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2.6 To test the sensitivity of the nuclear force model to the shape of the binding energy
curve, repeat the derivation of Eq. (2.27) using the following central force:

1 2
FEN) — cosech’ (r_) er.

a 2 2
4 egr re

As 1n the text write r. = krg and adjust k so that the maximum of the binding energy
curve occurs for iron. This will probably involve a numerical calculation. Compare the
result with the one obtained in the text.

FN = _F, koA (2.27)
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3.3 The purpose of this 'problemvis to invéstigate the effect of plasma profiles on the alpha
power density. The idea behind the calculation is to replace the 0-D model where all

quantities are equal to their average value by a volume-averaged 1-D model where the
density and temperature have known profiles that vary in space. Specifically, in a plasma
with a circular cross section the volume-averaged alpha power density is defined as

.= = [ (E2wton)) ra
a_azo 4nc7v rdar.

Assume now that the density and temperature profiles are given by

n=(1+ vl —r2/a?)",

T =0 +vp)T(1—r*/a®)7,
where 77 and T are the volume-averaged density and temperature respectively. To
determine the effect of temperature profile on alpha power density numerically eval-
uate S, for v, =0 and 0 < vy <4 using (ov) from Problem 3.1. For each vr
find the optimum value of 7 that maximizes S, at fixed average pressure: p =
2[(1 4+ v,)(1 +vr)/(1 + v, + vp)]aT = const. Plot the optimum 7 (keV) and cor-
responding Sy /52 = (C, as a function of vy showing the 0-D limit v, = vy = 0 for
reference. To determine the variation of S, with density repeat the above calculation
forvy = 2and 0 < v, < 4. Are peaked profiles good, bad, or unimportant in maximiz-

ing S, ?
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n=(14+v)n(l —r*/a*)",
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Peaked Ti profile leads to high alpha power, however,

extremum exists.
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Homework 3.3. the effect of density profile

n=(14+v)n(l —r*/a*)", _ . .
T — (1 4+ v (1 — r2ja2yr. nu T=2, peaked Ti profile
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Homework 3.3. the effect of density profile

Peaked density profile leads to monotonic alpha power
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4.1 This problem involves the derivation of a generalized version of the Lawson criterion.
Consider a subignited reactor in which §, < S,. In the plasma power balance include
alpha heating, external heating, and thermal conduction losses. Also, include the power
produced by breeding tritium from Li°. However, assume that of the total alpha power
only a fraction f deposits its energy in the plasma while 1 — f 1s immediately lost to
the first wall and converted to heat. Assume a thermal conversion efficiency 7, and an
input electricity to plasma heating conversion efficiency ny (1.e., Ny = 1e, N2 = 1).
(a) Derive an expression for ptg = G(Qg, f) for steady state operation.

(b) Assume T = 15 keV, n; = 0.35, ny, = 0.5. Plot curves of ptg vs. Qg for f =0,
0.5, 1. Compare the required ptg values at Qg = 20 with the fully ignited value
(O = 00, f = 1) and the Lawson breakeven criterion (Qg = 1, f = 0).
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PTE increases linearly along with the engineering energy gain factor QE

No alpha heating power, the self-sustained plasma completely depends on the

external heating
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PTEg increases rapidly in the regime QE < 20
Increased alpha heating power facilitates the achieve of the self-sustained burning plasma Qg~x,
because the only perturbation comes from thermal conduction losses and the bremsstrahlung is

not considered, which is proportion to nA2 sqrt(T)
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8.6 A plasma-has a constant uniform magﬁetic field B = Bge,. Suﬁerimposed 1s an elec-
trostatic electric field of the form E = E( cos(wt — kz)e,, where w and k are known
constants. Assume a positively charged particle 1s 1nitially located at z(0) = 0 with a

parallel velocity v.(0) = v. Show that for a sufficiently large value of E the particle
1s trapped 1n the wave. Calculate the critical Ey.
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8.13 A positive 1on 1s placed in a sheared magnetic field given by
B = Byle; 4+ (x/L)e,].

(a) Write down the exact equations of motion describing the orbit of the particle.

(b) Find a relation between v, () and x(7) assuming the following initial conditions:
vy(0) = v:(0) = x(0) = y(0) = z(0) = 0 and v,(0) = vo.

(¢) Using this relation derive a single, second order ODE for x(¢).

(d) Calculate the x location of the turning point of the orbit.
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11.8 A straight 2-D non-circular plasma has an elliptic cross section with horizontal width
2a and vertical height 2k a, where « 1s the elongation. The plasma 1s surrounded by
a close fitting circular wall of radius r = 2xb with b = a. For simplicity assume the
“toroidal” field B, = By = const. Now, note that the requirement V - B = 0 implies
that the magnetic field in the plasma can be written as B = VA x e, + Bye,, where
A(r, 0) 1s the vector potential.

(a) Using the MHD equilibrium equations and Maxwell’s equations show that p =
p(A) and derive the partial differential equation satisfied by A.

(b) Solve the equation for A assuming that wop(A) = (C*/2)(AZ  — A?), where C
and A« are constants. To obtain an analytic solution assume that Cka < 1 and
solve by expansion.

(c) Magnetic measurements on the wall surface indicate that By(ka,f) =
(ol /2tka)(l + a cos 20), where I and o are measured constants. Solve the
equation for A in the vacuum region between the wall and the plasma (where
p = 0). Match the solutions across the plasma—vacuum interface and derive an

expression for k = x ().
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11.9 The purpose of this problem is to derive the Grad—Shafranov equation, a famous
partial differential equation describing the MHD equilibrium of configurations pos-
sessing toroidal symmetry: Q(R, Z, ¢) — Q(R, Z).

(a) Using V - B = 0 prove that the magnetic field can be written in terms of a flux
function ¥ (R, Z) as follows: B = V{r x e3/R + By(R, Z)ey.

(b) From Amperes law derive an expression for (oJy in terms of .

(¢) From the momentum equation prove that p(R, Z) = p(y), where p(i) 1s an
arbitrary function.

(d) From the momentum equation prove that By(R, Z) — F(i{r)/R, where F () 1s
an arbitrary function.

(e) From the momentum equation derive the Grad—Shafranov equation:

R*V - (VY/R*) = —uoR*(dp/dyr) — F(dF/d).
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