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1. (1) Write down the communication process of BB84 quantum key distribution
(QKD) protocol.

(2) Write down the secure key rate formula of single-photon BB84 QKD and
explain the relationship with entanglement purification protocol. (Hint:
see Shor and Preskill’s security proof.)

(3) Write down the GLLP formula of BB84 QKD and explain the meaning of
each item in the formula.

(4) Suppose in BB84 QKD Alice and Bob both choose their bases with uniform
probability and we neglect photon losses and systematic errors, compute
the mutual information of Alice and Bob H(A : B) when there is no eaves-
dropping.

(5) Describe the photon number splitting attack and the principle of decoy
QKD protocol.

Answer: We only give the answer of question (4) here and refer to the lecture
“QIP2022chapt_4_Kai Chen.pdf” for the rest.
(4) Denote the measurement basis of Alice and Bob as M and N . We use a to
denote the bit that Alice wants to encode and b to denote the measurement
result of Bob. Then,

p(ab|MN) =
1

4
, ∀ a, b = 0, 1, if M ̸= N,
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p(00|MN) = p(11|MN) =
1

2
, if M = N,

where p(ab|MN) is the conditional probability that Alice encodes her bit a and
Bob gets measurement result b when Alice chooses basis M and Bob chooses
basis N .
Since Alice and Bob both choose their bases with uniform probability, the
probability that Alice chooses basis M and Bob chooses basis N is p(MN) =

1/4. Thus, one can see that the raw bit string of Alice and Bob are uniformly
distributed,

p(a = 0) = p(a = 1) =
1

2
, p(b = 0) = p(b = 1) =

1

2
⇒ H(A) = H(B) = 1.

Furthermore, the joint probability is

p(ab = 00) = p(ab = 11) =
1

2
× 1

4
+

1

2
× 1

4
+

1

4
× 1

4
+

1

4
× 1

4
=

3

8
,

p(ab = 01) = p(ab = 10) =
1

4
× 1

4
+

1

4
× 1

4
=

1

8
.

Thus, the joint entropy is H(A,B) = −
∑

a,b p(ab) log2 p(ab) = −3
4 log2

3
8−

1
4 log2

1
8 .

Therefore, the mutual information of Alice and Bob’s raw key is H(A : B) =

H(A) +H(B)−H(A,B) = 1+ 1+ 3
4 log2

3
8 +

1
4 log2

1
8 = 3

4 log2 3− 1 = 0.189. While
after basis sifting, it is obvious that the mutual information of Alice and Bob
is 1, i.e. they have identical bit strings.

2. The action of creation operator a† and annihilation operator a on Fock states
|n⟩ is as follows,

a |n⟩ =
√
n |n− 1⟩ , a† |n⟩ =

√
n+ 1 |n+ 1⟩ ,

where n denotes the number of particles and is a non-negative integer. The
coherent state is defined as the unique eigenket of the annihilation operator a,

a |α⟩ = α |α⟩ ,

where α is a complex number.

(1) Prove that the coherent state |α⟩ can be expanded in Fock basis as

|α⟩ = e−|α|2/2
∑
n

αn√
n!

|n⟩ .
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(2) Prove that the photon number statistics of coherent state follows Poisson
distribution, i.e.,

∆2n ≡ ⟨n2⟩ − ⟨n⟩2 = ⟨n⟩,

where ⟨n⟩ = ⟨α| a†a |α⟩ , ⟨n2⟩ = ⟨α| a†aa†a |α⟩ .

(3) Prove that the phase randomized coherent state
∫ 2π

0
1
2π |e

iθ√µ⟩ ⟨eiθ√µ| dθ is
a mixture of Fock states with Poisson distribution, where µ is a positive
real number.

Answer:

(1) Suppose |α⟩ =
∑

nCn |n⟩. Premultiply a |α⟩ =
∑

nCna |n⟩ =
∑

nCn
√
n |n− 1⟩

with ⟨m− 1|, then

α ⟨m− 1|α⟩ =
∑
n

Cn
√
n ⟨m− 1|n− 1⟩ ⇒ αCm+1 = Cm

√
m⇒ Cn =

αn√
n!

· C0.

Consider normalization,

⟨α|α⟩ =
∑
n,n′

α∗n′
αn√

n′!n!
·C∗

0C0

⟨
n′|n
⟩
=
∑
n

|α|2n

n!
|C0|2 = e|α|

2

·|C0|2 = 1 ⇒ C0 = e−|α|2/2.

Therefore, we have
|α⟩ = e−|α|2/2

∑
n

αn√
n!

|n⟩ .

(2) Note that aa† |n⟩ = (n + 1) |n⟩ , a†a |n⟩ = n |n⟩ . Due to the completeness
of Fock basis, we have [a, a†] = I. Thus, a†aa†a = a†a†aa + a†[a, a†]a =

a†a†aa+a†a. Since the Hermitian conjugate of a |α⟩ = α |α⟩ is ⟨α| a† = ⟨α|α∗,
we have

∆2n = ⟨α| a†aa†a |α⟩ − (⟨α| a†a |α⟩)2

= ⟨α| a†a†aa |α⟩+ ⟨α| a†a |α⟩ − (⟨α| a†a |α⟩)2

= |α|4 + |α|2 − (|α|2)2 = |α|2 = ⟨α| a†a |α⟩ = ⟨n⟩.

(3) ∫ 2π

0

1

2π
|eiθ√µ⟩ ⟨eiθ√µ| dθ = 1

2π

∫ 2π

0

∑
n,n′

(eiθ)n−n
′√
µn+n

′

√
n′!n!

|n⟩ ⟨n′| =
∞∑
n=0

e−µµn

n!
|n⟩ ⟨n| ,

where we used 1
2π

∫ 2π

0
ei(n−m)θdθ = δnm.
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3. Quantum teleportation is a process by which quantum information can be
transmitted from one location to another, with the help of quantum entangle-
ment.

(1) Suppose the initials states are |ψ⟩1 = α |0⟩1 + β |1⟩1 , |ψ−⟩23 = 1√
2
(|0⟩2 |1⟩3 −

|1⟩2 |0⟩3). Show that particle 3 can be projected onto the same state as
particle 1 by some local operators after Bell state measurement on particle
1 and 2.

(2) Suppose the initials states are |ψ⟩1 = α |0⟩1+β |1⟩1 , |GHZ⟩234 =
1√
2
(|0⟩2 |0⟩3 |0⟩4+

|1⟩2 |1⟩3 |1⟩4). Show that particle 4 can be projected onto the same state as
particle 1 by some local operators after Bell state measurement on particle
1 and 2 and local X measurement on particle 3.

(3) Explain why we can’t use quantum teleportation to achieve superluminal
communication.

Answer:

(1) The joint state of the three particles can be rewritten as following,

|ψ⟩1 |ψ
−⟩23 = (α |0⟩1 + β |1⟩1)

1√
2
(|0⟩2 |1⟩3 − |1⟩2 |0⟩3)

=
1√
2
(α |001⟩123 − α |010⟩123 + β |101⟩123 − β |110⟩123)

=
1√
2

[
α

1√
2
(|ϕ+⟩12 + |ϕ−⟩12) |1⟩3 − α

1√
2
(|ψ+⟩12 + |ψ−⟩12) |0⟩3

+β
1√
2
(|ψ+⟩12 − |ψ−⟩12) |1⟩3 − β

1√
2
(|ϕ+⟩12 − |ϕ−⟩12) |0⟩3

]
=

1

2

[
|ϕ+⟩12 (α |1⟩3 − β |0⟩3) + |ϕ−⟩12 (α |1⟩3 + β |0⟩3)

− |ψ+⟩12 (α |0⟩3 − β |1⟩3)− |ψ−⟩12 (α |0⟩3 + β |1⟩3)
]

=
1

2

[
|ϕ+⟩12X3Z3(α |0⟩3 + β |1⟩3) + |ϕ−⟩12X3(α |0⟩3 + β |1⟩3)

− |ψ+⟩12 Z3(α |0⟩3 + β |1⟩3)− |ψ−⟩12 (α |0⟩3 + β |1⟩3)
]
.

Bell measurements on the first two particles would project the state of
particle 3 into the same form as |ψ⟩1 up to a local Pauli operator.
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(2) The joint state of the four particles can be rewritten as following,

|ψ⟩1 |GHZ⟩234 = (α |0⟩1 + β |1⟩1)
1√
2
(|000⟩234 + |111⟩234)

=
1√
2
(α |0000⟩1234 + α |0111⟩1234 + β |1000⟩1234 + β |1111⟩1234)

=
1√
2

[
α

1√
2
(|ϕ+⟩12 + |ϕ−⟩12) |00⟩34 + α

1√
2
(|ψ+⟩12 + |ψ−⟩12) |11⟩34

+β
1√
2
(|ψ+⟩12 − |ψ−⟩12) |00⟩34 + β

1√
2
(|ϕ+⟩12 − |ϕ−⟩12) |11⟩34

]
=

1

2

[
|ϕ+⟩12 (α |00⟩34 + β |11⟩34) + |ϕ−⟩12 (α |00⟩34 − β |11⟩34)

+ |ψ+⟩12 (α |11⟩34 + β |00⟩34) + |ψ−⟩12 (α |11⟩34 − β |00⟩34)
]
.

Bell measurements on the first two particles would project the state of
particle 3 and 4 into α |00⟩34 + β |11⟩34 or one of the other three terms.
For example, if particle 3 and 4 are projected into α |11⟩34 − β |00⟩34, then

α |11⟩34 − β |00⟩34 = α
1√
2
(|+⟩3 − |−⟩3) |1⟩4 − β

1√
2
(|+⟩3 + |−⟩3) |0⟩4

=
1√
2
|+⟩3 (α |1⟩4 − β |0⟩4)−

1√
2
|−⟩3 (α |1⟩4 + β |0⟩4)

=
1√
2
|+⟩3X4Z4(α |0⟩4 + β |1⟩4)−

1√
2
|−⟩3X4(α |0⟩4 + β |1⟩4).

Thus, local X measurement on particle 3 would further project the state
of particle 4 into the same form as |ψ⟩1 up to a local Pauli operator.

(3) Without the knowledge of the Bell measurement result, the state of particle
3 is ρ3 = tr12 ρ123 = I/2. So the owner of particle 3 cannot tell whether
the owner of particles 1 and 2 did anything at all unless he receives the
Bell measurement result sent by Alice. Thus, quantum teleportation must
contain the classical communication, meaning that we cannot use it to
communicate faster than light.

4. Consider the following 4-qubit state:

|θ⟩1234 = |ψ⟩1 ⊗
1√
2
(I2 ⊗ U) [(|00⟩23 + |11⟩23)⊗ |ϕ⟩4] ,

where |ψ⟩ = a|0⟩+ b|1⟩ and |ϕ⟩ = c |0⟩+ d |1⟩ are arbitrary qubit states and U is
a two-qubit unitary operator. After Bell state measurement on qubit 1 and 2
of |θ⟩, how can we make the state of qubit 3 and 4 be U(|ψ⟩ ⊗ |ϕ⟩) ?
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Answer:
We have

|θ⟩ = (a|0⟩1 + b|1⟩1)⊗
1√
2
(I2 ⊗ U)(|00⟩23 + |11⟩23)⊗ |ϕ⟩4

=
1

2
[|ϕ+⟩U(a|0⟩+ b|1⟩)|ϕ⟩+ |ϕ−⟩U(a|0⟩ − b|1⟩)|ϕ⟩

+ |ψ+⟩U(a|1⟩+ b|0⟩)|ϕ⟩+ |ψ−⟩U(a|1⟩ − b|0⟩)|ϕ⟩]

where the |ϕ+⟩, |ϕ−⟩, |ψ+⟩ and |ψ−⟩ are the four Bell states. Then we can
perform a transform to obtain U(|ψ⟩ ⊗ |ϕ⟩) in the last two qubits as follows :

Bell state Transform
|ϕ+⟩ U(I ⊗ I)U†

|ϕ−⟩ U(Z ⊗ I)U†

|ψ+⟩ U(X ⊗ I)U†

|ψ−⟩ U(ZX ⊗ I)U†

5. The polarization dependent beam splitter (PDBS), which has transmission
rate TH for horizontal polarization mode and transmission rate TV for vertical
polarization mode, can be used to construct controlled phase gate. In Fig.
1.(a), a PDBS performs the following transformation on input single photon
with path mode a:

α |Ha⟩+β |Va⟩ −→ α(
√
TH |Hd⟩+ i

√
1− TH |Hc⟩)+β(

√
TV |Vd⟩+ i

√
1− TV |Vc⟩),

where |Hd⟩ denotes horizontal polarized photon on path mode d and similar
for the other terms.
In Fig. 1.(b), two input modes a and b are overlapped at PDBS0, with a
PDBS1/2 on each of its output mode. Show that, conditioned on the coinci-
dence detection of output modes c and d, the setup in figure (b) can implement
the controlled phase gate perfectly,

cHH |HaHb⟩+ cHV |HaVb⟩+ cV H |VaHb⟩+ cV V |VaVb⟩

−→ cHH |HdHc⟩+ cHV |HdVc⟩+ cV H |VdHc⟩ − cV V |VdVc⟩ .

Calculate the probability to obtain a coincidence in the outputs.
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(a)PDBS (b)Setup for the controlled phase gate

FIG. 1. Linear optics controlled phase gate.

Answer:
cHH |HaHb⟩+ cHV |HaVb⟩+ cV H |VaHb⟩+ cV V |VaVb⟩

PDBS0−→ cHH |HdHc⟩+ cHV |Hd⟩

(√
1

3
|Vc⟩+ i

√
2

3
|Vd⟩

)

+ cV H

(√
1

3
|Vd⟩+ i

√
2

3
|Vc⟩

)
|Hc⟩

+ cV V

(√
1

3
|Vd⟩+ i

√
2

3
|Vc⟩

)(√
1

3
|Vc⟩+ i

√
2

3
|Vd⟩

)

= cHH |HdHc⟩+
√

1

3
cHV |HdVc⟩+ i

√
2

3
cHV |HdVd⟩+

√
1

3
cV H |VdHc⟩

+ i

√
2

3
cV H |VcHc⟩ −

1

3
cV V |VdVc⟩+ i

√
2

3
cV V (|VcVc⟩+ |VdVd⟩)

Post−selection−→ cHH |HdHc⟩+
√

1

3
cHV |HdVc⟩+

√
1

3
cV H |VdHc⟩ −

1

3
cV V |VdVc⟩

PDBS1/2−→ 1

3
(cHH |HdHc⟩+ cHV |HdVc⟩+ cV H |VdHc⟩ − cV V |VdVc⟩),

where we dropped the terms like |HdVd⟩ since they would not give coincidence
detection on output modes c and d. The probability to obtain a coincidence
is 1/9.

6. We can construct a nondestructive CNOT gate by polarizing beam splitters
(PBS), half-wave plates (HWP), and an ancilla entangled photon pair |ϕ+⟩ab =
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1√
2
(|00⟩ab + |11⟩ab) shown as Fig. 2. Consider an arbitrary input state of the

form |ψ⟩2′3′ = α1|H2′H3′⟩+α2|H2′V3′⟩+α3|V2′H3′⟩+α4|V2′V3′⟩, with control photon
in mode 2′ and target photon in mode 3′. Prove that one can implement the
CNOT operation between photons 2′ and 3′ when detecting a |+⟩ photon in
mode c and a |H⟩ photon in mode d.

FIG. 2. The nondestructive CNOT gate constructed by polarizing beam splitters (PBS), half-wave plates
(HWP), and an ancilla entangled photon pair |ϕ+⟩ab. The PBS with a circle, which performs the same action
as ordinary PBS in the ±45◦ basis, is accomplished by inserting one HWP oriented at 22.5◦ with respect to
the horizontal direction in each of the two inputs (3′ and b) and two outputs (3 and d) of an ordinary PBS.

Answer: The initial state is :

1√
2
(|00⟩+ |11⟩)ab ⊗ (α1|HH⟩+ α2|HV ⟩+ α3|V H⟩+ α4|V V ⟩)2′3′ ,

and then

HWP−→ 1√
2
(|0+⟩+ |1−⟩)ab(α1|H+⟩+ α2|H−⟩+ α3|V+⟩+ α4|V−⟩)2′3′
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PBS−→ 1

2
√
2
(|HH⟩cd + |HV ⟩c3 + |V H⟩2d − |V V ⟩23)⊗

[(α1 + α2)|HH⟩23 + (α1 − α2)|HV ⟩2d + (α3 + α4)|V H⟩c3 + (α3 − α4)|V V ⟩cd]
HWP−→ 1

2
√
2
(|H+⟩cd + |H−⟩c3 + |V+⟩2d − |V−⟩23)⊗

[(α1 + α2)|H+⟩23 + (α1 − α2)|H−⟩2d + (α3 + α4)|V+⟩c3 + (α3 − α4)|V−⟩cd]

when detecting a |+⟩ photon in mode c and a |H⟩ photon in mode d, the state
in mode 2, 3 is :

α1|HH⟩23 + α2|HV ⟩23 + α3|V V ⟩23 + α4|V H⟩23,

which is equal to implement the CNOT operation between photons 2′ and 3′.

7. Alice and Bob prepare phase randomized weak coherent pulses (WCPs) in
a different BB84 polarization state which is selected, independently and at
random for each signal, by means of a polarization modulator (Pol-M). De-
coy states are generated using an intensity modulator (Decoy-IM). Inside the
measurement device, signals from Alice and Bob interfere at a 50 : 50 beam
splitter (BS) that has on each end a polarizing beam splitter (PBS) project-
ing the input photons into either horizontal (H) or vertical (V) polarization
states (see Fig. 3). Four single-photon detectors are employed to detect the
photons. A successful Bell state measurement corresponds to the observation
of precisely two detectors (associated to orthogonal polarizations) being trig-
gered. Successful detection events and the corresponding measurement results
are publicly announced

(1) Which state are the two photons projected into when there is a click in
D1H and D2V , or in D1V and D2H?

(2) Which state are the two photons projected into when there is a click in
D1H and D1V , or in D2H and D2V ?

(3) Alice and Bob post-select the events where the relay outputs a successful
result and they use the same basis in their transmission. To guarantee
that their bit strings are correctly correlated, either Alice or Bob has to
apply a bit flip to her or his data. Please give a protocol which make their
bit strings correctly correlated.
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FIG. 3. Basic setup of a MDI-QKD protocol.

Answer:

(1) A click in D1H and D2V , or in D1V and D2H indicates a projection into the
Bell state |ψ−⟩ = 1/

√
2(|HV ⟩ − |V H⟩).

(2) A click in D1H and D1V , or in D2H and D2V indicates a projection into the
Bell state |ψ+⟩ = 1/

√
2(|HV ⟩+ |V H⟩).

(3) Alice and Bob should apply a bit flip to her/his data according to their
basis and the BSM results as follows :

TABLE I. Successful Bell state measurements
BSM results |ψ−⟩ |ψ+⟩

Rectilinear basis Bit flip Bit flip
Diagonal basis Bit flip No bit flip

8. Consider the MDI-QKD with one entangled photon source in the middle (see
Fig. 4). Each of Alice and Bob prepares phase-randomized weak coherent
pulses (WCP) in one of the four BB84 polarization states randomly and in-
dependently. Meanwhile, an untrusted source, Charles, prepares polarization
entangled photon pairs using a singlet |ψ−⟩ = 1√

2
(|HV ⟩ − |V H⟩). All three

parties send quantum signals to two untrusted relays, David and Ethan, each
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of whom is supposed to perform a Bell state measurement that projects the
incoming signals into a Bell state. In the classical communication phase, both
of David and Ethan use classical channels to broadcast their successful mea-
surement results. Alice and Bob keep the successful events and discard the
rest, then post-select the events where they use the same basis. Either Alice
or Bob can apply a bit flip to her/his data according to their basis and the
BSM results. Please give a protocol which make their bit strings correctly
correlated.

FIG. 4. MDI-QKD with one entangled photon source in the middle.

Answer:
Alice and Bob should apply a bit flip to her/his data according to their basis
and the BSM results as follows :

TABLE II. Successful Bell state measurements
BSM results |ψ+⟩|ψ+⟩ |ψ−⟩|ψ−⟩ |ψ+⟩|ψ−⟩ |ψ−⟩|ψ+⟩

Z-basis Flip Flip Flip Flip
X-basis Flip Flip Non-flip Non-flip

9. Suppose three EPR sources produce three pairs of entangled photons,

|ϕ+⟩12 =
|00⟩12 + |11⟩12√

2
, |ϕ+⟩34 =

|00⟩34 + |11⟩34√
2

, |ϕ+⟩56 =
|00⟩56 + |11⟩56√

2
.
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Photons 2, 4, and 6 are projected to GHZ-state |000⟩−|111⟩√
2

. Then, what is the
state of the photons 1, 3 and 5?
Answer:

246⟨GHZ|(|ϕ+⟩12 ⊗ |ϕ+⟩34 ⊗ |ϕ+⟩56) ∝
|000⟩135 − |111⟩135√

2
. (1)

Therefore, the state of the photons 1, 3 and 5 is GHZ state |000⟩−|111⟩√
2

.

10. The Schmidt number of a bi-partite pure state is the number of non-zero
Schmidt components. Prove that the Schmidt number of a pure quantum state
cannot be increased by local unitary transforms and classical communication.
Answer:
Suppose that a bi-partite state |ϕAB⟩ has Schmidt decomposition as

|ϕAB⟩ =
n∑
i

λi|ψAi ⟩|ψBi ⟩,

where n is the Schmidt number,λi > 0 for i = 1, 2, . . . , n, and |ψAi ⟩(|ψBi ⟩) form
an orthonormal set. After local unitary transformation and classical commu-
nication, the state is changed to

|ϕ̃AB⟩ =
n∑
i

λiU
A|ψAi ⟩UB|ψBi ⟩ =

n∑
i

λi|ψ̃Ai ⟩|ψ̃Bi ⟩

Because UA and UB are local unitary operations, |ψ̃Ai ⟩ and |ψ̃Bi ⟩ still form two
set of orthonormal vectors. Therefore, the above equation gives the Schmidt
decomposed form of |ϕ̃AB⟩ and the Schmidt number remains n.


