along the loop.

Around K and K′ points, we can expand the Hamiltonian nearby the K and K′ point in
terms of q = k − K or q = k − K′. To the leading order of q, the Hamiltonian can be
simplified as

H = 3J1a
2

(
±qyσx + qxσy

)
. (7.39)

The pseudo-spin texture around K point for the lower band is schematically shown in the
inset of Figure 7.7. Thus, if one draws a closed loop around either K or K′ point, the
pseudo-spins wind around the equator to complete a closed circle either clock-wise or
counterclockwise. For loops enclosed either K or K′ points, the winding number is either
+1 or −1. If one tries to shrink the loop, it will eventually encounter a singularity. Note
that as long as everywhere |B(k)| /= 0, the pseudo-spin direction is always well defined
and the mapping is always deformed continuously when the loop is deformed continuously.
Therefore, the topological invariant cannot be changed. Hence, the singularity is defined by
|B(k)| = 0 at a particular momentum point, such that the pseudo-spin direction is no longer
well defined at that point. On the other hand, |B(k)| = 0 means nothing but the upper and
lower bands are degenerate. Therefore, we have established the connection between the
Dirac points and the topological defect in momentum space.

This topological interpretation can help us to further understand the stability of the Dirac
points as follows:

• First, the effects such as different nearest hopping strengths and next nearest hopping can
be viewed as continuous deformation of the pseudo-spin configuration. It cannot change
topological invariant unless the two topological defects with opposite winding numbers
meet each other in momentum space and annihilate each other. This is similar as the
annihilation of two vortices with opposite charge in a Bose condensate, as discussed in
Section 4.2. When two Dirac points annihilate each other, there is no topological defect
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!Figure 7.7 Interference in momentum space. The relative phase revealed by the interference when a BEC is dragged through two
different paths in the momentum space, as indicated by the insets. The relative phase differs byπ depending on
whether the loop encloses the K point. Reprinted from Ref. [51] with modification. A color version of this figure can be
found in the resources tab for this book at cambridge.org/zhai.

in the momentum space. That is to say, everywhere |B( k)| is finite and the system is
an insulator when the lower band is completely filled. Thus, the semimetal to insulator
transition is described by the annihilation of two topological defects.

• Second, it is important to keep pseudo-spin always lying along the equator. If there
exists a nonzero Bz component such that the Bloch wave function manifold is the entire
Bloch sphere S2 instead of S1, because +1(S2) is always trivial, as we have discussed
in Section 4.2, the Dirac point loses its topological protection and it can immediately
become unstable. This is consistent with above discussion that infinitesimal small Bz(k)
term can gap out the Dirac point.

• Third, when Bz component is nonzero, if we consider three dimensions instead of two
dimensions, there still exists stable semimetal phase. One can see that with three momen-
tum variables {kx, ky, kz}, generally there exists a solution for all three components of
B( k) vanishing simultaneously. Hence, at these specific momentum points, |B(k)| van-
ishes, and the upper and lower bands are degenerate. These points are called the Weyl
points. When the Fermi surface lies at the Weyl points, it gives rise to the Weyl Semimetal
phase. Topologically, we can consider a two-dimensional surface, and consider topolog-
ical classification of the mappings from this surface to the Bloch wave function space.
Such mappings are described by +2(S2) in this case and are characterized by the Chern
number as its topological invariant. When this two-dimensional surface encloses the
Weyl point, the mapping is nontrivial and the Chern number is nonzero. Hence, the
surface in the momentum space must enclose a topological defect where |B(k)| = 0
and the spin direction is no longer well defined, and the topological defect in this case
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is the Weyl point. This mathematical structure is similar as the monopole discussed in
Section 4.4.

Finally, we should mention that this nontrivial winding of pseudo-spins around K or
K′ points can be detected experimentally. Imaging that one drags an atom adiabatically
around a closed loop in the momentum space, the change of pseudo-spin gives rise to a
Berry phase, which depends on the solid angle expanded by the pseudo-spin around the
loop. Therefore, the phase is π for a loop enclosing the K point and the phase is zero for a
loop not enclosing the K point. This has been observed experimentally and the results are
shown in Figure 7.7. We should also note that this is in analogy with the emergent synthetic
gauge field discussed in Section 1.2. There it is the real spin of atom that is polarized by a
spatial varying Zeeman field, and here it is the pseudo-spin of atoms that is polarized by a
momentum space varying “Zeeman field.”

Symmetry Protection. Above, we have discussed that the stability of the Dirac semimetal
phase is guaranteed by that Bz(k) is zero everywhere in the momentum space. Here we
should emphasize that a vanishing Bz(k) is protected by symmetry. First, we consider the
spatial inversion symmetry with the inversion center located at the center of a honeycomb
plaquette, and this symmetry operation interchanges A and B sites and simultaneously
changes k → −k. If the Hamiltonian is invariant under the inversion symmetry, that is
to say,

Ĥ (k) → σxĤ (−k) σx = Ĥ (k) . (7.40)

This symmetry requires

Bx(k) = Bx(−k), By(k) = −By(−k), Bz(k) = −Bz(−k). (7.41)

Second, we consider the time-reversal symmetry T , which also changes k → −k. And
because time-reversal symmetry is accompanied by taking the complex conjugation, the
three Pauli matrices here change as1

T σxT −1 = σx; T σyT −1 = −σy; T σzT −1 = σz. (7.42)

Thus, if we require the Hamiltonian is also invariant under the time-reversal symmetry, that
is to say,

T Ĥ(−k)T −1 = Ĥ(k), (7.43)

it leads to

Bx(k) = Bx(−k), By(k) = −By(−k), Bz(k) = Bz(−k). (7.44)

Therefore, when we require that the Hamiltonian obeys both the spatial inversion symmetry
and the time-reversal symmetry, by combining Eq. 7.41 and Eq. 7.44, we obtain that Bz(k)
has to vanish everywhere. Meanwhile, Bx(k) is an even function of k and By(k) is an odd
function of k. From these discussion, we conclude that the stability of the Dirac point is

1 Here we should note that the time-reversal symmetry acting on the pseudo-spin is different from the time-
reversal symmetry acting on the angular momentum or the real spin. Here the pseudo-spin represents two
Wannier orbitals, therefore, the time-reversal symmetry does not invert the spin direction. However, the time-
reversal symmetry does revert the spin direction when acting on the angular momentum or the real spin.
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guaranteed by the requirement of the simultaneous presence of both the spatial inversion
symmetry and the time-reversal symmetry. If a term breaks one of these two symmetries, it
can immediately open up the band gap, and can lead to an insulator phase at half-filling, as
we will discuss in the Haldane model in Section 7.3. Unlike the Dirac semimetal, the Weyl
semimetal does not require symmetry protection. That is the main fundamental difference
between these two semimetal phases. In Section 7.3, we will also come back to revisit this
symmetry protection when we discuss the Su–Schrieffer–Heeger model.

7.3 Topological Band Insulator

The Su–Schrieffer–Heeger Model. The Su–Schrieffer–Heeger (SSH) model is a one-
dimensional model with two sites in each unit cell [170]. Similar as the honeycomb lattice
case, we denote these two sites as A and B sublattices. The hopping always occurs between
two adjacent A and B sites. The strength of hopping within each unit cell is denoted by J1

and the strength of hopping between two neighboring unit cells is denoted by J2, as shown
in Figure 7.8. The model is therefore written as

Ĥ = −J1

(
∑

i

ĉ†
A,iĉB,i + h.c.

)

− J2

(
∑

i

ĉ†
A,i+1ĉB,i + h.c.

)

. (7.45)

This Hamiltonian can be written in the momentum space as

Ĥ =
∑

k

(
ĉ†

A(k), ĉ†
B(k)

)
H(k)

(
ĉA(k)
ĉB(k)

)
, (7.46)

where the matrix is given by

H (k) =
(

0 J1 + J2e−ika

J1 + J2eika 0

)
. (7.47)

Here we have set the distance between two unit cells as a, and thus the lattice spacing as
a/2. The first Brillouin zone ranges from k = −π/a to k = π/a, and since k = −π/a and

!Figure 7.8 Schematic of the two phases of the SSHmodel. (a1) Topological nontrivial case with J2 > J1. (a2) Topological trivial
case with J2 < J1. (b) Edge state emerges when connecting A1 and A2. Here the double line denotes bonds with
larger hopping amplitude, and a single line denotes bonds with smaller hopping amplitude. A color version of this
figure can be found in the resources tab for this book at cambridge.org/zhai.
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k = π/a are equivalent, the geometry of the first Brillouin zone is in fact a one-dimensional
circle. This Hamiltonian Eq. 7.47 satisfies H(k + 2π/a) = H(k).

Similar as the discussion in the previous section, H(k) can be expanded in terms of the
Pauli matrix as H(k) = Bx(k)σx + By(k)σy, where

Bx(k) = J1 + J2 cos(ka) (7.48)

By(k) = J2 sin(ka). (7.49)

The energy of two bands is given by E±(k) = ±|B(k)|, and the Bloch wave function is
determined by a vector B̂(k) = B(k)/| B(k)|. Thus, B̂(k) lives on a one-dimensional circle,
and this Hamiltonian can be viewed as a mapping from a one-dimensional circle of the
Brillouin zone to the one-dimensional circle of B̂(k) space. As discussed in Section 4.2
and Section 7.2, the topology of this mapping is characterized by the homotopy group
+1(S1) = Z, whose topological invariant is the winding number and can take all integer
values. However, we should note the difference between the discussion here and the dis-
cussion in Section 7.2. Here it is the mapping from the entire Brillouin zone to the Bloch
wave function space, but in Section 7.2, the mapping is defined from a loop in the Brillouin
zone to the Bloch wave function space. The difference between these two situations will
be discussed in detail later.

When J1 > J2, it is easy to see that Bx is always positive for all k, and therefore, the
image of this mapping only covers a portion of the circle, which can be continuously
deformed to a single point. Hence, the winding number for this case is zero and it is a
topological trivial case. When J2 > J1, the image of this mapping can fully cover the circle
of B̂(k) space, and the winding number equals to unity. This is a topological nontrivial case.
Similar as Eq. 7.38, the winding number is defined as

w = 1
π

∫ π

−π
dkB̂x(k)∂kB̂y(k). (7.50)

It is straightforward to show that, with this formula and the definition of B̂x(k) and B̂y(k)
given above, w = 1 for J2 > J1 and w = 0 for J2 < J1.

Thus, J2 > J1 and J2 < J1 represent two distinct topological phases. The transition
between them takes place at J1 = J2, and this transition is characterized by a change of the
topological invariant. This is now known as the topological phase transition. We should
note that this phase transition is different from the Landau phase transition that we have dis-
cussed before, because here there is no change of order parameter before and after the phase
transition. And we should also distinguish this transition from the Kosterlitz–Thouless
transition discussed in Section 4.2, which is a transition driven by the deconfinement of
topological defects, and there is also no topological distinction between two phases at dif-
ferent sides of the phase transition, as we summarized in Box 4.1. Note that, if J1 /= J2,
|B(k)| is always nonzero everywhere in the Brillouin zone, and there is always a finite
gap separating the upper and the lower bands. Only when J1 = J2, both Bx(k) and By(k)
vanish at k = ±π/a, and the gap between the upper and the lower bands vanishes at the
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band edge. In fact, gap closing is the generic feature of the topological transition. Similar
as what we have discussed in Section 7.2, only when |B(k)| = 0, B̂(k) is no longer well
defined, which breaks the continuity in deforming the mappings and allows the change of
topology number.

Here, another important point is that because Bz(k) is always zero, we can present
the Hamiltonian at each momentum as a two-dimensional vector B̂(k) = {B̂x(k), B̂y(k)}.
Otherwise, the wave function has to be represented by a three-dimensional vector liv-
ing on a S2 surface, and +1(S2) is always trivial. In other words, once a nonzero Bz(k)
term is allowed, J2 > J1 regime and J2 < J1 regime can be smoothly connected by
continuously deforming the mapping without closing the gap, and therefore these two
regimes are no longer topologically distinct. Hence, in order to allow nontrivial topologi-
cal classification in this case, the σz term has to vanish. In Section 7.2, we have discussed
that in the case of honeycomb lattice, the presence of both the time-reversal symmetry
and the refection symmetry can lead to vanishing σz term, and there, for the inversion
symmetry, the inversion center is the center of a honeycomb plaquette. With similar dis-
cussion, here we can also show that the presence of the time-reversal symmetry and the
inversion symmetry also leads to vanishing σz term. Here the inversion center should
be taken as the center between A and B sites. In summary, it is the presence of both the
time-reversal and the inversion symmetry that guarantees the nontrivial topological classi-
fication here. This phenomenon is called symmetry-protected topological phases, usually
short-noted as SPT.

The Haldane Model. Let us now continue the discussion in Section 7.2 of the tight-
binding model in a honeycomb lattice. As discussed in Section 7.2, when we impose the
requirement that the Hamiltonian has both the inversion and the time-reversal symmetry,
the σz-term has to vanish. The Dirac points are stable against weak perturbations as long
as the perturbation does not break any of these two symmetries, and the system remains as
a semimetal at half-filling. In other words, in order to open up a band gap at half-filling,
one can add σz term into the Hamiltonian, which inevitably breaks either the inversion or
time-reversal symmetry, or both.

A simple way to add σz term is to introduce a potential energy difference M between
A and B sublattices, which corresponds to a Mσz term in the Hamiltonian. The M-term is
an even function in k, and from the discussion in the Section 7.2, it breaks the inversion
symmetry but respects the time-reversal symmetry.

In a seminal paper, Haldane proposed an alternative way to open up the gap [67]. Hal-
dane introduces the next nearest neighbor hopping, whose strength is denoted by J2. The
next nearest neighboring hoppings take place either among A sites themselves or among B
sites themselves. Without loss of generality, we introduce a phase φA for hopping between
A sites and a phase φB for hopping between B sites, as shown in Figure 7.9. Explicitly, this
term is written as

J2
∑

〈〈ij〉〉

(
eiφA ĉ†

A,jĉA,i + eiφB ĉ†
B,jĉB,i + h.c.

)
, (7.51)
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!Figure 7.9 Schematic of the Haldane model: The arrows denote the next nearest hopping amongA sites and amongB sites,
respectively, and these two hopping matrix elements have opposite phases. A color version of this figure can be found
in the resources tab for this book at cambridge.org/zhai.

where 〈〈..〉〉 denotes the next-nearest-neighbor hopping. It is straightforward to show that
this introduces a new term in H(k) as

(
2J2

∑
α cos (k · aα + φA) 0

0 2J2
∑
α cos (k · aα + φB)

)
. (7.52)

If φA = φB, this term does not introduce a σz component. In general, a σz component exists
as long as φA /= φB. Especially, if we take φA = −φB = −φ, Eq. 7.52 can be written as

2J2 cosφ
∑

α

cos (k · aα) I + 2J2 sinφ
∑

α

sin (k · aα) σz. (7.53)

In this case, the σz term is an odd function in k, which breaks the time-reversal symmetry
and respects the inversion symmetry.

Now we add both the M-term and the next-nearest-neighbor hopping term into the
tight-binding Hamiltonian discussed in Section 7.2. Here the strength of the next-nearest-
neighbor hopping is denoted by J2, and we take opposite phases for such hoppings among
A sites and among B sites, as shown in Figure 7.9. This model is referred to as the Haldane
model. The total Hamiltonian of the Haldane model is written as

H = − J1
∑

〈ij〉

(
ĉ†

B,jĉA,i + h.c.
)

+ J2
∑

〈〈ij〉〉

(
e−iφ ĉ†

A,jĉA,i + eiφ ĉ†
B,jĉB,i + h.c.

)

+ M
∑

i

(
ĉ†

A,iĉA,i − ĉ†
B,iĉB,i

)
. (7.54)

Now in momentum space, H (k) becomes

H (k) = E0 (k) I + B (k) · σ , (7.55)

where

E0 (k) = 2J2 cosφ
∑

α

cos (k · aα) . (7.56)
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Bx(k) and By(k) still behave the same as Eq. 7.36, and Bz(k) term becomes non-zero, which
is now given by

Bz(k) = M + 2J2 sinφ
∑

α

sin (k · aα) . (7.57)

Now at each momentum k we have introduced a three-dimensional B(k) vector, and the
eigenstates of the upper and the lower bands can be described by pseudo-spins that are
either parallel or antiparallel to the direction of B̂(k) field, where B̂ (k) = B (k) / |B (k)|
lies in a Bloch sphere. Thus, the Hamiltonian defines a mapping from the first Bril-
louin zone of the momentum space to the S2 Bloch sphere. Strictly speaking, the
two-dimensional Brillouin zone is a torus. But in many cases, one can ignore the differ-
ence between sphere and torus, and such a mapping can also be classified by the second
homotopy group +2(S2). As discussed couple times before, it is known that +2(S2) = Z
and is characterized by the Chern number. The Chern number in this case is defined as

C = 1
2π

∫

BZ
d2k"(k) (7.58)

"(k) = 1
2

(
∂B̂
∂kx

× ∂B̂
∂ky

)

· B̂. (7.59)

Here "(k) is the local Berry curvature, and the Chern number is the integration of the local
Berry curvature over the entire Brillouin zone. For these two bands, the one with spins
paralleled to B̂(k) has the Chern number as defined by Eq. 7.59, and the one with spins
antiparallel to B̂(k) has an opposite Chern number.

The Chern number describes how many times that the spin vector B̂ covers the Bloch
sphere when the momentum k scans through the entire Brillouin zone. If the spin vector
only covers part of the Bloch sphere, it can be shrink to a point and the Chern number is
zero. This corresponds to a topologically trivial state. If C is a nonzero integer, this state
is a topological nontrivial state. In general situations, it is straightforward to calculate the
Chern number using Eq. 7.59, which determines whether a model is topologically trivial
or not. In case of the Haldane model, there is a short-cut to determine the Chern number.
That is, in order for Chern number to be nonzero, the Bloch vector must at least cover
both the north pole and the south pole once. Generally, this is a necessary but not sufficient
condition. However, it turns out to be a sufficient condition in the case of the Haldane
model. Note that B̂ can point to either the north or the south pole only when Bx = By = 0,
and in this model, Bx = By = 0 only at K and K′ points. That is to say, in order to
cover both the north and the south poles, Bz(K) and Bz(K′) must take opposite sign, that is,
Bz(K)Bz(K′) < 0. This gives the condition −3

√
3|J2 sinφ| < M < 3

√
3|J2 sinφ|, under

which C equals +1 or −1.
Therefore, the phase diagram of the Haldane model is presented in Figure 7.10. Different

phases are distinguished by different topological Chern number. Note that in the topologi-
cal trivial phase Bz(K)Bz(K′) > 0, and in topological nontrivial phase, Bz(K)Bz(K′) < 0.
Hence, at the transition point Bz(K)Bz(K′) = 0, which means either Bz(K) or Bz(K′) has
to vanish. In fact, as shown in Figure 7.10, along the phase boundary M = 3

√
3J2 sinφ,
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!Figure 7.10 The phase diagram for the Haldane model. The phase diagram is plotted in terms ofφ andM/J2. The Chern number
C of the lower band is marked in different regimes. The solid lines are the phase boundary between topological trivial
and nontrivial phases, at which at least one of the K or K′ points becomes gapless, as shown in the left column. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

Bz(K) = 0 and the band gap vanishes at K point. Along the other half of the phase bound-
ary M = −3

√
3J2 sinφ, Bz(K′) = 0 and the band gap vanishes at K′ points. Therefore, the

same as in the SSH model, the band gap closes at the phase boundary of the topological
phase transition. Moreover, we note that across one of these two lines, the Chern number
changes by one and there is also only one gapless mode when the system is located at the
phase boundary. However, at the point with M = 0 and φ = 0, the model returns to the
case discussed in Section 7.2, where both K and K′ are gapless and there are two gapless
modes. Actually, across this particular point, the Chern number changes from +1 to −1
and the change of Chern number is two. In fact, this is a general feature of the topological
transition that the number of gapless modes at the phase boundary equals to the change of
topological invariants across this phase boundary.

There is an important difference between the Haldane model and the SSH model, that
is, the topological classification in the SSH model requires symmetry protection and the
topological classification of the Haldane model does not. This is due to their difference in
dimensionality. Thus, the lesson is that the dimensionality and the symmetry play a crucial
role in the topology classification of an band insulator. We will not discuss this in detail
here and the readers can find more detailed information from Ref. [35, 145], where the
discussions are also not restricted to two band models.

The Haldane model has been realized experimentally with a method of periodically
driving the lattice, as we will discuss in the following section [85, 194]. They have per-
formed two measurements to determine the phase diagram. The first measurement is based
on the Landau–Zener tunneling during the Bloch oscillation. The Bloch oscillation has
been introduced in Section 7.1. If the band is everywhere gapped, fermions should stay in
the lowest band after a full cycle of the Bloch oscillation as long as the velocity is small
enough during the oscillation. However, if there is a point where the gap is closed, fermions
can always tunnel to the higher band when they pass through the gapless point during
the Bloch oscillation, even though the velocity is sufficiently small. When the interband
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transition happens, fermions in the higher band can be detected in the second Brillouin
zone by the band mapping method discussed in Section 7.1. Given that one of the K and
K′ points becomes gapless at the topological transition, the Landau–Zener tunneling rate
to the higher band should display a maximum at the topological phase boundary, as shown
in Figure 7.11(a). In this way, a phase diagram has been constructed experimentally, as
shown in Figure 7.11(b).

The second measurement is based on the transverse drift during the Bloch oscillation. In
the presence of local Berry curvature in momentum space, the semiclassical equation-of-
motion Eq. 7.14 should be modified as [182]

v = 1
!
∂E(k)
∂k

+ d k
dt

× !(k). (7.60)

The local Berry curvature in the momentum space plays the similar role as a magnetic
field in the real space. Suppose that the oscillation is along the x̂ direction, it gives rise
to a Hall effect manifested as a drift along the ŷ direction. If the total Berry curvature is
zero, the drift after an entire Bloch cycle is canceled and the net drift vanishes. If the total
Berry curvature is not zero for a topological nontrivial case, the net drift remains finite.
Moreover, the drift will be opposite if one applies an opposite force to invert the direction
of the Bloch oscillation. Thus, one can extract a differential drift from two measurements
with opposite forces, as shown in Figure 7.11(d), and a phase diagram based on the trans-
verse drift measurement has also been constructed in Figure 7.11(c). The phase diagrams
constructed from these two measurements are qualitatively consistent with each other, and
they are also consistent with the theory.

Summary of Topological Band Theory. In the previous section and this section, we have
discussed topological nature of the semimetal and the band insulator, respectively. Here
we summarize these two types of topological states. First of all, there are two common
features:

1. Both require at least two sites in each unit cell. The topology of the band theory is
defined by the mapping from the Brillouin zone of quasi-momentum space to the Bloch
wave function. Note that there is no correction between the global U(1) phases of the
Bloch wave function at different momenta, in other words, we can choose an arbitrary
phase for the Bloch wave function at each momentum. That is to say, we cannot use
the global U(1) phase degree of freedom to define the topology. Therefore, the Bloch
wave function has to possess certain internal structure, and the minimum requirement
is to have two sites at each unit cell. In the cases of two sites unit cell, the Hamiltonian
can be written as a pseudo-spin in a quasi-momentum dependent Zeeman field, and the
Hamiltonian can be generally written as Ĥ = ∑

k B(k) · σ .
2. The energy of the upper and the lower band is given by ±|B(k)|. As long as |B(k)| is

nonzero for all k, the upper and the lower bands are separated. And also in this case,
one can define a spin direction B̂(k) = B(k)/|B(k)| everywhere in the Brillouin zone.
The pseudo-spin directions of these two bands are parallel and antiparallel to B̂(k),
respectively. Thus, the change of Hamiltonian corresponds to a continuous deformation
of the mapping, which cannot change the topological invariant. The change of topology



!Figure 7.11 Experimental measurements of the phase diagram of the Haldane model. (a) The Landau–Zener tunneling rate after a cycle of Bloch oscillation as a function
of,, for two differentφ. (b) The phase diagram in terms of, andφ extracted by the Landau–Zener tunneling measurement. (c) The phase diagram
extracted from the drift experiment. (d) The drift after a full Bloch cycle as a function ofφ for theM = 0 case.ϕ in the figure isφ in the text. Reprinted
from Ref. [85]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.
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Table 7.1 Different types of topological features in bands

Semimetal Topological insulator

Mapping From a surface Sd−1 in BZ From entire BZ Td
to BWF space to BWF space

Homotopy group +d−1(M) +d(M)
Examples in 1D — +1(S1): SSH model

— (winding number)
Examples in 2D +1(S1): Dirac semimetal +2(S2): Haldane model

(winding number) (Chern number)
Examples in 3D +2(S2): Wely semimetal —

(Chern number) —

Note: “BZ” stands for “Brillouin Zone”; “BWF” stands for “ Bloch Wave Function”; d is the spatial
dimension.

is possible only when |B(k)| = 0 at a certain quasi-momentum, where B̂(k) is no longer
well defined, and the continuity of the deformation breaks at this particular point. This
means that the change of topological invariant must be accompanied by closing the band
gap between the upper and the lower bands.

The semimetal and the topological band insulator belong to two different ways of charac-
terizing the band topology, as we summarized in Table 7.1. The semimetal in d dimension
is characterized by mapping from a d − 1-dimensional surface in the momentum space to
the Bloch wave function space. When this topological number is nonzero, it means that at
least one singularity must be enclosed by the surface, where the band gap closes. The topo-
logical insulator is characterized by mapping from the entire d-dimensional Brillouin zone
to the Bloch wave function space. If two different insulator states have different topological
number, the transition between them must cross a band gap closing point.

Table 7.1 should be compared with Table 4.1 in Section 4.4. In Section 4.4 we have dis-
cussed topological excitations in a Bose condensate, characterized by mappings from the
real space to the wave function space. In Table 4.1 of Section 4.4, we have discussed two
types of topological excitations. One is topological defects such as vortex and monopole,
and the other is nonsingular topological objects such as Skyrmion. Comparing the topolog-
ical bands of fermions discussed here and the topological excitation in a BEC discussed in
Sections 4.2 and 4.4, although their physics contents have no relations, they share common
mathematical structures. The semimetals should be compared with topological defects.
More explicitly, the Dirac point should be compared with vortex in two dimensions and
the Weyl point should be compared with monopole in three dimensions. Topological band
insulator should be compared with nonsingular topological object, since the wave func-
tion is well defined everywhere. In particular, the topological Haldane model should be
compared with Skyrmion in two dimensions.

Edge State and Quantized Hall Conductance. Here we further elaborate the physical
consequences of nontrivial topological invariants of a band insulator. For the SSH model
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discussed above, an intuitive picture is shown in Figure 7.8(b) where we connect two
phases of the SSH model together. Here double line denotes bonds with strong hopping
and single line denotes bonds with weak hopping. Imaging that we adiabatically tune all
the weak hopping to zero and only keep strong hopping, all the sites connected by double
lines acquires a finite gap, and the site marked by edge mode in Figure 7.8(b) becomes
isolated and remains as a zero-energy state. This is known as the gapless edge modes,
or zero-energy edge mode. This is precisely the zero-energy edge mode from topology.
Numerical calculation can show that when the weak hopping is finite, although the wave
function will be broaden, its wave function remains localized and its energy remains as
zero.

Now imaging we smoothly connect two insulator states of the Haldane model with
different topological invariants together, we can view the spatial coordinate as a tuning
parameter, and the physics at the spatial boundary between two insulators corresponds to
the physics at the phase boundary between two bulk phases. Since the topological nature
forces the presence of gapless modes at the phase boundary, a natural consequence is the
existence of gapless mode localized at the spatial boundary. Furthermore, since one can
always view vacuum as a trivial insulator, a further corollary is that an insulator with
nonzero Chern number, say C, always has |C| number of gapless modes at its edge. Since
the existence of the gapless modes follows directly from the topological requirement, it
is stable against perturbations, as long as the perturbation does not breaks the symmetry
of the bulk Hamiltonian in case that the topology needs symmetry protection. Here we
should emphasize that the significance is not the presence of the edge state, but the sta-
bility of the gapless edge state against perturbations. This connection between the physics
at the edge and the topology of the bulk Hamiltonian is now well known as the bulk-edge
correspondence.

In Section 5.1 we have discussed three conditions that can lead to quantized conduc-
tance, and the three conditions are one-dimensional geometry, discrete mode and the
absence of the backward scattering. Considering a two-dimensional model with nonzero
Chern number, there are |C| number of gapless edge states residing inside the gap. When
one performs transport measurement on this system, since the bulk is gapped, only these
edge modes can conduct particles. These edge states are one-dimensional conducting chan-
nels, and these modes are discrete. Moreover, because of their chiral property, the backward
scatterings are absent. Hence, these three conditions can be satisfied, and therefore, each
edge state contributes a quantized conductance 1/h, and the total system displays a Hall
conductance of |C|/h. Moreover, since the existence of these edge modes are stable against
perturbations, the quantized Hall conductance is also stable against perturbations. In fact,
it is a quite nontrivial effect that an insulator can conduct charge and the conductance is
quantized. It is named as the quantum anomalous Hall effect that a topological nontrivial
insulator can display quantum Hall effect without applying external magnetic field. The
quantized Hall conductance is the hallmark experimental evidence of a material with filled
topological bands in condensed matter systems.

Quench Dynamics. The transport measurement is quite common in condensed matter
systems, and it is a near-equilibrium probe that essentially determines the physics at
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equilibrium. In ultracold atom systems, many Hamiltonians are realized by utilizing atom-
light interactions, which can be easily changed in a time scale of microsecond. Moreover,
the ultracold atom systems are quite dilute and the typical relaxation time scale can be
millisecond. Hence, the Hamiltonian can be changed in a time scale much faster than the
relaxation time, and therefore, it can be viewed as an instantaneous change of the Hamil-
tonian from an initial one to a final one. After this sudden change, the state remains as
the equilibrium state of the initial Hamiltonian and is not the equilibrium state of the final
Hamiltonian. The subsequent dynamics is the quantum evolution governed by the final
Hamiltonian. This is known as quench dynamics. If the final Hamiltonian is quite differ-
ent from the initial one, the quench dynamics is a far-from-equilibrium dynamics. Quench
dynamics has now become a quite common experimental tools in ultracold atom physics,
which provides a unique opportunity for ultracold atom systems to go beyond traditional
condensed matter paradigm.

Here we describe a manifestation of topological bands in the quench dynamics [179],
using the Haldane model as an example. Let us consider an initial Hamiltonian Ĥi =∑

k Bi(k) · σ as a topological trivial one, and the initial wave function |ξ i(k)〉 at quasi-
momentum k is an eigenstate of Ĥi. We consider a sudden quench that changes the
Hamiltonian to Ĥf = ∑

k Bf (k) · σ , and the subsequent quantum dynamics at each k
is therefore determined by

|ξ (k, t)〉 = e−iBf (k)·σ t|ξ i( k)〉. (7.61)

With this wave function, we can calculate the pseudo-spin dynamics as

s(k, t) = 〈ξ (k, t)|σ |ξ (k, t〉. (7.62)

Because a vector in a Bloch sphere is a faithful representation of the pseudo-spin-1/2
wave function of a two-band model, Eq. 7.62 completely defines the quench dynamics.
Initially the pseudo-spin at quasi-momentum k is antiparallel to Bi(k) but it is not parallel
or antiparallel to Bf (k), thus, this quench dynamics is in fact described by precession of the
pseudo-spin around Bf (k). Therefore, it is also periodical in time. Hence, Eq. 7.62 defines
a mapping from the three-dimensional periodical {k, t} space to the two-dimensional Bloch
space. This mapping is known as the Hopf map. It turns out that the topology of such a map-
ping can be described by the third homotopy group +3(S2) and a profound mathematical
theorem states that

+3(S2) = +2(S2) = Z. (7.63)

The topological invariant for the Hopf map is called the Hopf invariant, or the linking
number. The linking number is schematically shown in Figure 7.12. Let us consider a
given vector in the Bloch sphere, one can image that its inverse image is a loop in the
three-dimensional {k, t} space. Considering two different vectors in the Bloch sphere, their
inverse imagings are two loops in the {k, t} space. Then, one can ask whether two loops
have nonzero linking number. Figure 7.12(a) shows an example with linking number zero
and Figure 7.12(b) shows an example with linking number one.

It is easy to see that the linking number defined in this way is a topological invariant. If
one wants to continuously deform the case of Figure 7.12(a) to the case of Figure 7.12(b),
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!Figure 7.12 Illustration of linking number in quench dynamics. (a) Case with linking number being zero. (b) Case with nonzero
linking number. Reprinted from Ref. [179]. A color version of this figure can be found in the resources tab for this book
at cambridge.org/zhai.

there must be an instant that these two lines cross. However, such a cross is forbidden
because these two lines are defined as the inverse images of two different vectors, which
means that the pseudo-spin points to different directions at different lines. This argument
shows that the linking number cannot be changed under continuous deformation and is
a topological invariant. It can be further proved that for the case that Ĥi is topologically
trivial, the linking number defined in this way in the quench dynamics is always equal to the
Chern number of the final Hamiltonian Ĥi [179]. This relation establishes an unambiguous
relation between the far-from-equilibrium dynamics and the topology of the Hamiltonian
that governs the quench dynamics [179].

This relation has been confirmed experimentally [172], and the results are shown in
Figure 7.13. In this experiment, they measure the real time dynamics of the Bloch vector
by the quantum state tomography. They focus on the inverse images of the north and the
south poles in the Bloch sphere, which show up as vortices of the azimuthal angle of the
Bloch vector and display opposite vorticity. In Figure 7.13(a), the solid lines are the trajec-
tory of one type of vortex, say, the inverse image of the north pole. The dots are actually
straight lines along the time direction, which represent the inverse images of the south pole.
One can see that for cases (ii) and (iii) in Figure 7.13(a), the solid line encloses the dot,
which displays linking number one as in case (b) of Figure 7.12. The linking number is
compared with the calculated Chern number and spectrum of the final Hamiltonian shown
in Figures 7.13(b) and (c), and it is found that the change of the linking number measured
in this way is consistent with the topological transition of the final Hamiltonian [172].



233 Periodical-Driven Lattice

!Figure 7.13 Experimental observation of the linking number in quench dynamics. (a) Different cases of the trajectory of the phase
vortices, which corresponds to the inverse images of the north and the south poles. (b) Different linking number as a
function of parameter in the final Hamiltonian. (c) Illustration of the corresponding band structure of the final
Hamiltonian. Reprinted from Ref. [172]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

7.4 Periodical-Driven Lattice

Moving Lattice. To realize topological phases with ultracold atoms in optical lattices, a
common tool is to drive the optical lattices periodically. As we know, optical lattices are
formed by interferences of counter propagating laser beams. By time-periodically mod-
ulating the relative phase between these two counter-propagating lasers, the interference
pattern oscillates in space periodically, which realizes a shaking optical lattice. And peri-
odically modulating the relative phase can be realized by either using an acousto-optic
modulator (AOM) or by mechanically shaking the mirror that reflects the laser.

Before we consider periodically shaking, let us first consider a general situation that
the relative phase is a time dependent function as kf (t), where k is the laser wave length.
Considering one-dimensional lattice as an example, the Hamiltonian is written as

H = − !2

2m
∂2

∂x2 + V cos2(k(x + f (t)). (7.64)
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Now if we make a Galilean transformation to the comoving frame with x′ = x + f (t) and
t′ = t, then the lattice becomes stationary. However, because

i!∂t = i!∂ ′
t + i!∂x′

∂t
∂x′ , (7.65)

the Hamiltonian in the comoving frame can be written as2

Ĥ = 1
2m

(−i!∂x + mf ′(t))2 + V cos2(kx). (7.66)

This is equivalent to the situation that a charged particle is placed in an electric field with
Ax = −mf ′(t), and the electric field

Ex = −∂Ax(t)
∂t

= mf ′′(t). (7.67)

Hence, if the lattice moves with a constant velocity v, f (t) = vt and therefore, Ax is a
constant and Ex = 0. A constant gauge field can be gauged away and does not cause
any physical effect. If the lattice moves with a constant acceleration a, f (t) = at2/2, and
therefore, Ax = −mat and Ex = ma. This realizes a constant force, which can be used to
excite the Bloch oscillation as discussed in Section 7.1. In a general situation, Ex always
equals the instantaneous acceleration. In fact, this is nothing but an inertia force when we
move to the comoving frame.

Let us now consider a two-dimensional lattice, two laser beams along x̂ has a relative
phase modulating as kb sin(ωt) and two laser beams along ŷ has a relative phase modulating
as kb sin(ωt + φ). Then, the single-particle Hamiltonian can therefore be written as

H = −!2∇2

2m
+ V

[
x + b sin (ωt) , y + b sin (ωt + φ)

]
, (7.68)

where b is the shaking amplitude, and ω is the shaking frequency. By making a coordinate
transformation x′ = x + b sin (ωt) and y′ = y + b sin (ωt + φ), the new Hamiltonian in the
comoving frame reads

H (x, y, t) = 1
2m

[−i!∂x − Ax (t)]2 + 1
2m

[
−i!∂y − Ay (t)

]2 + V (x, y) , (7.69)

where

Ax (t) = −mωb cos (ωt) , Ay (t) = −mωb cos (ωt + φ) . (7.70)

This vector potential is equivalent to a time-periodical electric field of a laser field propa-
gating along ẑ. In other words, in this way we can simulate a laser field applied to electrons
in solid. If φ = 0, it corresponds to a linear polarized light, and if φ = π/2, it corre-
sponds to a circular polarized light. However, despite the mathematical equivalence, there
is an important difference between the solid state setting and the ultracold atom setting.
As we will discuss below, it is important to reach the parameter regime where the driving
frequency is much larger than the bandwidth. In the solid state setting, it usually requires
a very high frequency laser because the bandwidth of a material is usually of the order of
electron volt, which makes the experimental realization quite challenging. Nevertheless, in

2 Here we ignored ′ since we will work on the comoving frame afterward.
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the ultracold atom systems, the typical bandwidth of an optical lattice is of the order of a
few thousand Hertz, and it is easy to mechanically shake the lattice with a frequency much
larger than a few thousand Hertz.

Peierls Substitution. For the tight-binding model discussed in Section 7.1, we have shown
that the hopping integral is given by

Jij = −
∫

d3rw∗(r − Ri)
(

p2

2m
+ Vlat( r)

)
w(r − Rj). (7.71)

Now let us perform a gauge transformation on the original Wannier wave function in
absence of gauge field, and define a new set of Wannier wave functions as

w̃(r − Rj) = e
− i

!
∫ r

Rj
A( r′)·dr′

w(r − Rj). (7.72)

We expand the field operator in terms of the new Wannier wave function bases, and the
hopping integral becomes

J̃ij = −
∫

d3rw̃∗(r − Ri)
(

(p − A)2

2m
+ Vlat(r)

)
w̃(r − Rj). (7.73)

It is easy to show that
(

(p − A)2

2m
+ Vlat(r)

)
w̃(r − Rj) = e

i
!
∫ r

Rj
A(r′)·d r′ ( p2

2m
+ Vlat(r)

)
w(r − Rj), (7.74)

and by exploring the approximation that

e− i
!
∫ r

Ri
A(r′)·d r′

e
i
∫ r

Rj
A(r′)·dr′

≈ e
i
!
∫ Ri

Rj
A(r′)·dr′

, (7.75)

we can obtain that

J̃ij ≈ e
i
!
∫ Ri

Rj
A(r′)·dr′

Jij. (7.76)

That is to say, the hopping integral is only modified by a phase factor, and this is known as
the Peierls substitution.

We need to be careful about the validity of the approximation Eq. 7.75.

• If A has spatial dependence, Eq. 7.75 means that one ignores the magnetic flux through
the triangle formed by r, Ri and Rj. Note that the Wannier wave function is taken as
maximally localized, such that r has to be nearly both Ri and Rj, otherwise it does not
contribute significantly to the integral. Hence, for hopping between neighboring sites,
the effective area of the triangle is usually smaller than the area of a unit cell. This
approximation is good when magnetic field strength through each unit cell is small.

• If A has a temporal dependence, there will also be an extra term originating from the
i!∂/∂t term, which provides coupling between different bands, similar as the discussion
of d · E coupling made in Section 1.3. This contribution can be ignored under following
two conditions: (i) The strength of this term is much smaller compared with the band
separation; and (ii) if E is time periodical with a frequency ω, ω does not match the
interband transition energy.
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In the case of Eq. 7.69, A only depends on time and does not depend on the spatial
coordinate. Therefore, when the Peierls substitution is applicable, the kinetic term can be
written as

Ĥ0 = −
∑

ij

JijeiA(t)· lij/!b̂†
i b̂j + h.c., (7.77)

where lij = Ri − Rj is the relative position between i and j sites, and b̂i is the annihilation
operator expanded under the new Wannier orbitals w̃(r − Ri).

Floquet Hamiltonian. A general method to treat the time-periodical problem is called the
Floquet theory. The central idea of the Floquet theory is to derive a time-independent
Hamiltonian that can effectively describe this time-periodical process. Considering an
observer who is only allowed to observe the system at integer times of the driven period,
one can find out a time-independent Hamiltonian Heff, such that this observer cannot dis-
tinguish whether the quantum evolution of this system is governed by this Heff or by the
original time-periodical Hamiltonian. Since the time interval between two observations are
T = 2π/ω, thus, T has to be much shorter than all the time scales of the problem, such
that this discrete sets of observations can capture all the essential physics of the system and
Heff is a faithful representation of the system. Hence, !ω has to be much larger than all the
other energy scales of the problem.

To be more precise, considering a Schrödinger equation i!∂tψ = Ĥ(t)ψ (t) of a time-
periodical system with Ĥ(t + T) = Ĥ (t), the time evolution operator is given by

Û (t) = T̂ exp
[
− i

!

∫ t

0
dt′Ĥ

(
t′
)]

, (7.78)

where T̂ is the time-ordering operator. Considering the evolution for one driven period
from αT (0 ! α < 1) to αT + T , the evolution operator is given by

Û (T ,α) = T̂ exp
[
− i

!

∫ T+αT

αT
dtĤ(t)

]
, (7.79)

and Û(T) only depends on T and α. Now we introduce the effective Hamiltonian Ĥeff

such that

Û(T ,α) = exp
(

− i
!

ĤeffT
)

. (7.80)

In this way, the time-independent Hamiltonian Ĥeff can reproduce exactly the same time
evolution of the real periodical system at integer periods of time. We can diagonalize
Û(T) as

Û(T)|ϕn〉 = e− i
! εnT |ϕn〉. (7.81)

where εn is defined in the range of −π/T and π/T and is called the quasi-energy, and
|ϕn〉 is the corresponding eigen-wave function. Usually we can numerically evaluate the
Floquet operator Û(T) and determine its eigenvalues via Eq. 7.81.
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Keeping in mind that !ω is the largest energy scale of the problem, we can also determine
Heff by the 1/ω expansion. We first expand Ĥ (t) as

Ĥ(t) =
∑

n

einωtĤn, (7.82)

and by 1/ω expansion it is straightforward to deduce Ĥeff as

Ĥeff ≈ Ĥ0 +
∞∑

n=1






[
Ĥn, Ĥ−n

]

n!ω
−

[
Ĥn, Ĥ0

]

e−i2πnαn!ω
+

[
Ĥ−n, Ĥ0

]

ei2πnαn!ω




+ . . . . (7.83)

Here the terms in {. . .} keeps 1/ω order. The first term has a very clear physical meaning.
From the expansion Eq. 7.82, it is clear that Ĥn and Ĥ−n can be viewed as processes
absorbing n-“photons” and emitting n-“photons,” respectively, with energy change being
n!ω. Thus, both ĤnĤ−n/(n!ω) and Ĥ−nĤn/(−n!ω) are two second-order perturbation
processes, and they together give the first term in {. . .}.

The last two terms in {. . .} of Eq. 7.83 depend on α. Considering two different α1 and α2,
it means that when the two sets of observations are shifted by (α1−α2)T , it leads to different
conclusions of the effective Hamiltonian. Note that (α1 −α2)T is a microscopic time-scale,
these two terms is therefore called the micromotion term. Whether the effect of such terms
exists depends on experimental realization. Usually the experimental measurements are
averaged over many runs. If every time the experimental realization and measurement are
performed with a fixed α, then the effect of such terms exists. If every time α is chosen
randomly, then the effect of these terms are averaged out.

In the single-band model discussed so far, two of the most important energy scales are
the kinetic energy characterized by the band-width and the on-site interaction energy, both
of which are smaller than the interband transition energy. Here we will consider two dif-
ferent cases, as shown in Figure 7.14. In the nonresonant case shown in Figure 7.14, the
driving frequency is much larger than both the bandwidth and the interaction energy, and
is not resonant with the interband transition energy. In this case we can straightforwardly
apply the 1/ω expansion for the single-band Hamiltonian. In the resonant case shown in

r

!Figure 7.14 Two parameter regimes of periodical driven optical lattices. Four of the most important energy scales are compared in
order, which are the on-site interaction energy, the bandwidth, the shaking frequency, and the interband transition
energy. The nonresonant case and the resonant case are compared. The dashed line connects two regimes where one
end is much larger than the other end. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.
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Figure 7.14, we consider the situation that the interaction energy is much larger than the
kinetic energy, but the driving frequency is resonant with the interaction energy. In this
case, !ω is not the largest energy scale in the problem. Hence, in order to apply the Floquet
theory, we need to first perform a rotating wave transformation to eliminate the largest
energy scales of the problem, and then obtain the effective Floquet Hamiltonian for the
time-periodical Hamiltonian after rotation. We will show below that these two cases yield
different kind of physics.

Nonresonant Case. For simplicity, let us first consider a one-dimensional case. Consider-
ing A(t) = −mωb cos(ωt), the single-particle Hamiltonian Eq. 7.77 can be written as

Ĥ = −J
∑

〈ij〉
(eif0 cos(ωt)b̂†

i b̂j + h.c.), (7.84)

where f0 = mωba/! is a constant and a is the lattice spacing. Using the identity for the
Bessel function expansion, we can obtain that

Ĥ = −J
∑

〈ij〉

∑

n

(inBn(f0)b̂†
i b̂jeinωt + h.c.), (7.85)

where Bn(f0) is the nth order Bessel function. There are at least two direct applications of
this simple case:

• To the lowest order of the 1/ω expansion, we only keep Ĥ0 term, then

Ĥ0 = −JB0(f0)
∑

〈ij〉
(b̂†

i b̂j + h.c.). (7.86)

B0(f0) oscillates with the increasing of f0. In certain regime of f0, B0(f0) can be negative
and the sign of hopping term is inverted. This shifts the band minimum from momentum
zero to momentum π . A straightforward generalization of this scheme can shift the band
minimum from zero to any momentum in the Brillouin zone, which is equivalent to
introducing a constant gauge field [169]. This scheme can also be generalized to a two-
dimensional lattice [168]. For instance, in a triangular lattice, each triangular plaquette is
surrounded by three nearest neighboring bonds. If the hopping sign is inverted only for
one of the bonds, it is equivalent to introducing a π flux into each triangular plaquette. In
such a situation, the single-particle band dispersion displays degenerate minima [168].
When we consider Bose condensation in such a band, bosons feel frustration, which is
a similar as the spin-orbit coupled bosons discussed in Section 4.5.

• If we consider the next order terms in the 1/ω expansion, it is straightforward to show
that the [Hn, H−n] term can give rise to the next nearest neighbor hopping terms. We can
use this method to generate the next nearest hopping in the Haldane model introduced
in Section 7.3. Similar as the one-dimensional case, let us start with the nearest neigh-
bor hopping only model and turn on the shaking, we can also generate the next nearest
neighbor hopping. Then, the question is what kind of shaking can generate the specific
type of next nearest hopping required by the Haldane model, which acquires the special
phase factor in order to realize topological nontrivial bands. The answer can actually be
found out by symmetry analysis. As we have discussed in Section 7.2 and Section 7.3,
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the next nearest neighbor hopping term in the Haldane model respects the inversion sym-
metry but breaks the time-reversal symmetry. In the discussion above, we have build up
the connection between atoms in shaking lattices and a charged particle in a laser field. It
is easy to see that a linear polarized light always breaks the inversion symmetry but pre-
serves the time-reversal symmetry, and a circular polarized light preserves the inversion
symmetry but breaks the time-reversal symmetry, as the time-reversal operation brings
the left circular polarized light to the right circular polarized one. Therefore, we should
choose a circular shaking with φ = π/2 to generate the next nearest hopping term in the
Haldane model because their symmetries are compatible. This can be further verified by
deriving the effective Hamiltonian Heff following Eq. 7.83 and compute the topologi-
cal invariant for Heff [194]. Such a scheme has indeed been implemented to realize the
Haldane model experimentally [85].

Resonant Case. Let us consider atoms of two different species, whose creation operators
are denoted by â†

i and b̂†
i , respectively, and both two species are subjected to a shaking

with the same frequency ω. With the same tight-binding approximation described above,
the model is given by

Ĥ = −Ja
∑

〈ij〉
(eif cos(ωt)â†

i âj + h.c.) − Jb
∑

〈ij〉
(eif cos(ωt)b̂†

i b̂j + h.c.) + U
∑

i

n̂a
i n̂b

i , (7.87)

where Ja and Jb are the nearest neighbor hopping amplitudes for two different species,
respectively, and U is the on-site interaction strength between two species with n̂a

i = â†
i âi

and n̂b
i = b̂†

i b̂i. Here we consider the situation that ω is very close to U. In this case we
cannot directly apply the 1/ω expansion, instead, we need to first apply a unitary rotation

R̂ = e−i
∑

i ωtn̂a
i n̂b

i . (7.88)

According to the discussion in Section 1.3, the Hamiltonian after rotation is given by
R̂†ĤR̂ + i!(∂tR̂†)R̂. First, i!(∂tR̂†)R̂ generates a term −!ω

∑
i n̂a

i n̂b
i , and this term can be

combined with the on-site interaction term, which changes U to Ũ = U − !ω * U, !ω
such that 1/ω expansion can be safely applied to the Hamiltonian after rotation. Second,
the hopping term does not commute with R̂, and it is easy to see that

R̂†ĤR̂ = − Ja
∑

〈ij〉
(eif cos(ωt)eiωt(n̂b

i −n̂b
j )â†

i âj + h.c.)

− Jb
∑

〈ij〉
(eif cos(ωt)eiωt(n̂a

i −n̂a
j )b̂†

i b̂j + h.c.). (7.89)

Hence, with the Bessel function expansion, we obtain

eif cos(ωt)eiωt(n̂b
i −nb

j ) =
∑

n

inBn(f )eiωt(n+n̂b
i −n̂b

j ), (7.90)

and a similar result for eif cos(ωt)eiωt(n̂a
i −na

j ). To the leading order, we keep the zero-
frequency component and obtain

Ĥ0 = −Ja
∑

〈ij〉
(BX̂ij

(f )â†
i âj + h.c.) − Jb

∑

〈ij〉
(BŶij

(f )b̂†
i b̂j + h.c.) + Ũ

∑

i

n̂a
i n̂b

i , (7.91)
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where X̂ij = n̂b
j − n̂b

i and Ŷij = n̂a
j − n̂a

i represent the density difference between two
neighboring sites.

This leads to an intriguing situation that the hopping amplitude of one species depends
on the density of the other species. For instance, when the eigenvalue of X̂ij or Ŷij changes
from +1 to −1, the sign of the hopping is inverted and it is equivalent to inserting a π
phase in this link. Thus, the Hamiltonian Eq. 7.91 describes a density-dependent gauge
field. Since density itself is a dynamical variable of this quantum system that can fluctuate
in space and time, unlike the static gauge field discussed in Section 1.3, this gauge field
acquires dynamics. A further generalization of this method with fine-tuned parameters can
also be used to realize dynamical gauge field, whose Hamiltonian possesses local gauge
symmetries [156, 65]. In Box 7.3, we summarize a timeline of simulating various kinds of
gauge fields with ultracold atoms.

Finally, when the shaking frequency is tuned to be resonant with an interband transi-
tion, even weak shaking amplitude can strongly hybridize these two bands, which provides
a new tool to engineer the band dispersion [136]. To treat this situation, one has to go
beyond the Peierls substitution and to consider the inter-band transition. A generaliza-
tion of the formalism discussed above can also be applied to treat such cases [194]. In
particular, we also need to first apply a rotating wave transformation to remove the inter-
band energy separation resonating with the shaking frequency !ω before we apply the 1/ω

expansion [194].

Box 7.3 Simulating Static and Dynamical Gauge Fields

Here we summarize the timeline for simulating gauge fields with ultracold atoms. Gauge fields are classified
by abelian gauge fields and non-abelian gauge fields. Here we focus on the U(1) gauge field, which is an
abelian gauge field. The Maxwell theory is an example of a U(1) gauge field. Charged particles in such a
gauge field are described by the Hamiltonian Ĥ = 1

2m (p − A)2 + . . . , where A(r, t) is the gauge field.
First, a constant gauge field has been simulated by using atom-light interaction, as discussed in Section 1.3,
or by using shaking optical lattices, as discussed in this section. A constant gauge field has no physical effect
because it can be gauged away. Then, with the idea discussed in Section 1.2, a gauge field as a function of
spatial coordinate r and time t has been realized. This creates either a synthetic magnetic field B = ∇ ×A or
a synthetic electric field E = −∂A/∂t. However, in these cases, the function form ofA(r, t) is fixed by exter-
nal classical sources, and the gauge field itself has no dynamics. In this section, we describe the idea of how
to create a density-dependent gauge field. In a quantum system, density of particles is a dynamical variable,
and the density fluctuation gives rise to quantum dynamics of the gauge field. Therefore, this simulates a
gauge field with dynamics. Nevertheless, the term dynamical gauge field has a more specific meaning in high-
energy physics. It not only requires the Hamiltonian to include the dynamical term for the gauge field but
also requires the entire Hamiltonian to possess local gauge symmetry, that is to say, the entire Hamiltonian is
invariant under local gauge transformations. ForU(1) gauge theory, the Maxwell term in the electromag-
netic theory is such a dynamical termwith localU(1) gauge symmetry. AZ2 version of the dynamical gauge
theory can be realized by the resonantly driven optical lattices, as discussed in this section.
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7.5 Lattice from Cavity

In the above discussions, the optical lattice potential is created by external classical light
sources, and we are only interested in the quantum mechanical motion of atoms under such
classical lattice potentials, and the back-action of the atom to the light fields are safely
ignored. Here we will discuss a different situation that the lattice itself is also a quantum
field. That is to say, the photon field should not be treated classically but has to be treated
as a quantum field as well. This is the situation when ultracold atoms are placed inside
an optical cavity. Inside the cavity, the electromagnetic field is strongly confined by the
cavity boundaries, which leads to discrete modes of the light field. Normally we consider
the situation that only one or a few discrete modes are relevant to the atom-light coupling.
Under this situation, the back-action of atoms to the light field becomes significant, espe-
cially nearby the superradiant transition discussed below where the photon occupation of
the cavity mode is very few. Since the dynamics of motion of atoms and the dynamics of
the cavity photon field are coupled and influence each other, they need to be treated on
equal footing [150].

Atom-Cavity Interaction. As a typical example, here we discuss an experimental setup as
shown in Figure 7.15 [14]. A pair of counter-propagating pumping lasers with frequency

!Figure 7.15 Bose–Einstein condensate inside a cavity. (a–b) Schematic of the phase before and after the superradiant transition.
The vertical light is the pumping field, and the horizontal light is the cavity field. (c) The phase diagram in terms of the
strength of the pumping field and the pumping-cavity detuning. The phase boundary separates the normal phase and
the superradiant phase. Reprinted from Ref. [14]. A color version of this figure can be found in the resources tab for
this book at cambridge.org/zhai.
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ωp, wave vector kp and polarization along ŷ is applied along the ẑ direction, and they form
a lattice. In addition, we consider a standing wave cavity field along x̂ with the frequency
ωc, wave vector kc and the polarization also along ŷ. Then, we can write the electric field as

E =
(

Ep cos(kpz) cos(ωpt) + Ec(âe−iωct + â†eiωct) cos(kcx)
)

ŷ. (7.92)

Here Ep denotes the strength of the electric field from the pumping laser, Ec is the electric
field strength of each photon mode, and â and â† are the annihilation and creation operators
of the standing wave cavity mode.

Following the same scheme discussed in the Section 1.3, we consider atoms interacting
with such an electric field due to the dipole coupling Ĥd = d · E. By applying the unitary
rotation Urot(t) = e−iωptPe and implementing the rotating wave approximation to ignore
high frequency term with frequencies 2ωp and ωp + ωc, we reach the dipole coupling as

Ĥd = dy

[
Pg

(
1
2

Ep cos(kpz) + Ecâ†e−i,ct cos(kcx)
)
Pe + h.c.

]
, (7.93)

where ,c = ωp − ωc is the detuning between the frequencies of the cavity field and
the pumping field. Following the procedure described in Section 1.3, a second-order
perturbation in terms of Ĥd leads to a scalar light shift as

V̂ = V0 cos2(kpz) + η(âei,ct + â†e−i,ct) cos(kcx) cos(kpz) + U0 cos2(kcx)â†â. (7.94)

Here V0 is the strength of lattice due to the pumping laser itself, and it is proportional to E2
p.

U0 term describes a lattice potential from the cavity laser itself, and U0 is fixed by the laser
detuning and the ac polarization. η term is the interference term between the pumping laser
and the cavity laser, with η = √

V0U0. Then, we can apply another unitary transformation
Û = e−i,câ†ât, under which V̂ becomes time-independent as

V̂ = V0 cos2(kpz) + η(â + â†) cos(kcx) cos(kpz) + U0 cos2(kcx)â†â, (7.95)

and an extra term −!,câ†â is added into the Hamiltonian.

Langevin Force. In practice, there is certain probability that the cavity photon can leak
out the system. On one hand, this leakage of photon allows nondestructive detection of the
photon correlation without disturbing physics inside the cavity. On the other hand, it also
makes the cavity system intrinsically nonequilibrium. To capture this effect, we usually add
an imaginary part to the energy of the cavity photon, such that it becomes −(,c + iκ)â†â,
where κ describes the leaking rate of cavity photons. However, there is a subtle issue after
adding the κ term. Simply considering the cavity term along, the equation of motion for
â(t) becomes

â(t) = e−κt+i,ctâ(0), (7.96)

and therefore, the commutation relation [â(0), â†(0)] = 1 at t = 0 cannot be obeyed at any
time t because

[â(t), â†(t)] = e−2κt. (7.97)



243 Lattice from Cavity

This problem can be eliminated by introducing the Langevin force ξ̂ (t) [150], which
modifies the Heisenberg equation as

i!
∂ â
∂t

= [â, Ĥ] + ξ̂ . (7.98)

This is equivalent to adding a term ξ̂ â† + ξ̂†â into the Hamiltonian, where the Langevin
force ξ̂ (t) and ξ̂†(t) are random forces that should be averaged over. The solution of
Eq. 7.98 can be written as

â(t) = e−κt+i,ctâ(0) − i
!

∫ t

0
ξ̂ (t′)e−κ(t−t′)dt′. (7.99)

By requiring 〈ξ̂ (t)〉 = 〈ξ̂†(t)〉 = 0, 〈ξ̂ (t)ξ̂ (t′)〉 = 〈ξ̂†(t)ξ̂†(t′)〉 = 〈ξ̂†(t)ξ̂ (t′)〉 = 0, and
〈ξ̂ (t)ξ̂†(t′)〉 = 2κ!2δ(t − t′), it can be shown that, by averaging over the Langevin noises,
we can ensure that [â(t), â†(t)] = 1 for all time t. In fact, such a Langevin force term is
required for all non-Hermitian quantum systems. This is because any non-Hermitian quan-
tum system can always be viewed as a system coupled to an environment, and the entire
system including environment is still a Hermitian one. When the environment is traced out
to obtain an effective non-Hermitian description of the system, such a Langevin term is
automatically generated when the Markovian coupling between system and environment
is assumed.

Superradiant Transition. Let us first consider noninteracting bosons in such a lattice, the
full Hamiltonian for the atom and cavity system can be written as

Ĥ =
∫

d3r1̂†( r)
(

−!2∇2

2m
+ V̂

)
1̂( r) − (,c + iκ)â†â, (7.100)

where V̂ is given by Eq. 7.95. This model contains two different phases. The expectation
value of the cavity photon field α = 〈â〉 is the order parameter to characterize these two
phases. In the normal phase, α = 0 and atoms only experience the one-dimensional lattice
from the pumping lattice along ẑ. In the superradiant phase, α /= 0 and atoms experience
a two-dimensional lattice from both the pumping lattice and the cavity field. Note that
the Hamiltonian is invariant under a transformation â → −â and x → x + π/kc and it
possesses the Z2 symmetry. Thus, in the superradiant phase when α /= 0, the system breaks
this Z2 symmetry and the transition is described as the Z2 symmetry-breaking transition.
In this case, the transition between these two phases are controlled by parameters such
as pumping laser strength V0 and the detuning ,c. Since this is a transition happens at the
zero-temperature, it is a quantum phase transition. More detailed discussion of the quantum
phase transition will be given in Section 8.1.

To study this phase transition, we implement the mean-field theory by replacing â by
α = 〈â〉. We denote 2x = 〈cos2(kcx)〉, 2z = 〈cos2(kpz)〉 and 2xz = 〈cos(kcx) cos(kpz)〉,
where the averages are taken over the wave function 1(r) of atoms. Then E = 〈Ĥ〉 is
given by
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E =
∫

d3r
[
1∗(r)

(
−!2∇2

2m

)
1( r) + V02z + 2η2xzReα + U02x|α|2

]
− (,c + iκ)|α|2.

(7.101)

Below we will consider real 2x, 2z and 2xz because the wave function of atoms does not
break time-reversal symmetry.

Here we should also note that because this system is essentially an open system due
to the photon leakage, when we talk about “phase” or “phase transition” in this case, we
implicitly assume that there exists a steady state, in which the average photon number does
not change with time. That is,

i
∂α

∂t
= η2xz − (,c + iκ − U02x)α = 0, (7.102)

which gives

α = η2xz

,c + iκ − U02x
. (7.103)

Eq. 7.103 locks the relation between the cavity field and the atom field. It says that in
order for α to be nonzero, 2xz has to be nonzero. The proper procedure to obtain the
stable steady state is to minimize the real part of Eq. 7.101 with respect to 1(r) under the
constraint Eq. 7.103.

As far as the phase boundary is concerned, we can derive a Landau-type theory for the
phase transition. Assuming that the phase transition is a second-order one, following the
same stratagem discussed in Section 6.2, we start from the normal phase with α = 0 and
derive the Landau theory by expanding energy in orders of α. At the zeroth order, α = 0
and no lattice potential is applied along the x̂ direction, therefore, both 2x and 2xz vanish
because there exists continuous translational symmetry along x̂. By the perturbation theory,
the energy up to the second order of |α|2 is given by

E = −4η2f (Reα)2 −,c|α|2, (7.104)

and

f =
∑

i

|〈1i| cos(kpz) cos(kcx)|10〉|2
Ei − E0

(7.105)

where |10〉 and |1i〉 are the ground state and the excited state of the atom Hamiltonian
in the absence of the cavity field, and E0 and Ei are their corresponding eigenenergies,
respectively. Moreover, to the leading order of α, Eq. 7.103 becomes

α = η2xz

,c + iκ
. (7.106)

Substituting Eq. 7.106 into Eq. 7.104, Eq. 7.104 can be expressed in terms of 2xz as

E =
(

−4
η4,2

c f
(,2

c + κ2)2 − ,cη
2

,2
c + κ2

)
22

xz. (7.107)
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Therefore, the phase transition occurs when the coefficient in front of 2xz changes sign,
and the phase boundary is determined by [14]

ηc = 2

√
(,2

c + κ2)f
−,c

. (7.108)

Here we always consider the situation that ,c is negative, and η = √
V0U0 is controlled

by the strength of the pumping laser. Eq. 7.108 determines the phase boundary controlled
by ,c and V0, and this phase boundary has been observed experimentally, as shown in
Figure 7.15(c).

The key information of Eq. 7.108 is the relation between the critical value for super-
radiant transition and the f -function. Note that 2xz is in fact a check-board density wave
order in the xz plane, f is nothing but the susceptibility of the check-board order of the nor-
mal state. f is an intrinsically property of the normal state that characterizes the tendency
toward forming the check-board density wave. Since the presence or the absence of the
cavity field is equivalent to the presence or the absence of this check-board density wave
of the atom field, the stronger this tendency, the easier for the superradiant transition to
occur.

This discussion can also be generated to ultracold Fermi gases in cavity [31, 89, 142]. For
fermions, the Fermi statistics and the Fermi surface geometry can play an important role in
determining the check-board density wave susceptibility. Since the cos(kpz) cos(kcx) scat-
ters a fermion from momentum p to another momentum p + p0, with p0 = (±kc, 0, ±kp),
there are two features related to the Fermi statistics and the Fermi surface.

• In order for this scattering to happen, it requires momentum p state is occupied and
momentum p + p0 is empty. If for a sizable fraction of occupied p state, p + p0 state is
also occupied, then the check-board density wave susceptibility is strongly suppressed
by the Pauli exclusion principle. This suppresses the superradiant transition.

• If for most p at the Fermi surface, p+p0 also locates at or nearby the Fermi surface, these
scattering processes cause little change of the kinetic energy. Such situation is known as
the Fermi surface nesting as we will discuss again in Section 8.2. Due to the small
kinetic energy cost, the check-board density wave susceptibility is strongly enhanced by
the Fermi surface nesting. This enhances the superadiant transition [31, 89, 142].

Exercises

7.1 Solve the one-dimensional lattice model Eq. 7.10, and plot the band gap between
the ground and the first excited bands as a function of Vx. Discuss the physical
explanation of this function behavior for a small Vx regime and a large Vx regime,
respectively.

7.2 Considering a two-dimensional square lattice or a three-dimensional cubic lattice,
estimate the lattice potential when the bottom of the first excited band becomes higher
than the top of the ground band and a real band gap with vanishing density-of-state
appears.
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7.3 Considering the one-dimensional lattice model Eq. 7.10, discuss when Vx → 0 and,
for a given quasi-momentum k and band index m, to which plane wave state it is
adiabatically connected.

7.4 Considering the one-dimensional lattice model Eq. 7.10 in the tight-binding limit and
considering the lowest band, compute the ratio of the next nearest hopping strength to
the nearest hopping strength and the ratio of interaction strength between two nearest
neighboring sites to the on-site interaction strength. Discuss how these two ratios
change with increasing lattice potential.

7.5 Adding a J3 term (as shown by t3 in Figure 7.5(b)) into the tight-binding Hamilto-
nian Eq. 7.31, compute the band structure and the Dirac point. Discuss how these
two Dirac points merge and annihilate when J3 is large enough. Compare the band
structure for J3 = J1 with the band structure of a two-dimensional square lattice.

7.6 Compute the Chern number using Eq. 7.59 for the Haldane model.
7.7 Diagonalize a finite size SSH chain as shown in Figure 7.8(b). Show the existence of

the zero-energy mode in the spectrum and plot its wave function.
7.8 Deduce the effective Hamiltonian of the periodical-driven honeycomb lattice, and

compute the topological invariant of the band structure of this effective Hamiltonian.
7.9 Derive Eq. 7.93 from Ĥd = d ·E with E given by Eq. 7.92, by using the rotating wave

approximation introduced in Section 1.3.
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Learning Objectives

• Introduce quantum phase transition in the Bose–Hubbard model.
• Emphasize vanishing energy scales and universality at the quantum critical point.
• Introduce microscopic theories to describe the quantum phase transition, and explicitly

show the vanishing of energy scales and the critical exponents.
• Illustrate the emergent Lorentz symmetry and the Higgs mode at the quantum critical

point of the Bose–Hubbard model with the particle-hole symmetry.
• Discuss experimental probe of the superfluid to the Mott insulator phase transition.
• Show that the repulsive and the attractive Fermi–Hubbard models are related by the

particle-hole symmetry.
• Discuss the origin of antiferromagnetic order in the repulsive Fermi–Hubbard model at

half-filling.
• Introduce the enlarged SO(4) symmetry of the Fermi–Hubbard model at half-filling and

zero spin imbalance and its physical consequence.
• Introduce important unsolved challenge issues in the Fermi–Hubbard model.
• Introduce the concept of the eigenstate thermalization hypothesis and many-body

localization as opposite to thermalization.
• Introduce a few metrics to characterize the many-body localization.
• Emphasize the role of entanglement entropy in characterizing quantum thermalization,

and discuss how to measure entanglement entropy in ultracold atom systems.

8.1 Bose–Hubbard Model

The Hamiltonian for the Bose–Hubbard model (BHM) has been derived in Section 7.1,
which is given by

ĤBH = −J
∑

〈ij〉
(b̂†

i b̂j + h.c.) + U
2

∑

i

n̂i(n̂i − 1) − µ
∑

i

n̂i. (8.1)

In this section, we will focus on discussing the quantum phase transition in the BHM in
two and three dimensions.1 Let us first analyze two limits of the BHM. In the limit U → 0,
the ground state is a Bose condensate on the single-particle ground state, and the lowest

1 The physics of one-dimensional BHM is somewhat different and will not be discussed here.
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energy Bloch state with zero quasi-momentum is macroscopically occupied. With Eq. 7.7,
a Bloch wave function with quasi-momentum zero is an equal weight superposition of all
wannier wave functions with same phase, thus

b̂†
k=0 = 1√

Ns

Ns∑

i=1

b̂†
i , (8.2)

where Ns is the total number of sites, and the wave function of this Bose condensate is
given by

|SF〉 = 1√
N!

(
1√
Ns

Ns∑

i=1

b̂†
i

)N

|0〉, (8.3)

where N is the total number of atoms. This state has following properties:

• The particle number at each site i approximately obeys a Poisson distribution,

P[ni] = e−n̄ n̄ni

ni!
, (8.4)

where n̄ = 〈n̂i〉. Therefore atom number at each site has a large fluctuation as 〈δn2
i 〉 = n̄.

• This state has a long-range order 〈b̂†
i b̂j〉 → C where C is a nonzero constant as |i− j| →

∞. Following Eq. 3.10, this means the existence of ODLRO.
• Because this is a Bose condensed phase, as we discussed in Section 3.2, the excita-

tion has a gapless phonon mode with linear dispersion when weak interactions between
atoms are turned on, and the linear dispersion leads to superfluidity.

In the opposite limit J → 0, each site becomes independent. ni at each site is a good
quantum number whose value is denoted by n0. The Hamiltonian at each site becomes

Ĥi = U
2

n0(n0 − 1) − µn0. (8.5)

By minimizing the energy, we obtain n0 = [µ/U] + 1, as shown in Figure 8.1, where
[µ/U] denotes the largest integer smaller than µ/U. The ground state is

|MI〉 =
∏

i

1√
n0!

(b̂†
i )n0 |0〉. (8.6)

This state has very different properties compared with the states at U → 0 limit for the
following reasons:

• At each site the state is a Fock state and the number fluctuation vanishes.
• 〈b̂†

i b̂j〉 = 0, which means the absence of ODLRO.
• The excitation is either adding a particle with the excitation energy

(E =
[

U
2

(n0 + 1)n0 − µ(n0 + 1)
]

−
[

U
2

n0(n0 − 1) − µn0

]

= Un0 − µ, (8.7)
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!Figure 8.1 Mott insulator at J = 0 limit. The occupation number at each site (dash-dotted line), the particle excitation energy
(dashed line), and the hole excitation energy (solid line), as a function ofµ/U. The arrows indicate the particle-hole
symmetric points. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

or taking a particle way with the excitation energy

!E =
[

U
2

(n0 − 1)(n0 − 2) − µ(n0 − 1)
]

−
[

U
2

n0(n0 − 1) − µn0

]

= µ + U − Un0. (8.8)

They are respectively known as the particle excitation and the hole excitation. As shown
in Figure 8.1, the charge excitations !E are gapped except for a discrete set of point with
µ = nU with n being integers. According to what we have discussed in Box 7.1, the system
is an insulator. Because the charge gap is now caused by the interactions between particles,
such an insulator is called a Mott insulator (MI). Note that for each MI with a given n0,
there always exists a µ/U at which !E for the particle excitation equals to !E for the
hole excitation, which is called the particle-hole symmetric point, as marked by arrows in
Figure 8.1. We will emphasize its important role later.

Quantum Phase Transition. Therefore, the ground state of the BHM Hamiltonian at least
contains two different phases, which are the SF phase and the MI phase. They are charac-
terized by the presence or the absence of the superfluid order parameter, or characterized
by the absence or the presence of the finite excitation gap. For the simplest situation, there
is a single phase transition point that separates these two phases, and in fact it is indeed
the case for the BHM. In general, a quantum phase transition refers to the situation that
the ground state energy of an infinite system displays a discontinuity in its derivative with
respect to continuously changing a parameter say, g, or a few parameters of a Hamiltonian.
On one hand, similar as the thermal phase transition, these two states at two sides of the
transition point should be fundamentally different, which are distinguished either by the
order parameter or by topology. On the other hand, unlike the thermal phase transition,
here the transition is driven by a parameter in the Hamiltonian instead of temperature, and
we consider the discontinuity of the ground state energy instead of the free energy. In the
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!Figure 8.2 Schematic of dispersions for the BHM. (a) In the superfluid phase, low-energy excitation is a linear gapless mode,
undergoing a crossover to the free-particle-like dispersion at high energy, and the crossover energy scale is denoted
by!+. (b) In the Mott insulator phase, the low-energy excitation is gapped, and the energy gap is denoted by!−.
The dashed lines show free-particle dispersion as a reference. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.

case of the BHM, g is J/U. When g < gc, it is the MI phase, and when g > gc, it is the SF
phase.

Here we specifically consider the quantum phase transitions that are second order. We
can introduce ! as a characteristic energy scale for the low-energy spectral of the Hamil-
tonian, and !+ and !− represent the characteristic energy scales for two different sides
of the critical point gc. In the BHM, when g < gc the system is an MI and the charge
excitation is gapped. We introduce !− as the charge gap, as shown in Figure 8.2. Across
the transition the system is no longer an insulator, therefore, the charge gap !− must van-
ish at the critical point. When g > gc the system is a SF and the low-energy excitation
displays a linear gapless mode. As we discussed in Section 3.2, in the nonrelativistic case,
the slope of the gapless mode determines the superfluid critical velocity, and there exists a
characteristic energy scale at which the excitation spectrum undergoes the crossover from
the linear dispersion at low-energy to the free-particle-like dispersion at high-energy. We
denote this energy scale by!+, as shown in Figure 8.2. If the slope of the linear dispersion
is small, the linear regime is also small and therefore !+ is small. At the critical point, the
system loses superfluidity, hence, !+ also must vanish at the critical point. Hence, when g
approaches gc, we have

! ∼ |g − gc|zν . (8.9)

Here ! represents either !+ or !−. Here the nontrivial point of the quantum criticality is
that both two ! share the same exponent zν, which is called the critical exponent.

Accompanying with the vanishing energy scales, there also exist divergent length scales
ξ associated with a second-order phase transition. In the BHM, on the MI side, ξ− deter-
mines the characteristic length scale of the exponential decay of the equal-time correlation
function. And on the SF side, ξ+ is the analogy of the healing length of a Bose superfluid
discussed in Section 3.3. As approaching gc, both two ξ diverge as

ξ−1 = |g − gc|ν , (8.10)

where ν is also a critical exponent. The ratio between ! and ξ is ! ∼ ξ−z, where z is
called the dynamical critical exponent. Normally z = 2 for a nonrelativistic system, and
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z = 1 for a relativistic system. Below we will show that the BHM model can exhibit both
relativistic and the nonrelativistic critical behaviors, depending on whether the system lies
at the particle-hole symmetric point or not.

Because of the divergent length scales at the quantum critical point, the characteristic
length scale is much larger than lattice spacing at the vicinity of the critical point. Hence,
it is conceivable that there exists a long-wave length effective field theory to describe this
phase transition, and both sides of the quantum phase transition are determined by the
same field theory. Hence, when approaching the quantum phase transition from two dif-
ferent sides, it shares the same critical exponent ν determined by this field theory. Hence,
ν is universal constant. By “universal,” it means that the value is independent of micro-
scopic details. For examples, if we consider the BHM in different lattice geometries, say,
triangular, rectangular or square, or we can include hopping beyond the nearest neighbors
hopping, the exact value of the critical point and the proportional constant in Eq. 8.9 will
be changed, however, the critical exponent remains the same. This effective theory also
determines the low-energy physics at the vicinity of the quantum critical point, and there-
fore, also determines the low-temperature physics above the quantum critical point. As
we stated above, the quantum phase transition is defined as a zero-temperature transition.
Nevertheless, we know that zero-temperature can never be reached. Therefore, the practi-
cal effects of a quantum critical point relies on the fact that this low-energy effective theory
determines the low-temperature physics above the critical point.

Here we shall also emphasize that, although both energy scales shown in Figure 8.2
vanish at the quantum critical point, it does not mean that the quasi-particle dispersion
becomes the same as the noninteracting one. In fact, in the quantum critical regime, the
lifetimes of the low-energy quasi-particles are so short such that the quasi-particles are
no longer well defined. Moreover, the divergence of all relevant low-energy length scales
leads to the emergence of the scaling symmetry, and even more, the emergence of the
conformal symmetry. Such a system with no well-defined quasi-particles and emergent
conformal symmetry is reminiscent of the unitary Fermi gas discussed in Section 6.2. As
we discussed in Box 6.2, on one hand, the absence of energy scales and the absence of
quasi-particle description make such a quantum theory extremely difficult to deal with.
And on the other hand, the concept of holographic duality discussed in Box 6.2 may be
quite helpful in studying such field theory.

Hence, one can see that the vanishing of energy scales plays a crucial role in the quantum
phase transition. Below we will concretely illustrate the vanishing of energy scales from
microscopic theories of the BHM. We will present two different microscopic theories,
which approach the quantum critical point from the Mott insulator side and the superfluid
side, respectively.

Strongly Coupling Approach. As mentioned above, the excitation of a MI is fully gapped,
and transition from a MI to a SF can be determined by the closing of the charge gap. In
the limit J → 0, suppose we add one extra particle at site-i on top of the ground state, the
wave function for this particle excitation is written as

|p〉i = b̂†
i |MI〉, (8.11)
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where |MI〉 is given by Eq. 8.6, and this state causes a finite energy !p = Un0 − µ. This
extra particle can be added in any site and the excitation energy is degenerate. When J
is finite, hopping can connect all |p〉i with different site index i, and the matrix element
between |p〉i and |p〉j is −J(n0 + 1) when i and j are neighboring sites. Here the factor
n0 + 1 comes from the Bose enhancement factor. Hence, due to the coupling, the gap for
particle excitation becomes

!p = −ZJ(n0 + 1) + Un0 − µ, (8.12)

where Z denotes the coordination number. For instance, Z = 4 for a two-dimensional
square lattice and Z = 6 for a three-dimensional cubic lattice. Similarly, in the limit J → 0,
we can take one particle away at site-i on top of the ground state, and the wave function
for this hole excitation is given by

|h〉i = b̂i|MI〉. (8.13)

The excitation energy is!h = µ+U−Un0, and the energy is also degenerate for excitation
at different sites. When J is finite, hopping can also couple |h〉i and |h〉j when i and j are
neighboring sites, with the coupling strength given by −Jn0. Hence, the excitation energy
for hole excitation becomes

!h = −ZJn0 + µ + U − Un0. (8.14)

We can systematically improve the expression for !p and !h by considering multiple
particle-hole excitations.

For a given µ/U, the SF-MI transition takes place at a critical (J/U)c at which either
!p = 0 or !h = 0 is reached, and the charge excitation becomes gapless. Expanding
around (J/U)c, Eq. 8.12 and Eq. 8.14 also show that the gap!− vanishes as!− ∼ |J/U −
(J/U)c| near the critical point.

This condition !p = 0 or !h = 0 gives rise to a phase boundary similar as shown
in Figure 8.3, although Figure 8.3 is obtained by the mean-field theory described below.
Several key features in this phase diagram can actually be easily understood by the strong
coupling approach.

• As discussed above, for n0 − 1 < µ/U < n0, the MI state has n0 number of particle at
each site. As shown in Figure 8.1, for µ/U = n0, either the particle or the hole excitation
is gapless even when J = 0. Therefore, for these discrete set of chemical potentials, the
system becomes a SF for infinitesimal small J.

• For each Mott lobe, when µ/U lies in the middle regime between n0 − 1 and n0, the
particle or hole excitation gap is the largest, therefore, the critical (J/U)c is also the
largest there. In the upper part of the Mott lobe, the transition is driven by the particle
excitation becoming gapless. In the lower part of the Mott lobe, the transition is driven
by the hole excitation becoming gapless.

• Due to the Bose enhancement factor, the hopping effect is enhanced by n0 or n0 + 1, the
critical (J/U)c is suppressed for larger n0. That is to say, the larger n0, the smaller Mott
lobe.
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!Figure 8.3 Phase diagram of the BHM. (a) The phase diagram of the Bose–Hubbard model, in terms of J/U andµ/U.
(b) Schematic of the density profile inside a harmonic trap obtained from the local density approximation, for two
different J/U, and the corresponding chemical potential trajectories indicated in (a). A color version of this figure
can be found in the resources tab for this book at cambridge.org/zhai.

Mean-Field Approach. The mean-field theory for the BHM follows the standard mean-
field approach summarized in Box 6.1, which allows us to approach the quantum critical
point from the SF side. Here we decouple the hopping term as

−Jb̂†
i b̂j = −J〈b̂†

i 〉b̂j − Jb̂†
i 〈b̂j〉 +

(
−Jb̂†

i b̂j + J〈b̂†
i 〉b̂j + Jb̂†

i 〈b̂j〉
)

≈ −J〈b̂†
i 〉b̂j − Jb̂†

i 〈b̂j〉 + J〈b̂†
i 〉〈b̂j〉. (8.15)

Now for simplicity, let us consider a uniform solution and assume all 〈b̂†
i 〉 are equal,2 we

introduce an order parameter φ as

φ = ZJ〈b̂〉. (8.16)

Then, the mean-field Hamiltonian becomes site independent as

ĤMF =
(

−φb̂† − φ∗b̂ + U
2

n̂(n̂ − 1) − µn̂ + |φ|2
ZJ

)
. (8.17)

This mean-field Hamiltonian should be solved self-consistently. The ground state wave
function of the mean-field Hamiltonian Eq. 8.17 is a function of φ, and therefore, when
we compute the expectation value of b̂ under this wave function, the l.h.s. of Eq. 8.16 is
a function of φ. Thus, Eq. 8.16 becomes a self-consistent equation for φ. If the solution
is φ = 0, effectively each site is disconnected from its neighboring sites, and the ĤMF is
exactly the same as the BHM at J = 0, which gives rise to a MI phase. If the solution is
φ (= 0, it is easy to see that the mean-field Hamiltonian Eq. 8.17 allows on-site number
fluctuations. Moreover, because for each site 〈b̂i〉 = φ, the correlation 〈b̂†

i b̂j〉 = |φ|2 (= 0,

2 This assumption is not always correct, and in many circumstances of generalized BHM, one needs to consider
nonuniform solutions.
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which is independent of the relative distance between two sites. Hence the condensate
fraction is given by

N0

N
= 1

N
〈b̂†

k=0b̂ k=0〉 = 1
NNs

∑

ij

〈b̂†
i b̂j〉 = Ns

N
|φ|2 = |φ|2

n
(= 0. (8.18)

This shows that the state displays macroscopic occupation in the zero quasi-momentum
mode and therefore this state is a SF state. In this way, we can determine the phase diagram
by solving the self-consistent Eq. 8.16.

Although the procedure for carrying out the mean-field theory is quite standard, the
success of a mean-field theory crucially depends on whether one can select out the correct
term to perform the mean-field decoupling. Here it is worth comparing the BCS mean-field
theory discussed in Section 6.1 and the mean-field theory for BHM discussed here.

• In the BCS case, the interactions between fermions scatter pairs of fermions from
(k ↑, −k ↓) to another momentum (k′ ↑, −k′ ↓), and the BCS state can gain energy
from this pair scattering. In the BHM case, the hopping of bosons transfer bosons from
i-site to j-site, and the SF state can gain energy from this hopping.

• In the BCS case, because of the pair scattering, (k ↑, −k ↓) should be either fully
empty or both occupied, and this is the pair fluctuations. In the BHM model, because of
hopping, on-site boson number fluctuates.

• In the mean-field theory, for the BCS case, the pair fluctuation is captured by coupling
order parameter ! to the fermion pair operator as !ĉ†

k↑ĉ†
−k↓ + h.c. In other words, !

describes the influence of all other momentum modes to the (k ↑, −k ↓) mode due to
the pair hopping. For the BHM case, the on-site boson number fluctuation is captured
by coupling order parameter φ to the boson operator as φb̂†

i + h.c. In other words, φ
describes the influence of other sites to the i-site due to the boson hopping.

• For the BCS case, the advantage of the mean-field theory is that the Hamiltonian
becomes diagonal in momentum space. And because the Hamiltonian is quadratic for
each fixed k, the mean-field Hamiltonian can be solved exactly. For the BHM case, the
advantage of the mean-field theory is that the Hamiltonian becomes diagonal in real
space. Although in this case, the Hamiltonian is not quadratic for each site-i and cannot
be solved analytically, it can be easily solved numerically.

• In the BCS case, the self-consistent condition leads to the BCS gap equation as shown
in Eq. 6.24. In the BHM case, the self-consistent condition leads to Eq. 8.16 for φ as
discussed above.

• In the BCS case, whether ! is zero determines the transition from the normal state to
the BCS superfluid. In the BHM case, whether φ is zero determines the transition from
the MI to the SF.

In the BCS theory, we have discussed in Section 6.2 that we can treat ! as a small
parameter to obtain an effective theory on the vicinity of the phase transition. Similarly,
considering the MI to SF transition as a second-order one, we can also use φ as a small
parameter to treat the mean-field Hamiltonian Eq. 8.17 perturbatively. In this way, we can
obtain

E = −a|φ|2 + b|φ|4. (8.19)
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Using the second-order perturbation theory, it is straightforward to show that

a = n0 + 1
n0U − µ

+ n0

µ − U(n0 − 1)
− 1

ZJ
, (8.20)

where the first and the second terms in Eq. 8.20 come from the contributions of the particle
excitation and the hole excitation being the intermediate states, respectively. As we have
discussed in Section 6.2, for the Landau theory, the superfluid order parameter φ is nonzero
and the system is a SF when a is positive, and the order parameter φ is zero when a is
negative. Therefore, a = 0 determines the critical condition, that is, Jc/U is a function of
µ/U given by

Jc

U
=
(
n0 − µ

U

) (µ
U − (n0 − 1)

)

Z
(µ

U + 1
) . (8.21)

Nearby the critical point, a scales as |(J/U)−(J/U)c|. Furthermore, because |φ|2 is propor-
tional to a nearby the critical point, and therefore, the condensate fraction is proportional a.
Moreover, because the low-energy scale!+ is proportional to the condensate fraction,!+
vanishes as |(J/U) − (J/U)c| as approaching the quantum critical point. Hence, we have
shown that both !+ and !− vanish in the same way as approaching the quantum critical
point, that gives zν = 1. When z = 2, it gives ν = 1/2.

Emergent Lorentz Symmetry. Nearby the critical point, the effective theory should be
determined by the spatial and temporal fluctuations of the order parameter φ. To describe
such fluctuations, we should introduce the path integral formalism to write the partition
function as

Z =
∫ ∏

i

Dφ∗
i Dφi(τ )e−S[φ∗,φ], (8.22)

where the action S is given by

S[φ∗,φ] =
∫ β

0
dτ
∫

d3r[uφ∗∂τφ + v|∂τφ|2 + w|∇φ|2 − a|φ|2 + b|φ|4 + . . . ]. (8.23)

Here the first two terms in Eq. 8.23 describe the temporal fluctuation of φ and the third
term in Eq. 8.23 describes the spatial fluctuation of φ.

Now we introduce a method to compute u using the gauge symmetry. Note that before
making the small φ expansion, the dynamics of the BHM should be described by the
partition function

Z =
∫ ∏

i

Db∗
i (τ )Dbi(τ ) exp

{∫ β

0
dτ

[
∑

i

−b∗
i ∂τbi − HMF({b∗

i , bi})
]}

. (8.24)

Here we have implemented the coherent state path integral representation, and
HMF({b∗

i , bi}) is a functional of b∗
i and bi obtained by replacing normal ordered Hamilto-

nian ĤMF Eq. 8.17 with b̂i → bi and b̂†
i → b∗

i . Note that the original Lagrangian Eq. 8.24
has a global U(1) symmetry, that is,

b(τ ) → b(τ )eiθ (τ ), b∗(τ ) → b∗(τ )e−iθ(τ ) (8.25)
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and

φ(τ ) → φ(τ )eiθ (τ ), φ∗(τ ) → φ∗(τ )e−iθ(τ ), µ → µ + i∂τ θ . (8.26)

Here “global” means that θ can only depend on τ but cannot depend on the spatial
coordinate.

Therefore, we shall also require that the effective action Eq. 8.23 also obeys this gauge
symmetry. Note that with this transformation, uφ∗∂τφ term acquires an extra term as
iu(∂τ θ )|φ|2, and −a|φ|2 term acquires an extra term as −(∂a)/(∂µ)(i∂τ θ )|φ|2. They are
only two extra terms proportional to i(∂τ θ )|φ|2, therefore, to keep the action invariant,
these two extra terms have to cancel each other, which leads to

∂a
∂µ

− u = 0. (8.27)

Thus we obtain

u = n0 + 1
(n0U − µ)2 − n0

(µ − U(n0 − 1))2 . (8.28)

Hence, for each n0, there always exists a µ/U between n0 − 1 and n0, such that u = 0.
For sufficiently large n0, if we can ignore the difference between n0 +1 and n0, u = 0 when
n0U − µ = µ − U(n0 − 1). That is to say, the particle excitation energy equals the hole
excitation energy, and therefore, this particular value of µ/U is the particle-hole symmetric
point. When the first order temporal derivative term vanishes at the particle-hole symmetric
point, the second-order temporal derivative becomes dominative, and the effective action
looks like

S[φ∗,φ] =
∫ β

0
dτ
∫

d3r[v|∂τφ|2 + w|∇φ|2 − a|φ|2 + b|φ|4 + . . . ]. (8.29)

In the action Eq. 8.29, both the spatial fluctuation and the temporal fluctuations are deter-
mined by the second-order derivative terms. Therefore, after a proper scaling of the space
and time, that is, τ → τ/

√
v and r → r/

√
w, the effective field theory becomes

S[φ∗,φ] =
∫ β

0
dτ
∫

d3r[|∂τφ|2 + |∇φ|2 − a|φ|2 + b|φ|4 + . . . ], (8.30)

which possesses the Lorentz symmetry. In a Lorentz theory, the energy and the length scale
the same way, and thus z = 1. The critical theory along the particle-hole symmetric line is
therefore different from the critical theory away from this line. Since the original Hamilto-
nian is an nonrelativistic theory, the Lorentz symmetry displayed by the low-energy theory
is larger than the symmetry of the original Hamiltonian. This phenomenon is known as
the emergent symmetry, which refers to the phenomenon that the symmetry of low-energy
physics is larger than the symmetry of the original Hamiltonian.

Let us consider the effective action Eq. 8.29 with the Lorentz symmetry. For a < 0,
the ground state has φ = 0 and the system is a MI. Considering the fluctuation around
φ = 0, this field theory gives a gapped excitation ω =

√
k2 + |a|, and the gap scales

with
√

a ∼ (1 − J/Jc)
1/2. Note that this gap is different from both the particle excitation

energy Eq. 8.12 and the hole excitation energy Eq. 8.14. It is because in this particle-hole
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symmetric case, one needs to consider the coupling between the particle excitation and the
hole excitation since they are nearly degenerate.

For a > 0, the system is in the symmetry-breaking phase, and we should consider both
the phase and the amplitude around a nonzero φ. In this case, it can be shown that the phase
and amplitude fluctuation are decoupled at the lowest order in low-energy. We can obtain
two branches of excitation spectrum as

ω = k (8.31)

ω =
√

k2 + 2a. (8.32)

The first one is a gapless Goldstone mode for the phase fluctuation, and the second is for
density mode called the Higgs mode, which is always gapped. If the Goldstone mode is
coupled to another gauge field, it can give rise to a mass for the gauge field, which is
known as the Higgs mechanism. We discuss the Higgs model and the Higgs mechanism in
Box 8.1. The gap of Higgs mode ! scales as ! ∼ √

a ∼ √
J/Jc − 1. Thus, we show that

for the particle-hole symmetric case, the critical behavior is different, and the characteristic
energy scales in both sides vanish as approaching the critical point with z = 1 and ν = 1/2.

Experimental Signatures. Now we will discuss several experimental measurements that
can distinguish the SF and the MI phases and determine the quantum phase transition.

• Time-of-Flight: In the SF phase, bosons are condensed in the Bloch state with zero
quasi-momentum. In Section 7.1, we have discussed two types of time-of-flight mea-
surements, which is called momentum mapping and band mapping, respectively. In the
momentum mapping, the time-of-flight measurement of a SF phase shows peaks at both
the zero momentum and all reciprocal lattice vectors. In the MI phase, bosons are all
localized, and therefore the momentum distribution will become a broad featureless

Box 8.1 Higgs Mode and Higgs Mechanism

The discussion here shows that the existence of the Higgs mode in aU(1) symmetry-breaking phase relies
on the emergent Lorentz symmetry. Another system that can exhibit the Higgs mode is a BCS type of fermion
superfluid, where the effective theory for pairing order parameter displays the Lorentz symmetry because of
the underlying particle-hole symmetry of the fermionic excitation spectrum, as we discussed in Chapter 6.
Nevertheless, when the particle-hole symmetry gradually disappears in the strong pairing BEC regime, the
system loses its Lorentz symmetry and returns to a nonrelativistic boson theory. Hence, the Higgs mode can
be identified in the BCS regime and gradually disappears in the BEC regime. Here we should distinguish the
concept of the Higgs mode and the Higgs mechanism. If the fermions are charged and are coupled to an
externalU(1) gauge field, as in the case of a superconductor, the coupling between the Goldstone mode of
the superconductor and the gauge field can make the gauge field gapped. In this way, the gauge particle can
acquire a mass, which is now known as the Higgs mechanism.
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!Figure 8.4 Experimental evidence of quantum phase transition in the BHM. (a) The momentum distribution measured by the
time of flight for different lattice depths. (b) Response to a potential gradient!E for different lattice depths.
Reprinted from Ref. [63]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

distribution. Such experimental measurements provided the first evidence for the quan-
tum phase transition in the BHM [63]. As shown in Figure 8.4(a), one finds that the
momentum distribution smears out as the interaction strength increases.

• Transport: As an insulator, there absents charge transport for a small potential gradi-
ent in the MI phase. And because the density mode of an SF is gapless, a SF can
transport charge with any small potential gradient. This feature has also been explored
experimentally [63]. It has been found the system responds to infinitesimal gradient for
weak interaction, but it requires a critical gradient for the system to respond for strong
interaction, as shown in Figure 8.4(b).

• In-situ Density Profile: The in-situ density profile inside a harmonic trap can be deter-
mined by the local density approximation. One can define a local chemical potential
µ(r) = µ0 − V( r), where µ0 is the chemical potential at the center of the harmonic
trap. Suppose we know n(µ) for a uniform system, by replacing µ with µ0 − V( r), we
can map out a real space density distribution. When the trajectory µ(r) lies inside the
MI phase, the density does not change with the changing of r, and therefore, the den-
sity distribution shows a so-called wedding cake structure, as shown in Figure 8.3(b).
The reason is in fact the same as the transport measurement because the density does
not respond to small potential gradient due to the charge gap. By measuring the in-situ
density profile n(r) one can in fact read out the local compressibility using the relation

κ = ∂n
∂µ

= ∂n
∂r
∂r
∂µ

= −∂n
∂r

∂r
∂V(r)

, (8.33)

where ∂n/∂r can be deduced from the measurements. A MI can be identified from κ ≈
0. In addition, by repeating the density measurements under the same condition, one
can not only determine the mean value n̄ = 〈n̂〉 but also measure the variance σ 2 =
〈(n̂−n̄)2〉. The variance σ 2 and the compressibility κ are related, and σ 2 vanishes when κ
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!Figure 8.5 Experimental measurements of density profile of the BHM. (a): Density distribution as a function of position. (b) The
compressibility κ deduced from (a). (c) Density as a function of the local chemical potential. (d) The particle number
variance as a function of the local chemical potential. (a–b) are measured with high-resolution in situ imaging, and
(c–d) are measured with single-site in situ imaging. (a–b) are reprinted from Ref. [58], and (c–d) are reprinted from
Ref. [158]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

vanishes. Such measurements have been carried out [58, 158, 11] and the representative
results are shown in Figure 8.5. One can see that when the density shows a plateau in
the MI regime, where both the compressibility and the particle number variance vanish.
Precisely speaking, since the experiments are always performed at finite temperature,
when the temperature is much smaller compared with the charge gap in the MI phase,
both the compressibility and the particle number variance are exponentially small.

Below we further discuss some experimental consequences related to the quantum
critical point. First, the Higgs mode has been observed in this system [53]. A periodic mod-
ulation of lattice depth with a frequency νmod has been applied for certain duration, after
which the lattice is ramped to very deep limit to measure the increases of temperature. This
modulation is coupled to the density excitations, and the increasing of temperature is used
as a probe of the density response excited by the lattice modulation. Figure 8.6(b) shows a
gapped response, from which the onset frequency ν0 of the response can be extracted. As
the coupling J approaches the critical value Jc, it is clear that the onset frequency moves
to lower frequencies. Figure 8.6(a) displays ν0 as a function of J/Jc. In the MI side it is
consistent with a charge gap which scale with

√
1 − J/Jc, and in the SF side it is consistent

with a Higgs gap which scales with
√

J/Jc − 1.
Second, we consider the question that whether the phase transition also exists at

finite temperature. Generally, there are also two different scenarios for a quantum phase
transition. One scenario is that the singularity only occurs at zero temperature and all ther-
modynamic quantities behave smoothly at finite temperature. The other scenarios is that
the singularity also occurs at finite temperature. The BHM belongs to the latter, as shown
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!Figure 8.6 Observation of the Higgs model in the BHMmodel. (a) Circles are the fitted gap values (in units ofU), which show
that both the Higgs gap (solid line) and the Mott gap (dashed line) vanish at the quantum critical point, and both
scale as

√|1 − J/Jc|. j/jc in the label of horizontal axis is J/Jc in the text. (b) Temperature response to lattice
modulation (circles) and the fitting function (solid line) for the three different points labeled in (a). Reprinted from
Ref. [53]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

!Figure 8.7 Finite temperature phase diagram of the BHM. (a) A schematic plot of the finite temperature phase diagram of the
BHM in terms of temperature andU/J. (b) Experimental measurement of the SF transition at the finite temperature
for differentU/J. The experimental measurements are compared with the Monte Carlo simulation. Reprinted from
Ref. [175]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

in Figure 8.7(a). This is because at the SF side, there should always be a finite temperature
transition to the normal gas. From the single-particle picture, this transition is determined
by the effective mass, or the hopping J. As long as the mass is not infinite, or equivalent to
say, as long as J does not vanish, the transition temperature should retain finite. However,
because of the presence of the quantum critical point, the superfluid transition temperature
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is suppressed to zero at the quantum critical regime. This is a phenomenon that cannot be
explained by the single-particle picture and it is a strong manifestation of the quantum crit-
ical point. In the BHM, the suppression of the superfluid transition temperature has been
measured and compared very well with the quantum Monte Carlo simulation [175]. The
results are shown in Figure 8.7(b).

8.2 Fermi–Hubbard Model

The Hamiltonian of the Fermi–Hubbard model (FHM) has been derived in Eq. 7.24. Here
we slightly rewrite the Hamiltonian as

ĤFH = − J
∑

〈ij〉,σ
ĉ†

iσ ĉjσ + U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)

− µ
∑

i

(n̂i↑ + n̂i↓) − h
∑

i

(n̂i↑ − n̂i↓). (8.34)

Here we first rewrite the interaction term, which is equivalent to shifting the chemical
potential by U/2. The advantage of writing the interaction term in this way will be clear
shortly. We also anticipate that the chemical potentials can be different for different spin
components, which is equivalent to introducing a Zeeman field h coupled to spin polar-
ization along ẑ. Alternatively, we can also work in the canonical ensemble, and write the
Hamiltonian as

ĤFH = − J
∑

〈ij〉,σ
ĉ†

iσ ĉjσ + U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
. (8.35)

In the canonical ensemble, we need to impose constraints for two conserved quantities,
which are δ = N↑ + N↓ − Ns and m = N↑ − N↓, respectively. Here Nσ = ∑〈ĉ†

iσ ĉiσ 〉. Ns is
the total number of site. The reason we write the first conserved quantity as N↑ + N↓ − Ns

instead of N↑ + N↓ will also be made clear below. Both two conserved quantities can take
any integer between −Ns to Ns. For spin-1/2 fermions, because each site can be maximally
occupied by two particles, we have 0 ! N↑ + N↓ ! 2Ns. Hence, N↑ + N↓ = Ns is called
half-filling, which corresponds to δ = 0. In condensed matter literatures, a nonzero δ is
called doping. m represents the spin polarization, which is also called the spin imbalance
in many ultracold atom literatures.

Spin Rotational Symmetry. Here we first discuss the spin rotational symmetry of the
FHM. First of all, by using the completeness relation of SU(2) Pauli matrix

3∑

i=1

σ i
αβσ

i
γ δ = 2δαδδβγ − δαβδδγ , (8.36)

we have
1
2

n̂2
i = n̂i − 2

3
Ŝi · Ŝi, (8.37)
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where n̂i = n̂i↑ + n̂i↓ and Ŝi = (1/2)ĉ†
iασαβ ĉiβ . Thus, the FHM can be rewritten as

ĤFH = − J
∑

〈ij〉,σ
ĉ†

iσ ĉjσ − 2U
3

∑

i

Ŝ
2
i − µ

∑

i

n̂i − 2h
∑

i

Ŝz
i . (8.38)

It can be verified that when h = 0, both the interaction term and the chemical potential
term are invariant under the local SU(2) spin rotations, but the kinetic energy term is only
invariant under the global SU(2) spin rotation, which are generated by following three total
spin operators Ŝ defined as

Ŝx = 1
2

∑

i

(ĉ†
i↑ĉi↓ + ĉ†

i↓ĉi↑), (8.39)

Ŝy = i
2

∑

i

(ĉ†
i↑ĉi↓ − ĉ†

i↓ĉi↑), (8.40)

Ŝz = 1
2

∑

i

(ĉ†
i↑ĉi↑ − ĉ†

i↓ĉi↓). (8.41)

When h is nonzero, the magnetic field along ẑ direction breaks the full SU(2) spin rotational
symmetry, and the system is only invariant under the spin rotation along ẑ.

Particle-Hole Transformation. Let us first introduce a general situation that two different
systems are related by a symmetry. Considering Ĥ and Ĥ′ as Hamiltonians of two systems,
if Ĥ′ = Û†ĤÛ, then we say that these two systems are related by the symmetry operation
Û. In this case, if / is the ground state of Ĥ, then Û†/ is the ground state of Ĥ′. That is to
say, for two systems related by a symmetry, we can deduce the property of one system with
the knowledge of the other system. Here we consider two systems that are the FHM with
repulsive interaction and attractive interaction, respectively, and the symmetry operation is
the particle-hole transformation.

First, let us consider the following particle-hole transformation which acts on spin-down
particle only, that is to say, we keep ĉi↑ and ĉ†

i↑ unchanged but we change ĉi↓ → ĉ†
i↓ and

ĉ†
i↓ → ĉi↓. It can be further shown that under this particle-hole transformation, n̂i↓ becomes

1 − n̂i↓. Thus, the U-term changes sign, and the h- and µ− term exchange with each other,
that is,

U
(

n̂i↑ − 1
2

)(
n̂i↓ − 1

2

)
→ −U

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
, (8.42)

µ(n̂i↑ + n̂i↓) → µ(n̂i↑ − n̂i↓ + 1), (8.43)

h(n̂i↑ − n̂i↓) → h(n̂i↑ + n̂i↓). (8.44)

If we work on the canonical ensemble, it is easy to see that the two conserved quantities
also exchange with each other, that is,

δ = N↑ + N↓ − Ns → N↑ − N↓ = m (8.45)

m = N↑ − N↓ → N↑ + N↓ − Ns = δ. (8.46)

Now we consider the kinetic energy. The kinetic energy for spin-up fermions is
unchanged, but the kinetic energy for spin-down fermions changes sign because of the
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particle-hole transformation. However, we would like to compare two FHM with the same
kinetic energy. To this end, we introduce a concept called the bipartite lattice. The bipartite
lattice means that we can divide all the lattice sites into two groups, denoted by A sublattice
and B sublattice, and hopping only takes places between A sublattices and B sublattices and
cannot happen within A sublattices or within B sublattices. For instance, if we only con-
sider the nearest neighbor hopping, a two-dimensional square lattice or honeycomb lattice,
and a three-dimensional cubic lattice are all bipartite lattices, but a two-dimensional tri-
angular lattice is not a bipartite lattice. If one includes the next nearest neighbor hopping,
even the two-dimensional square lattice or honeycomb lattice is not a bipartite lattice.

To keep the kinetic energy term invariant for both spin components, we modify the
particle-hole transformation by introducing a minus sign for fermion operator in one sub-
lattice but not the other sublattice. To be concrete, let us consider a two-dimensional square
lattice with site-i labeled by Ri = (ix, iy). Let us now modify the particle-hole transforma-
tion for spin-down particles as ĉi↓ → (−1)ix+iy ĉ†

i↓ and ĉ†
i↓ → (−1)ix+iy ĉi↓. Since the

hopping only occurs between two sublattices, this extra minus sign cancels out the minus
sign introduced by the particle-hole transformation. Hence, the kinetic energy is invariant
for hopping on a bipartite lattice. Note that

(−1)ix+iy = ei(π ix+π iy) = eiQ·Ri , or, (−1)ix+iy = e−i(π ix+π iy) = e−iQ·Ri , (8.47)

where Q = (π ,π ). Hence, when we consider the operator in momentum space, say, ĉk, we
have

ĉk =
∑

i

eik·Ri ĉi →
∑

i

ei(k−Q)·Ri ĉ†
i = ĉ†

-k+Q, (8.48)

and

ĉ†
k =

∑

i

e−ik·Ri ĉ†
i →

∑

i

ei(−k+Q)·Ri ĉi = ĉ -k+Q. (8.49)

For the nearest hopping, the single-particle dispersion is given by

ε(k) = −2J(cos(kx) + cos(ky)), (8.50)

and it is easy to see that ε(k) = −ε(−k+Q). Generally speaking, if there exists a momen-
tum Q such that ε(k) = −ε(−k + Q) for all k, the kinetic energy can be invariant under
the particle-hole transformation as

∑

k

ε(k)ĉ†
kĉk →

∑

k

ε(−k + Q)ĉ†
−k+Qĉ -k+Q. (8.51)

Hence, we show that this particle-hole transformation relates to a FHM with repulsive
interaction U0 > 0 to a FHM with attractive interaction with −U0 < 0, and meanwhile, it
exchanges h- and µ- terms. As shown in Figure 8.8, a FHM with (U = U0, µ = x, h = y)
is mapped to a FHM with (U = −U0, µ = y, h = x). Or equivalently, a FHM with
(U = U0, δ = x, m = y) is mapped to a FHM with (U = −U0, δ = y, m = x).

Pairing and Antiferromagnetism. Let us first consider a FHM with equal spin popu-
lation N↑ = N↓ and attractive interaction, whose parameters are (−U0, µ = x, h = 0)
(U0 > 0). Based on the discussion in Section 6.1, the Cooper instability due to the
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!Figure 8.8 Repulsive and attractive FHM related by the particle-hole symmetry. In each plot, two stars label two parameters
where repulsive FHM in one place can be mapped to attractive FHM in another place with equal interaction strength.
Especially, the vertical axes with repulsive (attractive) interaction are mapped to horizontal axes with attractive
(repulsive) interaction. The central point is self-dual between repulsive and attractive models. (a) and (b) correspond
to the grand-canonical and canonical ensembles, respectively. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.

attractive interaction can lead to pairing of fermions, which gives rise to pairing order
! = ∑

k〈ĉ -k↓ĉk↑〉 (= 0 or !∗ = ∑
k〈ĉ†

k↑ĉ†
−k↓〉 (= 0 in the ground state. In three

dimensions, there is a finite temperature phase transition to the ordered phase with fermion
pairing order, as shown in Figure 8.9.

The particle-hole transformation transfers the attractive FHM to the repulsive FHM at
half-filling with N↑ + N↓ = Ns, whose parameters are (U0, µ = 0, h = x). The same
particle-hole transformation transfers pairing order ! into

∑
k〈ĉ†

k+Q↓ĉ k↑〉 and !∗ into
∑

k〈ĉ†
k↑ĉk+Q↓〉. These two new order parameters are nothing but the in-plane spin orders

S− and S+ with momentum Q. Such spin orders with nonzero momentum are usually
called spin density wave. Because the momentum Q = (π ,π ), the order parameter takes
opposite sign between A sublattices and neighboring B sublattices, and therefore, it is also
called antiferromagnetic spin order. Note that the fermion pairing order in the attractive
FHM does not have to be in half-filling or µ = 0, the corresponding antiferromagnetic
spin order in the repulsive FHM does not have to be spin balanced or h = 0. The presence
of nonzero h breaks the full SU(2) spin rotational symmetry and only retains the in-plane
spin rotational symmetry. Note that in the fermion pairing case, the pairing order parameter
can take arbitrary phase and the energy is degenerate. This phase translates into an arbitrary
phase in S+ or S−, which corresponds to the azimuthal spin angle along the xy plane, which
reflects the spin rotational symmetry along ẑ. That is to say, the ground state has a U(1)
degeneracy.

In Figure 8.9, we show the correspondence between the attractive and the repulsive FHM
in three dimensions. There are two notable features:

• The antiferromagnetism occurs in the repulsive side even with infinitesimal small inter-
action strength, this is equivalent to the fact that the pairing order always occurs for
the attractive FHM with equal spin population even with infinitesimal small interaction.
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!Figure 8.9 Schematic of the phase diagram of the FHM in three dimension. Here we consider a half-filled (N↑ + N↓ = Ns)
and spin-balanced (N↑ = N↓) FHM. At low temperature there exists a phase transition to the antiferromagnetic
ordered phase (AFM) for positiveU and a transition to pairing or the charge-density-wave (CDW) phase for negative
U. The dashed line indicates a crossover temperature to Mott insulator phase for positiveU and a pseudo-gap phase
for negativeU. The high-temperature regime is a Fermi liquid. This phase diagram at the positiveU side can be
one-to-one mapped to that at the negativeU side by the particle-hole transformation. A color version of this figure
can be found in the resources tab for this book at cambridge.org/zhai.

!Figure 8.10 Mechanism for the origin of the antiferromagnetic order. (a) Illustration of the Fermi surface nesting at half-filling. (b)
Schematic of the second-order perturbation processes in terms of hopping in the strongly interacting regime. (b1) the
repulsive FHMwithU > 0. The ground state favors the singly occupied state, and the second-order perturbation
leads to superexchange of spins. (b2) The attractive FHMwithU < 0. The ground state favors either a doubly
occupied or empty state, and the second-order perturbation leads to hopping of pairs. The excitation energies in both
cases are given by |U|. (b1) and (b2) are related by the particle-hole transformation. A color version of this figure can
be found in the resources tab for this book at cambridge.org/zhai.

This phenomenon can also be understood using the concept of the Fermi surface nest-
ing. A perfect Fermi surface nesting means that for any k point at Fermi surface, there
exists a wave vector Q such that k + Q also locate at the Fermi surface. Q is called the
nesting momentum. The Fermi surface of a half-filling band has a diamond shape, as
shown in Figure 8.10(a), which is an example of Fermi surface nesting and the nesting
momentum Q = (π ,π ). In the presence of Fermi surface nesting, it is easy to see that a
particle-hole excitation c†

kσ ck+Qσ ′ causes zero energy. Here σ (= σ ′ corresponds to the
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spin wave order and σ = σ ′ corresponds to the density wave order. Fermi surface nest-
ing plays an important role in the weakly interacting regime, because the reconstruction
of quantum many-body state mainly takes play at the Fermi surface for weak interac-
tions. For example, when we discuss the BCS pairing, we mainly concern a pair of states
at the Fermi surface, where pairing fluctuation causes zero energy. Because these excita-
tions cause zero energy in the presence of the Fermi surface nesting, the corresponding
spin wave order, or the density wave order, can also occur with infinitesimal small
interaction.

• The transition temperature first increases and then decreases as the interaction strength
further increases. In the weakly interacting regime, it is quite natural that the transition
temperature increases as the interaction strength increases. In the strongly interacting
regime, we can take the interaction term as the most dominate part of the Hamiltonian,
and treat the hopping term as perturbation. For the half-filling case with average one
particle per site, let us consider a simple two-site case as an example, and the total
number of possible states are

| ↑, ↑〉; | ↓, ↓〉; | ↑, ↓〉; | ↓, ↑〉; | ↑↓, 0〉; |0, ↑↓〉. (8.52)

For the first four states, both sites are singly occupied, whose energy are degenerate
at the zeroth order when J = 0. For the last two states, one of the site is doubly
occupied and the other site is empty, and therefore, their energies are higher by the inter-
action strength U for the repulsive interaction. Hence, the charge excitation is gapped,
which prevents charge transfer. This state is a Mott insulator as we have discussed in
the BHM.

Now turning on the hopping J as perturbation, and we will see how the hopping lifts
the degeneracy between the first four states. It is easy to see that the hopping is prohibited
for the first two states due to the Pauli exclusion principle, and therefore, their energies
remain unchanged. As we show in Figure 8.10(b1), hopping can couple | ↑, ↓〉 and
| ↓, ↑〉, and the coupling is made through a second-order perturbation. The intermediate
states of this second-order process are the last two states in Eq. 8.52, whose energies are
higher by U. Therefore, the coupling is proportional to J2/U. Because of the coupling,
the energy is lowered by forming a superposition of these two states. This intuitively
explains why the antiferromagnetic spin configurations is energetically favorable. This
second-order process is called the superexchange.

For the case of many sites, we can formally write down the effective Hamiltonian
following the second-order perturbation as

Heff = −J2

U

∑

〈ij〉ss′
(c†

iscjsc
†
js′cis′ + h.c.). (8.53)

Using the relation

∑

ss′
c†

isc
†
js′cis′cjs = −2Si · Sj + 1

2
ninj, (8.54)
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one can obtain an effective spin Hamiltonian as the Heisenberg model

Heff = Jex
∑

〈ij〉
Si · Sj, (8.55)

with Jex = 4J2/U, where the number four counts total possible paths of this second-
order processes. Since Jex > 0, it favors an antiferromagnetic ground state, that is,
spins at two neighboring sites are antiparallel to each other. This also tells us that in the
strongly interacting regime, the antiferromagnetic order occurs only when T ∼ Jex =
4J2/U, which decreases with the increasing of interaction strength. We shall also note
that, because the charge gap is ∼ U, the Mott insulator physics occurs when T " U.
However, the antiferromagnetic order appears at a temperature ∼ Jex ∼ (J/U)2U .
U when U / J. Therefore, there will be an intermediate temperature regime where
the system is already an insulator but the spin order has not been formed, as shown in
Figure 8.9.

Similar scenario can be applied to the attractive interaction side. Now at the zeroth
order of J, the ground state is either doubly occupied or empty, as the last two state
in Eq. 8.52, and the excited states are that two sites are singly occupied. As shown in
Figure 8.10(b2), starting from the state both two atoms initially occupied the left site, a
single-particle hopping process can connect this initial state to an excited state with the
excitation energy |U|. Then through another single-particle hopping process, two atoms
can be both in the right site. In this way the pair hops from one site to another, and thus
the effective hopping strength for the pairs is also 4J2/|U|, where the number four also
counts total possible paths of this hopping processes. Therefore, as the absolute value of
U increases, this effective hopping actually decreases, which means the effective mass
of these pairs becomes larger. Therefore, the condensation temperature decreases. Here
in the attractive case, the energy to break a pair is also ∼ |U| in the strongly interacting
regime. Therefore, fermion pairs form at the temperature ∼ |U|. This temperature is
also much larger than the pair condensation temperature ∼ J2/U. Hence, there is also
an intermediate temperature regime, where pairs form but they are not condensed. This
is exactly the pseudo-gap regime discussed in Section 6.2.

Hence, as shown in Figure 8.9, upon the particle-hole transformation, the pair for-
mation temperature in the attractive side is mapped to the Mott insulator formation
temperature in the repulsive side, and the pair condensation temperature in the attrac-
tive side is mapped to the antiferromagnetic order formation temperature in the repulsive
side. In both cases, there exists a temperature window where either pairing gap or charge
gap has formed but orders have not yet formed.

The short-range antiferromagnetic correlation has been observed in the FHM in a three-
dimensional cubic lattice by the Bragg spectroscopy [68]. Later it has also been observed
by using the Fermi gas microscope for two-dimensional FHM. The experimental observa-
tion of a quasi-long-range antiferromagnetic correlation has been observed in a system with
about 10 × 10 two-dimensional lattice sites [9]. As shown in Figure 8.11, although in this
case the spin correlator is always exponentially decayed, the correlation length increases as
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!Figure 8.11 Observation of antiferromagnetic long-range correlation. (a) The spin correlation functionCd is defined as
Cd = 1

Nd

1
S2

∑
r1,r2,d=r1−r2〈Ŝz

r1 Ŝ
z
r2〉 − 〈Ŝz

r1〉〈Ŝz
r2〉, whereNd is the total number of different two point

correlators with displacement d between r1 and r2, and S = 1/2 in this case. This correlator is shown for an about
10 × 10 sites Fermi–Hubbard model withU/J fixed at 7.2. (b) The amplitude of this antiferromagnetic correlator
(−1)iCd after an azimuthal average. (c) The measured spin structure factor Sz(q) − Sz(0) obtained from the
Fourier transformation of single images, where Sz(q) is defined as Sz(q) = 1

N

∑
r1,r2

1
S2 〈Ŝz

r1 Ŝ
z
r2〉eiq(r1−r2) and

N is the total number of sites in this area. All the results are shown for different temperatureT/J. Reprinted from
Ref. [9]. A color version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

the temperature decreases, and at the lowest temperature, the correlation length is already
comparable to or exceeds the system size.

SO4 Symmetry. Considering the FHM with h = 0, it possesses the SU(2) spin rota-
tional symmetry generated by Eq. 8.39-8.41. Now consider the FHM with µ = 0, it can
be mapped to another FHM with h = 0, and the latter possesses the SU(2) spin rota-
tional symmetry generated by Eq. 8.39-8.41. Now under the particle-hole transformation,
Eq. 8.39-8.41 becomes

Ŝx → L̂x = 1
2

∑

i

(−1)ix+iy (ĉ†
i↑ĉ†

i↓ + ĉi↓ĉi↑), (8.56)
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Ŝy → L̂y = i
2

∑

i

(−1)ix+iy (ĉ†
i↑ĉ†

i↓ − ĉi↓ĉi↑), (8.57)

Ŝz → L̂z = 1
2

(
∑

i

(ĉ†
i↑ĉi↑ + ĉ†

i↓ĉi↓) − Ns

)

. (8.58)

Hence, it is straightforward to verify that the Hamiltonian of the FHM with µ = 0 commute
with L̂x, L̂y and L̂z, which generates another SU(2) rotational symmetry. By combining
these two symmetries, we can conclude that when both µ and h are zero, the FHM pos-
sesses an SU(2) × SU(2) symmetry. Furthermore, we note that Sz + Lz = N↑ − Ns/2, and
for given Ns, Sz + Lz is either an integer or a half integer. Thus, not all representations of
the SU(2) × SU(2) symmetry group are allowed. In fact, only half of them are allowed.
Therefore, the actual symmetry group is SU(2) × SU(2)/Z2 ∼ SO(4) [185].

The enlarged symmetry at µ = h = 0 has dramatical physical consequence in two
dimensions. First, let us consider the repulsive FHM with µ = 0. If h (= 0, as we have
discussed above, the degenerate space of the antiferromagnetic spin order is the U(1)
azimuthal angle. As we have discussed in Section 4.2, in two dimensions, there exists a
finite temperature Kosterlitz–Thouless (KT) transition to the in-plane anti-ferromagnetic
spin ordered phase, as shown in Figure 8.12(b). This KT transition is driven by the pro-
liferation of topological defect of U(1) order parameter known as vortex. If one further
considers the case that h is also zero, the full spin rotational symmetry is restored. In this
case, the spin order can be taken along any direction and all these states are degener-
ate. For instance, the antiferromagnetic spin order can be taken along the ẑ direction, that
is,
∑

k〈ĉ†
k↑ĉk+Q↑ − ĉ†

k↓ĉk+Q↓〉 (= 0, and its energy is degenerate with states whose the

!Figure 8.12 Schematic of the phase diagram for a two-dimensional FHM. (a)U < 0 and equal spin population withN↑ = N↓.
Here we plot the Kosterlitz–Thouless transition temperature to a fermion paired superfluid phase as a function of
total filling number (N↑ + N↓)/Ns. (b)U > 0 and half-filling withN↑ + N↓ = Ns. Here we plot the
Kosterlitz–Thouless transition temperature to an in-plane antiferromagnetic (AFM) phase as a function of spin
imbalance (N↑ − N↓)/Ns; “CDW” denotes the charge-density-wave. These two phase diagrams are related to
each other by the particle-hole transformation. A color version of this figure can be found in the resources tab for this
book at cambridge.org/zhai.
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antiferromagnetic order is taken in the xy plane, that is,
∑

k〈ĉk+Q↓ĉ†
k↑〉 (= 0. Therefore,

the manifold of the antiferromagnetic spin order is no longer U(1) but an S2 sphere. As we
have discussed in Section 4.2, because an S2 degenerate manifold does not support topo-
logical defect in two dimensions, it does not support a finite temperature KT transition.
Thus, as shown in Figure 8.12(b), the KT transition temperature vanishes at h = 0 or when
N↑ = N↓.

Then we turn to consider the attractive FHM. When µ = h = 0, the attractive FHM
is mapped to the repulsive FHM with same interaction strength. As we have discussed
above, for h = µ = 0 and repulsive interaction, all antiferromagnetic states with spin
order taken along any direction are degenerate. Now taking the particle-hole transforma-
tion, the in-plane antiferromagnetic order is mapped to pairing order with zero momentum,
but the antiferromagnetic order along ẑ is mapped to the charge density wave order with
momentum Q, that is,

∑
k〈ĉ†

k↑ĉk+Q↑ + ĉ†
k↓ĉk+Q↓〉 (= 0. That is to say, for the attractive

FHM at half-filling and with equal spin population, the charge density wave state is always
energetically degenerate with the fermion pairing state, which is in fact ensured by the
SO(4) symmetry discussed above. Similar as the discussion above in the repulsive FHM,
when µ (= 0, the degenerate space of the order parameter is the U(1) phase of the paring
order. But when µ = 0, the degenerate space includes the charge density wave order and
becomes S2. Hence, the topological defect no long exists in two dimensions and the KT
transition temperature is suppressed to zero, as shown in Figure 8.12(a).

In Figure 8.13 we show the measurements of the short-range spin correlations for the
repulsive FHM at half-filling [23] and the short-range density correlation for the attractive
FHM with equal spin population, as well as the calculated short-range fermion pairing cor-
relation for the latter model [121]. They are related by the particle-hole transformation and
the measurements presented in Figure 8.13 does show that they behave similarly by equal-
ing 1 − n in Figure 8.13 (b) with ps in Figure 8.13(a). One can see that in Figure 8.13(a),
only for zero spin polarization, the spin correlations along ẑ nearly coincide with the in-
plane spin correlations. For any finite spin polarization, the spin correlation along ẑ is
always weaker. Similarly, in Figure 8.13(b), only for half-filling the density correlations
become nearly coincide with the pairing correlations. Away from half-filling, the density
correlations are always weaker.

Challenging Issues. Above, we have discussed some established results of the FHM. How-
ever, for most regimes of the FHM in two and three dimensions, the physics is actually
unknown.3 For repulsive interaction, we only know unambiguously the results for the half-
filled case. Once the density is away from the half-filling, there is little consensus. Here
we will highlight two unsolved issues. One is away but nearby the half-filling with n ∼ 1
in two dimensions, where n = (N↑ + N↓)/Ns is the density. The other is at low-density
regime with n . 1. By the particle-hole transformation, they are mapped to the attractive
FHM. The former is the regime with small spin imbalance regime in two dimensions, and
the latter is the regime with nearly fully spin polarization. Below we will discuss them
respectively. We hope quantum simulation with ultracold atoms in optical lattice can offer
new promises and provide new insights for solving these problems.

3 Except in one dimension, the Luttinger liquid theory is expected to work well.
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!Figure 8.13 Observation of correlations in the FHM. (a) Spin correlations as a function of spin imbalance for the repulsive FHM at
half-filling.U/J is fixed at 8.0. Large circles and squares denote the nearest neighbor and the diagonal neighbor
spin correlations, respectively. The spin correlation is defined asCα(d) = 4(〈Ŝαi Ŝαi+d〉 − 〈Ŝαi 〉〈Ŝαi+d〉). Both
α = z andα =⊥ components of the spin correlations are plotted. (b) Density correlation as a function of averaged
density for the attractive FHMwith equal spin population.U/J is fixed at−5.7. Circles represent measurements of
the doublon correlations for the nearest neighbor and the diagonal neighbor. Solid lines are the Monte Carlo
simulation of the nearest and the diagonal neighbor pairing correlation. These two measurements are also related by
the particle-hole transformation. By this mapping, ps = 1 in (a) corresponds to n = 0 in (b), and ps = 0 in (a)
corresponds to n = 1 in (b). Ŝz correlation in (a) corresponds to the doublon correlation in (b); and Ŝ⊥ correlation
in (a) corresponds to the pairing correlation in (b). Reprinted from Ref. [23] and [121] with modifications. A color
version of this figure can be found in the resources tab for this book at cambridge.org/zhai.

The first issue is about the d-wave superconductivity in the high-Tc superconductor.
The studies of physical mechanism behind the high-Tc cuprate superconductor have been
an important topic in the condensed matter physics for centuries. Here we should first
stress that the material structures of the cuprates are quite complicated, and it is hard to
say whether the physics can be well captured by the FHM or not. However, the parent
compounds of the cuprates are always antiferromagnetic Mott insulators with a half-filled
band, which share the same feature as the FHM at half-filling. When the density is tuned
slightly away from the half-filling by doping, there exists a range of doping where the
low-temperature state displays superconductivity. There were also discussions whether this
superconductivity also comes from the effective attractive interaction due to the electron-
phonon interaction, as in the case of the conventional BCS superconductors, although it
is commonly believed that the attractive interaction originated from the electron-phonon
interaction is normally too weak to give rise to such a high transition temperature. If this
is not originated from the electron-phonon interaction, it is quite mysterious that how
superconductivity with such a high transition temperature can emerge from the repulsive
interaction between electrons. It is an interesting question to ask whether similar d-wave
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pairing of fermion can emerge for the FHM with the repulsive interaction, when it is
slightly doped away from the half-filling. There is no theoretical consensus on this problem
so far. Note that the d-wave pairing order parameter is given by

!∗ =
∑

k

f (k)〈ĉ†
k↑ĉ†

-k↓〉, (8.59)

where f (k) ∝ k2
x − k2

y . Upon the particle-hole transformation, it is equivalent to a d-wave
antiferromagnetic order given by

∑

k

f (k)〈ĉ†
k↑ĉ k+Q↓〉. (8.60)

In other words, if a d-wave fermion pairing state can exist for the repulsive FHM slightly
away from the half-filling, a d-wave antiferromagnetic order can also exist for the attractive
FHM with slight spin imbalance. It is possible to answer these questions by using ultracold
fermions in optical lattices to simulate the FHM. But so far the temperatures of ultracold
atom systems are still too high to reach the transition temperature, even if such a phase
exists. Here we should recall that ultracold atom systems and condensed matter systems
have very different energy scales. Even the absolute temperatures for superconductivity
in the curprates are quite high, they are still small in unit of the Fermi energy. Replacing
the Fermi temperature with the typical Fermi temperature of ultracold atomic gases, the
transition temperature becomes too low and it is quite challenge to reach in practice.

The second issue is about itinerant ferromagnetism. Human has observed the phe-
nomenon of ferromagnetism for thousands of years but its mechanism is still not crystal
clear. Here we shall focus on the question whether the ground state of the repulsive FHM
can display ferromagnetism in the low-density regime with n . 1. In this regime, if we
apply the Hatree–Fock mean-field approximation to the interaction energy and consider
uniform solutions, we can obtain interaction energy as

Eint = Un↑n↓ = U
(

n2

4
− S2

z

)
, (8.61)

where Sz = (n↑ − n↓)/2. Thus, the interaction energy favors a state that can maximize
the absolute value of Sz, that is, a ferromagnetic state. If Sz = n/2 or Sz = −n/2, the
interaction energy vanishes. It is easy to understand because there will be no doubly occu-
pied sites when the system is fully spin polarized. On the other hand, we should also
look at the kinetic energy. In the low-density limit, we can approximate the dispersion
as εk = k2/(2m∗). In a three-dimensional system, given n↑ = n/2+Sz and n↓ = n/2−Sz,
the kinetic energy is given by

Ekin = (6π2)5/3

20m∗π2

[(n
2

+ Sz

)5/3
+
(n

2
− Sz

)5/3
]

, (8.62)

which favors a minimum located at Sz = 0. Therefore, it was proposed that the competition
between the interaction energy and the kinetic energy can lead a transition at critical Uc.
The system is a nonmagnetic state of Sz = 0 with U < Uc, and it undergoes a transition
to a ferromagnetic state of Sz (= 0 with U > Uc, which eventually saturates to a fully
polarized state with Sz = n/2 or Sz = −n/2 at very large U. This is known as the Stoner
mechanism of ferromagnetism. In reality, if the total number of fermions in each component
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is conserved, ferromagnetism manifests itself as phase separation. The larger the effective
mass m∗, the smaller the required critical interaction Uc. Especially, when the band is
strictly flat, the effective mass diverges and the Stoner ferromagnetism can occur with
infinitesimal small interaction strength.

However, there is debate about this Stoner mechanism for ferromagnetism when the
band is not strictly flat. One can image the mean-field ferromagnetic state is not the only
candidate that can avoid the interaction energy. In fact, Gutzwiller has proposed another
type of correlated state as [64]

|/〉 =
∏

i

(1 − αni↑ni↓)|FS〉, (8.63)

where |FS〉 is a free fermion Fermi sea with equal number of spin-up and spin-down parti-
cles. The projection operator P = ∏

i(1 − αni↑ni↓) does not change the particle numbers
of each spin component, and therefore this state is still a nonmagnetic state. However, it
can suppress the interaction energy by projecting out the doubly occupied sites. α is taken
as a variational parameter. When α = 0, it recovers the free Fermi gas, and when α = 1, all
the doubly occupied states are projected out and the interaction energy also vanishes. On
the other hand, when α deviates from zero, the projection operator distorts the free Fermi
sea and increases the kinetic energy. By minimizing the energy with respect to α, one can
also find that α increases with the increasing of U, and eventually α reaches unity for very
large U.

Both the Gutzwiller projection state and the ferromagnetic state pay the price of increas-
ing the kinetic energy in order to reduce the interaction energy. The difference is that the
Gutzwiller state has zero polarization but strong local correlations. So in reality, which state
is be the true ground state depends on the energy comparison. In other words, it depends on
which state costs less kinetic energy when reducing the same amount of interaction energy.
However, given the fact that the Gutzwiller wave function is a variational wave function,
one can always come up with more complicated wave function that hopefully can do a bet-
ter job in reducing interaction energy and costing less kinetic energy. On the other hand, the
ferromagnetic state considered here is a noninteracting one. One can also further optimize
the energy of the ferromagnetic state by including short-range correlations. Hence, it is
still an open issue that whether the system will become a ferromagnetic state or a strongly
correlated nonmagnetic state with strong repulsive interaction. By the particle-hole trans-
formation, the ferromagnetic state is mapped to a state with density inhomogeneity, and
therefore, it is equivalent to ask whether the attractive FHM will develop density inhomo-
geneity when very low density spin-up fermions are added into a nearly fully filled band
of spin-down fermions.

8.3 Thermalization and Entanglement

Thermalization in Quantum System. Thermalization lies at the center of statistical
mechanics. Thermalization in a closed many-body quantum system means that when the
system evolves from an arbitrary initial state, it can eventually reach thermal equilibrium.
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It looks like there is an apparent paradox of quantum thermalization. On the one hand, we
know that a system in thermal equilibrium is fully characterized by few number of parame-
ters such as temperature and chemical potential. That is to say, when a system thermalizes,
all detailed information about the initial state has been erased. On the other hand, the quan-
tum evolution governed by a Hamiltonian is a unitary transformation, and it is known that
a unitary evolution cannot erase information. Therefore, all the information of the initial
state has to be preserved during the evolution. It is also interesting to note that this paradox
bears similarity with the black hole information paradox. In the black hole information
paradox, we consider a material throwing into the black hole and emitting the Hawking
radiation. Suppose the material is described by a pure state, and because the Hawking radi-
ation only depends on temperature, all the information of the initial state are lost. However,
assuming that the black hole is also a quantum system and the evolution is also a unitary
transformation, it conserves all the information. Hence, the black hole information paradox
is quite similar as the quantum thermalization paradox.

The resolution to this apparent paradox is that all the local information of the initial state
has been spread into the entire system, such that it cannot be retrieved by local unitary
measurements. In this sense, the local information has been “erased.” That is the reason
why the two concepts of the quantum thermalization and the quantum information scram-
bling are tied together. The lesson from this discussion is that, for quantum thermalization,
we should not focus on the entire system but should focus on local observables. Hence,
we consider a small fraction of the system called region A and all the remainder part is
called region B. Thermalization means that the subregion A reaches thermal equilibrium
in contact with the rest part of the system B, which serves as a reservoir.

We consider wave function |/(t)〉 evolved from the initial state |/(0)〉. By expanding
|/(0)〉 over a complete set of bases given by the many-body eigenstates |α〉 with energy
Eα , that is,

|/(0)〉 =
∑

α

aα|α〉, (8.64)

we have

|/(t)〉 =
∑

α

aαe−iEα t|α〉. (8.65)

We consider local observable Ô in the region A, and for simplicity, we consider an infinite-
time average of this physical observable as4

〈Ô〉∞ = lim
T→∞

1
T

∫ T

0
〈/(t)|Ô|/(t)〉dt =

∑

α

|aα|2〈α|Ô|α〉. (8.66)

Here we should emphasize a key difference between thermalization in a classical system
and in a quantum system. Thermalization in the classical system is based on the Ergodic-
ity Hypothesis, which states that all microscopic states of the system can be accessed with
equal probability as long as the evolution time is sufficiently long. However, this ergodicity

4 With a refined study, the long time average is actually not necessary. Here we consider the long time average
just for the simplicity of our discussion.
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cannot be applied to a quantum system. It is clear from Eq. 8.66 that the occupations of
different many-body eigenstates are fixed by the choice of the initial state, and the occu-
pations do not change as time evolves. Therefore, in order for any generic initial state to
thermalize, a natural assumption is that all generic eigenstates have to thermalize. That is
to say, for a quantum system, the Ergodicity Hypothesis should be replaced by Eigenstate
Thermalization Hypothesis, short noted as ETH. Roughly speaking, ETH states that for a
generic many-body eigenstate |α〉 with energy Eα , the expectation value of a local operator
Ô is identical to the measured value of this observable in a micro-canonical ensemble with
mean energy Eα ,5 that is,

〈α|Ô|α〉 = 〈ρmc(Eα)Ô〉, (8.67)

where ρmc(Eα) is the density matrix of the micro-canonical ensemble for the entire system
with energy Eα .

Here we consider the initial state whose energy fluctuation (δE)2 is small enough, and
here (δE)2 is defined as

(δE)2 = 〈/0|Ĥ2|/0〉 − (〈/0|Ĥ|/0〉)2. (8.68)

That is to say, for all states |α〉 in Eq. 8.64 whose |aα|2 is not negligible, Eα ≈ E =
〈/0|Ĥ|/0〉. For such initial states, when Eq. 8.67 is satisfied, it naturally leads to

〈Ô〉∞ = 〈ρmc(E)Ô〉
∑

α

|aα|2 = 〈ρmc(E)Ô〉. (8.69)

This means that based on all local measurements within the subregion A, one cannot tell
whether the entire system is in a pure quantum state, or in a thermal equilibrium state. In
this sense, we state that this initial state thermalizes after sufficient long evolution time.

A strong version of the ETH can be stated in terms of the density matrix of an eigenstate.
To be more precise, for a many-body eigenstate |α〉 of the entire system, we consider the
pure state density matrix |α〉〈α|, and by tracing out the subregion B, one obtains ραA =
TrB|α〉〈α|. On the other hand, we can choose a temperature T such that Eα = 〈ρeq(T)Ĥ〉,
where ρeq(T) is the thermal equilibrium density matrix given by

ρeq(T) = 1
Z

e−Ĥ/(kBT), (8.70)

and Z is the partition function. We can obtain a reduced density matrix at thermal
equilibrium as ρeq

A = TrBρeq(T). A strong version of the ETH states that

ραA = ρ
eq
A . (8.71)

This means that, when the entire system is prepared in a many-body eigenstate, any
subregion experiences the remainder region as a heat bath and looks like thermal.

Eq. 8.71 has a direct consequence on the entanglement entropy. For the left-hand side
of Eq. 8.71, one can compute the entanglement entropy of the quantum state |α〉 between
subregion A and B. And for the right-hand side of Eq. 8.71, one can compute the thermal
entropy of the subregion A. Hence, Eq. 8.71 says that these two entropies have to be equal.

5 A more rigorous definition can be found in Ref. [1, 42].
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Because the thermal entropy is an extensive quantity that should be proportional to the
volume of A. Therefore, the entanglement entropy of state |α〉 should also be proportional
to the volume of A. This is called the volume law of the entanglement entropy and it is a
strong evidence to support whether a system obeys ETH.

Many-Body Localization. ETH is a hypothesis. It has been tested numerically for a num-
ber of models. Nevertheless, the numerical tests always suffer from the finite size effect.
Therefore, another route to understand ETH is to study examples that violate ETH. First of
all, the exactly integrable systems violate ETH. Examples of such models include noninter-
acting bosons and fermions, and one-dimensional models that are exactly solvable by the
Bethe–Ansatz method, as we have discussed in Section 3.4. However, we should empha-
size that the violation of ETH in these models requires fine tuning of model parameters. For
instance, for the non-interacting bosons and fermions, any finite interactions between par-
ticles can lead to thermalization when disorder is absent. In order for the one-dimensional
model to be exactly solvable by the Bethe–Ansatz method, these one-dimensional mod-
els require specific form of interaction potentials or interaction parameters. Any deviation
from such interactions can break the integrability and lead to thermalization.

It is now known that among all the models violating ETH, there exists another class of
models aside from the exactly integrable models. In contrast to these exactly integrable
models, the violation of ETH in these models is stable against small perturbation to the
Hamiltonian. These models are called the many-body localizations (MBL), because so far
most of these models always include disorders. Nevertheless, whether there exists other
possibilities is still an open question. We summarize the relation between ETH, MBL and
exact integrable models in Figure 8.14. More details about MBL and ETH can be found in
Ref. [1, 42, 124].

!Figure 8.14 Schematic of different types of models. The largest circle includes all possible physical models. One circle labeled by
“ETH” includes models obeying eigenstate thermalization hypothesis (ETH). Models outside this circle do not obey
ETH, among which a smaller circle includes all exactly integrable systems. Currently, models excluded by these two
circles are systems understood in terms of the many-body localization system (MBL), with other open possibilities
denoted by the circle with a question mark.
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There are a few metrics to characterize the breakdown of the ETH [1, 42, 124]:

• Observable-Energy Relation: Note that the right-hand side of Eq. 8.67 only depends on
energy. Thus, it says that for many-body eigenstates, the expectation value of any local
observable under a many-body eigenstate should be a smooth function of its eigenenergy
only. In other words, if we consider different many-body eigenstates whose energies are
very close, but the expectation value of local operators under these wave functions are
very different, it indicates that the ETH fails. This criterion can be tested in numerical
calculation.

• Initial Local Information: As discussed above, if a system thermalizes, information of
initial state will be scrambled into the entire system and cannot be observed in local
observables. However, if a system does not thermalize, at least part of the local infor-
mation of the initial state information can be maintained in the local measurements
even the system has evolved for sufficiently long time. This criterion has been used
for experimental probe of MBL.6

• Entanglement Entropy: As discussed above, if a system obeys ETH, the entanglement
entropy between a subregion A and the remaining region B obeys the volume law. In
contrast, for MBL, this entanglement entropy is proportional to the area of the interface
between A and B, which is known as the area law. We will discuss how to measure the
entanglement entropy in ultracold atom system, and this criterion have also been used
experimentally to distinguish a MBL from ETH.

There are also other metrics such as level statistics that involves the random matrix
theory description [42], the out-of-time-ordered correlation function that describes how
fast the information scrambles in the system [54], and the entanglement growth after
quench that describes how the entanglement property of a system responds to an external
probe [124].

Theoretically, two one-dimensional lattice models are often considered in literature for
studying MBL [1, 42, 124]. One model is the spinless fermion in a disorder potential with
the nearest neighbor interactions, and the Hamiltonian is written as

Ĥ = −J
∑

i

(ĉ†
i ĉi+1 + h.c.) + V

∑

i

n̂in̂i+1 +
∑

i

εin̂i, (8.72)

where J is the hopping amplitude, V is the nearest neighbor interaction strength and εi is
the on-site disorder potential ranging from [−W, W]. The other model is the Heisenberg
model in a random Zeeman field, whose Hamiltonian is given by

Ĥ = J⊥
∑

i

(σ̂ x
i σ̂

x
i+1 + σ̂

y
i σ̂

y
i+1) + Jz

∑

i

σ̂ z
i σ̂

z
i+1 +

∑

i

hiσ̂
z
i , (8.73)

where σ̂x,y,z are spin-1/2 operators, J⊥ and Jz are two spin coupling strengths, and hi is a
random Zeeman field ranging from [−W/2, W/2].

6 Although in practices, because of the finite lifetime of the system, it is always hard to distinguish MBL from
ETH with very long thermalization time.
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These two lattice models can be mapped to each other through the Jordan–Wigner
transformation. The Jordan–Wigner transformation is defined as

σ+
i = 1

2
(σ x

i + iσ y
i ) = e−iπ

∑i−1
j=1 ĉ†

j ĉj ĉ†
i , (8.74)

σ−
i = 1

2
(σ x

i − iσ y
i ) = eiπ

∑i−1
j=1 ĉ†

j ĉj ĉi, (8.75)

σ z
i = 2ĉ†

i ĉi − 1, (8.76)

where the phase factor is introduced to ensure the fermion statistics between different
sites. Here it is important to recognize that the local spin operators are mapped to non-
local fermionic operators. Under this mapping, the J⊥ and the Jz terms in Eq. 8.73 are
mapped to the hopping term and the nearest neighbor interaction terms in Eq. 8.72, respec-
tively. The random Zeeman field in Eq. 8.73 is mapped to the on-site disorder potential in
Eq. 8.72. Thus, these two models share the same phase diagram.

Extensive numerical studies have been performed in these models using various met-
rics mentioned above. Here we just briefly mention the results [1]. In the fermion model,
when V = 0, the noninteracting model displays the single-particle Anderson localiza-
tion in one dimension for any weak disorder. When the interaction strength is finite, the
many-body system remains localized until the interaction strength is beyond a thresh-
old. By the Jordan–Wigner transformation, it means that in the spin model, there is also
a transition from MBL to ETH at a critical J∗

z . And if the interaction strength is fixed,
it requires a finite disorder strength W in order for all the many-body eigenstates are
localized. These two models, as well as the phases therein, are schematically shown in
Figure 8.15.

Experimentally, one of the results are shown in Figure 8.16. Here two-component
fermions are loaded in a one-dimensional optical lattice. Because the nearest neighboring
interaction is weak in optical lattices, here the on-site interaction between two compo-
nents are used. Initially, atoms only populate all the even sites and no atoms populate

!Figure 8.15 Schematic of models and phase diagram for MBL. (a) Model Eq. 8.73 of the Heisenberg-type spin model in a random
Zeeman field. (b) Model Eq. 8.72 of fermions in disorder potential with the nearest neighbor interactions. (c–d) The
phase diagram of the spin model Eq. 8.73. Reprinted from Ref. [1]. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.
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!Figure 8.16 Memory of the initial state information as an indicator of MBL. (a) Schematic of how to distinguish MBL from ETH. For
the upper one, the initial information of density order has been erased, which is the ETH case. For the lower one, the
initial information of density order is still partially maintained, which is the MBL case. (b–c) The density imbalanceI
between even and odd sites taken as a measure of the initial state information, and measurements ofI after
sufficiently long time plotted as a function of the interaction strength and the disorder strength. (b) is a contour plot
ofI , and the solid line indicates the phase boundary between the MBL regime and the ETH regime. (c) is a plot of I
as a function ofU for different disorder strengths. In the figure,! is the disorder strength, andU is the interaction
strength. Reprinted from Ref. [154]. A color version of this figure can be found in the resources tab for this book at
cambridge.org/zhai.

the odd sites, which corresponds to a charge density wave order state characterized by an
imbalance I defined as

I = Ne − No

Ne + No
, (8.77)

where Ne and No are the total number of atoms in the even and the odd sites, respec-
tively. Another counterpropagating laser beam with incommensurate wave length creates
the second lattice potential. Together with the original lattice potential, it generates a quasi-
random one-dimensional lattice, which is known as the Aubry-André model in absence of
interactions. Here we should note that there is a difference between this quasi-randomness
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and the true random potential in the noninteracting case. In one dimension, for this quasi-
random potential, it requires the disorder strength to be large enough compared with the
hopping strength in order for all single-particle states to be localized. But for the true
disorder potential, all states are localized for arbitrary weak random potential. In this exper-
iment, the quasi-random potential is tuned to the single-particle localization regime, and
this experiment studies whether the system enters a MBL regime or still obeys ETH when
the interaction strength is finite. The criterion implemented in the experiment is whether the
initial density imbalance information I can be maintained after sufficiently long evolving
time, as illustrated in Figure 8.16(a) [154]. It is found that, after sufficiently long evolution
time, I reaches a stationary value and this stationary value is plotted in Figure 8.16(b) and
(c). When this stationary value of I remains finite, it means the breakdown of ETH in this
regime. In this way, a boundary between ETH and MBL is drawn in Figure 8.16(b).

Finally we should remark that the nature of the MBL to ETH transition is still an open
question. All the other phase transitions discussed in this book is either for the ground
state, or low-energy steady state, or for a thermal equilibrium state. But the MBL to ETH
transition is actually about whether a system evolving from a generic initial state can or
cannot reach thermal equilibrium. Since a generic initial state is composited with superpo-
sitions of many excited states, the MBL to ETH transition concerns all the excited states.
Therefore, it calls for developing new stratagem to describe such a transition.

Entanglement Entropy. Above we have discussed that the entanglement entropy plays an
important role in characterizing whether a quantum system can thermalize or not. Here we
will discuss how the entanglement entropy can be measured in experiment. For measuring
the entanglement entropy, we need to turn the entanglement entropy into a physical observ-
able. Below we will show that two ingredients are important to fulfill this goal. First, we
consider the Rényi entropy instead of the von Neumann entropy, and second, we need to
duplicate the system into two identical copies.

The Rényi entropy is defined as

Sn(ρ) = 1
1 − n

log Tr(ρn). (8.78)

Here we show evidences that Sn is indeed a proper definition of entropy. Taking S2 as an
example, first, the entropy for a pure state is zero. It is easy to see that the density matrix
of pure state satisfies Tr(ρ2) = 1, and therefore, S2 = 0. Second, the entropy for a mixed
state is always positive. It is also easy to see that Trρ2 < 1 for a mixed state and thus
S2 > 0. For this reason, Tr(ρ2) is also called the purity. The von Neumann entropy SvN

can be viewed as the n → 1 limit of the Rényi entropy, that is,

SvN = −Tr(ρ log ρ) = lim
n→1

Sn(ρ). (8.79)

Furthermore, it can be shown that dSn(ρ)/dn ! 0, and as a result,

SvN(ρ) " S2(ρ). (8.80)

In other words, the second Rényi entropy gives a lower bound for the von Neumann
entropy.
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We consider two systems α and β whose Hilbert spaces are identical and are spanned
by a set of bases {|n〉}, thus the total Hilbert space of the joint system α ⊗ β is spanned by
the bases |n〉α ⊗ |n′〉β . We define a swap operator V̂ which acts on the base as

V̂|n〉α ⊗ |n′〉β = |n′〉α ⊗ |n〉β . (8.81)

Below we can prove the identity that [43, 80]

Tr(ραρβ ) = Tr(V̂ρα ⊗ ρβ ). (8.82)

Let us start from the r.h.s. of Eq. 8.82; it can be explicitly written as

V̂ρα ⊗ ρβ =
∑

nmn′m′
ραnmρ

β
n′m′ V̂|n〉α ⊗ |n′〉β〈m|α ⊗ 〈m′|β

=
∑

nmn′m′
ραnmρ

β
n′m′ |n′〉α ⊗ |n〉β〈m|α ⊗ 〈m′|β . (8.83)

By taking the trace, it gives n′ = m and n = m′, and therefore,

Tr(V̂ρα ⊗ ρβ ) =
∑

nm

ραnmρ
β
mn|m〉α ⊗ |n〉β〈m|α ⊗ 〈n|β = Tr(ραρβ ). (8.84)

With this identity, if we take ρα = ρβ = ρ, we obtain that

Tr(ρ2) = Tr(V̂ρ ⊗ ρ). (8.85)

Similar identity can also be generalized for the nth Rényi entropy. This identity is crucial
for measuring the Rényi entropy, because it turns the second Rényi entropy in a single
system into the expectation of an observable in a double system [43, 80]. The trade-off is
that we need to enlarge the system to include two identical copies of the original system,
and the observable is the swap operator in the enlarged system.

Furthermore, we will discuss how to measure the expectation value of the swap operator
in an optical lattice experiment [43, 80]. Let us take two copies of one-dimensional chain
BHM as an example. The Hamiltonian is written as

Ĥ =
∑

σ=α,β



−J
∑

〈ij〉
â†

iσ âjσ + U
2

∑

i

n̂iσ (n̂iσ − 1)



 , (8.86)

where â†
iα and â†

iβ are creation operators at site-i, and α and β label two different copies.
For simplicity, we first ignore the site index and consider one site in each copy, and under
the swap operator,

V̂â†
αV̂† = â†

β , V̂â†
β V̂† = â†

α . (8.87)

Therefore, if we define the symmetric and antisymmetric operators as

â†
s =

â†
α + â†

β√
2

(8.88)

â†
t =

â†
α − â†

β√
2

, (8.89)



282 The Hubbard Model

we have

V̂â†
s V̂† = â†

s ; V̂â†
t V̂† = −â†

t . (8.90)

We introduce

|ns〉 = â†ns
s√
ns!

|0〉, |nt〉 = â†nt
t√
nt!

|0〉 (8.91)

as new bases, and V̂ is diagonal in these bases. By using Eq. 8.90, we can obtain that
〈ns|V̂|ns〉 = 1 and 〈nt|V̂|nt〉 = (−1)nt . Thus we reach the conclusion that

Tr(ρ2) = Tr(V̂ρ ⊗ ρ) = 〈(−1)nt〉. (8.92)

Adding the site index back, it is straightforward to generalize this formula as

Tr(ρ2) = Tr(V̂ρ ⊗ ρ) =
〈∏

i

(−1)nit
〉
. (8.93)

Eq. 8.92 tells us that the second Rényi entropy depends on the population on the antisym-
metric state bases of each site. For a pure state, in order for Tr(ρ2) = 1, there must be even
number of site whose nit is odd.

To measure the population on the antisymmetric bases, we first freeze the tunneling
by increasing the barrier of optical lattice potential such that J → 0. This projects the
many-body wave function into the Fock state bases of each site, and different sites become
disconnected. Then, we turn on the tunneling between two systems, which is written as

T̂ = −J⊥
∑

i

(â†
iα âiβ + â†

iβ âiα). (8.94)

The evolution under T̂ is a periodical oscillation. Considering the time evolution for 1/4 of
a single period, the unitary evolution is equivalent to changing the bases as

âis ↔ âiα , âit ↔ âiβ . (8.95)

Hence, by measuring the total number of atoms at site-i of the β-system after evolution of
1/4 period, we can determine the occupation in nit, and subsequently determine S2 through
Eq. 8.93. The entire procedure is schematically shown in Figure 8.17(a).

Figure 8.17(b) shows the measurements of the entanglement entropy for a low-
temperature equilibrium phase of one-dimensional BHM with four sites [80]. Ideally, the
results should be as what are shown in Figure 8.17(a). For the MI phase, since the many-
body wave function is a product state of different sites as Eq. 8.6, there is no entanglement
between any of two subsystems, no matter how the entire system is divided. Thus, the
occupations of nit are always even for all sites. For the SF state, two subsystems are entan-
gled. As shown in the lower part of Figure 8.17(a), in A or B subsystem, there is odd
number of sites whose nit is odd. But since the total system is always a pure state, in the
total system there is always even number of sites whose nit is odd. In real experimental
data, the measurement of entropy for the entire system is nearly a constant independent
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!Figure 8.17 Measuring the entanglement entropy. (a) Experimental procedure of measuring the second Rényi entropyS2 of a
BHM and ideal experimental results for the MI regime and the SF regime. (b) Experimental results ofS2 as a function
ofU/J for the low-temperature equilibrium phase. (c) Experimental measurement ofS2 of a quantum state under a
long time evolution after quench. Reprinted from Ref. [80] and [88]. A color version of this figure can be found in the
resources tab for this book at cambridge.org/zhai.

of U/J, although it is not absolutely zero because of the finite temperature effect and the
imperfection in measurement. Two sets of data correspond to two different ways of divid-
ing the total system into two subregions A and B. Clearly, in both cases, the entanglement
entropy is smaller in the MI regime and larger in the SF regime.

Figure 8.17(c) shows the entanglement entropy after a quench in a one-dimensional
BHM with six sites [88]. The initial state is a Fock state with fixed number of atoms at
each site. Then, the hopping J term along the chain is turned on and the system evolves for
sufficiently long time. During the evolution the entanglement entropy continuously grows.
The entanglement entropy is measured when the system has evolved for sufficiently long
time, as shown in Figure 8.17(c). The entanglement entropy is plotted as a function of
the size of the subregion A. As we have discussed above, for a system obeying ETH, the
entanglement entropy will obey the volume law. The data points shown in Figure 8.17(c)
indeed obey the volume law and can be compared with the thermal entropy shown by the
solid line. The discrepancy is larger when A subsystem has three sites, which is already half
of the system, and the subregion and the bath are of equal sizes. As we have emphasized
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above, ETH is a feature about a generic excited state. Usually the entanglement entropy of
the ground state does not possess the volume law. This can also be seen in Figure 8.17(c).

Exercises

8.1 Show that for the Bose condensation wave function Eq. 8.3, the density fluctuation
at each site approximately obeys the Poisson distribution Eq. 8.4. Discussion the
conditions when the approximation is good.

8.2 Solve the BHM Hamiltonian with the Bogoliubov theory introduced in Section 3.3.
Compute the condensation fraction as a function of J/U, and compare the results
with the condensation fraction obtained by the mean-field theory introduced in this
chapter.

8.3 Starting from the mean-field Hamiltonian, use the second-order perturbation theory
to derive the critical value for the phase transition

Jc

U
=
(
n0 − µ

U

) (µ
U − (n0 − 1)

)

Z
(µ

U + 1
) . (8.96)

8.4 Considering a relativistic nonlinear equation

!2∂2φ

∂t2
= −!2∇2

2m
φ + U|φ|2φ, (8.97)

study the small amplitude oscillations of the phase and the amplitude of wave func-
tion φ, and obtain a gapless Goldstone mode and a gapped Higgs mode from the real
and imaginary parts of this equation.

8.5 Consider a two-dimensional FHM without interactions (U = 0), and for a nonmag-
netic state (n↑ = n↓), discuss how the Fermi surface evolves when the filling number
n increases from zero to two.

8.6 Discuss the Hanbury–Brown–Twiss effect for noninteracting fermions and compare
its difference with bosons.

8.7 Considering an attractively interacting FHM, and |U| / J, derive the effective
Hamiltonian for hopping of pairs.

8.8 Verify that L̂x, L̂y and L̂z defined in Eq. 8.56–8.58 commute with the FHM with
µ = 0.

8.9 Show that the anticommutator relation {ĉi, ĉj} = δij can be satisfied when ĉi and ĉ†
i

are related to spin operators by the following Jordan–Wigner transformation:

σ+
i = 1

2
(σ x

i + iσ y
i ) = e−iπ

∑i−1
j=1 ĉ†

j ĉj ĉ†
i , (8.98)

σ−
i = 1

2
(σ x

i − iσ y
i ) = eiπ

∑i−1
j=1 ĉ†

j ĉj ĉi, (8.99)

σ z
i = 2ĉ†

i ĉi − 1. (8.100)

8.10 Show that the fermion model Eq. 8.72 and the spin model Eq. 8.73 are equivalent by
the Jordan–Wigner transformation.
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Lee–Huang–Yang correction, 90
Levinson’s theorem, 37
light-induced Zeeman energy, 21
linking number, 231
local density approximation, 84
LS coupling, 6

macroscopic quantum tunneling, 115
magnetic trapping, 12
Majorana stellar representation, 132
Majorana transition, 14
many-body localizations, 276
maximally localized Wannier wave function, 206
Mermin-Ho vortex, 140
micromotion term, 237
mixed dimension, 61
momentum mapping, 208
monopole, 141
Mott insulator (see also 8.2), 249, 266

narrow resonance, 54
Newton equation, 79
Noziéres–Schmitt-Rink approach, 192

off-diagonal long-range order, 75
one-dimensional scattering length, 59
open channel, 49
optical clock, 9
optical Feshbach resonance, 56

optical lattices, 19
optical trap, 19
orbital Feshbach resonance, 58
order by disorder, 92

pairing symmetry, 182
particle excitation (see also 5.1), 155, 249
particle excitation (see also 8.1), 155, 249
particle-hole symmetric point, 249
particle-hole transformation, 262
Peierls substitution, 235
phase shift, 33
phase slip, 120
polar condensate, 137

quadratic Zeeman effect, 11
quadrupole mode, 85
quantized conductance, 162
quantum anomalous Hall effect, 230
quantum defect, 5
quantum depletion, 90
quantum measurement, 110
quantum phase transition (see also Sec. 7.5), 243, 249
quantum point contact, 159
quantum simulation, 212
quantum thermalization, 274
quasi-energy, 236
quasi-momentum, 204
quasi-particle, 90
quasi-particle lifetime, 94
quasi-particle residue, 161
quench dynamics, 231

radio-frequency spectroscopy, 168
Raman spectroscopy, 168
rényi entropy, 280
renormalizable contact potential, 41
renormalization, 43
repulsive polaron, 165
roton, 151

scalar light shift, 18
scale invariant quantum gases, 102
scattering amplitude, 37
scattering cross-section, 37
scattering length, 33
scattering resonance, 37
scattering volume, 34
schrödinger Cat state, 115
Schwinger–Dyson equation, 42
screening effect, 5
self-consistent mean-field theory, 175
self-energy, 163
self-trapping, 106
semimetal, 217
shallow bound state, 36
shape resonance, 54
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singlet pair condensate, 137
skyrmion, 143
soliton mass, 121
sound velocity, 80
spin density wave, 264
spin exchanging scattering, 48
spin healing length, 140
spin vortex, 139
stimulated Raman adiabatic passage (STIRAP), 26
stripe phase, 148
SU(N) symmetric interaction, 45
Su–Schrieffer–Heeger model, 221
super-exchange, 266
superfluid critical velocity, 82
superfluidity, 82
superradiant transition, 243
surface mode, 85
symmetry breaking, 114
symmetry protected topological phases, 223
symmetry protection, 220
synthetic gauge field, 12
synthetic magnetic field, 14
synthetic spin-orbit coupling, 22

term-diagram, 4
Thomas–Fermi distribution, 84
Thouless criterion, 191

three-atom resonance, 65
time-of-flight, 76
Tonks–Girardeau gas, 103
topological band insulator, 229
topological defect, 126
topological phase transition, 127
two-channel model, 54
two-fluid hydrodynamics, 87
two-terminal transport, 158

ultraviolet divergence, 42
universality, 34
upper branch, 68

vacuum energy, 91
vacuum polarization, 93
Van Hover singularity, 208
vector light shift, 20
virial coefficient, 66
volume law of entanglement entropy, 276

Wannier wave function, 206
wave equation, 80
Weyl point, 219
wide resonance, 54
winding number, 123

zero-energy edge mode, 230


