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Question (1)
Describe the no-cloning theorem and prove that if quantum
cloning is allowed, then superluminal communication is allowed
too.

The no-cloning theorem says it is impossible to create identical
copies of an arbitrary unknown quantum state.

Note:
1. It is possible to copy linear-independent states

probabilistically.
2. It is possible to copy mutually orthogonal states in

principle.
3. It is possible to produce imperfect copies of an arbitrary

unknown quantum state.
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Suppose that two distant parties, Alice and Bob, share a
maximally entangled quantum state

|ϕ+⟩ = 1√
2
(|00⟩+ |11⟩) = 1√

2
(|++⟩+ | − −⟩).

If Alice wants to send bit 0(1) to Bob, she measures her particle
at Z(X) basis, collapsing her particle to |0⟩ or |1⟩(|+⟩ or |−⟩).
Then Bob clones his particle to many copies and measures each
copy at Z basis.

Let n+ denote the number of +1 outcomes, n− denote the
number of −1 outcomes. One can define the visibility of Bob’s
Z measurement as V def

= |n+−n−
n++n−

|. If Alice measures at Z basis,
V ≈ 1, while if Alice measures at X basis, V ≤ ϵ, in which
0 < ϵ≪ 1. So Bob can distinguish what basis Alice used, i.e.
the bit Alice wants to send, immediately after Alice measures
her particle without any classical information.
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Question (2)
Prove that non-orthogonal states can’t be reliably distinguished.

Proof. Suppose there exists two POVMs E1 and E2 such that
they can distinguish two non-orthogonal states |ψ1⟩ and |ψ2⟩
reliably, i.e.

Prob(|ψ1⟩, 1) = ⟨ψ1|E1|ψ1⟩ = 1,

Prob(|ψ2⟩, 2) = ⟨ψ2|E2|ψ2⟩ = 1,

Prob(|ψ2⟩, 1) = ⟨ψ2|E1|ψ2⟩ = 0,

Prob(|ψ1⟩, 2) = ⟨ψ1|E2|ψ1⟩ = 0,

where Prob(|ψi⟩, j) = tr(Ej|ψi⟩⟨ψi|) = ⟨ψi|Ej|ψi⟩ is the
probability of measuring |ψi⟩ and getting outcome j.
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Then from ⟨ψ1|E2|ψ1⟩ = 0, we have,√
E2|ψ1⟩ = 0.

Now since |ψ2⟩ is not orthogonal to |ψ1⟩, it can be decomposed
into a non-zero component parallel to |ψ1⟩ and a component
orthogonal to |ψ1⟩,

|ψ2⟩ = α|ψ1⟩+ β|ϕ⟩, |α|2 + |β|2 = 1.

Then, one can reach a contradiction,√
E2|ψ2⟩ = α

√
E2|ψ2⟩+ β

√
E2|ϕ⟩ = β

√
E2|ϕ⟩

⇒ ⟨ψ2|E2|ψ2⟩ = |β|2⟨ϕ|E2|ϕ⟩ ≤ |β|2
∑

i
⟨ϕ|Ei|ϕ⟩ ≤ |β|2 < 1.
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Question (3)
Write down the commutation relations and anti-commutation
relations for the Pauli matrices. Find the eigenvectors,
eigenvalues, and diagonal representations of the Pauli matrices.

σiσj = iϵijkσk + δijI.

[σi, σj] = 2iϵijkσk.

{σi, σj} = 2δijI.

σ3 = |0⟩⟨0| − |1⟩⟨1|.

σ1 = |+⟩⟨+| − |−⟩⟨−|, |+⟩ = (|0⟩+ |1⟩)/
√

2, |−⟩ = (|0⟩− |1⟩)/
√

2.

σ2 = |R⟩⟨R| − |L⟩⟨L|, |R⟩ = (|0⟩+ i|1⟩)/
√

2, |L⟩ = (|0⟩− i|1⟩)/
√

2.
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Question (4)
Prove the Cauchy − Schwarz inequality that for any two vectors
|v⟩ and |w⟩, |⟨v|w⟩|2 ≤ ⟨v|v⟩⟨w|w⟩.

The proof can be seen in the “Box 2.1” on the page 68 of
“Quantum compution and quantum information” by Nielsen.

Simple proof:
The inner product of |v⟩+ λ|w⟩ is

(⟨v|+ λ∗⟨w|)(|v⟩+ λ|w⟩) ≥ 0,

where λ can be any complex number. One chooses
λ = −⟨w|v⟩/⟨w|w⟩, then the above inequality reads

⟨v|v⟩ − 2|⟨v|w⟩|2

⟨w|w⟩
+

|⟨v|w⟩|2

(⟨w|w⟩)2 ⟨w|w⟩ ≥ 0 ⇒ ⟨v|v⟩⟨w|w⟩ ≥ |⟨v|w⟩|2.
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Question (5)
Let v⃗ be any real, three-dimensional unit vector and θ a real
number. Prove that

exp(iθv⃗ · σ⃗) = cos(θ)I + i sin(θ)⃗v · σ⃗,

where v⃗ · σ⃗ =
∑3

i=1 viσi.

Proof.

exp(iθv⃗ · σ⃗) =
∞∑

n=0

1
n! (iθv⃗ · σ⃗)n

=

∞∑
k=0

(−1)k

(2k)! θ
2k(⃗v · σ⃗)2k +

∞∑
k=0

i(−1)k

(2k + 1)!θ
2k+1(⃗v · σ⃗)2k+1.
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To simplify, we calculate (⃗v · σ⃗)2,

(⃗v · σ⃗)2 = vivjσiσj = vivj(δijI + iϵijkσk)

= ∥v∥2I + i(⃗v × v⃗)kσk = I.

exp(iθv⃗ · σ⃗) =
∞∑

k=0

(−1)k

(2k)! θ
2kI +

∞∑
k=0

i(−1)k

(2k + 1)!θ
2k+1(⃗v · σ⃗)

= cos(θ)I + i sin(θ)⃗v · σ⃗.

Generally, for any 2×2 matrix A satisfying A2 = I, we have

exp(±iθA) = cos(θ)I ± i sin(θ)A.

Note: The rotation exp(iθv⃗ · σ⃗) rotates the Bloch vector about v⃗
by angle 2θ. This is related to the SU(2) symmetry of the Bloch
sphere.
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Question (6)
Prove that for any 2-dimension linear operator A,

A =
1
2 tr(A)I + 1

2

3∑
k=1

tr(Aσk)σk,

in which σk(k = 1, 2, 3) are Pauli matrices.

Note: This equation says that Pauli matrices a complete basis
of the linear space of 2-dimensional linear operator,

A = ⟨I,A⟩I + ⟨σ1,A⟩σ1 + ⟨σ2,A⟩σ2 + ⟨σ3,A⟩σ3,

where the (normalized) inner product of matrices is called
Hilbert-Schmidt inner product:

⟨M,N⟩ = tr(M†N)

2 .
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Proof. Suppose that A = ajσj, where σ0 = I and σk(k = 1, 2, 3)
are Pauli matrices, then

Aσk = ajσjσk.

Since
tr(σjσk) = tr(δjkI + iϵjklσl) = 2δjk,

then

tr(Aσk) =
3∑

j=0
tr(ajσjσk) =

3∑
j=0

2ajδjk = 2ak ⇒ ak =
1
2 tr(Aσk),

then we get

A =
1
2 tr(A)I + 1

2

3∑
k=1

tr(Aσk)σk.
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Question (7)
Let ρ be a density operator.
(1). Show that ρ can be written as

ρ =
I + r⃗ · σ⃗

2

where r⃗ is a real three-dimensional vector such that
||⃗r|| ≤ 1.

(2). Show that tr(ρ2) ≤ 1, with equality if and only if ρ is a
pure state.

(3). Show that a state ρ is a pure state if and only if ||⃗r|| = 1.
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(1). Using the conclusion derived in the previous problem, we
get

ρ =
1
2 tr(ρ)I + 1

2

3∑
i=1

tr(ρσi)σi.

By defining ri = tr(ρσi), (i = 1, 2, 3), we get

ρ =
I + r⃗ · σ⃗

2 .

(2). Do the spectral decomposition of ρ: ρ =
∑

i pi|ϕi⟩⟨ϕi|, then

ρ2 =
∑

i
pi|ϕi⟩⟨ϕi|

∑
j

pj|ϕj⟩⟨ϕj|

=
∑
i,j

pipj|ϕi⟩⟨ϕi|ϕj⟩⟨ϕj|

=
∑

i
p2

i |ϕi⟩⟨ϕi|,
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thus,

tr(ρ2) = tr(
∑

i
p2

i |ϕi⟩⟨ϕi|)

=
∑

i
p2

i ⟨ϕi|ϕi⟩ =
∑

i
p2

i .

Since
∑

i pi = 1, then

tr(ρ2) =
∑

i
p2

i ≤
∑

i
pi = 1,

with equality if and only if

pj = 1, pi̸=j = 0,

which indicates that the state ρ is a pure state.
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(3). Similar to Question (5),

(⃗r · σ⃗)2 =
∑

i
r2
i I = ∥⃗r∥2I,

thus,

ρ2 = (
I + r⃗ · σ⃗

2 )2 =
I + 2⃗r · σ⃗ + ∥⃗r∥2I

4 .

tr(ρ2) =
1
4 tr(I + 2⃗r · σ⃗ + ||⃗r||2I) = 1

2(1 + ||⃗r||2).

Since
tr(ρ2) ≤ 1,

with equality holds if and only if ρ is a pure state, then

||⃗r||2 ≤ 1.

||⃗r|| = 1 if and only if ρ is a pure state.
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Question (8)

ρA = I+n⃗A·σ⃗
2 ,ρB = I+n⃗B·σ⃗

2 , prove that tr(ρAρB) =
1+n⃗A·n⃗B

2 .

Using
σiσj = iϵijkσk + δijI,

one gets

(n⃗A·σ⃗)(n⃗B·σ⃗) = nAiσinBjσj = nAinBj(δijI+iϵijkσk) = nAinBiI+iϵijknAinBjσk.

ρAρB =
1
4(I + n⃗A · σ⃗ + n⃗B · σ⃗ + n⃗A · n⃗BI + iϵijknAinBjσk).

As tr(σi) = 0, tr(I) = 2,

tr(ρAρB) =
1 + n⃗A · n⃗B

2 .
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Question
Consider an experiment in which we prepare the state |0⟩ with
the probability |C0|2,and the state |1⟩ with the probability
|C1|2. How to describe this type of quantum state? Compare
the differences and similarities between it with the state
C0|0⟩+ C1eiθ|1⟩.

This state is a mixed state, whose density matrix is

ρ = |C0|2|0⟩⟨0|+ |C1|2|1⟩⟨1| =
(
|C0|2 0

0 |C1|2
)
.

The state |ψ⟩ = C0|0⟩+ C1eiθ|1⟩ is a pure state, whose density
matrix is
ρ′ = |C0|2|0⟩⟨0|+ |C1|2|1⟩⟨1|+ C0C1e−iθ|0⟩⟨1|+ C0C1eiθ|1⟩⟨0|

=

(
|C0|2 C0C1e−iθ

C0C1eiθ |C1|2
)
.
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ρ =

(
|C0|2 0

0 |C1|2
)
, ρ′ =

(
|C0|2 C0C1e−iθ

C0C1eiθ |C1|2
)
.

The latter one has nonzero non-diagonal terms, i.e. coherence.

When measuring these two states, if {|0⟩, |1⟩} basis is used, the
probabilities we get |0⟩ and |1⟩ are same; if other basis is used,
the probabilities would be different.

Jun-Hao Wei Solutions of QIP2022 exercise 1



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Question (10)
Suppose a two particle pure state is of the form
|Φ⟩AB = 1√

2 |0⟩(
1
2 |0⟩+

√
3

2 |1⟩) + 1√
2 |1⟩(

√
3

2 |0⟩+ 1
2 |1⟩).

(1)Calculate the reduced density matrices ρA and ρB.(2)Do
Schmidt decomposition.

(1).

ρAB =
1
8(|00⟩⟨00|+

√
3|00⟩⟨01|+

√
3|00⟩⟨10|+ |00⟩⟨11|

+
√

3|01⟩⟨00|+ 3|01⟩⟨01|+ 3|01⟩⟨10|+
√

3|01⟩⟨11|
+
√

3|10⟩⟨00|+ 3|10⟩⟨01|+ 3|10⟩⟨10|+
√

3|10⟩⟨11|
+ |11⟩⟨00|+

√
3|11⟩⟨01|+

√
3|11⟩⟨10|+ |11⟩⟨11|)

ρA = ρB =
1
2 |0⟩⟨0|+

1
2 |1⟩⟨1|+

√
3

4 |0⟩⟨1|+
√

3
4 |1⟩⟨0|.
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(2). The eigenvalues of ρA and ρB are same, λ1,2 = 1
4(2 ±

√
3),

and we choose eigenvectors of ρA and ρB as:

|λA
1 ⟩ =

1√
2
(|0⟩+ |1⟩), |λA

2 ⟩ =
1√
2
(|0⟩ − |1⟩).

|λB
1 ⟩ =

1√
2
(|0⟩+ |1⟩), |λB

2 ⟩ = − 1√
2
(|0⟩ − |1⟩).

Then,

|Φ⟩AB =
√
λ1|λ1⟩A|λ1⟩B +

√
λ2|λ2⟩A|λ2⟩B

=
1 +

√
3

2
√

2
|λ1⟩A|λ1⟩B +

√
3 − 1
2
√

2
|λ2⟩A|λ2⟩B
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Question (11)
Prove that suppose |ψ⟩ is a pure state of a composite system,
AB. Then there exist orthonormal states |iA⟩ for system A, and
orthonormal states |iB⟩ for system B such that

|ψ⟩ =
∑

i
λi|iA⟩|iB⟩,

where λi are non-negative real numbers satisfying
∑

i λ
2
i = 1

known as Schmidt coefficients.

The proof can be seen in the “Theorem 2.7” on the page 109 of
“Quantum computation and quantum information” by Nielsen.
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Similarly, for the case where the state spaces of A and B have
different dimension, we can always write |ψ⟩ as

|ψ⟩ =
n∑

j=1

m∑
k=1

ajk|j⟩|k⟩,

where {|j⟩} and {|k⟩} are orthonormal bases. Without loss of
generality, we suppose n > m. Then by the singular value

decomposition, a = u
(

d
0

)
v, where u is a n × n unitary matrix,

v is a m × m unitary matrix, d is a m × n diagonal matrix with

non-negative real entries, and
(

d
0

)
denotes the n × m matrix

whose (m + 1)th to nth rows are 0.
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Thus, |ψ⟩ =
∑n

j=1
∑m

i=1
∑m

k=1 ujidiivik|j⟩|k⟩. Let
|iA⟩ ≡

∑n
j=1 uji|j⟩, |iB⟩ ≡

∑m
k=1 vik and λi = dii, then

|ψ⟩ =
m∑

i=1
λi|iA⟩|iB⟩.

{|iA⟩} and {|iB⟩} both are orthonormal sets since unitary
operators transform one orthonormal basis to another
orthonormal basis.

Moreover, since |ψ⟩ is normalized, we have

1 = ⟨ψ|ψ⟩ =
m∑

i=1
λi⟨iA|⟨iB|

m∑
j=1

λj|jA⟩|jB⟩ =
m∑

i=1

m∑
j=1

λiλjδijδij =
m∑

i=1
λ2

i .
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Question (12)

Suppose {|ψi⟩}, {|ψ̃i⟩} are two sets of normalized states in space
H and they satisfy the conditions that ⟨ψi|ψj⟩ = ⟨ψ̃i|ψ̃j⟩ for ∀i, j,
then prove that there exist a transformation U, s.t.
U|ψi⟩ = |ψ̃i⟩, and construct this U transformation.

Using Gram-Schmidt method to first orthogonalize {|ψi⟩} and{
|ψ̃i⟩

}
respectively, we have

|α1⟩ = |ψ1⟩,
|α2⟩ = |ψ2⟩ − ⟨α1|ψ2⟩|α1⟩,
· · ·

|αi⟩ = |ψi⟩ −
i−1∑
n=1

⟨αn|ψi⟩|αn⟩.
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Then we normalize them to get |βi⟩ = |αi⟩/
√

⟨αi|αi⟩. Similarly,
we get orthogonal set {|α̃i⟩} and orthonormal set

{
|β̃i⟩

}
. Note

that one may need to add additional vectors or remove
redundant vectors to make {|βi⟩} and

{
|β̃i⟩

}
be orthonormal

bases of the Hilbert space H.

Now, we construct U as

U =
∑

j
|β̃j⟩⟨βj|.

Since {|βi⟩} and
{
|β̃i⟩

}
are orthonormal, U =

∑
j |β̃j⟩⟨βj| is

indeed unitary. Then,

U|ψi⟩ =
∑

j
|β̃j⟩⟨βj|ψi⟩

?
=

∑
j

|β̃j⟩⟨β̃j|ψ̃i⟩ = |ψ̃i⟩.
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To prove ⟨βi|ψj⟩ = ⟨β̃i|ψ̃j⟩, ∀i, j, we use the strong form of
mathematical induction to prove ⟨αi|ψj⟩ = ⟨α̃i|ψ̃j⟩, ∀i, j first.
It is obvious that ∀j, ⟨α1|ψj⟩ = ⟨α̃1|ψ̃j⟩ and ⟨α2|ψj⟩ = ⟨α̃2|ψ̃j⟩
from the condition ⟨ψi|ψj⟩ = ⟨ψ̃i|ψ̃j⟩. Then assume that when
i < k + 1, the equality ⟨αi|ψj⟩ = ⟨α̃i|ψ̃j⟩, ∀j holds. Thus when
i = k + 1, we have

⟨αk+1|ψj⟩ = ⟨ψk+1|ψj⟩ −
k∑

n=1
⟨ψk+1|αn⟩⟨αn|ψj⟩

= ⟨ψ̃k+1|ψ̃j⟩ −
k∑

n=1
⟨ψ̃k+1|α̃n⟩⟨α̃n|ψ̃j⟩

= ⟨α̃k+1|ψ̃j⟩.

Therefore, one can conclude that ⟨αi|ψj⟩ = ⟨α̃i|ψ̃j⟩, ∀i, j.
Similarly, one can prove that ⟨αi|αi⟩ = ⟨α̃i|α̃i⟩, ∀i. Thus,
⟨βi|ψj⟩ = ⟨β̃i|ψ̃j⟩, ∀i, j.
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Question (13)
Suppose ABC is a three component quantum system. Show by
example that there are pure quantum states ψ of such systems
which can not be written in the form

|ψ⟩ =
∑

i
λi|iA⟩|iB⟩|iC⟩

where λi are real numbers, and |iA⟩, |iB⟩, |iC⟩ are orthonormal
bases of the respective systems.

For example,
|ψ⟩ = 1√

2
(|000⟩+ |011⟩).
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Generally speaking, assume that |ψ⟩ can be written in the form

|ψ⟩ =
∑

i
λi|iA⟩|iB⟩|iC⟩,

then the reduced density matrices ρA, ρB and ρC shall have the
same eigenvalues λ2

i .

However, for |ψ⟩ = 1√
2(|000⟩+ |011⟩), ρA, ρB and ρC don’t have

common eigenvalues. So |ψ⟩ can not be written in the form
described as above.
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