

Introduction to the Controlled

thermal Fusion

2.6 To test the sensitivity of the nuclear force model to the shape of the binding energy curve, repeat the derivation of Eq. (2.27) using the following central force:

$$
\mathbf{F}_j^{(N)} = -\frac{1}{4\pi \varepsilon_0 r_c^2} \text{cosech}^2 \left(\frac{r^2}{r_c^2}\right) \mathbf{e}_R.
$$

As in the text write $r_c = kr_0$ and adjust k so that the maximum of the binding energy curve occurs for iron. This will probably involve a numerical calculation. Compare the result with the one obtained in the text.

$$
F_R^{(N)} = -F_0 \frac{k^2 A}{(A^{1/3} + 1)^2 (2A^{1/3} + 1)}.
$$
\n
$$
\mathbf{F}_R^{(C)} \equiv F_R^{(C)} \mathbf{e}_R = \frac{F_0}{2} \frac{A}{(A^{1/3} + 1)^2} \mathbf{e}_R,
$$
\n(2.25)

$$
F_R^{(N)} = \frac{1}{4\pi\epsilon_0 r_c^2} \frac{3}{4\pi r_0^3} \int_V \csch^2 \left(\frac{r^2}{r_c^2}\right) \cos\alpha d\vec{r} \, \overrightarrow{e_R} \sim \frac{1}{k^2} \int_{r_0}^{A^{1/3}r_0} \csch^2 \left(\frac{r^2}{r_c^2}\right) \cos\alpha r^2 d\vec{r}
$$

3.3 The purpose of this problem is to investigate the effect of plasma profiles on the alpha power density. The idea behind the calculation is to replace the 0-D model where all

quantities are equal to their average value by a volume-averaged 1-D model where the density and temperature have known profiles that vary in space. Specifically, in a plasma with a circular cross section the volume-averaged alpha power density is defined as

$$
\overline{S}_{\alpha} = \frac{2}{a^2} \int_0^a \left(\frac{E_{\alpha}}{4} n^2 \langle \sigma v \rangle \right) r \, dr.
$$

Assume now that the density and temperature profiles are given by

$$
n = (1 + \nu_n)\overline{n}(1 - r^2/a^2)^{\nu_n},
$$

\n
$$
T = (1 + \nu_T)\overline{T}(1 - r^2/a^2)^{\nu_T},
$$

where \overline{n} and \overline{T} are the volume-averaged density and temperature respectively. To determine the effect of temperature profile on alpha power density numerically evaluate \overline{S}_{α} for $v_n = 0$ and $0 \le v_T \le 4$ using $\langle \sigma v \rangle$ from Problem 3.1. For each v_T find the optimum value of \overline{T} that maximizes \overline{S}_{α} at fixed average pressure: \overline{p} = $2[(1 + v_n)(1 + v_T)/(1 + v_n + v_T)]\overline{nT}$ = const. Plot the optimum \overline{T} (keV) and corresponding $\overline{S}_{\alpha}/\overline{p}^2 \equiv C_p$ as a function of v_T showing the 0-D limit $v_n = v_T = 0$ for reference. To determine the variation of \overline{S}_{α} with density repeat the above calculation for $v_T = 2$ and $0 \le v_n \le 4$. Are peaked profiles good, bad, or unimportant in maximizing S_{α} ?

fusion reaction rate

Homework 3.3. the effect of temperature profile

 $n = (1 + \nu_n)\overline{n}(1 - r^2/a^2)^{\nu_n},$ $T = (1 + v_T) \overline{T} (1 - r^2/a^2)^{v_T},$

nu n=0, constant density profile

END By Bomework 3.3. the effect of temperature profile

Peaked Ti profile leads to high alpha power, however,

ENDER Homework 3.3. the effect of density profile

Homework 3.3. the effect of density profile

Peaked density profile leads to monotonic alpha power

- 4.1 This problem involves the derivation of a generalized version of the Lawson criterion. Consider a subignited reactor in which $S_{\alpha} < S_{\kappa}$. In the plasma power balance include alpha heating, external heating, and thermal conduction losses. Also, include the power produced by breeding tritium from Li⁶. However, assume that of the total alpha power only a fraction f deposits its energy in the plasma while $1 - f$ is immediately lost to the first wall and converted to heat. Assume a thermal conversion efficiency η_t and an input electricity to plasma heating conversion efficiency η_h (i.e., $\eta_h = \eta_e$, $\eta_a = 1$). (a) Derive an expression for $p\tau_E = G(Q_E, f)$ for steady state operation.
	- (b) Assume $T = 15$ keV, $\eta_t = 0.35$, $\eta_h = 0.5$. Plot curves of $p\tau_E$ vs. Q_E for $f = 0$, 0.5, 1. Compare the required $p\tau_E$ values at $Q_E = 20$ with the fully ignited value $(Q_{\rm E} = \infty, f = 1)$ and the Lawson breakeven criterion $(Q_{\rm E} = 1, f = 0)$.

Also Homework 4.1

$$
\oint_{\mathbb{R}} \mathbf{F} \cdot \mathbf{F} = \int_{\mathbb{R}} \mathbf{F} \cdot \mathbf{F} \
$$

Homework 4.1

$$
E_{R} = 14 \text{ MeV} \quad SL_{1} = 4.8 \text{ MeV} \quad Sc = 3.5 \text{ MeV}. \quad \frac{6.45 \text{Li}}{6.4} = \beta \text{ Sc.} \quad p = c.4
$$
\n
$$
\frac{141e}{9.64} \text{ Sef} \int \frac{p}{124} \
$$

 $\boldsymbol{p}\boldsymbol{\tau}_{E}$ increases linearly along with the engineering energy gain factor \boldsymbol{Q}_{E} **No alpha heating power, the self-sustained plasma completely depends on the external heating**

 \blacksquare Homework 4.1

$p\tau_E$ increases rapidly in the regime $\bm{Q}_F < 2\bm{0}$

Reduced Homework 4.1

Increased alpha heating power facilitates the achieve of the self-sustained burning plasma $Q_F \sim \infty$, **because the only perturbation comes from thermal conduction losses and the bremsstrahlung is not considered, which is proportion to n^2 sqrt(T)**

8.6 A plasma has a constant uniform magnetic field $\mathbf{B} = B_0 \mathbf{e}_z$. Superimposed is an electrostatic electric field of the form $\mathbf{E} = E_0 \cos(\omega t - kz)\mathbf{e}_z$, where ω and k are known constants. Assume a positively charged particle is initially located at $z(0) = 0$ with a parallel velocity $v_z(0) = v_{\parallel}$. Show that for a sufficiently large value of E_0 the particle is trapped in the wave. Calculate the critical E_0 .

$$
\frac{1}{2} mV_z^2 < q \int_0^{\pi/2k} E cos(\omega t - kz) dz
$$

$$
V_z < \sqrt{\frac{2qE_0}{m}} + \frac{w}{k}
$$

$$
E_0 > \frac{m(V_z - \omega/k)^2}{2q}
$$

8.13 A positive ion is placed in a sheared magnetic field given by

$$
\mathbf{B}=B_0[\mathbf{e}_z+(x/L)\mathbf{e}_y].
$$

- (a) Write down the exact equations of motion describing the orbit of the particle.
- (b) Find a relation between $v_z(t)$ and $x(t)$ assuming the following initial conditions: $v_y(0) = v_z(0) = x(0) = y(0) = z(0) = 0$ and $v_x(0) = v_0$.
- (c) Using this relation derive a single, second order ODE for $x(t)$.
- (d) Calculate the x location of the turning point of the orbit.

$$
\frac{d^2x}{dt^2} = \omega_c \left(\frac{dy}{dt} - \frac{dz}{dt}\right)
$$
\n
$$
V_{z(t)} = \frac{1}{2L} \omega_c x_{(t)}^2
$$
\n
$$
\frac{d^2y}{dt^2} = -\omega_c \frac{dx}{dt}
$$
\n
$$
\frac{d^2z}{dt^2} = \omega_c \frac{dx}{dt}
$$
\n
$$
\frac{d^2z}{dt^2} = \omega_c \frac{dx}{dt}
$$
\n
$$
\frac{d^2z}{dt^2} = \omega_c \frac{dx}{dt}
$$
\n
$$
V_{y(t)} = -\omega_c x_{(t)}
$$
\nTurning point Vx=0
\n
$$
V_y^2 + V_z^2 = V_0^2
$$
\nFrom b)\n
$$
\omega_c = \frac{qB_0}{m}
$$
\n
$$
\frac{d^2x}{dt^2} + \omega_c^2 \left(x + \frac{x^3}{2L^2}\right) = 0
$$
\n
$$
x^4 + 4L^2x^2 - \frac{4L^2V_0^2}{\omega_c^2} = 0
$$

Nomework 11.8

- 11.8 A straight 2-D non-circular plasma has an elliptic cross section with horizontal width 2a and vertical height $2\kappa a$, where κ is the elongation. The plasma is surrounded by a close fitting circular wall of radius $r = 2\kappa b$ with $b \approx a$. For simplicity assume the "toroidal" field $B_z = B_0 = \text{const.}$ Now, note that the requirement $\nabla \cdot \mathbf{B} = 0$ implies that the magnetic field in the plasma can be written as $\mathbf{B} = \nabla A \times \mathbf{e}_z + B_0 \mathbf{e}_z$, where $A(r, \theta)$ is the vector potential.
	- (a) Using the MHD equilibrium equations and Maxwell's equations show that $p =$ $p(A)$ and derive the partial differential equation satisfied by A.
	- (b) Solve the equation for A assuming that $\mu_0 p(A) = (C^2/2)(A_{\text{max}}^2 A^2)$, where C and A_{max} are constants. To obtain an analytic solution assume that $C_{\kappa a} \ll 1$ and solve by expansion.
	- (c) Magnetic measurements on the wall surface indicate that $B_{\theta}(\kappa a, \theta) =$ $(\mu_0 I/2\pi\kappa a)(1+\alpha\cos 2\theta)$, where I and α are measured constants. Solve the equation for A in the vacuum region between the wall and the plasma (where $p = 0$). Match the solutions across the plasma-vacuum interface and derive an expression for $\kappa = \kappa(\alpha)$.

 M_{max} Homework 11.8

 $(0).$ $\sigma P \cdot B = B(\gamma x) = 0$ $\Rightarrow \nabla p \cdot B = \nabla p \cdot (\nabla \nabla x^2 + \nabla z^2)$ = $\varphi \cdot (7Ax^2) + \varphi (x^2)$ \Rightarrow $\frac{4}{5}$. (σ px ∇ A) = 0 P t A ■ 平行 . ⇒ P= P (A) $\mathbb{P}^{4}(\mathbb{R}^{3})$ $\sigma p = JxB = \frac{1}{\mu}(\sigma xB) \times \overrightarrow{B}$ \Rightarrow $\mu_0 \circ p = \frac{\nabla x (\nabla A \times \vec{z} + B \times \vec{z}) \times \vec{B}}{2\pi \sqrt{2\pi} \sqrt{2\pi}$ $rac{\delta}{\delta z} = 0$ = $\sqrt{(dX + 2)}$ \sqrt{x} \cdot : $\nabla x(\nabla A \times \vec{z}) = \nabla A(\nabla \cdot \vec{z}) - (\nabla A \cdot \nabla \cdot \vec{z}) + (\vec{z} \cdot \nabla) \nabla A - (\nabla \cdot \nabla A) \vec{z}$ $=-\nabla^2 \vec{A} \vec{z}$ $L_{3} \mu_{0}\sigma p = (-\sigma A\hat{z})\times\vec{B} = (-\sigma A\hat{z})\times(\sigma A\times\hat{z} + B\hat{z})$ $=$ $(- \nabla^2 \hat{A} \vec{z}) \times (\nabla \hat{A} \times \vec{z})$ $= -\nabla A \left[\vec{x} \times (\nabla A \times \vec{z}) \right]$ = - $\vec{v}A [2\vec{x}].$ = \vec{z} (\vec{z}) - \vec{z} ($\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

(b). 考虑社位型. (r, b, z). $\mu_0 \nabla P / \nabla A = - \nabla^2 A$ $\Rightarrow \mu_0 \frac{dP}{dA} = -\nabla^2 A \quad , \mu_0 P(\mu) = \frac{C^2}{2} (A_m^2 - A^2)$ $\Rightarrow \quad \nabla^2 A + C^2 A = 0.$ $\Rightarrow \frac{37}{37} + \frac{1}{374} + \frac{37}{372} + C^2A = 0$ 对A分离凌量 Alt, b): Run Alos \Rightarrow $\oint \frac{d\phi}{d\phi} = -m^2$ $\frac{r^2}{b} \frac{d^2 R}{dt^2} + \frac{1}{R} \frac{dR}{dt} + C r^2 - m^2 = 0$ 中通解为eimo, R为贝塞尔动脉, 两个线性无关解为风塞尔 画数 Jolcro, Yocca, C为所数。

\blacksquare Homework 11.8

(C). 直空区沮有电流, 求解 石压场 筒从为拉普拉斯方程 $dA = 0$ 分离意量基面解为: $A_{\mathbf{L}^{k},\mathbf{b}} = \sum_{l,m} \int A_l J_l(k_{1}+B_{l}) J_{l(k_{1})} \int e^{im\theta}$ 在石压轴处于=0.石压场有限值, BJ=0. 无穷国元处, t-00. B=0. 芯却不通为o. 取. A = AvJ, ckrs eine T= ka, b=0. Bo= of . 硝豆常数 Av值: \Rightarrow (W) $\frac{\mu_{0}T}{\sqrt{n}}$ = $Av\frac{\partial T_{1}}{\partial r}|_{r=\kappa_{u}}$ $\left[\frac{d}{dr}(bT_{1})-rT_{0}\right]$ +4-18EIERC. r=a, os Bo, plus ma (F=a) = Bo, vacanom (F=a)} $\frac{\partial A_v}{\partial b_v V(t=a)} = \frac{A_v \frac{\partial J_v}{\partial r}}{\partial t} + \frac{A_v \frac{\partial J_v}{\partial r}}{(t-a)} \frac{A_v \frac{(H_v)}{\partial t} + \frac{(H_v)}{\partial t}}{(t-a)^2}$ \Rightarrow $Av = (1+x) \frac{167}{12\pi}$ $\frac{168}{12\pi} \cdot \frac{168}{12\pi} \cdot \frac{1}{164}$ \oint A - \oint Q $\&$ E F P 2. Fa, θ = θ , \int B $_{r}$ = B \cup \int $\frac{1}{r-a}$ \Rightarrow $\left[\frac{\partial A_{1}P}{\partial x} - \frac{\partial A_{2}P}{\partial y}\right]_{x=0}$ \Rightarrow $x = 1 - \frac{2a[HaJocka) - J_1(ka)JAp}{\mu_0 L}$ $Ap = const.$

- 11.9 The purpose of this problem is to derive the Grad–Shafranov equation, a famous partial differential equation describing the MHD equilibrium of configurations possessing toroidal symmetry: $Q(R, Z, \phi) \rightarrow Q(R, Z)$.
	- (a) Using $\nabla \cdot \mathbf{B} = 0$ prove that the magnetic field can be written in terms of a flux function $\psi(R, Z)$ as follows: $\mathbf{B} = \nabla \psi \times \mathbf{e}_{\phi}/R + B_{\phi}(R, Z)\mathbf{e}_{\phi}$.
	- (b) From Ampères law derive an expression for $\mu_0 J_{\phi}$ in terms of ψ .
	- (c) From the momentum equation prove that $p(R, Z) = p(\psi)$, where $p(\psi)$ is an arbitrary function.
	- (d) From the momentum equation prove that $B_{\phi}(R, Z) \to F(\psi)/R$, where $F(\psi)$ is an arbitrary function.
	- (e) From the momentum equation derive the Grad–Shafranov equation:

$$
R^2 \nabla \cdot (\nabla \psi/R^2) = -\mu_0 R^2 (dp/d\psi) - F(dF/d\psi).
$$

Research Homework 11.9

(a).
$$
GB = 0 \Rightarrow \frac{1}{6} \frac{1}{26} (RR + \frac{1}{22} = 0)
$$

\n 34π
\n 3

(C).
$$
B.\text{ }^{9}P = B.(JxB)=0
$$

\n
$$
\Rightarrow B.\text{ }^{9}P = [J\text{ }^{7}P \text{ }^{7}R + B\text{ }^{7}P] = 0
$$
\n
$$
\Rightarrow \oint \cdot \text{ }^{7}P \text{ }^{7}P = 0
$$
\n
$$
\Rightarrow \oint \cdot \text{ }^{7}P \text{ }^{7}P = 0
$$
\n
$$
\Rightarrow \oint \cdot \text{ }^{7}P \text{ }^{7}P = 0
$$
\n
$$
\Rightarrow \oint \cdot \text{ }^{7}P \text{ }^{7}P = 0
$$

$$
\oint_{B_{F}} \frac{B_{F}}{x} = -\frac{1}{R} \frac{3}{32}
$$
\n
$$
\oint_{B_{F}} = \frac{F}{R} \qquad \text{Mol} = -\frac{1}{R} \frac{3}{4} \frac{3}{4
$$

$$
J. op = J. (IRB) = 0
$$

\n $\Rightarrow [J(RBp) \times \hat{q}] . op = 0 . \quad \text{iff } p = p_{(2P)}$
\n $\Rightarrow [J(RBp) \times \hat{q}] . op = 0 .$
\n $\Rightarrow [J(RBp) \times \hat{q}] . op = 0 .$
\n $\Rightarrow [J(PBq) \times \hat{q}] = 0 .$
\n $\Rightarrow \hat{q}.[TP \times \hat{q} (RBq)] = 0 .$