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Symmetries in quantum mechanics

Requirement: A symmetry transformation does not change possible results of any obser-
vation or experiment.

Ray: Normalized kets in Hilbert space |¥) and &|¥) with |{| = 1 represent the same state
of the system. Ray is a collection of all the states {£|U)} = Ry C H.

The results of an observation experiment are given by states in orthogonal rays R1, Rz, - - -

Two experiments observing a same thing have two sets {R,,} and {R},}, but the symmetry
requires

P(R = Rn) =P(R — R.) (1)

Wigner shows:

@ Such a transformation R — R’ can be expressed as an operator U in Hilbert space,
such that |¥) € R and U|W¥) € R'. The operator U can be unitary and linear, i.e.,

(UD|UW) = (B|T) and U(a|T) + b|®)) = al|¥) + bU| ) ()
or anti—unitary and anti-linear,
(UD|UT) = (®|T)* and U(a|¥) +b|®)) = a*U|¥) + b*U|®) (3)
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Symmetries in quantum mechanics

Classification of symmetries:

o Discrete symmetry: Space reflection (r — —r), time reversal (¢ — —t), point group
symmetry (lattice structure), particle exchange, etc.

o Continuous symmetry (expressed by several continuous parameters): Space translation
(7' —r+ ro), space rotation r — Rr, Lorentz transformation, gauge symmetry, etc.

A type of symmetries form a group. The multiplication of two symmetry operators is still
a symmetry operator.

In quantum mechanics, most of the symmetries correspond to unitary linear operators
except for the time reversal symmetry. For continuous symmetries, the unitary operators
can be expressed with several parameters ¢ and satisfy

U =1+ iet, (4)

when € are small enough.

AT E e Frrm e crEE ] 7



Displacement operator

o Infinitesimal definition:
D(a)=1- %ﬁ-a+0(a2) (5)

with commutation relations [p;, p;] = 0.

@ Requirement:

D'(a)&D(a) =2 +a (6)
or
D(a)lz) = |2 +a) (7)
These lead to [Z;,p;] = ihdy;.
e Finite form:
D(a) = e ®/" (8)

@ For the wave function, it recovers the conventional Taylor expansion,

ve-a) = @ = (1-a- V4 ;Y aa0d o i@ ©

ij
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@ Infinitesimal definition:

P(h,60) =1 — %91& J+00%) (10)

where 1 is the rotation axis and € is the rotation angle. Here, the generators, J, are
the angular momentum operators, satisfying

[Ji, Jj] = iheijnJy (11)

@ One can simultaneously diagonalize J? and J, as

T2lj,m) = B%(j + V)|j,m) and  J.|j,m) = hmlj,m) (12)
with j = 0,1,1,--- and m = —j,—j + 1,---,j. The orthogonal and complete
relations are

<jam|j/7m,> = 6jj’6mm’ and Z |.77 m><.77m| =1 (13)
Jjm

o Define Jy = Jp £ ijy, and we have

Jilj,m) = /(G Fm)(j £m+1)|j,m £ 1) (14)
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Orbital angular momentum

@ Definition:
L=#xp (15)
o Commutation relations:
[Li, Lj] = iheij L (16)
o Eigenstates: |I,m) with [ =10,1,2,---.
@ Spherical harmonics: Y, (0, ¢) = (0, ¢|l, m), satisfying
Lii(}% (ma%) 4 ﬁa% I+ | Yin(6,6) =0 (17)
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Relation to classical rotation

o Classical rotation:
x' =Rz (18)

with R being an orthogonal matrix satisfying RTR = RRT =1 and detR = 1.

o Parametrize it as

R(f, 0) = ™7 (19)
with
(Ji)jk = —€ijn (20)
@ In quantum mechanics,
Di(n,0)2D(n,0) = R (21)

Generalize it: If V is a vector operator, it satisfies

DY (h,0)VD(h,0) = RV (22)
or equivalently, [V;, J;] = ihe;jxVi. If K is a scalar, it satisfies

Di(a,0)KD(h,0) = K (23)
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@ Spin as an internal degree of freedom of particles also satisfies the algebra of angular
momentum.
e For spin—%, j= % and we denote

Sty =014y, §) = D) (24)

o Pauli matrices:

. _ (0 1 . (0 —i . (1 0
w=( o) =0 ) =0 ) @
with S'Z:ga'l
@ Properties:
[(3'1‘,63‘] = Zieijkﬁ'k, {&i,é'j} = 2(51‘3‘, (3'1‘&]‘ = 5”' + ’ieijké'k (26)

@ The rotation transformation operator can be evaluated as

A _ibh-o 0 .0
D(n,0) =e /2:cos§—zn~o'sm§ (27)
@ Pauli matrices together with unit matrix form a basis of 2 x 2 matrix space, i.e.,
> 1 1
A =aol+ ;aj&j, ao = §TrA, aj = §Tr(6jA) (28)
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Addition of angular momenta

o Consider two angular momenta, jl and jg. Define their addition as
J=Ji91+10Js (29)
@ Total Hilbert space is expanded via
lj1d2; mame) = |1, m1) ® |j2, m2) (30)
@ On the other hand, we can construct eigenbasis from
[J?, ] = [J%, Jf) = [J*, 03] =0 (31)
as |j1j2; jm). For given ji and ja2, we have

lugas jm) = > ldudasmama) (jije; maimaljijz; jm) (32)

my,m2

Here (j1j2; mimaljijz; jm) is called Clebsch—Gordan (CG) coefficient.
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Addition of angular momenta

e From
(m —ma — m2)(j1j2; mimal|jij2; jm) =0 (33)

we know CG coefficients vanish unless m = m1 + mo.

@ The maximum of j goes by

jmax = Mmax — jl +]2 (34)
o From the identity
j1+i2
@i+ DR+ = > (2/+1) (35)
[71—d2]

we know jmin = |j1 — Jo|.

@ For a scalar operator K, we have

<’y,aj,am,|f(|77ja m> X 6jj'6mm’ (36)
@ For a vector operator V
(53" m'\Valy, g, m) o< (15 5'm[j1;ma) (37)

QAT EFE S Frere TG eI WE



Hydrogenlike atomic systems

@ Hamiltonian:

2 2
- D Ze
H= — 38
2Me T ( )
o Eigenvalues (for boundary states):
Z2
E, = _ﬁR (39)
withn=1,2,---, R = 2220, and a9 = %262
o Eigenstates:
<T‘n7 L m> = Rnyl(ZT/ao)}/l,m (07 ¢) = d)n,l,m("') (40)

with

27 ™ 0o
(n,L,m|n’,l',m") :/ d¢ sin@d@/ 72Ar 2 1 (P 11t (1) = St G117 Ot
0 0 0
(41)
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Runge—Lenz vector and hidden symmetry

o Definition:
- Ze? 1 PN
R=— px L — L xp 42
g b xL—Lxp) (2
@ Properties:
[H,R]=0 and L-R=R-L=0 (43)
and
2=zt 4 2B i ) (44)
Me
2 -
¢k
@ Define
P 1/~ Me -~
Ai:g(L:l: —2ER> (46)
in the subspace of E < 0 with
[Aj:yh AA:{:,]‘] = iheijk/li,k and [Ai’i/iq:,j] =0 (47)
and 1
A2 = 2|f2? Me 2 4
e+ (55) (48)
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Runge—Lenz vector and hidden symmetry

° Ai have common eigenvalues, being
hla(a+1) (49)

with a being any half integer.
@ This leads to

2 _ l 72 Me 2

et s = L[5+ (25 ]
il (e o]

2

= <7";E)Z%4— % (50)
Thus
2 4

p=__Zcme (51)

T 2m2(2a+1)2
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