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Symmetries in quantum mechanics

Requirement: A symmetry transformation does not change possible results of any obser-
vation or experiment.

Ray: Normalized kets in Hilbert space |Ψ⟩ and ξ|Ψ⟩ with |ξ| = 1 represent the same state
of the system. Ray is a collection of all the states {ξ|Ψ⟩} ≡ RΨ ⊂ H.

The results of an observation experiment are given by states in orthogonal rays R1,R2, · · · .

Two experiments observing a same thing have two sets {Rn} and {R′
n}, but the symmetry

requires

P(R → Rn) = P(R′ → R′
n) (1)

Wigner shows:
Such a transformation R → R′ can be expressed as an operator Û in Hilbert space,
such that |Ψ⟩ ∈ R and Û |Ψ⟩ ∈ R′. The operator Û can be unitary and linear, i.e.,

⟨ÛΦ|ÛΨ⟩ = ⟨Φ|Ψ⟩ and Û(a|Ψ⟩+ b|Φ⟩) = aÛ |Ψ⟩+ bÛ |Φ⟩ (2)

or anti–unitary and anti–linear,

⟨ÛΦ|ÛΨ⟩ = ⟨Φ|Ψ⟩∗ and Û(a|Ψ⟩+ b|Φ⟩) = a∗Û |Ψ⟩+ b∗Û |Φ⟩ (3)
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Symmetries in quantum mechanics

Classification of symmetries:
Discrete symmetry: Space reflection (r → −r), time reversal (t → −t), point group
symmetry (lattice structure), particle exchange, etc.

Continuous symmetry (expressed by several continuous parameters): Space translation
(r → r + r0), space rotation r → Rr, Lorentz transformation, gauge symmetry, etc.

A type of symmetries form a group. The multiplication of two symmetry operators is still
a symmetry operator.

In quantum mechanics, most of the symmetries correspond to unitary linear operators
except for the time reversal symmetry. For continuous symmetries, the unitary operators
can be expressed with several parameters ε and satisfy

Û = 1 + iεt, (4)

when ε are small enough.

Yu Su Quantum Physics Exercise Class III 3 / 13



Displacement operator

Infinitesimal definition:

D̂(a) ≡ 1− i

ℏ
p̂ · a+O(a2) (5)

with commutation relations [p̂i, p̂j ] = 0.
Requirement:

D̂†(a)x̂D̂(a) = x̂+ a (6)

or

D̂(a)|x⟩ = |x+ a⟩ (7)

These lead to [x̂i, p̂j ] = iℏδij .
Finite form:

D̂(a) = e−ip̂·a/ℏ (8)

For the wave function, it recovers the conventional Taylor expansion,

ψ(x− a) = e−∇·aψ(x) =

(
1− a · ∇+

1

2

∑
ij

aiaj∂i∂j + · · ·
)
ψ(x) (9)
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Rotation

Infinitesimal definition:

D̂(n̂, θ) ≡ 1− i

ℏ
θn̂ · Ĵ +O(θ2) (10)

where n̂ is the rotation axis and θ is the rotation angle. Here, the generators, Ĵ , are
the angular momentum operators, satisfying

[Ĵi, Ĵj ] = iℏϵijkĴk (11)

One can simultaneously diagonalize Ĵ2 and Ĵz as

Ĵ2|j,m⟩ = ℏ2j(j + 1)|j,m⟩ and Ĵz|j,m⟩ = ℏm|j,m⟩ (12)

with j = 0, 1
2
, 1, · · · and m = −j,−j + 1, · · · , j. The orthogonal and complete

relations are

⟨j,m|j′,m′⟩ = δjj′δmm′ and
∑
j,m

|j,m⟩⟨j,m| = 1 (13)

Define Ĵ± ≡ Ĵx ± iĴy, and we have

Ĵ±|j,m⟩ = ℏ
√

(j ∓m)(j ±m+ 1)|j,m± 1⟩ (14)
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Orbital angular momentum

Definition:

L̂ ≡ r̂ × p̂ (15)

Commutation relations:

[L̂i, L̂j ] = iℏϵijkL̂k (16)

Eigenstates: |l,m⟩ with l = 0, 1, 2, · · · .
Spherical harmonics: Yl,m(θ, ϕ) ≡ ⟨θ, ϕ|l,m⟩, satisfying[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
+ l(l + 1)

]
Yl,m(θ, ϕ) = 0 (17)
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Relation to classical rotation

Classical rotation:

x′ = Rx (18)

with R being an orthogonal matrix satisfying RTR = RRT = I and detR = 1.
Parametrize it as

R(n̂, θ) = eθn̂·⃗J (19)

with

(Ji)jk = −ϵijk (20)

In quantum mechanics,

D̂†(n̂, θ)x̂D̂(n̂, θ) = Rx̂ (21)

Generalize it: If V̂ is a vector operator, it satisfies

D̂†(n̂, θ)V̂ D̂(n̂, θ) = RV̂ (22)

or equivalently, [V̂i, Ĵj ] = iℏϵijkV̂k. If K̂ is a scalar, it satisfies

D̂†(n̂, θ)K̂D̂(n̂, θ) = K̂ (23)
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Spin

Spin as an internal degree of freedom of particles also satisfies the algebra of angular
momentum.
For spin– 1

2
, j = 1

2
and we denote

Ŝz|±⟩ = ±ℏ
2
|±⟩, Ŝ2|±⟩ = 3

4
ℏ2|±⟩ (24)

Pauli matrices:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
(25)

with Ŝi =
ℏ
2
σ̂i.

Properties:
[σ̂i, σ̂j ] = 2iϵijkσ̂k, {σ̂i, σ̂j} = 2δij , σ̂iσ̂j = δij + iϵijkσ̂k (26)

The rotation transformation operator can be evaluated as

D̂(n̂, θ) = e−iθn̂·σ/2 = cos
θ

2
− in̂ · σ sin

θ

2
(27)

Pauli matrices together with unit matrix form a basis of 2× 2 matrix space, i.e.,

A = a0I+

3∑
j=1

aj σ̂j , a0 =
1

2
TrA, aj =

1

2
Tr(σ̂jA) (28)
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Addition of angular momenta

Consider two angular momenta, Ĵ1 and Ĵ2. Define their addition as

Ĵ ≡ Ĵ1 ⊗ 1 + 1⊗ Ĵ2 (29)

Total Hilbert space is expanded via

|j1j2;m1m2⟩ ≡ |j1,m1⟩ ⊗ |j2,m2⟩ (30)

On the other hand, we can construct eigenbasis from

[Ĵ2, Ĵz] = [Ĵ2, Ĵ2
1 ] = [Ĵ2, Ĵ2

2 ] = 0 (31)

as |j1j2; jm⟩. For given j1 and j2, we have

|j1j2; jm⟩ =
∑

m1,m2

|j1j2;m1m2⟩⟨j1j2;m1m2|j1j2; jm⟩ (32)

Here ⟨j1j2;m1m2|j1j2; jm⟩ is called Clebsch–Gordan (CG) coefficient.
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Addition of angular momenta

From

(m−m1 −m2)⟨j1j2;m1m2|j1j2; jm⟩ = 0 (33)

we know CG coefficients vanish unless m = m1 +m2.
The maximum of j goes by

jmax = mmax = j1 + j2 (34)

From the identity

(2j1 + 1)(2j2 + 1) =

j1+j2∑
|j1−j2|

(2j + 1) (35)

we know jmin = |j1 − j2|.
For a scalar operator K̂, we have

⟨γ′, j′,m′|K̂|γ, j,m⟩ ∝ δjj′δmm′ (36)

For a vector operator V̂ ,

⟨γ′, j′,m′|V̂q|γ, j,m⟩ ∝ ⟨j1; j′m′|j1;mq⟩ (37)
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Hydrogenlike atomic systems

Hamiltonian:

Ĥ =
p̂2

2me
− Ze2

r̂
(38)

Eigenvalues (for boundary states):

En = −Z
2

n2
R (39)

with n = 1, 2, · · · , R = e2

2a0
, and a0 = ℏ2

mee2
.

Eigenstates:

⟨r|n, l,m⟩ = Rn,l(Zr/a0)Yl,m(θ, ϕ) ≡ ψn,l,m(r) (40)

with

⟨n, l,m|n′, l′,m′⟩ =
∫ 2π

0

dϕ

∫ π

0

sin θdθ

∫ ∞

0

r2dr ψ∗
n,l,m(r)ψn′,l′,m′(r) = δnn′δll′δmm′

(41)
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Runge–Lenz vector and hidden symmetry

Definition:

R̂ ≡ −Ze
2r̂

r̂
+

1

2me
(p̂× L̂− L̂× p̂) (42)

Properties:
[Ĥ, R̂] = 0 and L̂ · R̂ = R̂ · L̂ = 0 (43)

and

R̂2 = Z2e4 +
2Ĥ

me
(L̂2 + ℏ2) (44)

[R̂i, R̂j ] = − 2i

me
ℏ
∑
k

ϵijkĤL̂k (45)

Define

Â± ≡ 1

2

(
L̂±

√
me

−2E
R̂

)
(46)

in the subspace of E < 0 with
[Â±,i, Â±,j ] = iℏϵijkÂ±,k and [Â±,iÂ∓,j ] = 0 (47)

and
Â2

± =
1

4

[
L̂2 +

(
me

−2E

)
R̂2

]
(48)
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Runge–Lenz vector and hidden symmetry

Â2
± have common eigenvalues, being

ℏ2a(a+ 1) (49)

with a being any half integer.
This leads to

ℏ2a(a+ 1) =
1

4

[
L̂2 +

(
me

−2E

)
R̂2

]
=

1

4

[
L̂2 +

(
me

−2E

)
Z2e4 − (L̂2 + ℏ2)

]
=

(
me

−8E

)
Z2e4 − ℏ2

4
(50)

Thus

E = − Z2e4me

2ℏ2(2a+ 1)2
(51)
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