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1 Probability Space and Random Variable

1.1 Probability space
A probability space (€2, F,P) contains three elements:
e The space (2: this is a non-empty set. It can be viewed as the set of all possible outcomes.
e The o-field F: this can be viewed as a collection of all the events.
e The probability measure P: this is a function from F to [0, 1]. It gives a probability to each event.
Definition 1.1.1. Suppose F is a non-empty collection of subsets of €.
o [t is a field, if it is closed under complementation and closed under union:
Ae F= A°e F.
A, Ase F= Aj U Ay e F.
e [t is a monotone class if
Aje FAjcAj,1<j <= uUj;Aje F.
Aje FLA; D Aj,1<j <= njA;eF.
o [t is a o-field if it is closed under complementation and closed under countable union:
Ae F= A°e F.
Aje F1<j<ow= uUjdjeF.
Lemma 1.1.2. A field is a o-field if and only if it is a monotone class.

Note that the collection {7, 2} is a o-field, and we call it the trivial o-field; the collection of all subsets
of Q is a o-field, and we call it the total o-field. Suppose J is an index-set (not necessarily countable),
and Fj is a o-field for each j € J, then nje;F; is also a o-field.

Definition 1.1.3. Given any collection C of sets, the o-field (resp. monotone class) generated by C is
the intersection of all o-fields (resp. monotone classes) containing C.

Lemma 1.1.4. Suppose A is a field. Denote by F the o-field generated by A and by G the monotone
class generated by A. Then F = G.

Proof. Since F is a monotone class, we have G ¢ F. To prove F c G, it is sufficient to show that G is a
o-field. By Lemma 1.1.2, it is sufficient to show G is a field, i.e. to show G is closed under intersection
and is closed under complementation.

We first show that G is closed under intersection. Define

G ={EFeG:EnFeGVFeA}, G ={FeG:EnFegVFeg}.

For G, we see A c Gy since A is a field, and G; is a monotone class. By the minimality of G, we find
G < Gy and hence G = G1. For Gy, we see A < G since G = Gy, and G, is a monotone class. Again we
find G = Go. Hence G is closed under intersection.

Next, we show that G is closed under complementation. Define

Gs={EeG:E°egG}.

Since A < G3 and G3 is a monotone class, we find G = G3 as desired. O]



Example 1.1.5. The union of a countable collection of o-fields {F;} such that F; < Fjq1 need not be
a o-fields. For example, Q = Z~o and F; is the o-field generated by {{1},{2},...,{j}}. For each j, the
o-field Fj is finite; but the o-field generated by U;F; is nolonger countable.

In contrast, the intersection of o-fields is always a o-field. Suppose J is an index set and Fj is a
o-field for each j € J. The intersection NjejF; is a o-field. But the union need not be a o-field. We
denote by v jejF; the o-field generated by UjecsF;.

Definition 1.1.6. Suppose F is a o-field on Q. A probability measure P is a function from F to [0,1]
satisfying the following axioms:

e P[E] >0 for all E € F;
e P[Q] =1.
o If{E;}; is a countable collection of pairwise disjoint sets in F, then P[u;E;] = >, P[Ej].
These axioms imply the following consequences:
e P[E‘] =1-P[E].
e P[EUF|+P[EnF|=P[E]+P[F].
e Continuity: if F,, 1 E or E,, | E then P[E,] — P[E].
e Plu;E;] < X, PLES].
Example 1.1.7. Suppose Q is a countable set: Q@ = {w;,j € J} where J is countable. Let F be the total

o-field. Suppose {p;,j € J} is a sequence of numbers satisfying

pj=0VYjed; Yopi=1
J

Define P : F — [0, 1] as follows:
PE]:= ) pj, VEeF.
j:ijE
Then (2, F,P) is a probability space.

Example 1.1.8. LetU = (0,1] and let C be the collection of intervals (a,b] where 0 < a <b < 1. Let B be
the o-field generated by C and let Leb be the Lebesgue measure on (0,1]. Then (U, B, Leb) is a probability
measure.

Theorem 1.1.9 (Carathéodory’s Extension Theorem). Suppose Fy is a field and F is the o-field generated
by Fo. Suppose i is a probability measure on Fy. Then there exists a unique probability measure on F
that coincides with u on Fo.

Proof. Proof of existence: reading. Proof of uniqueness: Suppose p and v are probability measures on F
such that g = v on Fy. Then 4 = v on F.
Define
C={EeF:uFE]=v[E]}.

We see Fg < C by the hypothesis, and we find C is a monotone class. Lemma 1.1.4 gives that F < C
which completes the proof. O



Let us discuss the probability measures on R = (—o0, ). Let C be the collection of intervals of the
form (a,b] with a < b. The field By generated by C consists of finite union of disjoint sets of the form
(a,b],(—00,a] or (b,). Denote by B the o-field generated by C. It coincides with the Borel field on R.
However, the Borel-Lebesgue measure is not a probability measure on R.

The question of probability measures on R is closely related to distribution functions. A function
F : R — [0,1] is a distribution function if it is increasing and right-continuous with F(—o0) = 0 and
F(+w) =1.

Proposition 1.1.10. Fach probability measure p on R uniquely determines a distribution function F
through:
u((—oo,z]) = F(z), VzeR. (1.1.1)

Conversely, given a distribution function F, there exists a unique probability measure p on R satisfy-
ing (1.1.1).

It is clear that the function F' defined by a probability measure p via (1.1.1) is a distribution function.
Moreover, we have u((a,b]) = F(b) — F(a) for a < b; and pu({z}) = F(z) — F(z—) for x € R. The converse
direction is a particular case of the extension theorem.

Corollary 1.1.11. If two probability measures on R agree on all intervals of the form (a,b] with a < b,
then they agree on B.

Definition 1.1.12. The probability space (2, F,P) is complete if any subset of a set in F with P[F] =0
also belongs to F.

We call a set F' € F a null set if P[F'] = 0. We say a property holds almost surely if it holds except on
a null set. Any probability space can be completed by the following theorem. What is the advantage of
completion? Suppose a property holds almost surely, i.e. it holds outside a certain set N with P[N] = 0.
Then the set on which it fails to hold is a subset of N, not necessarily in F. However, we sometimes need
the measurability of the exact exceptional set to proceed.

Theorem 1.1.13. Given any probability space (Q, F,P), there exists a complete space (0, F,P) such that
FcF andP =P on F.

Proof. Denote by N the collection of sets that are subsets of null sets, and define
F={EcQ:EAFeN, for some F € F}.
We can check that F = F and F is a o-field. Define P on F as follows:
P[E] = P[F],
where F' € F is any set such that EAF € N. This is well-defined, because
FIAF, = (EAF))A(EAF,)

which implies F;AFy € N and P[F}] = P[F,]. In order to check (£, F,P) is a completion of (2, F,P), it
remains to check:

e P =P on F: this is clear.
e P is a probability measure on F: exercise.

e P is complete: in fact, we can show that if P[E] = 0 for E € F, then E € N. Hence any subset of
E belongs to N < F.

O

Hereafter, we always assume the probability space is complete.



1.2 Random variable
Suppose (2, F,P) is a probability space. Denote by R = (—00, ) and by B the Borel-field on R.

Definition 1.2.1. A real-valued random variable is a function X :  — R such that
X '(B)eF, VBeB.
In other words, a random variable is just a measurable function from (Q,F) to (R, B).

This definition of random variable is the one we mostly use. But for logical reasons, we sometimes
need its generalization, see [Chu01, Section 3.1].

Note that, if X is a random variable and f is a Borel measurable function on (R, B), then f(X) is also
a random variable. The indicator function 14 :  — {0,1} is a random variable if and only if A € F.

Lemma 1.2.2. X is a random variable if and only if
XY ((~o,x]) € F, VzeR.
Proof. Only need to show the “only if” part. Define
C={BeB:X'(B)eF}.

We can check C is a o-field. By the hypothesis, C contains {(—o0,z] : x € R} which generates B. This
implies C = B as desired. ]

Lemma 1.2.3. If {X;,j > 1} is a sequence of random variables, then
inf X;, supXj;, liminfX;, limsupX;
J J J J

are random variables. Note that they are everywhere well-defined, but they are not necessarily finite-valued
with probability one. If they are not finite-valued, then we need to use the generalized definition of random
variables.

Proof. Note that

{inf Xj > 2} = nj{X; > 2}, {supX; <z}=n;{X;<z}, VezeR
J J

Combining with Lemma 1.2.2, we see that inf; X, sup; X; are random variables.
Note that
lim inf X; = sup(inf X;), limsup X; = inf(sup Xj).
; n

J n Jj=n J j=zn

These guarantee that they are random variables. O

Definition 1.2.4. Fach random variable X induces a probability measure p on (R,B) by the following
correspondence:
p[Bl =P[X YB)]=P[XeB], VBeB.

The measure i is called the law (or the distribution) of X, denoted by L(X); its associated distribution
function is called the distribution function of X, denoted by Fx.

Specifically, the distribution function F' of X is given by
F(z)=P[X <z], VzxeR.

The random variable X determines p and hence F'; whereas, its converse is obviously false. A family of
random variables having the same distribution is said to be identically distributed.



Example 1.2.5. Suppose (U, B, Leb) is the probability measure in Example 1.1.8. The functions X (w) =

w and Y(w) = 1 —w are random variables. They are not identical but they are identically distributed;
their common law is Leb.

Next, we discuss the density of distribution function. To this end, we need to discuss absolute conti-
nuity.

Definition 1.2.6. A function F': I € R — R is absolutely continuous if, for every e > 0, there exists § > 0

such that whenever a finite sequence of pairwise disjoint intervals (zy,yr) of I satisfies D) (yp — x) <9,
then

2P () = Flaw)| < e
k
Lemma 1.2.7. The following conditions of F' on a compact interval I = [a,b] are equivalent.

(1) F is absolutely continuous.

(2) F has derivative F' almost everywhere, the derivative is Lebesgue integrable, and

Flz) = Fla) + f Fy)dy, Ve [a,b].

Moreover, we have the following relation: suppose functions are defined on a compact interval, then

{continuously differentiable} — {Lipschitz continuous} c {absolutely continuous}

c {differentiable almost everywhere}.

Suppose the distribution function F' is absolutely continuous, then there exists an integrable function
p such that

b
F(b) = F(a) + J p(z)dx.

We define the function p as the density function. Note that it is defined up to a zero-measure set. As we

usually consider the integral of p, its value on a zero-measure set does not contribute. Thus there is no
ambiguity.

Definition (Definition 1.2.6 bis). A probability measure v on (R, B) is absolutely continuous (with respect
to Lebesgue measure) if, for every measurable set A, Leb[A] = 0 implies u[A] = 0.

Lemma (Lemma 1.2.7 bis). The following conditions of a probability measure y are equivalent.
(1) w is absolutely continuous.

(2) For every e > 0, there exists § > 0 such that

ulA] <e, aslong as Leb[A] < 6.
(8) There exists a Lebesgue integrable function p such that

plA] = j p(z)dxz,  for all Borel sets A.
A
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Example 1.2.8 (Uniform distribution).

0, =<0, 0, =<0,
PIX<z]=<{z, 0<z<I, plx) =11, 0<x<1,
1, z>1 0, z=>1
Example 1.2.9 (Exponential distribution with parameter A > 0).
0 <0 0 <0
P[X <zl = ) ) ) = ) )
[ | {1—6_”, x> 0. plw) {)\e_)‘x, x = 0.
We denote this law by Exp(\).
Example 1.2.10 (Normal distribution).
T 1 562
PIX <=z| = dy, where p(x) = exp(——).
(X <al= [ oy pla) = —=exp(= )

We denote this law by N'(0,1). Suppose X ~ N(0,1), for m € R,o > 0, we see that c X + m has density

p(z) = \/2;7@@ (—(:E_m)z> :

202
We denote this law by N'(m, o).

Example 1.2.11 (Bernoulli distribution with parameter p € (0,1)).

Example 1.2.12 (Poisson distribution with parameter A > 0).

_ M

P[X:k]—ﬁe s

fork=0,1,2,....

We denote this law by Poisson(\).

Example 1.2.13 (Geometric distribution with success probability p € (0,1)).
P[N = k] =p(1—p)* L, fork=1,2,....

Next, we will discuss random vector. This is just a vector each of whose components is a random
variable. It is sufficient to consider the case of two dimensions.

Recall that the Borel field B2 on R? is the o-field generated by rectangles of the form (a,b] x (c,d].
It is also generated by product sets of the form B; x Bs where B, Bs € B. Let X,Y be two random
variables on (£, F,P). The random vector (X,Y’) induces a probability measure on B

v[A] = P[(X,Y) e A], VAeB. (1.2.1)

If X,Y are random variables, and f is a Borel measurable function on (R?,B2), then f(X,Y) is also a
random variable.



1.3 Expectation

The concept of “expectation” is the same as integration in the probability space (€2, F,P) which we briefly
review.

A random variable X is discrete if it takes values in a countable set, i.e. there exists a countable set
B c R such that P[X € B] = 1. In this case, we write B = {b;}; and denote by A; = {w e Q: X (w) = b;}
for each j. Suppose X is positive discrete, and define its expectation to be

E[X] = ) 0;P[A].

One can check that this is well-defined.
Suppose X is a positive random variable. For m,n € Z~(, define

AP ={w:n<X<n+1}.
2m 2m

For m € Z~, define

Then X, is positive discrete and
Xm(w) < Xmt1(w), 0< X (w) — Xp(w) < —.
The expectation E[X,,] is defined as above and this is a sequence increasing in m. Define
E[X] = imE[X,,].
m

This is well-defined and its definition agrees with the previous definition if X is discrete.
For an arbitrary random variable X, put

X=X"-X", where XT=Xv0, X =(-X)vOo.

Both X* and X~ are positive random variables, their expectations are defined. If both E[X *] and E[X ]
are infinite, we say that the expectation of X does not exist; otherwise, we define

E[X] = E[X*] — E[X"].

In the case of (U, B, Leb), the expectation reduces to the ordinary Lebesgue integral.
Now, we collect some basic properties of the expectation. Suppose X, Y, X, are random variables and
a,b are constants.

e E[X] is finite if and only if E[|X|] is finite.

e Linearity: E[aX + bY] = aE[X] + bE[Y], provided that the right hand side is meaningful.

Positivity: If X > 0 a.s., then E[X] > 0.

Monotonicity: If X <Y a.s., then E[X] < E[Y].

Dominated convergence theorem: If lim,, X,, = X a.s. and |X,,| <Y a.s. where E[Y] < o0, then X
is integrable and

limE[| X, — X[] =0, lmE[X,] = E[X].



e Monotone convergence theorem: if X,, > 0 and X,, 1 X a.s., then

lim E[X,,] = E[X].

e Fatou’s lemma: If X,, > 0 a.s., then

E[liminf X,,] < liminf E[X,,].

e If A,’s are disjoint and U, A, = €, then E[X] =} E[X 14, ].
The following inequality is quite helpful in future.
Lemma 1.3.1. We have

i (X = E[|X]] < i [1X| =

In particular, E[|X|] < o if and only if the above series converges.

Proof. For n = 0, define A,, = {n < |X| <n + 1}. We find (check)
E[|X1] = Z E[1X] 14,]
where

nP[A,] < E[|X]|14,] < (n+ 1)P[A,].
Thus

> nP[A,] < E[1X[] < Z

o0
P[IX| = n]. (1.3.1)

n=1

It remains to show

s
3
ﬂ

Note that, either side can be infinite.
For large N, we write

1=
n
M=

n(P[|X]| = n] = P[IX] = n +1])

" n;l N+1
= SUP[IX] = a] - Y (- DP[IX] > n])
n=1 n=2

I
M=

P[|X| > n] — NP[|X| > N +1].

3
Il
—_

Thus

iD=
3
v

N N
Al < Y P[X|=n Z ]+ NP[|X| > N +1]. (1.3.2)
n=1 n=1

Note that
NP[|X| >N+ 1] <E[|X[1{|X| >N +1}].
If E[|X]|] < oo, we have E[|X|1{|X]| > N + 1}] — 0 (check) and hence NP[|X| > N + 1] — 0. Taking
N — o0 in (1.3.2), we obtain (1.3.1).
If E[|X|] = o, then Y) nP[A,] — oo and hence Y'Y P[|X| = n] — co. In this case, we also
obtain (1.3.1). O

10



Corollary 1.3.2. If X takes only positive integer values, we have
0
E[X] = > P[X >n].
n=1

There is a basic relation between the abstract integral with respect to P on F on the one hand, and
the Lebesgue integral with respect to Leb on B, induced by each random variable. We first give the
conclusion in one-dimension, and it is easy to generalize to high dimension.

Theorem 1.3.3. Suppose X is a random variable on (Q, F,P). It induces the probability space (R, B, 1)
as in Definition 1.2.4. For any Borel measurable function f, we have

HﬂXﬂ=LﬂwwwL

provided that either side exists.

Proof. If f = 1p for some B € B, then we have

E[/(X)] = P[X € B], Lfmmwﬂ:uwl

They are equal by definition. Then the proof can be generalized to simple f, i.e. linear combination
of indicator functions. For any arbitrary positive Borel function f, we can define a sequence of simple
functions {f,,}m such that f,, 1 f everywhere. Since f,, is simple, we have

ﬂmuﬂ=meMml

Let m — oo, by monotone convergence theorem, we obtain the conclusion for f positive. The general
case follows as usual. O

Theorem (Theorem 1.3.3 bis). Suppose (X,Y') is a random vector on (2, F,P). It induces the probability
space (R?,B2,v) as in (1.2.1). For any Borel measurable function f, we have

LYY = | F(oapvide.dy)
provided that either side exists.
Definition 1.3.4. For any p € (0,0), define
LP(Q, F,P) = {X random variable on (0, F,P) : E[|X|P] < oo}.
For X € LP, we call E[|X|P] the p-th moment of X.
We are usually interested in p > 1, as LP is a Banach space when p > 1: we define the norm on LP by
X, = E[IX]]"7.

Then one can check that LP is complete under the norm and hence it is a Banach space.
Note that, for 1 < p < ¢, we have L? c L? because

E[ X1 1{|1X] > 1}] < E[|X]" 1{|X] = 1}] < E[|X]].

We collect several well-known inequalities. We suggest the readers to remember the names as well as
the inequalities.

11



e Chebyshev inequality. Suppose X is a random variable and ¢ is a strictly positive and increasing

function on [0,0). Then for each z > 0, we have

Elp(|X])]

P[IX]| = z] < o(2)

e Holder inequality. Suppose X and Y are random variables. For 1 < p < o0 and 1/p+ 1/q = 1,

we have

E[XY[] <E[X[]PE[Y 7",

e Minkowski inequality. Suppose X and Y are random variables. For 1 < p < o0, we have

E[X +Y[I"? < E[ X7 + E[)Y["]"7,

or equivalently
| X + Yy < |1X[p + Y-

e Jensen’s inequality. If ¢ is a convex function on R, and X and ¢(X) are integrable random
variables, then

Example. Let us calculate moments of random variables in Examples 1.2.8 to 1.2.13. If the distribution
function is absolutely continuous, we denote by p its density, then we have

E[/(X)] = f f(@)uldz] = f f(@)p(x)dz.

Uniform distribution:

L 1
E[X"] = J x"dr = .
0 n+1

Ezxponential distribution:

E[X"] = J 2" Ne Mdx = nIAT"

Normal distribution:

E[x*"~'] =0, E[X*"]

J$2n ! exp(—x—Z)daz = (2n— 1)L
oy

In particular var(X) = 1.

Poisson distribution:

E[X(X-1)---(X—n+1)] ="
In particular E[X] = X and var(X) = \.

Geometric distribution:

The case of p = 2 is of particular interest, as it is a Hilbert space: we define the inner product on L?

(X,Y)=E[XY].

12



Suppose X € L?(Q, F,P), we define its variance and its deviation by
var(X) = E[(X — E[X])?], o(X) = +/var(X).
Suppose X,Y € L%(Q, F,P), we define their covariance by
cov(X,Y) := E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y].
We say that X and Y are uncorrelated if cov(X,Y) = 0.

Exercise 1.3.5. Suppose {X;,1 < j < n} have finite second moments and they are uncorrelated, then
n n
ar (2 Xj> = Z var(X
j=1 j=1

1.4 Independence

Definition 1.4.1. The random variables {X;,1 < j < n} are independent if, for any Borel sets {Bj,1 <
Jj < n}, we have

P[7_{X; e B;}| = H [X; € Bj]

The random variables {X;,j = 1} are independent if {X;,1 < j < n} are independent for all n.

In terms of the law p induced by the random vector (X1,...,X,) on (R",B"), and the laws {u;,1 <
j < n} induced by each X; on (R, B), the independence may be written as

p[By x -+ x By] = HNJ[BJ]
j=1

In other words, if {X;,1 < j < n} are independent, then the induced measure p is the same as the product
measure on the product space.

In terms of the distribution function F(x1,...,x,) induced by the random vector (Xi,...,X,) on
R™, and the distribution functions {F},1 < j < n} induced by each X; on R, the independence may be

written as .
F(z,...an) = | [ Fy(=)).
Jj=1

Exercise 1.4.2. If {X;,1 < j < n} are independent random variables, and {f;,1 < j < n} are Borel
measurable functions, then {f;(X;),1 < j < n} are also independent.

Generally, let 1 < njp <ng < --- < ng =n, and fi1 be a Borel measurable function of ny variables, fo
be a Borel measurable function of no — ny variables, ..., fr be a Borel measurable function of ny — ng_1
variables. Then

(X, 0 X)), (X X)), oo (X 41+, X))

are also independent.

Proposition 1.4.3. Suppose X and Y are independent random wvariables and both of them have finite
expectations. Then we have
E[XY] = E[X]E[Y].

We will give two proofs of this theorem. Both of them are instructive.
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First proof. First, assume both X and Y are positive discrete:

X=>ajls, Y=>0blg,
j j

where {a;}; are distinct and A; = {w : X(w) = q;}, and {b;}; are distinct and B; = {w : Y (w) = b;}.
Then we have

XY = Zajbk 14;~By -

jok
Thus
E[XY] = Z a;bP[A; N By (by def. of expectation)
j.k
= > a;beP[A;]P[By] (by the independence)
j.k

=<Z%H&0<Z%H&O=EWEWI
j &

Next, assume both X and Y are positive. We define the approximations X, and Y;, the same as the
beginning of Section 1.3. Then we have the followings.

e We have E[X,,] 1 E[X] and E[Y,,] 1 E[Y].

e Since X and Y are independent, we know that X,, = 27™|2™X| and Y,,, = 27™|2™Y | are indepen-
dent. Both X, and Y}, are positive discrete. Thus E[X,,Y,] = E[X|E[Yin].

e The product X,,Y,, is increasing in m, and 0 < XY — X,,,Y,, — 0 as m — 0. By monotone
convergence theorem, we have E[X,,,Y,,,] — E[XY].

Combining these three observations, we have E[XY] = E[X|E[Y] as desired.
Finally, consider random variables X and Y with finite expectation. Write X = Xt — X~ and
Y =Y*' — Y™ and the rest is as usual. O

Second proof. Let pux be the law of X, uy be the law of Y, and p be the law of (X,Y’). Then we have

e | BT
))

_ L L wypix[da]pry [dy]
= f qu[dx]f qu[dZ/] = E[X]E[Y]'
R R

This proof is pretty short! This is because we use Fubini’s theorem in the second equal sign. O

Corollary 1.4.4. If {X;,1 < j < n} are independent random variables with finite expectations, then

n n
E [H Xj] = [ JElx;].
j=1 j=1
Proof. Induction, using Exercise 1.4.2. O

Next, we turn to the most exciting question of the section: do independent random variables exist?

14



Example 1.4.5. Denote by U™ the n-dimensional cube:

Denote by B™ the Borel field and Leb™ the Lebesgue measure. Then (U™, B™,Leb™) is a probability space.
Let {f;,1 < j < n} be n Borel measurable functions on U, and set

Xi((x1,. - zn)) = fi(zj).

Then {X;,1 < j < n} are independent random variables. In particular, if f; = id for all j, then
{X;,1 < j <n} are independent identically distributed (i.i.d.) random variables, and their common law
is the uniform distribution on [0,1].

Example 1.4.6. In the previous example, we construct independent random variables through product
space. We can also construct independent random variables on the space (U, B, Leb) itself.
For each real number x € (0, 1], consider its binary expansion:

e}
€
T = Z 2—2, each e, € {0,1}.
n=1

Such an expansion is unique except when x is of the form m/2"; the set of such x is countable and hence
of zero measure, and we can ignore them. Each €; is a function of x. Define

Xj(z) = €j(@).

Then {X;,j = 1} are independent. For any n, and any sequence (c1,...,cy) € {0,1}", we have
1
P [m;-l:l{Xj =c¢;}| =Leb(z:e1(z) = c1,...,6n(x) = ) = o
1 1
PXj = ¢j] = Leb(z : ¢j(z) = ¢5) = 3, [P =¢] = o
j=1

Theorem 1.4.7. Suppose {uj,j = 1} is a sequence of probability measures on (R,B). There exists a
probability space (2, F,P) and a sequence of independent random variables {X;,j = 1} on (Q, F,P) such
that the law of X is u; for each j.

Proof. For each n, let (9, F,,P,) be a probability space in which there exists a random variable with
law g, Indeed, we can take (Q,, Fn, Pn) = (R, B, uy,) and take the random variable id. Define the infinite
product space

0
Q=X Q.
n=1

A point in Q will be written as w = (w1, ws,...) where w, € Q,. A set E in Q is a finite-product set if it

is of the form
o0

where F;, € F,, and all but finitely many F;,’s are equal to the corresponding €2,,’s. Let Fy be the collection
of the subsets which are the union of a finite number of disjoint finite-product sets, then Fy is a field. Let
F be the o-field generated by Fg. This is called the product o-field and is denoted by

o0
F=X Fa

n=1

15



Define P on Fq as follows. First, for each finite-product set £ = X F},, define

= Hpn[F]

This is well-defined as all but finitely P,[F,]’s equal one. Next, for £ € Fy and E = U}}_, E}, where E}’s
are disjoint finite-product sets, set
n
= Y P[E
k=1

This is well-defined: one can check that if £ has two representations of the form above, then the two
definitions of P[E] agree.

For P defined on Fy as above, it is positive, P[2] = 1, and it has finite additivity. We will use the
extension theorem to extend P to a probability measure on F. To this end, we only need to check the
countable additivity: reading. Now, we have defined the probability measure P on F. This is called the
product measure, and it is denoted by

e}
—X
=1
So far, we have constructed the probability space (2, F,P). Define, for each n,
Xp(w) = wy.

Then X, is a random variable on (2, F,P) and its law is given by p,: for any B € B, we need to calculate
P[X,, € B]. Note that

o0
j=1
where F,, = B and F; = (); for j # n. This is a finite-product set, thus

P[X, € B] = H P;[Fj] = Pu[B] = pn[B].
=1

It remains to show that {X, j > 1} are independent: for all n, {X};,1 < j < n} are independent, because,
for any Borel sets {Bj,1 < j < n}, the set

Ni_11X; € By}

is a finite-product set and, by definition,

P[n7_1{X; € Bj}] = [ | P;[X; € Bj]
7j=1

1.5 Independence continued

Collections of sets {A;,1 < j < n}, where A; c F, are independent if, for any subset / < {1,...,n} and
for any A; € A;, we have
mrLeIA H P

el
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We may assume 2 € A; for each j, then the above definition is equivalent to the following: {A4;,1 < j < n}
are independent if

Al A;] = [[Pl4;], for anyAj e A;,1 < j<n.
=1

Let us explain how the above definition relates to independent random variables. Suppose X is a
random variable on (€2, F,P), denote by

o(X)={X"YB): BeB}.

One can check that this is a o-field, and X is measurable with respect to o(X). Suppose X and Y are two
random variables, then X,Y are independent if and only if o(X),o(Y) are independent. In this sense,
the above definition is a generalization of Definition 1.4.1.

Definition 1.5.1. A collection of sets A is a w-system if it is closed under intersection.
Note that a field is a 7w-system, but a m-system may not be a field.

Theorem 1.5.2. Suppose {A;,1 < j < n} are independent and each A; is a w-system. Denote by o(A;)
the o-field generated by A; for each j. Then {o(A;),1 < j <n} are mdependent

Proof. We may assume 2 € A; for each j, because A; U {Q} is still a 7m-system and {A; U {Q},1 < j < n}
are still independent. We will prove that {o(A;), As,...,A,} are independent. If this holds, we can
repeat the same argument to show {o(A;),0(Asz), Asz..., Ay} are independent. After n iterations, we
obtain the conclusion.

Let Aje Aj for j =2,...,nand set ' = Ay n---n A,. Define

C={AeF:P[An F]=P[A]|P[F]}.
From the hypothesis, we know 4; = C. It suffices to show o(A;) < C.
o AeC = A€ (C: since A €C, we have P[A n F| = P[A]P[F], hence

P[A° A F| = P[F] — P[A n F] = P[A°]P[F].

e By,....Bpe A = mjéj € C for all Ej € {Bj, B;?}: we will show the case of k = 2, and the general
case can be proved similarly. Since A; is a m-system, we know By n By € Aj, thus

P[Bi nB5n F|=P[By nF]|—P[By nByn F]
= P[B1]P[F] — P[B1 n Bs|P[F]
= P[B; n BS|P[F].

P[Bf n BSn F|=P[F]| —P[By n F] —P[B2n F| +P[B; n Ba n F]
= P[F] — P[B1]P[F] — P[B2]P[F] + P[B1 n Bs]P[F]
= P[B{ n B3|P[F]

Note that we are NOT claiming that C is a field.

e C is a monotone class: if B; € C and B; < Bji1, set B = u;B;. By the continuity of the probability,
we have

P[B n F] = limP[B, n F] = limP[B;]P[F] = P[B]P[F].

Denote by oo(A1) the field generated by .A;. The first two items guarantee that o¢(A;) < C. Combining
with Lemma 1.1.4, we find o(A;) < C. O
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Example 1.5.3 (Wald’s equation). Let {X,} be i.i.d. with finite mean and Sy, = >/ | X;. Fork > 1, let
Fir=0(X;,1<j<k).
Suppose N is a random variable taking positive integer values such that
{N <k} e Fy, VEk,

and E[N] < 0. Then we have
E[Sw] = E[X,E[N].

In Example 1.5.3, suppose B < R is a measurable set, and define N = min{n : X,, € B}, then we have
(N<k}=0l_{X;eB}eF Vi

Proof. We have

m
n
=
I

18

o k

E[Sk Linvoiy] = X D E[X; Loy
k=1 k=1j=1
e¢] e}

= > TEIX; Linoigl = D ELX; Livsj).
j=lk=j j=1

(Attention: check that the first equal sign holds.) Note that {N > j} = {N < j — 1}¢ € F;_1, thus
{N > j} is independent of X;. Therefore,

E[Sn] = Y E[X; 1v=j] = D E[X > 4]
j=1 j=1
= Z E[X1]P[N > j] = E[Xi]E[N].

<.
Il
_

O]

Example 1.5.4 (Kolmogorov’s 0-1 Law). Let {X,} be a sequence of independent random variables. Let
Gn =0(Xg, k=n) and Goo = Np>1Gy. Then Gy is trivial, i.e. for any A € Gy, we have

P[A] =0 or 1.

In Example 1.5.4, define S, = Z?:l Xj. It is clear that the following events are in Gu:

. . .S . . S
lim S,, exists, lim — exists, limsup — > 0.
n n o n n

Whereas, the following event is not in Guo:

limsup S, > 0.

Proof. On the one hand, we have A € G,,11 for any n. Thus A is independent of o (X7, ..., X,,) for any n.
Therefore A is independent of o(X,,,n > 1) (Exercise: why?). On the other hand, A is measurable with
respect to o(X,,n > 1). Therefore A is independent of itself. This implies P[A] = P[A n A] = P[A]?,
thus P[A] € {0,1}. O
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If you have learned “probability theory” before, you may have encountered the following definition of

“independence”: Sets {A4;,1 < j < n} c F are independent if, for any subset I < {1,...,n}, we have
PlricrAi] = [ [PLA].
el

This definition is a particular case in the above definition when A; = {A;}. We end this section with an
instructive example.

Example 1.5.5. Suppose X1, Xo, X3 are i.i.d. Bernoulli random variable with parameter 1/2. Define
A ={Xo = X3}, Ay={X;=X3}, A3={X1 =X}
Then the events A1, Ao, A3 are pairwise independent, but they are not independent: for any i # j
P[A; n Aj] = P[X1 = Xo = X3] = 1/4 = P[A;]P[A4;];

however,
P[A1 M AQ M A3] = P[X1 = X2 = Xg] = 1/4, P[Al]P[AQ]P[Ag,] = 1/8.

1.6 Sums of independent random variables

For a random variable X, we denote its law by px and its distribution function by Fx. In this section, we
study the sum of two independent random variables. To this end, we need the notation of convolution.

Definition 1.6.1. The convolution of two distribution functions Fy and Fy is defined to be

F(x) = fFl(a: —y)Fy[dy], V.

This is still a distribution function, and we denote it by F = Fy = Fy. The corresponding measure is
denoted by p = p1 * po.

Lemma 1.6.2. If X and Y are independent, then we have

PIX+Y <z] = Jf Lizsy<z) px|dx]py [dy] = Fx = Fy(2).

In particular, if X has density function, then X +Y has density function which is given by

pxay(z) = f px (2 — )y [dy].

In this lemma, if both X and Y have density functions, we X + Y has density function

px+v(2) = px *py(2) := fpx(z —y)py (y)dy.

Example (Example 1.2.9 continued). Suppose {X;,1 < j < n} arei.i.d. whose common law is exponential
with parameter A > 0, then S, = Z?zl X, has the law of gamma distribution I'(n, \) whose density is
given by

A?’L

e 10y -
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Proof. For y = 0, let us calculate

P[S, <vy] = J J HAe_’\g’idm
i=1

x; 20,27 <y

= J . J Ne ™ dry - dr,_qdx (set z; =x; for 1 <i<n-—1and x =)

—1
x; 20,21 @ <w<y

Y n—1
=J PP N R

This gives the desired density function of S,. O

Exercise (Example 1.2.10 continued). Suppose {X;,1 < j < n} are independent and X; ~ /\/'(mj,a?).

Then
ZX]' NN(ZTRj,ZO’?) .
j=1 j=1 j=1

Theorem (Cramér’s theorem). Suppose {X;,1 < j < n} are independent real-valued random variables
such that 2?21 X; has a normal distribution, then all of {X;,1 < j < n} must have normal distributions
as well.

Proof. Bonus. O
Example (Example 1.2.12 continued). Suppose {X;,1 < j < n} are independent and X; ~ Poisson(}\;).
n n
Z X ~ Poisson (Z )\j> .
j=1 J=1

Proof. 1t suffices to show the conclusion for n = 2. Suppose X ~ Poisson(\),Y ~ Poisson(p) and X,Y
are independent. Let us calculate, for n > 0,

P[X+Y:n]:zn]P[X:k,Y:n—k]

k=0

= > P[X = k]P[Y = n — k]

k=0

n )\k n—k

=20 (:_ k)le_u

= k! !
_ ()‘ + :U’)nef)\f,u

n!
Thus X +Y ~ Poisson(A + p). O

Theorem (Raikov’s theorem). Suppose {X;,1 < j < n} are independent non-negative random variables
such that 2?21 X; has a Poisson distribution, then all of {X;,1 < j < n} must have Poisson distribution
as well.

Proof. Bonus. 0
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1.7 Exercises
Exercise 1.7.1. Suppose X is a random variable. The median of X is any real number m that satisfies
P[IX <m]>1/2, and P[X >=m]=>1/2.
(1) Show that X has at least one median.
(2) Suppose X has finite mean. Show that m is a median of X if and only if m minimizes

{E[|X —¢|] : ce R}

(3) Suppose X is square integrable. Show that E[X| minimizes
{E[(X —¢)?] : ceR}.
In particular, E[(X — ¢)?] = var(X) for all c € R.

(4) Suppose X is square integrable, and m is a median. Show that

(m — E[X])? < var(X).

Exercise 1.7.2. Suppose {X,,} are i.i.d. with finite second moment. Define S, = 2?21 X;. Suppose T
is a positive integer-valued random variable that is independent of {X,}, and suppose it has finite second
moment.

(1) Show that
E[S,] = E[X1]E[].

(2) Show that
var(S,) = E[r] var(X1) + var(7)E[X1]%.

Exercise 1.7.3. Suppose E[|X|] = a > 0 and E[X?] = 1. Show that, for any X € (0, 1),
P[IX| = Aa] = (1 — \)2ad®

Exercise 1.7.4. Suppose that X,Y,Z are independent and that Z has the same law as X +Y. Can we
say that Z — X has the same law as Y ?

Exercise 1.7.5. Suppose that Z is a random variable such that Z is independent of itself. Show that Z
18 almost surely a constant.

Exercise 1.7.6 (YCMC2012). Take two points & and n independently with respect to the uniform distri-
bution from the unit interval [0,1]. Then in general these two points divide the interval [0,1] into three
sub-intervals with lengths X, Y and Z.

(1) What is the probability that X,Y,Z constitute the lengths of three sides of a triangle in the plane?
(2) What are the distributions of X, Y and Z?

Exercise 1.7.7 (YCMC2012). Suppose that {& : k = 1,2,...,n} are i.i.d. with uniform distribution on
the interval [0,1]. Let Y = max{{ : 1 < k < n}.

(1) What is the joint distribution of (&1,Y)

(2) Evaluate the probability P[& =Y.
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Exercise 1.7.8 (YCMC2012). Suppose S = X1+ Xo+---+ X, is a sum of independent random variables
with X; distributed as Bernoulli with parameter p;: P[X; = 1] = p; and P[X; = 0] = 1 — p;. Show that
P[S is even] = % if and only if at least one p; equals %

Exercise 1.7.9 (YCMC2012). Let {X;} be i.i.d exponential random variables with rate one. Let N be a
geometric random variable with success probability p € (0,1), i.e. P[N = k] = (1 —p)F !p,k =1,2,..
and it is independent of {X;}. Find the distribution of sz\il X;.

Exercise 1.7.10 (YCMC2012). Let X be a random variable with E[X?] < o0, and Y = |X|. Assume
that X has a Lebesgue density that is symmetric about 0. Show that random wvariables X and Y are
uncorrelated, but they are not independent.

Exercise 1.7.11 (YCMC2012). Let X and Y be two random variables with |Y| >0 a.s.. Let Z = X/Y .

*)

(1) Assume the distribution of (X,Y) has a density p(x,y). What is the density function of Z?¢

(2) Assume X andY are independent, and X ~ N(0,1) and Y is uniform on (0,1). Give the density
function of Z.

Exercise 1.7.12 (YCMC2013). Suppose that 0 < X <1 is a random variable. For what distributions of
X does var(X) have the largest value?

Exercise 1.7.13 (YCMC2013). Suppose that X and'Y are i.i.d with normal distribution N'(0,1). Give
the distribution of

(v )

VXZ+Y2 VX2 4Y2)

Exercise 1.7.14 (YCMC2013). Suppose that X,Y,Z are i.i.d with uniform distribution on [0,1]. Show
that (XY)? also has the uniform distribution on [0, 1].

Exercise 1.7.15 (YCMC2014). Given two independent random variables X and'Y such that' Y has the
uniform law on [0,1] and P[X = 0] = P[X = 1/2] = 1/2. Show that W := X +1/2Y has the uniform law
on [0,1].

Exercise 1.7.16 (YCMC2014). Suppose Z has the exponential law with parameter one. Let [Z] and {Z}

be the integral and fractional parts of Z, i.e., Z = [Z]|+{Z} with [Z] € Z and {Z} € [0,1). Show that [Z]
and {Z} are independent and determine their laws.

Exercise 1.7.17 (YCMC2014). Let X be a real-valued random variable such that for all smooth functions
[+ R — R with compact support we have E[X f(X)] = E[f'(X)]. Show that X has the standard normal
distribution.

Exercise 1.7.18 (YCMC2015). Suppose X and Y are independent integrable random variables and
E[X] = 0. Show that E[|X + Y] = E[|Y|].

Exercise 1.7.19 (YCMC2015). Suppose {X; : i € N} are i.i.d. with exponential law of parameter one.
For x > 0, define N(x) =inf{n:>" | X; > z}. Calculate the mean of N(z).

Exercise 1.7.20 (YCMC2016). Choose 2016 points on the circle x> +y*> = 1 at random. Interpret them
as cuts that divide the circle into 2016 arcs. Compute the expected length of the arc that contains the
point (1,0). How about the variance ?

Exercise 1.7.21 (YCMC2016). Let N > 2 be an integer, and let X be a random variable taking values
in {0,1,2,...} such that P[X = k(modN)] = % for all k € {0,1,...,N — 1}. Compute E [ei(%m)X/N] for
all integers m = 1.

Exercise 1.7.22 (YCMC2016). Let b > a > 0 be real numbers. Let X be a random variable taking values
in [a,b], and let Y = % Determine the set of all possible values of E[X] x E[Y].
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2 Convergence Concepts

We will study the convergence of a sequence of random variables {X,,,n > 1} (or {X,,} for short). When
we say “convergence”’, we mean ‘convergence to a finite limit”. Recall that we assumed the probability
space (2, F,P) to be complete. In this section, we will introduce the following different concepts of
convergence:

e almost sure convergence,

e convergence in probability,

e convergence in LP with p € [1, 00),

e convergence in distribution (also called convergence in law, weak convergence);

and we will study the relation between them.

2.1 Convergence: almost sure, in probability, and in L?

Definition 2.1.1 (Almost sure convergence (a.s.)). The sequence of random variables {X,} converges
a.s. to the random variable X if there exists a null set N such that

lim X, (w) = X(w), YweQWN. (2.1.1)
n
Lemma 2.1.2. The sequence {X,,} converges a.s. to X if and only if, for any € > 0, we have
lim P[|X, — X|<e¢ Yn>=m]=1. (2.1.2)
m—0o0
Proof. From (2.1.1) to (2.1.2). Suppose {X,,} converges to X on g with P[{2g] = 1. For € > 0, define
Ap(e) = n2 A1 X — X| < €}
The sequence of events {A,,(€)} is increasing in m, and we find
Qo < UmAm(e).

By monotone convergence theorem, we have lim,, P[A,,(¢)] = 1 as desired.
From (2.1.2) to (2.1.1). Define A,,(€) in the same way as above. Set

A= g1 Uzt An(279).

By the hypothesis, we have lim,, P[4,,(27%)] = 1. Since the events {4,,(27%)} is increasing in m, we
have P[Upm A (27%)] = 1. This gives that P[A] = 1. One can check that {X,,} converges to X on A. This
completes the proof. O

Definition 2.1.3 (Convergence in probability). The sequence {X,,} converges in probability to the random
variable X if, for every e > 0, we have

ImP[| X, — X|>¢] =0.

As a consequence of Lemma 2.1.2, we see that almost sure convergence implies convergence in proba-
bility. But the converse is false, see Example 2.1.6

Definition 2.1.4 (Convergence in LP). Assume p = 1. The sequence {X,} converges in LP to the random
variable X if X, € LP, X € LP and
lim E[| X, — X|’] = 0.
n
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Lemma 2.1.5. Assume p > 0. If X,, —» X in LP, then X,, — X in probability.

Proof. Assume X,, — X in LP. For any € > 0, we have

P[|X, — X| > €] < ¢ PE[|X,, — X[] — 0.

Example 2.1.6. Almost sure convergence does not imply convergence in LP.

In (U, B,Leb), define

0, otherwise.

XAM=LFm ifwe (0,1/n),

We have X, — 0 almost surely, but E[X}] = 2" /n — o0 as n — o for any p > 0.

Example 2.1.7. Convergence in LP does not imply almost sure convergence.
In (U, B,Leb), let ¢y ; be the indicator function of the interval

j—17 .
o) k>1,1<j<k
(13, kanie,

Order these functions first according to k increasing, and then for each k according to j increasing, into
one sequence @y, ;.. Set Xy = @, j,. Then we have
1
E[XP] = — — 0.
kn,
So X, — 0 in LP. But {X,} does not converge. For each w and every k, there exists j such that
rj(w) = 1. Thus there exist infinitely many n such that X,(w) = 1. Similarly, there exist infinitely

many n such that X, (w) = 0. Thus {X,,(w)} does not converge. In other words, the set on which {X,}
converges is empty.

Example 2.1.8 (L? weak law). Let {X,,} be independent random variables with E[X;] = m and var(X;) <
C < oo. Set S, =3/ X;. Then
S

— —m, 1n L2
n

Proof. We observe that

C

E[(Sn/n — m)2] = var(S/n) = % var(Sy) — % > var(X) < & = 0.
j=1

O]

Example 2.1.9 (Polynomial approximation). Let f be a continuous function on [0,1]. Define the poly-
nomial:

o\ i
o) = 35 ()90 =2y .
= \J
J
This is called Bernstein polynomial of degree n associated to f. Then we have

sup |fn(z) = f(z)| =0, n— 0.
z€[0,1]
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Proof. Suppose {Xj,j > 1} are i.i.d. Bernoulli variable with parameter p € [0,1]: P[X; = 1] = p,P[X; =
0] =1—p, and set S, = 2?21 X;. Then we find

E[X;] =p, var(X;)=p(1—p), E[S.]=np, var(S,)=np(l—p).
Moreover,

PS, — j] - (;.‘)pf (L—p)",  thus fu(p) = E[£(Su/n)].

Note that f is bounded: |f| < M, and it is uniformly continuous: for any e > 0, there exists § > 0 such
that |f(z) — f(y)| < € as long as |x — y| < J. Thus

|fa(p) — f(p)| < E[|f(Sn/n) — f(p)]] < €+ 2MP[|Sp/n —p| > d].

Note that (5.) a ) )
var(S,)  p(l—p
P[ISn/n —p| > 6] < - <7
[1Sn/n = pl > 0] n242 no? 4nd?
Thus Iy
|flp) — f(P)| < €+ 52
This gives the conclusion. O

Example 2.1.10 (Coupon collecting). Let {X,} be i.i.d. uniform on {1,2,...,N}. Let Ty be the first
time n that #{X1,...,Xn} = N. Then
_In
Nlog N
Proof. For 1 < k < N, define 74 to be the first time n that #{X1,...,X,,} = k. It is clear that 7y = 1,
and that Y, := 7, — 7,1 satisfies geometric distribution:

P[Y, = m]| = (k;[l)ml

1, in L2

Moreover, {Yj,1 < k < N} are independent and Ty = ZkN:1 Y. Let us calculate:

N N
1 1
E[Tn] =N ), ~ NlogN, var(Ty) < N? 37 5 < CN?
k=1 k=1
Denote by
N1
erry =N ). -~ NlogN = o(Nlog N).
k=1
We have
v \’| _ E(Ty — Nlog N)?]
Nlog N (Nlog N)?
~ var(Tn) + erry
~ (NlogN)2
CN? + err?\,

<=2 TN g N oo
(Nlog N)? 0 *
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2.2 Borel Cantelli lemma

Definition 2.2.1. Let {E,} be a sequence of subsets in F. Define

. w . . w
limsup B, = N, =1 Unz>m Ly, hrr%lnf E, = um—1 Nn=m En.
n

Note that .
liminf E,, = <lim sup Efb) ,
n n
so that, in a sense, one of the two notions suffices. We will focus on limsup,, F,,.

Lemma 2.2.2. A point belongs to limsup,, £, if and only if it belongs to infinitely many terms of the
sequence {E,,n = 1}. In more intuitive language: the event limsup,, E,, occurs if and only if the events
E, occur infinitely many often, and we write

{limsup E,,} = {E),,i.0.}.

Proof. If w belongs to infinitely many FE,,’s, then it belongs to
F = UpsmFEy, for every m.
Thus it belongs to

Nm=1Fp = limsup E,.
n

Conversely, if w € limsup,, Ey,, then it belongs to F},, for every m. If w only belongs to finite many E,,’s,
then there exists N(w) such that w ¢ E,, for n > N(w), then w ¢ F,,, for m > N(w), contradiction. O

As an illustration of the convenience of the new notions, we may restate Lemma 2.1.2 as follows.

Lemma (Lemma 2.1.2 bis).
X, — X a.s. if and only if P[|X,, — X| > € i.0.] =0,Ve > 0.
Theorem 2.2.3 (Borel Cantelli lemma). e For arbitrary sequence {E,}, we have

Y P[En] < 0 = P[E, i.0] = 0. (2.2.1)

o [f the events {E,} are independent, we have

Y P[E,] = 0 = P[E, i.o] = 1. (2.2.2)

Proof of Theorem 2.2.3—(2.2.1). Since ), P[E,] < 00, we have

P[Fm] < )| P[E,] -0, asm— oo,

nzm

By monotone convergence theorem, we have

P[E, i.0.] = imP[F,,] = 0.

Corollary 2.2.4. Conwvergence in probability implies almost sure convergence along subsequence.
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Proof. Suppose X,, — X in probability. Then we have, for any € > 0,
117131P[|Xn —X|>e¢€]=0.
For each k, there exists ng such that
P [|Xnk X[ 2—’“] <2k

and that ny 1 o0 as k 1 0. Thus
2P[|Xnk - X| > 2"“] < 0.
k

By Borel Cantelli lemma, we have
p [\Xnk —X|>27F zo] ~ 0.

In other words, there exits Qg with P[] = 1 such that the following holds. For each w € €, there exists
K (w) such that
| Xn, — X| <27% VE= K(w).

Then it is immediate that X, (w) - X (w) as k — . Hence X,,, — X on (. O
We will give another application of Borel-Cantelli lemma.

Example 2.2.5. Suppose X1, Xo,... are i.i.d. with E[X;] = m and E[X;l] < . Set S, =37 | X;.

Then
Shn
— —m, a.s.
n

Proof. We may assume m = 0. Let us calculate E[S}]:

E[S,] =E Z X; X; XX, | = nE[X]] + 3(n? — n)E[X{]* < On®.

1<4,j,k,l<n

Chebyshev’s inequality gives

S C
Pl— >¢| < o

n

Summing over n is finite. Thus Borel-Cantelli lemma implies

P |Sn|>ei.0.] = 0.
| n
Thus
o
Uket >2""4.0. | =0.
n
This gives S,,/n — 0 almost surely. O

Proof of Theorem 2.2.3—(2.2.2). It suffices to show

P[lim inf £¢] = lim P[Ap=mES] = 0. (2.2.3)
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Since {E¢} are independent, we have, for m < m/,

Plon Bl = [ [ PLES = [ (1 —PLEA])
< H exp(—P[E,]) = exp <— Z P[En]> .

Let m’ — o0, the right hand side goes to zero, combining with monotone convergence theorem, we have
PlansmEr] =0,

which gives (2.2.3) as desired. O

Theorem 2.2.6. The implication (2.2.2) remains true if the events {E,} are pairwise independent.

Proof. Denote by I, the indicator function of E,,. Set

pn = E[L] = PIE, Su= 31,

j=1
Then the hypothesis is equivalent to
E[Sn] — o0, asn — o, (2.2.4)
and the conclusion is equivalent to
Phﬁsnzw]zL (2.2.5)
By Chebyshev’s inequality, we have, for any A > 0,
Pl — E[Su]l < A(Sn)] > 1 — m - %.

By pairwise independence, we have

n

0(S,)? = Z var(l;) = Z(pj —p?) < E[S,].

J=1 J=1

Since E[S,] — o0, we find o(S,,) = o(E[S,,]). Thus, there exists no(A) such that,for n > ng(A), we have

1 1
P [Sn > 2E[Sn]} >1- =
Since {S,} is an increasing sequence, we have
P {limSm > 1E[Sn]} >1- i
m 2 A?
Let n — o0, we have
Ph?&n:w]>l—£5
Let A — o0, we obtain (2.2.5). O
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2.3 Weak convergence
Definition 2.3.1. A sequence of measures {p,} converges weakly to a measure p if
tn((a,b]) — w((a,b]), for all continuity points a,b of p. (2.3.1)
We denote by p, = p.
We have several remarks about this definition.

e The requirement that the convergence only holds for continuity points of x4 is essential. For instance,
suppose [, is uniform on (0, 1/n) with total mass one, the sequence converges weakly to 9. However,
we do not have the convergence at the discontinuous point = = 0.

e Denote by F), the distribution function of p, and by F' the distribution function of u. Then (2.3.1)
is equivalent to
F,(z) —» F(x), for all continuity point = of F.

Denote by Cg the set of continuity points of F. Note that R\Cr is countable: Since F' is increasing
and right-continuous, if F' is discontinuous at two distinct points z and y, the two open intervals
(F(z—),F(x)) and (F(y—), F(y)) are disjoint. This implies that the set of discontinuous points are
countable.

e In the definition, we do not require {u,} or u to be probability measures. Usually, we are interested
in the case when {u,} are probability measures. However, even if {u,} are probability measures,
the limit may nolonger be a probability measure. This is why we give the definition in a general
form.

e The set of probability measures is “compact”, i.e. any sequence of probability measures has a weakly
convergent subsequence, but the limiting measure may nolonger be “probability measure”. To give
the precise statement, we need the following definition: a measure p on (R, B) is a subprobability
measure if pu(R) < 1.

Proposition 2.3.2 (Helly’s extraction principle). Given any sequence of subprobability measures, there
1 a subsequence that converges weakly to a subprobability measure.

Proof. 1t is more convenient to work with the distribution functions: for n > 1, define
Fu(®) = pn(~0,2], ¥z eR.

Since p, is a subprobability measure, the function F, is increasing and right-continuous with F,,(—o0) =0
and F,(+©) = up(R) < 1.

Denote by Q the set of rational numbers and enumerate it as {rg,k > 1}. Consider the sequence
{F,(r1),n = 1}. It is bounded, and hence there exists convergent subsequence, denoted by Fi,(r;) —
G(r1). Consider the sequence {Fip(r2),n = 1}. It is bounded, and contains a convergent subsequence,
denoted by Fy,(r2) — G(ry). Note that {Fs,} is a subsequence of {F,}, thus Fb,(r1) — G(r1). Continue
in this way, we obtain

Flla F12a Ty Flna R CODVGI‘giDg at )
F217 FQQ; R FQTL: ) Converging at T1,72;5
. 5 DY N DY s e 5 DY y DY ;
Foi, Fua, -+, Fnn, ---, converging at r1,72,...,7n;

Choose the diagonal sequence {Fy,,n > 1}. We assert that it converges along all 7;’s. Define

G(ry) = lim Fop(ry), Vi > 1.
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It is clear that the function G is defined on Q and it is increasing on Q. Set
F(z) =inf{G(r) :z <reQ}, VreR.
The function F' has the following properties.
e First, F' is increasing because G is increasing on Q.

e Second, F' is right-continuous. To see this, one needs to check that, for each € R, for any ¢ > 0,
there exists § > 0 such that F(y) < F(z) + € as long as y < x + 6. This is true because, by the
definition, one can find ¢ € Q such that z < ¢ and F(x) < G(q) < F(x) + €. Then for any y < ¢, we
have F(y) < G(q) < F(x) +e.

e Finally, we will show that
lim F,,,, () = F(x), VYxeCp. (2.3.2)
n

For any p < p' <z < ¢ < q with p,p’,q,q € Q, we have
F(p) < G(p') = lim Fy,,,(p') < liminf F,,, ()
n n

< limsup F, (2) < lim Fon(¢') = G(q') < F(g).

n

Thus, for any p < x < g with p,q € Q, we have

F(p) < liminf Fy,;,(x) < limsup F,,,,(z) < F(q).
n

n
Let p 1 z and ¢ | x with p,q € Q, since z is a continuity point of F', we obtain (2.3.2).

Now, let 1 be the unique measure on R such that p(a,b] = F(b) — F(a) for F’s continuity points a
and b. By (2.3.2), we see that p,, converges weakly to u as desired. O

Proposition 2.3.3. Suppose {u,} is a sequence of subprobability measures. If every weakly convergent
subsequence converges to the same limit u, then p, =— u.

Proof. We prove by contradiction. If {u,} do not converge to u, there exists continuity points a,b of u
such that up(a,b] - p(a,b]. Consider the sequence {un(a,b],n = 1}, it is bounded, and hence contains a
convergent subsequence, denoted by pp, (a,b] — L # p(a,b]. Consider the sequence {jy, }, it is a sequence
of subprobability measures, by Proposition 2.3.2, there exists a convergent subsequence, denoted by finy,,

By the hypothesis, we have Py, == [ In particular, finy,, (a,b] — p(a,b]. This is a contradiction. O

In the above two propositions, we work with subprobability measures, and the reason is that, the
subsequential limit of sequence of probability measures may nolonger be a probability measure. If we
require the subsequential limit to be a probability measure, we need to impose the tightness on the
sequence of probability measures.

Definition 2.3.4. A family of probability measures {jq, € A} is tight if, for any € > 0, there exists a
finite interval I,

inf po(l) =>1—ce.

acA

Theorem 2.3.5. Let {uq,a € A} be a family of probability measures. In order that any sequence contains
a subsequence which converges weakly to a probability measure, it is necessary and sufficient that the family
18 tight.

This statement can also be phrased as follows: a family of probability measures is relatively compact
if and only if it is tight.
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Proof. Suppose the family is tight. Proposition 2.3.2 asserts that any sequence {u,} contains a convergent
subsequence p,, = p. It remains to show that u(R) = 1. For any € > 0, since the family is tight, there
is a finite interval I such that pu,, (/) = 1 —e. We can find two continuity points a,b of p such that
I < (a,b). Then we have

w(a,b] = h]Ign pin, (@, b] = 1i’£n pn, (1) =1 —€

Thus p(R) = 1 —e. Let € — 0, we have u(R) = 1.
Conversely, we prove by contradiction. If the family is not tight, then there exists ¢y > 0 such that
for each interval I, = (—n,n), there exists p, in the family such that

,un(]n) <1l-¢, VYn.

Proposition 2.3.2 asserts that {{,} contains a convergent subsequence p,, = p. On the one hand,
1 is a probability measure by the hypothesis. Thus there exist continuity points a,b of p such that
p(a,b] =1 —¢y/2. Thus

lii:n,unk(a, b] = u(a,b] =1 —ep/2.

On the other hand, since ny — o0, we have I,, — R, thus (a,b] < I,,, for k large enough. Therefore,
11}131 fn,, (@, b] < limkinf pny, (In,) < 1 — €.
Contradiction. O

Next, we will discuss other criterion of the weak convergence. This has to do with classes of continuous
functions on R. We first collection some related notations.

C. = {continuous functions which vanish outside a compact set},
Cp = {continuous functions f such that f(x) — 0 as |z| — oo},
Ch, = {bounded continuous functions},

C = {continuous functions}.

We have C. ¢ Cy < C, < C. It is well known that Cy is the closure of C,. with respect to uniform
convergence.

Proposition 2.3.6. Suppose {u,} and p are probability measures. Then p, = p if and only if

lim j F(@)pnlda] — j f@)uldz], Vfe G (2.3.3)

Proof. Suppose (2.3.3) holds. For any continuity points a,b of pu, for any € > 0, let fe = 1 on (a,b), and
fe=0o0n (c0,a—€) U (b+ € 00), and fc is linear on [a — €,a] and [b,b + €]. Then f, € C}, and

i sup o (0,8] < lim | Jo(opnld] = [ fa)alda] < o b+
Let € — 0, since a, b are continuity points of u, we have

lim sup g (a, b] < p(a, b].

n

Similarly, we can show
lim inf y,,(a, b] = p(a, b).

These give p, = p.
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Suppose p, = p. Denote by C, the set of continuity points of pu. By the definition, we know
that (2.3.3) holds for f = 1, with a,b € C,,. We first show that (2.3.3) holds for f € C. by constructing
approximations of f. Since f € C,, we may assume supp(f) < [a,b]. Note that f is uniformly continuous,
thus, for any € > 0, there exists 6 > 0 such that |f(z) — f(y)| < € as long as |x —y| < J. Since C,, is dense,
there exists N and {a;,1 < j < N} such that

a;jeCy, 1<j<N; a;j<aj1<aj+9, 1<j<N-1; a<ab<ay.
Define f. as follows:

N—1
fe = Z f(a_]) 1(aj,aj+1] ‘

Since f is uniformly continuous, we have sup,cg |f(z) — fe(z)| < €. Thus

‘Jﬂ% fﬂﬂ [17 = slaun + Uﬁwn~ﬁw4 [ 17 s

<2vﬂfﬁmm—fﬁmu

where

N-1
ffed/in erd,u— Z f( a] ﬂn(a17a3+1] M(ajaaj+1])_’0

[ i~ | gau| <2
Let € — 0, we obtain (2.3.3) for f € C..

Generally, consider f € Cy. Suppose sup, |f(x)] < M. For any € > 0, there exist a,b € C, such that
p((a,b]¢) < e and pp((a,b]¢) < 2¢ for n large enough. Define f. = f on (a,b), fe = 0 on (—o0,a —€) U
(b +¢€,0), and f. linear on (a —¢,a) and (b,b + €). Then f. € C,, sup, |f(x) — fe(z)| < 2M. We have

‘me—fﬂﬂ<fV—ﬁmm+Uﬂwm—fmﬂ+fu—ﬂwu

<4Me + Ufedun — ffedu‘ + 2Me,

Uﬁ@m—fﬁ@4~u

de,un — de,u‘ < 6Me.
Let € — 0, we obtain (2.3.3) for f € C}. O

because a; € C,,. This implies

lim sup
n

where

because f. € C.. This gives

lim sup
n

Remark 2.3.7. Assume the same assumption as in Proposition 2.3.6. From the above proof, we see that
pn = p if and only if (2.3.3) holds for all f € C..

A function f on R is lower semicontinuous if

f(z) < liminf f(y), V.

Y—=TY#T

A function f is upper semicontinuous if —f is lower semicontinuous. There are several equivalent defini-
tions of lower/upper semicontinuous, but the following characterization is the most useful: f is bounded
and lower semicontinuous if and only if there exists a sequence f,, € Cp, which increases to f everywhere.
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Corollary 2.3.8. Suppose {i,} and p are probability measures. Then the following statements are equiv-

alent.
Ly, => [4. (2.3.4)
liTanffdun - ffdu, Vfe G, (2.3.5)
lirr;linfffdun > ffdu, Vbounded lower semicontinuous f. (2.3.6)
lim supffdun < de/z, Vbounded upper semicontinuous f. (2.3.7)

Proof. We already have (2.3.4) and (2.3.5) are equivalent. It is clear that (2.3.6) and (2.3.7) are equivalent.
It remains to show (2.3.5) and (2.3.6) are equivalent.

From (2.3.5) to (2.3.6). Since f is lower semicontinuous, there exists a sequence fi € C} such that
fr 1 f. We have, for each k,

lim infffd,un > lim infffkd,un = Jfkdu.
n n
By monotone convergence theorem, we have
lim infffdun > hinjfkd/i = de,u.
n

From (2.3.6) to (2.3.5). Since (2.3.6) holds, we have (2.3.7) holds. For any f € Cj, it is both lower
semicontinuous and upper semicontinuous, thus (2.3.6) and (2.3.7) imply (2.3.5). O

Corollary 2.3.9. Suppose {j,} and p are probability measures. Then the following statements are equiv-
alent.

oy = [L. (2.3.8)
lim inf 4, (0) = pu(O), Vopen set O. (2.3.9)
lim sup pp, (K) < u(K), Vclosed set K. (2.3.10)

Proof. From (2.3.8) to (2.3.9): The indicator function on open set 1o is bounded lower semicontinuous.
Since (2.3.8) implies (2.3.6), we see (2.3.9) holds.

It is clear that (2.3.9) and (2.3.10) are equivalent. It remains to show (2.3.9) implies (2.3.8): for any
W’s continuity points a and b, we have

lim inf p,, (a, b] = liminf p,(a, b) (a,b), (by (2.3.9))

[a, 0] (by (2.3.10))

= [
lim sup (@, b] < limsup pyfa, b] < p
n n

Since a, b are p’s continuity points, we have p(a,b) = pla,b]. Thus lim, gy, (a, b] = p(a, b] as desired. [

2.4 Convergence in distribution

Definition 2.4.1. A sequence of random variables {X,} converges in distribution to a random variable
X if L(X,) = L(X). We denote by X, N X, or X,, = X in distribution.

We first discuss the relation between convergence in distribution and convergence in probability.

Lemma 2.4.2. Convergence in probability implies convergence in distribution.
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Proof. Suppose X,, — X in probability. It suffices to show that E[f(X,)] — E[f(X)] for any f € C..
Since f € C., we know that it is bounded. Suppose |f| < M. Furthermore, it is uniformly continuous,
i.e. for any € > 0, there exists 6 > 0 such that |f(z) — f(y)| < € as long as |x — y| < J. Thus

E[|f(Xn) — f(X)|] < P[| X — X| < 8] + 2MP[|X,, — X| > ]

Let n — o0, we have
limsup E[| f(X,) — f(X)|] <e.

Let € — 0, we have E[f(X,,)] — E[f(X)] as desired. O
Lemma 2.4.3. Suppose X,, converges to a constant ¢ in distribution. Then X, — ¢ in probability.

Proof. The limiting distribution p is dirac, and its continuity points is R\{c}. In particular, ¢ — € and
¢ + € are continuity points. Thus

P[|Xn — [ > €] = P[X;, € (—0,c —€)] + P[Xp € (c+€00)] >0, n— o0
This gives the convergence in probability. O

Convergence of random variables in distribution is merely a convenience of speech, it does not have
. . . d .
the usual properties associated with convergence. Suppose X,, = X, the random variables {X,,} and X

. .1 d d .
may be not in the same probability space! Suppose X, = X and Y,, = Y and suppose they are in
the same probability space, it does not follow by any means that X,, + Y,, will converge in distribution to
X + Y. Nevertheless, the following simple situation still holds.

Lemma 2.4.4. Suppose X,, — X in distribution, and Y, — 0 in distribution, then
(1) Xp + Y, — X in distribution.
(2) X,Y, — 0 in distribution.

Proof. By Lemma 2.4.3, we know that Y,, — 0 in probability.
We first show (1). Suppose f € C.. Then f is uniformly continuous and it is bounded: |f| < M. For
any € > 0, there exists § > 0 such that |f(z) — f(y)| < € as long as |x — y| < J. Thus

< e+ 2MP[|Y,| > d].

Let n — o0 and then € — 0, we obtain E[|f(X,, +Y,) — f(X,)|] — 0, and hence E[f(X,, +Y,)] — E[f(X)]
as desired.
Next, we show (2). We choose M large such that +M are both continuity points of X. We have

P[| X0 Y| > €] < P[|Xy| > M] + P[|Y,] > ¢/M].

Since X,, — X in distribution, we have lim,, P[|X,,| > M] = P[|X| > M]. Since Y;, — 0 in probability,
we have lim,, P[|Y,,| > ¢/M] = 0. Thus

limsup P[|X,,Y,,| > €] < P[|X]| > M].
n

Let M — oo in the way that =M are both continuity points of X, we have lim,, P[|X,Y,| > €] = 0 as
desired. O
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As a consequence of Lemmas 2.4.3 and 2.4.4, we have the following.

Proposition 2.4.5. If X, - X, a, — a, 8, — b in distribution where a,b are constants, then o, X, +
Bn — aX + b in distribution.

Proof. We refer to the two conclusions in Lemma 2.4.4 as (1) and (2) respectively. Combining X,, — X
and a, —a — 0 in distribution and (2), we have (o, — a)X,, — 0 in distribution. Combining with
aX, — aX in distribution and (1), we have o, X,, — aX in distribution. Combining with £, —b — 0 in
distribution and (1), we have a,, X, + 3, — b — aX in distribution. This implies a,, X}, + 5, — aX + b in
distribution. Exercise: give a direct proof of this proposition. ]

Next, let us discuss the relation between convergence in distribution and almost sure convergence. As
almost sure convergence implies convergence in probability which implies convergence in distribution, the
direction of implication is clear. In a sense, the following theorem gives the reverse direction.

Theorem 2.4.6. Suppose X,, — X in distribution. Then there exists a probability space and random
variables in the space {Y,} andY such that

Y, > Y as., LY,)=L(X), LY)=L(X).

Proof. Take the probability space (U, B,Leb). Denote by F,, the distribution function of X,,. Denote by
F the distribution function of X. Define

Yo(x) :=suply : Fu(y) <=};  Y(2):=sup{y: F(y) <z}
One can check that £(Y,,) = £(X,,) and L(Y) = £(X). To this end, we only need to show
{z:Y(z) <z} ={z:2 < F(2)}. (2.4.1)
We have the following observations:
o If © < F(2), then Y(z) < 2.

e If z > F(z), since F is right-continuous, there exists € > 0 such that F'(z+¢€) < x, thus Y (z) > z+e.
Therefore, z > F(z) implies Y (x) > z.

Combining these two observations, we obtain (2.4.1).

Denote by Cp the set of continuity points of F'. Define a, = sup{y : F(y) < x} and b, = inf{y :
F(y) > z}, and set Uy = {x : (ag, by) = &}. Since {(az, by) : © € U\Up} are disjoint open intervals, the set
U\Uy is at most countable. We will show that Y,, — Y on Up.

We first show that liminf, Y, (z) > Y (z). For y < Y(z) and y € Cp, we have F(y) < x. Since
y € Cp and F,, = F', we have F,,(y) < z for n large enough, thus y < Y,,(z) for n large enough. Hence
liminf, ¥, (z) > y for any y < Y (z) and y € Cp. This implies that liminf, ¥;,(x) > Y (z).

Next we show that limsup,, Y, (z) < Y (z) for x € Uy. For y > Y (x) and y € Cr, we have F(y) > z.
Since x € Uy, we have F(y) > x. Since y € Cp and F,, = F', we have F,(y) > x for n large enough, thus
Y, () < y for n large enough. Hence limsup,, Y,,(z) <y for any y > Y (x) and y € Cp. This implies that
limsup,, Yy, (z) < Y(z). O

2.5 Uniform integrability

In this section, we discuss the relation between convergence in distribution and the convergence in L'. As
convergence in L! implies the convergence in probability which implies convergence in distribution, the
direction of implication is clear. In reality, we are usually interested in the following question: we have
X, — X in distribution, and we desire E[X,,] — E[X]. This is false in general, but under the condition
of “uniform integrability”, it is true.
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Definition 2.5.1. A collection {X;,i € I} of random variables is Uniform Integrable (UI) if
sup E [|X1| 1{|Xi|>oc]}] — 0, as & — Q0.
7
Suppose X € L', since
E[IX1 x50} = 0. @ =0,

we know that the family containing only X is Ul. From the definition, it is clear that the union of two
UI families is still UL. Thus we have the following conclusion.

Lemma 2.5.2. If the family contains finitely many random variables in L', then it is UL
Lemma 2.5.3. (1) A UI family is bounded in L.
(2) If a family of random variables is bounded in LP for some p > 1, then it is UL

Proof. The first item is clear. We only need to show the second. Suppose {X;,i € I} is bounded in L
with p > 1, i.e. sup; E[|X;[P] < C < o0. We have

E[1X:["] = E[|Xil” Ly 1503 = P E[|Xi] 1 x50 ] -

Thus C
sup E[|Xi| 1(x,12a}] < w10 a—w
(2

Proposition 2.5.4. Suppose that X,,, X € L' and X,, — X a.s. Then
X, — X in L' if and only if {Xp,n>1}is UL

Proof of =. We will show that, for any e > 0, there exists a such that E[|X,| 1 x,|>a}] < 26
Since X, — X in L', there exists N such that E[|X,, — X|] < € for all n > N. Moreover, there exists
M such that E[|X,,|] < M. For 8 > 0, we have that

E[IXnl 1x, =] < E[[Xn — X|] + E[|[X]1x, 5] < €+ E[[ X[ 1x,>p]-
We have the following claim: Suppose Z € L', for any € > 0, there exists § > 0 such that
E[|Z]14] <€, aslongas P[A] <. (2.5.1)
Assume (2.5.1) holds, we choose 5 = M /é, then P[|X,,| > 8] < E[|X,|]/B < ¢ and therefore,
EIIX|1yx, 55 <e

This implies that, for all n > N,
E[lXn| 1{x, >8] < 2¢.

Note that the finite family {X}, ..., Xn} is UI, and we can find 5’ such that, for all 1 < n < N,
EllXn| 1x,>51] <€

Set a = v /, and it is the desired quantity.
It remains to show (2.5.1). Since Z € L', there exists C such that E[|Z]|1{z>cy] < €/2. Then we
have

We can choose § = ¢/(2C). O

36



Proof of <. Tt suffices to show that, for any € > 0, there exists N such that E[|X,, — X|] < e for n > N.
Since {X,,n > 1} is Ul and X € L!, there exists M such that

E[I1XnlLyx,san] < €/4, E[IX[Lxsan] < ¢/4.

Define the cutoff function:

M, Tz = M;
‘PM(x) =37, |x’ < M;
M, x<-—-M.

Note that v (X,) — @ar(X) almost surely, hence by dominated convergence theorem, we have ¢ (X)) —
om(X) in L'. Thus, there exists N such that, for all n > N,

Ellon (Xn) — om(X)]] < /4.
Therefore, for all n = N, we have
E[1 X, — X[) < Elloar (Xn) — e (X)) + E [1Xal Lo oan ] + E[1X] Lgxpoan ] < e

as desired. O

From the proof of Proposition 2.5.4, we have several consequences.
Corollary 2.5.5. (1) Suppose X, — X in L', then {X,} is UL

(2) Suppose {Xn,n = 1} is Ul, and that X, — X in distribution. Then E[X,] — E[X].
To end this chapter, let us summarize the relation between different notions of convergence.

coupling

Figure 2.1

2.6 Exercises

Exercise 2.6.1. Let {X,} be independent. Show that sup,, X,, < 00 almost surely if and only if

Z P[X, > A] <o, for some A.

Exercise 2.6.2. Suppose {A,} is a sequence of events. Show that

P[A,, i.0.] = limsupP[A4,].

n

Exercise 2.6.3. Let {X,} be i.i.d. Poisson random variables with E[X,,] = 1. Define Sp, = >/, X;.
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(1) Show that S,/n — 1 in L?.

(2) Show that Sp/n — 1 almost surely.
Exercise 2.6.4. Suppose f is continuous. If X,, — X in probability, then f(X,) — f(X) in probability.
Exercise 2.6.5. Suppose X,, | X a.s., each X,, is integrable and inf, E[X,] > —o0, then X,, — X in L.

Exercise 2.6.6. Let {X,,} be a sequence of independent random variables with mean 0 and variance 1.
Show that for any bounded random variable Y we have lim,_,o E[ X, Y] = 0.

Exercise 2.6.7 (YCMC2012). Let {X,,} be a sequence of random variables satisfying

lim sup P[|X,,| > a] = 0.

a—00 n>1
Assume that Yy, — 0 in probability. Show that XY, — 0 in probability.

Exercise 2.6.8 (YCMC2014). Let {X,,} be a sequence of uncorrelated random variables of mean zero
such that

o0
Y nE[X7] < .
n=1

Show that S, = >,/ | X; converges almost surely.

Exercise 2.6.9 (YCMC2015). Suppose {£,} are independent with Bernoulli distribution P[&, = 1] = p,
and P[&, = 0] =1 — p,,. Assume > | puPp+1 < +00, show that Y"1 Enént1 converges almost surely.

Exercise 2.6.10 (YCMC2015). Suppose X,, converges in distribution to X. Let {N,t = 0} be a set of
positive-integer-valued random variables, which is independent of {X,} and converges in probability to oo
as t — 0. Show that {Xy,} converges in distribution to X ast — 0.

Exercise 2.6.11 (YCMC2015). Let {X,} be independent and X, ~ N (i, 02).
(1) If 3 X2 converges in L', then Y X2 converges in LP, for every p € [1,0).
(2) Assume that pi, = 0 for every n. If > 02 = o, then P[>, X2 = o0] = 1.

Exercise 2.6.12 (YCMC2016). For each n, let X, be an exponential random variable with parameter
qn. Suppose that {X,,} are independent.

(1) What is E [e=%n]?
(2) Suppose ), qin < 0, show that Y, X, < 00 almost surely.
(8) Suppose >’ qin = o0, show that Y X,, = 00 almost surely.

Exercise 2.6.13 (YCMC2016). Let {X,} be i.i.d. Prove or disprove: If limsup,,_, |Xn|/n <1 almost
surely, then >0 | P[|X,] = n] < w.

Exercise 2.6.14 (YCMC2017). Let {X,,} be positive random variables. Assume that X,, — 0 in proba-
bility, and that lim,_o E[X,] = 2. Show that lim,_.« E[|X,, — 1|] exists and compute its value.
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3 Law of Large Numbers
3.1 Weak law of large numbers

The goal of this section is the following “weak law of large numbers”.

Theorem 3.1.1. Let { Xy} be i.i.d. with finite mean m. Define Sy, = 37 X, then we have

S,
= —m, in probability.
n

To prove this theorem, we need to truncate X,’s and then show the conclusion for the truncated
random variables. For the truncation to work, we need to first understand what are the good truncations.

Definition 3.1.2. Two sequences of random variables {X,} and {Y,} are equivalent if

ZP[Xn # Y] <o

Suppose {X,,} and {Y,,} are equivalent, by Borel-Cantelli lemma, there exists 2y with P[Q] = 1 such
that, for any w € Qp, we have X,,(w) = Y,,(w) for all but finitely many n. Thus it is clear that

e > (X, —Y,) converges almost surely.

* %2?21()( ; —Y;) — 0 almost surely.
° %Z?:IX proba. - implies -+ 1 Z pmba X.
Proof of Theorem 3.1.1. Denote by p the common law of X,,’s, and suppose Z ~ p. Since Z € L', we

have
ZP[|Z\ =>n] < ©
n

We introduce random variables Y;,’s by truncating X,,’s:
Yo = Xn X 1<n}

Then

D IP[Xy # Yol = Y P[IXa| >n] = Y P[|Z] = n] < w0

n

Hence {Y,,} and {X,} are equivalent. Define T, = >J7_, Y. If we prove

Tn - E Tn . e1s
# — 0 in probability, (3.1.1)

then the conclusion follows, because E[T,,]/n — m as n — oo. It remains to show (3.1.1). We see, for any
e >0,

var (1,
P(IT, — E[T]) > ne) < 500
It suffices to show var(T},) = o(n?). Let us calculate var(T},).
n n
var(T, Z var(Y;) < Y E[YP] = Y E[Z°1z<5] -
= 71=1 j=1



The most naive estimate is the following:

n n
var(T, Z (22 1yz1e] < D, 4°,

j=1
which is O(n3). The less naive estimate is the following:

n n n

var (T, Z [2°1z1<p] < Z [1Z]121<5] < Z [1211;

which is O(n?). But we desire a control of o(n?). To improve it, let {a,} be a sequence of integers such
that 1 < a,, < n, a, — o, but a,, = o(n). Then we have

n

var(To) < Y E[Z2 Lzi<y] = D) + D,

7j=1 Jj<an an<j<n

= D E[Z Yzl + D) E[ZYzan] + ), E[Z*Ll{an<izi<iy]
j<an an<j<n an<j<n
< Y aElZ+ Y aElZI+ Y nE[1Z]1{,<iz1<i]

Jj<an an<j<n an<j<n

< O(Wnan + OMN*E [|Z| L(iz150,}] -

The first term is na, = o(n?) because a, = o(n); the second term is also o(n?) because E [|Z] 1 /50,1 ] —
0 since a,, — 00. Therefore, we have var(T},) = o(n?) as desired.

The following example explains that the finite expectation in the hypothesis of Theorem 3.1.1 is not
a necessary condition for the convergence in probability.

Example 3.1.3. Let {X,} be i.i.d. with the common law given by

P[Z:n]:P[Z:—n]:Wzgn, TL:2,3,...,

where ¢ is a normalizing constant. Define Sy = 377 Xj. It is clear that E[|Z|] = o0, but we have

& — 0, in probability.
n

Proof. Define

n

Z i Lix;1<ny -

(Note that, this is different from the definition in the proof of Theorem 3.1.1, as all X in the summation
are truncated at the same constant n. ) Let us calculate P[T,, # S| and var(T},).

n

P[T;, # Su] Z [1X;] > n] = nP[|Z| > n] ~

= logn
n n2
VaI‘(T ) nkE [Z 1{|Z|<n} g Og] logn
Thus g T
P[” >e]<P[>e]+P[Tn7&SR]<Var2(2”) P[T}, # Sy] — 0
n n n2e
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3.2 Three series theorem
The goal of this section is Kolmogorov’s three series theorem.

Theorem 3.2.1. Let {X,,} be independent random variables and define the truncation for a fized constant
A>0:
Yo = X 1qx, 1<y -

Then the series Y, X, converges almost surely if and only if the following three series all converge:
ZP|X|>A ZE ;Y var(Y
n

To show the direction of <=, we need the following lemma.

Lemma 3.2.2. Let {X,,} be independent random variables such that E[X,] = 0 and E[X?2] < c0. Define
Sn = 21— Xj. Then we have

P[max |S;] = e]< 2"].

1<j<n

Proof. Fix € > 0 and define

A= { max |S;| > }
1<j<n

Define T' = min{j : |Sj| > €} to be the first time that |S;| exceeds €, and define A, = {T' = k}:

Akz{max |S;| < € |Sk| = }

1<j<k

Note that Ay’s are disjoint and A = w}!_;Aj. We have
E[S214] = Z E[S?14,]
Z [S? 14, +25k(Sn — Sk) L, +(Sn — Sk)? 14, ] -

Note that Sj 15, and S, — Sj are independent, thus

E[Sk(Sn — Sk) 1a,] = E[Sk 1a, JE[(Sn — Sk)] =

Therefore,
E[S214] = i E[SF1a, +(Sn — Sk)* 14, ]
j E[821n,] > Z PlAx] = P[A].
Thus we have P[A] < E[S2]/e2, as desired. O

Proof of Theorem 3.2.1<=. Suppose the three series all converge. Since the first series converges, we
have >, P[X, # Y,] < . Thus {X,} and {Y,,} are equivalent, it suffices to show that ) Y, converges
almost surely. Since the second series converges, it suffices to show that ), (Y;, —E[Y},]) converges almost
surely. Let us consider the tail of this series

:Z(YJ_
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We need to show that, almost surely, the oscillation

W, := max |T(k,0)|

{=k=n

is small when n is large.
Fix € > 0, by Lemma 3.2.2, we have

m
P [ max |T'(n,j)| = 6/2] < 4e? 2 var(Yj).
j=n

n<j<m

Let m — o0, we have

P|max|T(n,j)| = €¢/2| < 4e2 var(Y;).
s 001> 2] <4672 3 v
For £ > k > n, we have

T(k,t) =T(n,l) —T(n,k).

Thus

P[W, > ¢ =P [ max |T(k, 0)| > e]

=k=n

<P {max |T(n, )| = 6/2} <4e? ) var(yp).
n

=

j>n
Since the third series converges, we have
lmP[W,, = €] = 0.
n
Since the sequence of events {W,, > €} is decreasing in n, we have
P [tim W, > ¢| = 0.
n
Let € — 0, we have
P [tim W, = 0] = 1.
n
This implies the almost sure convergence. O

To show the direction of =, we need the following lemma.

Lemma 3.2.3. Let {X,,} be independent random variables which are bounded: there exists a constant A
such that | X,,| < A almost surely for all n. Define S,, = 2?21 X;. Then we have

P[max |S;| < B

1<j<n

]<@3+m2
var(Sy)

Proof. Define T'= min{j : |S;| > B} to be the first time that |S;| exceeds B. Then we have

(>0 = {max |1 < B} (7= 8= { max 15 < Blsi| > B

<< <j<k

We need to give a upper bound for P[T" > n]var(S,). Let us consider the expectation and the variance
of Sy, on {T' > k}:
ag := E[Sk Liz=py | /PIT > k], E[(Sk — ar)’ Lir=py] -
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It is clear that |ax| < B. We write

E [(Sk+1 - Gk+1)2 1{T>k+1}]
=E [(5k+1 - ak+1)2 1{T>k}] —E [(Sk+1 - ak+1)2 1{T:k+1}] .
For the first term,

E [(Sk+1 - Gk+1)2 1{T>k}]
E[(Sk — ar + Xpr1 — ape1 + a)* Lipspy ]

E[(Sk — a)* Ly ] + E[(Xks1 — a1 + ar)® Lpspy] (by indep.)
= E[(Sk — ar)® Lirony] + E[(Xat1 — ars1 + ar)?] P[T > k] (by indep.)
> E[(Sk — ar) 1{T>k}] + var(Xy1)P[T > k]. (by Exercise 1.7.1)

For the second term,

E[(Sk+1 — ars1)® Lirmprny] = E[(Sk + Xis1 — ans1)® Lir—piny] -
Note that, |Sk| < B on {T' =k + 1}, and |Xp41| < A, and |ag4+1| < B. Thus, for the second term,
E [(Skﬂ - Gk+1) 1{T k+1}] (2B + A)2P[T =k+1].
Combining the two estimates, we have

E[(Sk+1 — ans1)® Lir=pi1y]
> E[(Sk — ar)® Liz=py | + var(Xe1)P[T > k] — (2B + A)’P[T =k +1].

Summing over k, we have
E [(Sn - an)2 1{T>n}]
> E[(X1—a1)? ey + Eznmﬂ [T > k] — (2B + A)?P[2 < T < n|
k=1

> E[(X1 —a1)? Lpsqy] + (var(Sp) — var(X1))P[T > n] — (2B + A)’P[2 < T < n]

Thus
var(S,)P[T > n]
< E[(Sn — an)? Lip=py| + var(X1)P[T > n] + (2B + A)’P[2 < T < n].
Note that
E [(Sn - an)2 1{T>n}] = E[szz 1{T>n}] - a?LP[T > n] < B2P[T > n]
Thus
var(Sp)P[T > n] < B?P[T > n] + A?P[T > n] + (2B + A)’P[2 < T < n]
< (2B + A2
This gives the conclusion. O

Proof of Theorem 3.2.1 =—. Suppose Y, X, converges almost surely, then we have

P[|X,| > A i.0] = 0.
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Then Borel Cantelli lemma guarantees the convergence of the first series. As a consequence, the sequences
{Y,} and {X,} are equivalent, hence ), Y, converges almost surely as well. By Lemma 3.2.3, we have

k 2
(A+2)
[nglkzxm | j; i 2, var(Y;)

If the third series diverges, then the right hand-side will go to zero as m — o0. Hence the tail of
> Yy, almost surely would not be bounded by one, so the series could not converge. This confirms the
convergence of the third series. By the proof of direction of <=, the convergence of the third series implies
the convergence of }} (Y, — E[Y},]). Combining with the convergence of > Y;,, we have the convergence
of the second series. O

Example 3.2.4. Suppose {X,} are i.i.d. Bernoulli random variables with parameter 1/2: P[X,, = 1] =
P[X, =—-1] =1/2.

e Consider the series
D Xn
t
n
There is no absolute convergence, but there is almost sure convergence.
e Consider the series
D Xn
w
It diverges almost surely. Note that this is different from Y, (—1)"/y/n which does converge.

Proof. By three series theorem, we see that the series ), X, /n converges almost surely: take Y, = X,,/n
and A = 1, we have P[|X,,/n| > 1] = 0, E[Y,,] = 0, and var(Y,?) = 1/n?.

Next, we consider ) X,/ /n: take Y,, = X,,/y/n and A = 1, we have P[|X,,/4/n| > 1] = 0, E[Y},] = 0,
and var(Y,) = 1/n. By three series law, we see that

Xn
P [Z % converges] < 1.

By Kolmogorov’s 0-1 law in Example 1.5.4, we have

X,
Py =2 — 0.
[ - \/ﬁ Converges]

O
3.3 Strong law of large numbers
The goal of this section is the following “strong law of large numbers”.
Theorem 3.3.1. Let { Xy} be i.i.d. Define S, =377, X;. Then we have
Sn
E[|X1]] < 0 = Pl E[X1], almost surely; (3.3.1)
E[| X1|] = 0 = limsup [Sul = o0, almost surely. (3.3.2)
n n
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Lemma 3.3.2 (Kronecker’s lemma). Let {x,} be a sequence of real numbers, {a,} be a sequence of
numbers such that 0 < a,, 1 0. Then

n

Ty 1
Z — converges =—> — Z z; — 0.
a

n " " =1

Proof. Define b,, = Zyzl zj/aj and set ag = by = 0. Then we have

1 n 1 n 1 n—1
— D w=— > a(by—bj1) = bu— — > (aje1 — a;)b;.
n i noiq n 0

Note that aj;1 —a; = 0 and

1 n—1
a (a]+1 aj)bj — by
n 20
Thus
1 n 1 n—1
Q—Zx] = by, " Z(GJ“ a;j)b; — 0
n i1 n o

O]

Lemma 3.3.3. Let {X,} be independent random variables with E[X,,] = 0. Suppose {a,} is a sequence

of numbers such that 0 < a, 1 0. Suppose ¢ : R — Ry s positive, even and continuous function on R
such that

o(x)

||

A2

as |x| 1.
Assume ¢ satisfies the following condition:

Elp(Xn)] _
an ¢(an) =

Then

Xn
Z —  converges almost surely.
an,

n

Consequently,

1 n
— Z X; — 0, almost surely.
an =

Note that there is a wide range of choice of ¢ in Lemma 3.3.3, for instance ¢(z) = |z|P with 1 < p < 2.

Proof. Define
Yo = Xn 1yxp1<0n} -
We will use three series theorem for {X,/a,} and {Y,,/a,} with A = 1. First of all,

2P {)a(: 7 Zﬂ :;P[’Xn’ > ay]

n

= Y Ple(Xn) > plan)] < )| =5 < 0.
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Second,

3 E[Ya]| D [E[Xn 1{x, 1> an]l

(since E[X,] = 0)

~ap ~ an
<2E Pf:' 1{Xn|>an}]
< Z E {S;((f:))] < 0. (since @(x)/|z| is increasing)
Finally,
Zvar(Yn/an) < Z E {a:;j] = 2 E [ig 1{|Xn|<an}j|
< Z E [i((i(:))] < 0. (since o(x)/x? is decreasing)

Proof of Theorem 3.3.1—(3.3.1). Define
Y, =X, l{\XnKn} .
The sequences {X,} and {Y,} are equivalent:

STPLX, # Yol = SIP[IX1] > n] < 0,

n

O]

To apply Lemma 3.3.3 to {Y,, — E[Y,,]} with a,, = n and ¢(z) = 22, suppose Z has the same law as {X,},

we calculate

var(Y,,) E[Y,}] 1
; n?2 S ; nz ; EE [X2 l{leén}]

© qon )

= Z = Z E[X7 1 1<x1<})
n=1 J=1
0 1

= Z E[X? 1i-1<ix|<j}] Z n2
j=1 n=j

0(1)

o0
= D E[X? L—r<ixie] =

<.
Il
—

< O(1) D E[IX] Ly 1<ix1<y] = OE[X[] < @
j=1

Applying Lemma 3.3.3 to {Y;, — E[Y},]}, we obtain

1 n
= Z (Y; —E[Yj]) = 0, almost surely.
n
Therefore
lim 2% — fim Zn: ¥ — lim © > E[Y;] = E[X]
nn_nnjzlj_nnjzl e

46



Proof of Theorem 3.8.1—(3.3.2). Since E[|X1|] = o0, we have E[|X;|/A] = oo for any A > 0. Thus

D P[|Xn| > An] = oo.

n

By Borel-Cantelli lemma, we have
P[|X,| > An i.0.] = 1.

Note that |S, — Sp—1] = | Xy| > An implies |S,| > An/2 or |S,_1| > An/2. Thus
A
P [\Sn\ > 7” zo] ~1.

This means that, for each A, there exists a null set A/(A) such that

S, A
lim sup M =z —
n n

5 on QN (A).

Take N' = U_  N(m), then it is still a null set and
: |Sn]
limsup —— = o0, on Q\N.
n

n

O]

Example (Example 3.1.3 continued). In this example, we have S,/n — 0 in probability. However, by
strong law of large numbers, we have

lim sup & = 400, liminf = = —o0, almost surely.
n n n
Example 3.3.4. Suppose {X,} are i.i.d. with E[X1] = 0 and var(X1) = 1. Define S,, = >7_; X;. For
e > 0, we have

Sn
n1/2(logn)l/2+e

-0, a.s (3.3.3)

Proof. By strong law of large numbers, we have S,/n — 0 a.s. Thus (3.3.3) is a better conclusion. For
the convergence in (3.3.3), by law of the iterated logarithm in Example 5.5.5, we have

. Sn
lim sup

—— =1
n  +2nloglogn

Thus the convergence in (3.3.3) is not far from the best possible.
Next, we show (3.3.3). Set a, = n'/?(logn)"/?*¢ and Y,, = f—: 1{X,|<an}- Then we have

2
P[] > an] < EEl o0 L

2
an n °n

. E[X2
S e < De[E 1 | <D H -3 2 <

, n n n on
Zvar(Yn) < 2 ELXA = 2 ! < 0.

2 22
n an n an

a.s.

By three series law, we see Y, X, /a, converges a.s. Combining with Lemma 3.3.2, we have S,,/a,, — 0
a.s. O
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Example 3.3.5. Suppose {X,} are i.i.d. with E[X1] = 0 and E[|X1|P] < o0 for some p € (1,2). Define
Sn = 21— Xj. Then
Sn
m —
Proof. Strong law of large numbers gives S,,/n — 0 a.s. The conclusion here is better. Set a,, = n'/P and
Yy = Xn 1{x,|<an)- Then {X,} and {Y,} are equivalent, because

N PlIXa| > an] = D IP[X1P > n] < E[|X:[] < 0.

0, a.s.

Define T}, = Z?Zl Y;. It suffices to show T}, /a,, — 0 a.s. We will show

> var(Yy/an) < oo, (3.3.4)
n
and ErT
[T o, (3.3.5)
an
Assuming (3.3.4) holds, by Lemma 3.3.3 with o(x) = 22, we have
T, — E|T,
Tn —E[TW] 0. as.
Qn,

Combining with (3.3.5), we have T;,/a,, — 0 a.s. Thus it remains to show (3.3.4) and (3.3.5).
Suppose Z has the same law as X;. We have

1 1
2, var(Yo/an) < ) BV = ) 5E[2° L71ca,)]

n>=1 n=1 "N n=1 """

2 i B[22 10, <7120,

1
- E [ZQ 1{aj,1<\z\<aj}] Z a2

j=1 nzj

S
\
—
<
Il
—_

2 -2
= E [Z l{aj71<\Z\<aj}:| O(l)a’?

<0(1) Y E[12 Lo, <1210 = OWENIZP] < 0.

j=1

This gives (3.3.4).
Finally, we derive (3.3.5): for 1 <m < n,

E[T] _ 1 <
o o Z E [|Z| 1{|Z|>aj}:|
Jj=1
1 " 1— 7
< — >0 "E||1ZP 1750,
1 & - 1 1 & -
< — Y E |12 Lyzgeay |+ — X @) VE |12 L7100y
n i n T
1 & 1 1 & -
<= 200 PE 12 Yzpay |+ 2 o PEIZP Y z150,)
ni n
]. n 1— T
< — 2,0 "E||1ZP 17150, | + OME 12 12150, -
nj:l m
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We let n — oo and then m — o0, we obtain (3.3.5). O

Example 3.3.6 (Renewal theory). Suppose {X,} are i.i.d. with0 < Xy <oo. Let T), = 37_; X;. For a
concrete situation, consider a janitor who replaces a light bulb the instant it burns out. Suppose a bulb is
put in at time 0 and let X; be the lifetime of the ith light bulb. In this interpretation, T, is the time that
the nth light bulb burns out and Ny = sup{n : T,, < t} is the number of light bulbs that have burnt out by
time t. If E[X1] = p < o0, then

N, 1
Tt — —, ast— oo, almost surely; (3.3.6)

i

E[N, 1
[V:] — —, ast— . (3.3.7)

t %

If p = o0, then 1/p = 0.

Proof of (3.3.6). By strong law of large number, we have T},/n — p almost surely. By the definition of
N, we have Ty, <t < Tn,+1. Thus

Tn, < t < TN, +1 Ny +1

N, N, N+1 N,

Strong law of large number implies that, there exists a null set A/ such that

Ty
:})Huasn—»oo, Ni(w) tooast]oo, YweQW.
Therefore,
TNt(UJ) (w) Nt(w) +1
—_— sy, ———— 1, YweQW.
NG P TN '
This gives the conclusion. O

Proof of (3.3.7). We have shown the almost sure convergence, in order to have convergence in L', we
need to check the collection {N;/t : t > 0} is UL To this end, we will show that it is bounded in L2.
Since X7 > 0 a.s., there exists § > 0 such that

P[X1>5]=p>0.

Define Xj, = 01(x,>5- The sequence {X,,} is i.i.d. Bernoulli random variables and define 7;, and Ny
for {X!}. Since X! < X,, we have T, < T), and N; < N;. From Exercise 3.3.7, E[(N//t)?] is bounded
uniform over ¢t. Thus E[(N:/t)?] < E[(V//t)?] is bounded uniform over ¢. This completes the proof. [

Exercise 3.3.7. Suppose {X,} are i.i.d. Bernoulli random variables with parameter p € (0,1): P[X; =
1] =p and P[Xy = 0] = 1 — p. Define S, = 3};_; X; and Ny = sup{n : S, < t}. We have E[N;] = O(2)
and E[N?] = O(t?) as t — .

Proof. For t > 0 and n > 1, we have {N; > n} = {S,, < t}. Note that S, takes values in {0,1,...,n}. We
have

1 =P[S, < t] =31 (Mpr (1 —p)" .
Let us evaluate E[V¢]:

E[N] =Y PNy =] =[t] + D) D (?)pj(l -p)" 7 =t+0(1).

n n>t j=0



Then we evaluate E[N?]:

E[N?] = > n’P[N; = n]
n=1
= Z n*P[N; =n—1] — Z n?P[N; = n]
n=1 n=1
=1+ ) (2n+1)P[N; > n]
n=1

3.4 Exercises

Exercise 3.4.1. For arbitrary {X,}, if X, E[|Xy|] < o0, then Y X, converges almost surely.

Exercise 3.4.2. If{X,} is a sequence of independent random variables, then the convergence of the series
D> Xn in probability is equivalent to its almost sure convergence.

Exercise 3.4.3. Let {X,} be independent Poisson random variables with E[X,] = \,. Define S, =
2 Xjo If 2300 = o0 then Sy /E[Sy] — 1 almost surely.

Exercise 3.4.4. Suppose {X,,} satisfies the following assumptions:

e There are constants C and p such that var(X,) < C and E[X,,] = p for all n.

e There exists a function f: N — Ry such that f(n) — 0 and cov(X;, X;) < f(i — j|) for all i,j.
Show that

X1 +Xo+---+ X,
n

—u  in L*(Q, F,P).
Exercise 3.4.5. Suppose {X,,} is a sequence of random variables.
(1) Show that X,, — 0 almost surely if and only if, for any € > 0, P[|X,| > € i.0.] = 0.

(2) Show that there exists a sequence ay 1 o such that X, /a, converges to 0 almost surely.

Exercise 3.4.6. Suppose that {X}, : k € N} are i.i.d. and set S, := 37| X;. Show that Sp/n — 0 almost
surely if and only if the following two conditions are satisfied:

(1)
Sn, . ..
ol 0 wn probability,

(2)
Sn

on — 0 a.s.

An alternative set of conditions is (1) as above and

(3) for any e >0,
D P [|Syns1 — San| > 27€] < o0
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Exercise 3.4.7. If {X,, : n € N} is a sequence of positive, non-decreasing random variables such that
X,, — o0 almost surely, show that

. log X,
lim sup 1 a.s.

n—ow 10gE[X,] =

Exercise 3.4.8. Suppose that Y, | P[A,] = o0 for pairwise independent events {Ay}. Let Sy, = Y1 1a,
be the number of events occurring among the first n events.

(1) Show that var(S,) < E[S,] and deduce from it that S,,/E[S,] — 1 in probability.

(2) Applying Borel-Cantelli lemma to show that Sy, /E|[Sn,] — 1 almost surely as k — oo, where
ny := min{n : E[S,] = k?}.

(3) Show that E[Sn, ] /E[Sn,] = 1 as k — . Deduce that S,/E[Sn] — 1 almost surely.

Exercise 3.4.9 (YCMC2013). Let {X,} be a sequence of random variables.

(1) Assume that Y, P[|X,| > n] < o0. Show that limsup,,_, Xnl <1 almost surely.

n

(2) Show that {X,} converges in probability to 0 if and only if for certain r > 0,

| Xn|"
E|———| — 0.
L + | Xn|"

Exercise 3.4.10 (YCMC2014). Suppose X,, is n-dimensional standard Gaussian random vector and
denote by || X,,| its Fuclidean norm. Show that for any € > 0,

X
1imP[1—e< [ X <1+e]_1.
n— 00 \/ﬁ

Exercise 3.4.11 (YCMC2016). Let {X,} be i.i.d. such that E[X1] = —1. Let S,, = X1+ --- + X,, for
alln =1, and let T be the total number of n > 1 satisfying S, = 0. Compute P[T = 0.
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4 Central Limit Theorem

4.1 Characteristic function

Definition 4.1.1. For any random variable X with distribution u, its characteristic function is defined
to be:

f:R—>C, f@t):=E["¥]= f " plda).
The first equal sign is the definition, the second equal sign is due to Theorem 1.5.5.
In analysis, the characteristic function is known as the Fourier transform of u.
Lemma 4.1.2. The characteristic function has the following basic properties.
(1) f(0) =1, |f(t)] <1, and f(~t) = f(t).
(2) f is uniformly continuous.

(3) We write fx for the characteristic function of X, then for any real numbers a and b, we have
faXer(t) = fX<at)eibt7 f—X(t) = fX(_t)'
(4) If {fn} are characteristic functions and {\,} are positive numbers such that Y, A\, =1, then

D Ankn

is a characteristic function. Briefly: convexr combination of characteristic functions is a character-
istic function.

(5) Suppose X andY are independent, then the characteristic function of X +Y is fx x fy.
(6) If f is a characteristic function, so is |f|>.

Proof of (2). We have

e+~ FO] = | | (e ~ Dulda] < [ = 1lufdo).
By bounded convergence theorem, the last term goes to zero as € — 0. O

Proof of (4). If {un} are the corresponding probability measures, then )} A,uy is a probability measure.

O
Proof of (5).
E[eX )] = E[e"Xe™] = E[e" Y ]E["].
O
Proof of (6). Suppose X and Y are ii.d., then
E[e" ] = E["YE[e ] = F(1)f(—1) = | (DI
O

We emphasize that the introduction of characteristic function simplifies the calculation for sum of
independent random variables.
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Lemma 4.1.3. Suppose X and Y are independent.
o The distribution function of X +Y is Fx = Fy.
e The characteristic function of X +Y is fx x fy.
Example 4.1.4. We list characteristic functions of a few well-known probability measures.

e Dirac mass at a:
eiat

e Bernoulli distribution on {—1,+1} with p = 1/2:

cos(t).
e Uniform distribution on [—a,a):
sin at
at
e Ezponential distribution with density e ™ :
A
A —it’

e Normal distribution N'(m,o?):
2,2
) ot
exp <zmt — 2) .

e Poisson distribution with parameter X\ > 0:
exp ()\(eit -1)).

e Geometric distribution with probability p € (0,1):

peit

1—(1—p)et
Exercise. Cualculate examples in Section 1.6 using characteristic functions.

4.2 Uniqueness and inversion

We have defined characteristic function for each probability measure. Then the following question comes:
given a characteristic function, how can we find the corresponding probability measure? The formula for
doing is called inversion formula.

Theorem 4.2.1. Suppose f is the characteristic function for the probability measure p. For x <y, we
have , ,
1 1 | 1 T efzta: _ efzty p
, + = + — = i — —  f(t)dt.
)]+ ullel] + gultol] = Jim 5 [ =100

Observe that the integrand in the right hand side is bounded by O(|t|~!) as [t| — o0; yet we cannot
assert the “infinite integral” exists (in the Lebesgue sense). Indeed, it does not in general. The fact that
the limit in the right hand side does exist is part of the assertion.
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Proof. We claim that

1 T _—itz _ ,—ity ] T it(z—z) _ Lit(z—y)
% <Jelt2,u[dz]> dt = fﬂ[dz]f c c dt. (4.2.1)
2

% -T T 2mit

This is true due to Fubini’s theorem, because the integrand in the right hand side is bounded by integrable
function with respect to pl[dz]dt on R x [T, T7:

eit(z—x) _ eit(z—y)
< |z —yl.
m [z =yl
This proves (4.2.1). Define
T eit(zf:v) _ eit(zfy)
T, z;2z,y) = J - dt.
-T 2wt

It is clear that

T s - T sin(t(z —
K sy - [ SOC= D [T

The quantity I is bounded in T', because for any w > 0

0 < sgn(«) Jw sin(at)

T 3 t
dt < f S at. (4.2.2)
0 t 0

t

Therefore, we can interchange the limit and the integral. It remains to derive the limit of I as T — co.

Note that
T

) sin(at) T
| dt = — . 4.2.3
S S 423
As a consequence, we have
0, fz<zrz<yorzx<y<z,

lim I[(T,z;xz,y) =< 1/2, ifz=zo0rz=y,

T—0 .
1, ifx<z<uy.

Therefore,

1 T e—itw _ e—ity
lim f £ fydt= Ju[dz] lim I(T, 2 ,y)
-T it T—0

1 1
= ul(e )] + sulfe)] + Lulio)]
O
Corollary 4.2.2. If two probability measures p and v have the same characteristic function, then p = v.

Proof. Suppose A, is the set of atoms of ;1 and A, is the set of atoms of v. From the inversion formula,
we have

pl(a,b)] = v[(a,b)], for any a,beR\(4,uU A,).

Note that A, and A, are countable, thus R\(A, U A,) is dense. The intervals {(a,b) : a,be R\(4, U A4,)}
generates B. Thus pu = v. O
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Corollary 4.2.3. Suppose f is the characteristic function for the distribution function F. If f € L*(R),
then F is differentiable and

o) = F'a) = 5 [ e syt
In other words, when f € L*(R), we have
_ i —ixt £)dt f(t) _ ite ( )d
po) = 5 [ 1) = [ epie)da,

Proof. Write the inversion formula in terms of F'

F(y)+ F(y—) F(z)+F(z—) 1 (e itr ¢ ity
e e (O

Let x — y—, the right hand side goes to zero (we are allowed to interchange the limit and the integral
due to the hypothesis on f). Thus F' is continuous. The above formula then writes:

—iter __ ity
F(o) - Fla) = o [ S5 i

Divide both sides by y — x and then let y — x4+, we obtain the conclusion (we are allowed to interchange
the limit and the integral due to the hypothesis on f). O

Corollary 4.2.4. For each x, we have

: 1 g —itx
jlglgo o fT e " f(t)dt = p[{x}]. (4.2.4)
Moreover, we have
1 (T
Jim o | 0P = 3 il (4.25)

_ s sin(T'(z — x)) .
—kmmmﬂ%@+M}l

Then, Eq. (4.2.4) holds by the following observation:

lim ] sin(T'(z — x))

= 0.
T—o0 R\{:E} T(Z — 1‘)

For (4.2.5), recall that |f|? is the characteristic function of X —Y where X,Y are i.i.d. The law of
X —Y is p#* ' where p/[B] = u[—B] for all B € B. Applying (4.2.4) with x = 0 and X — Y, we have

T
mnlfvw%zwﬂml

T—oo 2T -T

Note that

wwﬂm=wawmmm=fmwmmm=2nww.
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Definition 4.2.5. The random variable X is symmetric if X and —X have the same law.

Lemma 4.2.6. The random variable X is symmetric if and only if its characteristic function is real-valued
for all t.

Proof. Suppose the characteristic function of X is f. Then the characteristic function of —X is f. By
Corollary 4.2.2, the random variables X and —X have the same law if and only if f = f. O

4.3 Characteristic function and convergence

The goal of this section is the following convergence theorem.

Theorem 4.3.1. Let {u,} be a sequence of probability measures with characteristic functions {f,}. Sup-
pose that

(a) fn converges everywhere in R and defines the limiting function f;
(b) f is continuous at t = 0.
Then we have
(1) pn = 1 where p is a probability measure;
(2) the characteristic function of u is f.
We first discuss the converse direction of this theorem.

Lemma 4.3.2. Let {u,} and p be a sequence of probability measures with characteristic functions { f,}
and f respectively. If p, converges weakly to u, then f, converges to f uniformly in every finite interval.
Furthermore, the family {f,} is equicontinuous on R.
Proof. Since the real part and the imaginary part of e are bounded continuous functions, the weak
convergence implies f,, — f pointwise.

We first show the equicontinuity, i.e. we show that, for any € > 0, there exists § > 0 such that

|fn(t+ h) — fo(t)| < € as long as |h| < 6. For any t € R and h € R, we have

|fu(t + ) — fult)] < Jle"’” — 1pn[da] < J

|hawun[dx]+-J‘ yinlde]
{2l<A}

{lz[>A}

<|hA+ 2f [ da].
{lal=A)

For any € > 0, there exists ng = no(4, €) such that

h@+m—ﬁﬁﬂémm+2k:ﬂﬁwﬂ+d4

This gives the equicontinuity for {f,}: for any € > 0, we choose A large enough such that p[{|z| > A}] <
€/4, then for any h such that |h| < § :=¢/(44), we have

Falt 4 0) = falDl <, VEER, W=,

as desired.

Next, we show the uniform convergence on compact interval I, i.e. we show that, for any € > 0, there
exists ng = no(1, €) such that |f,(t) — f(¢)| < € for n = ng. From the equicontinuity, there exists § such
that |fn(t) — fu(s)| < € as long as |t — s| < J. Choose finite sequence of points {ai,...,am,} < I such that
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u;-nzol (aj —0,a;+9) is a cover of I. By the pointwise convergence, we have f,(a;) — f(a;) for 1 < j < my.

Thus there exists ng = ng(Z, €) such that
|fn(aj) — flaj)] <€, V1I<j<mg, Vn=ng.
For any t € I, there exists j such that t € (a; — d,a; + 0), thus
[fn(8) = O] < [fa(t) = fulag) + [fulag) — flag)| + [f(a;) = F(t)] < 3e,  Vn = no.

This gives the uniform convergence. O

By Proposition 2.3.2, we know that {u,} contains convergent subsequence: p,, = g where p is a
subprobability measure. To show Theorem 4.3.1, we need to argue that all subsequential limit are the
same which is given by f. To this end, we first argue that, under the assumption of the theorem, any
subsequential limit is indeed a probability measure, which needs the following lemma.

Lemma 4.3.3. Suppose f is the characteristic function of the probability measure . For each A > 0,

we have )
.
H([~24,24]) > A J F)dt] — 1.
_A-1
Proof. By the proof of Theorem 4.2.1, we have
1 (T sin(Tx)
o JTf(t)dt _ f ) ).
Thus
1 JT FOd] < p([=24,24]) + —— (1 — p([~24,24])) = (1 — —— ) u([~24, 24]) + ——
o )y SH ’ orAt M ’ - oA ) H ’ TA
Set T = A~!, we obtain the conclusion. O

Proof of Theorem 4.3.1. Suppose py, is a convergent subsequence of {{,} and denote the limit by pu.
First, we argue that p is a probability measure. By the above lemma, we have, (when +26~! € Cu)

1 J
w(R) = pu([—2071,2671]) = lilgn,unk([—%—l, 2071]) = limsup 5 U fr (t)dt’ -1
k —6

Since f,, — f everywhere, and by bounded convergence theorem, we have

J_: fur (t)dtl _ (15‘ fé f(t)dt‘.

i 1
11m sup —
k s

Since f is continuous at zero, we have

1 5
lim Uéf(t)dt‘ = 1.

Thus, for any € > 0, there exists dg > 0 such that, for any 0 < ¢ < Jg,

1 )
- U_(Sf(t)dt‘ S9 e

Therefore,
w(R) =1 —e.

This holds for any € > 0. Thus u(R) = 1 and pu is indeed a probability measure.

Let g be the characteristic function of . By Lemma 4.3.2, we know that f,, — g everywhere. By the
hypothesis, g = f. We see that any subsequential limit has the characteristic function f, and hence, by
Theorem 4.2.1, any subsequential limit has the same probability measure whose characteristic function is
given by f. O
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Corollary 4.3.4. Suppose {u,} and p are probability measures whose characteristic functions are {f}
and f respectively. Then

Un =>4 < [, — [ uniformly on every finite interval.

Proof. The direction = is guaranteed by Lemma 4.3.2. The direction <= is due to Theorem 4.3.1 and
the fact that the characteristic function f is uniformly continuous. O

The following examples show the necessity of the assumption in Lemma 4.3.2 and Theorem 4.3.1.

Example 4.3.5. Let u, be the probability measure such that it has mass 1/2 at {0} and 1/2 at {n}. Then
fn, = p where p has mass 1/2 at {0} and zero elsewhere. For the characteristic functions, we have

1 1.
fn(t> = 5 + §€Ztn.
They do not converge.

Example 4.3.6. Let p, be the uniform distribution on [—n,n]. Then p, = p where u is identically
zero. For the characteristic functions, we have

sin(nt) ift £ 0:
fatty =4 0 TLEO
1, ift =0.

They converge and the limiting function is
0, ift+#0;
TORE A
1, ift=0.
The limiting function is not continuous at zero.
The following examples are applications of the theorem.

Example 4.3.7. Suppose {un},{vn} and p, v are probability measures, and p, => pu and v, => v. Then
[y % Uy == [L % V.

Proposition 4.3.8. Suppose p is a probability measure and f is its characteristic function.

(1) If u has a finite moment of order k > 1, then f has a bounded continuous derivative of order k
given by

ﬂWw=ﬂmﬂmwwl

(2) If f has a finite derivative of even order k at t = 0, then u has a finite moment of order k.*

Proof. The first conclusion is clear. For the second conclusion, we start with & = 2 and suppose f”(0)
exists and is finite. We have
f(e) =2f(0) + f(—¢)

€2 '

f"(0) = lim

e—0

For the right hand side, we have

=2 J 1—(36()28(<E:E)M[d1:]

'Bonus. Suppose f has finite (first order) derivative, can you conclude that u has finite expectation?
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By Fatou’s lemma, we have

1-— 1-—
JxQM[dx] - 2[113% (;(;S(“)M[dx] < 2lireri>iglff(gs(m)u[dx] — —f"(0).

Therefore, p has finite second moment.
For general 2k, suppose the conclusion holds for 2k — 2 and f()(0) exists and is finite. By the
induction hypothesis, we have

f(2k—2) (0) _ J(iaj)%_Qeim,u,[dx].
Define .
G(x) = J v Puldy], VzeR.
—

If G(0) > 0, then G(-)/G(0) is a distribution function. For its corresponding probability measure,
its characteristic function is given by

, _1\k—1 f(2k—2)
g(t) — C;(loo) Jeztm$2k—2u[d$] _ ( 1) G{w) (t)

By the induction hypothesis, ¢”(0) exists and is finite. By the proof of the case with k& = 2, we know that
G has finite moment of order 2, and thus u has finite moment of order 2k as desired.
If G(o0) =0, then g = dp. Then f =1 and p has finite moment of order 2k. O

Corollary 4.3.9. If u has a finite moment of order k = 1, then f has the following expansion in the
neighborhood of t = 0:

ﬂn=i“WVM+dmﬂ
= I

Moreover, we have

k i
o)~ Ye |

i=0 J:

<E [\tX]k“ A 2|tX\k] .

Proof. The first conclusion is due to Taylor expansion. The second one is due to the following control:

) P\ J k+1 k
T Z (Zl’) < |.T’ A 2"73‘ )
i TS k)" TR

J=0

Example 4.3.10. Suppose {X,} are i.i.d. and denote by S, = >7_; X;. If E[|X1]] < 0, then

S,
L E[X1], in probability.
n

Proof. Suppose f is the characteristic function of X; and denote by m = E[X7]. Then the characteristic
function of S,,/n is given by

gu(t) = E |5/ | = f(t/m)".
By Corollary 4.3.9, we have

F(t/n) =1+ im% + o(t/n).
Therefore,

¢ " ;
gn(t) = (1 +im— + o(t/n)) — ™ n - .
n

In other words, the characteristic functions g, converge to the characteristic function of the dirac measure
Om. This gives the convergence in probability. O
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Theorem 4.3.11. Let {X,} be i.i.d. with E[X1] = m and var(X;) = 02 € (0,0). Define S, = 2 X

Then
S, —nm

ay/n

where N'(0,1) is the standard normal distribution.

= N(07 1)7

Proof. We may assume m = 0. Let us calculate the characteristic function of S,,/+/n:

E [exp(itSa/(o/n))] = £(t/(ov/m)".

By Corollary 4.3.9, we have the expansion

F(t)(oyn)) =1 — i +o <t2> .

Therefore,
2
E [exp(itSn/(ov/n))] — e_%, n — 0.

This gives the weak convergence. O
Compare Theorem 4.3.11 with Cramér’s theorem in Section 1.6.

Example 4.3.12. Let {X,} be i.i.d. Bernoulli random variables with P X, = 0] = P[X,, = 1] = 1/2.
Set Sy, = 377y Xj. Let us estimate P[S16 = 8]. The exzact probability is given by

16
P[Sis = 8] = <8 >216 = 0.1964.

The approzimation given by central limit theorem is the following:

Si6 — 8

P[Sis € (7.5,8.5)] = P { € (—0.25,0.25)] ~ P[x € (=0.25,0.25)] = 0.1974.

Example 4.3.13. Let Z) have a Poisson distribution with mean \. Show that
Zy— A
VA

Proof. Suppose {X,,} are i.i.d. with Poisson distribution with mean one, then E[X,,] = 1 and var(X,,) = 1.
Set S, = Z;L=1 X, then S, has the law of Poisson distribution with mean n. Central limit theorem implies

= N(0,1), as A — .

Sn,—n
\/ﬁ

This gives the conclusion for A = n — c0. For general A, we have S|y| <st Zx <st S|\|4+1- Thus for any z,

Sial+1 — A ] {Z)\_)\ ] {SMJ_)‘ ]
Pl ———— <z <P <z| <P <zxl.
[ 2\ VA VA

= N(0,1).

As A — o0, we have

N

P {Z);;)\)\ :1;] — P[x < z] where x ~ N(0,1).

O]

Example 4.3.14. Let X and Y are i.i.d. with mean zero and variance one. If X +Y and X —Y are
independent, then the common law of X and Y is N'(0,1).
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Proof. Let f be the characteristic function of X. By the hypothesis, we have f'(0) = 0 and f”(0) = —1.
The characteristic function of X +Y is f(t)? and the characteristic function of X —Y is f(¢)f(—t). Since
they are independent, the characteristic function of 2X = (X +Y) + (X —Y) is f(¢t)3f(—t). In other
words,

F(2t) = F(O* F(~0). (4.3.1)

First, we argue that f never vanishes. If f(tp) = 0 for some ¢;. By (4.3.1), we have f(tp/2) = 0 or
f(=to/2) = 0. By induction, we have either f(to/2") = 0 or f(—tp/2") = 0. Since f is continuous at zero,
this implies f(0) = 0, contradiction.

Next, we argue that f(t) = f(—t). Define g(t) = f(¢t)/f(—t). Then g has finite second derivative.
Eq. (4.3.1) gives g(2t) = g(t)%. By iteration, we have

g(t) = g(t/2")*" = (L +o(t/2")*" -1, n— .
Thus g = 1. This gives f(¢) = f(—t). Then (4.3.1) comes
f2t) = f)"
By iteration, we have

2

2 x 4n

4n
+ O(t2/4n)> — e_t2/2, n — 00.

fo) = s/ = (1
This gives f(t) = e /2 as desired. O

4.4 The Lindeberg-Feller Theorem

The goal of this section is the following generalization of central limit theorem.

Theorem 4.4.1. For each n, let {X,, m : 1 < m < n} be independent random variables with E[X,, ] = 0.
Suppose

lim Y E[X7,,] =0 € (0,00); (4.4.1)
n—aoo me1
and, for all € > 0,
Tim 2—1 E[X7 0 1x0m=e}] = 0. (4.4.2)

Then "
S# .= Z Xpm = N(0,0%).

m=1

Theorem 4.4.1 does imply Theorem 4.3.11: suppose {Y;,} are i.i.d. with E[Y;] = 0 and var(Y;) = 02 €
(0,00). Denote by S, =377, Yj. Set Xy = Yin/y/n, then we have

n n
DL EX ] = 0% Y B[N Lix, el = B[V Lgvimeyi | = 0. asn— oo

m=1 m=1
Thus S, /1 = Sif = N(0,02).

Proof. Define fy, 1 (t) = E[exp(itX,, m)], then the goal is to show that

lim H Fam(t) = exp(—t20?/2).

n
1
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Define 02 ,, = E[X?2 ], then we have

0121,m < 62 + E[Xg,m 1{|Xn,m|>€}]'

From the hypotheses, we have
limmax o2, = 0.
n m ’

Define gp m(t) =1 — tQJ,,QL’m/Q. Then gy, approximates fy, m:
[t Xnm[? A 21t X0 m ] (by Corollary 4.3.9)

<E
<E UtXn’mlg 1{|Xn,m|<f}] +E [Q‘tXn,mP 1{|Xn,m|>f}]
< t eE [X72L,m 1{|Xn,m|<6}] + 2t2E [Xim 1{|Xn,m|>6}] .

‘fn,m(t) — Ggnm(1)]

Summing over m from 1 to n, from the hypotheses, we have
n
lim sup Z | frm(t) = gnm(t)] < et®c?.
n -

Let € — 0, we have

h;n Z |fn,m(t) - gn,m(t)’ =0.
m=1

Since | fnm(t)] <1 and |gnm(t)| <1 for n large enough, thus

H f”m H gn,m Z ’fnm gn,m(t)\ — 0, asn— .

=1 m=1
It remains to show
n n
lim H Gnm(t) = exp(—t?c?/2), or lim Z 10g gnm (t) = —t20?/2.
n n
=1 m=1

For any p > 1, we have —pz < log(l — z) < —x for # > 0 small enough. Since lim, max,, o5, = 0, we
have, for n large enough,

t2 72Lm/2 IOg gn,m(t) < _tzag,m/z

Summing over m and let n — o0, we have
n
—pt?0?/2 < lim inf Z log gn.m(t) < hmsup Z 108 gnm (t) < —t202/2.
n
m=1 m=1
Let p — 1+, we obtain the conclusion. O

Example 4.4.2. Suppose {Y,} are independent Bernoulli random variables with P[Y,, = 1] = 1/n and
P[Y, = 0] =1~ 1/n. Define S, = >};_, Y;. Then we have

S —logn
vlogn

Proof. Since E[Y,] = 1/n and var(Y,) = 1/n — 1/n?, we find E[S,] ~ logn and var(S,) ~ logn. For
1 < m < n, define

= N(0,1).

Yo, —1/m
Viogn
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Then we have E[X,,,,] = 0, and Y _; E[X2

mm) — 1, and for any € > 0,

lim Y E[X7 Lyx,=] =0,

m=1
because | X, | < 1/4/logn. Then by Theorem 4.4.1, we obtain the conclusion. O

Example 4.4.3 (Lyapunov’s Theorem). Suppose {Y,,} are independent and define S, = Z?zl Y;. Define
ay, = y/var(Sy). If there is § > 0 such that

n

lim 0,20 Y E[|Y;n — E[V;][**] = 0,

n—o0

m=1
then we have s _Els
L[”] — N(0,1).
var(Sh)
Proof. For 1 < m < n, set
X = Yin — E[Ym]'
On

Then we have E[X,,,,] = 0, and Y E[X?, ] =1. For any € > 0, we have

1 1
E[X7 0 L Xum>e] = OTQE [(Yin — E[Yin])? Ly —Eyin][>can} | < WEHYm — E[V;n]**].

Thus we can apply Theorem 4.4.1 to {X,, ,»} and we obtain the conclusion. ]

Example 4.4.4. Suppose {Y,,} are i.i.d. with the common law given by P[Z > x| = P[Z < —x] and
P[|Z| > x] = 272 for x > 1. Define S,, = 221 Yj. Then we have
Sn
——— = N(0,1).
vnlogn (0.1)
Proof. Note that E[Z%] = o0. But this example tells us that, when we renormalize correctly, we still have
the convergence of S, to the normal distribution.
We truncate the random variables at the level ¢, whose value is to be decided later: define for
1<m<n,

n
Yn,m =Yy 1{|Ym|<cn}a Sn = Z Yn,m-
m=1

A good choice of ¢, should satisfy P[S,, # S,] — 0 as n — o0 and it is close to the lowest possible level.
Since

P[Sn # Sn] < nP[|Z] > ¢u],

we need to choose ¢, so that n/c2 — 0 as n — .
Consider {Y;,m}, we have E[Y,, ] = 0, and Y _; E[V,2, ] = 2nlogc,. This indicates that we should
define

YTL m o =
Xppm = ——t_ §7 = E X, m.
e /2nlog cp " = e

Then we have E[X,,,,] =0 and >}, E[X? ] — 1. For any € > 0, we need

n
1
2 E[X?l,m LiXpm|>er] = (log ¢n — log(en/2nlog cn)) — 0.

v log ¢,
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Combining all the requirements, we need to choose ¢, 1 o0 such that

=50
2
CTL

1
log ¢, — =(logn + loglogc,) | — 0.
log ¢, 2

We can choose ¢, = v/nlogn. Then we can apply Theorem 4.4.1 to S# and we have

Sh,

W:N(O ,1).

Finally, for any = € R, we have

< P[S, # Su] — 0.

Pl <u|—p _Sn <z
Vnlogn Vnlogn

Thus

S

Tilonn = N(0,1).

4.5 Poisson convergence
The goal of this section is the following “weak law of small numbers” or the “law of rare events”.

Theorem 4.5.1. For each n, let {X, , : 1 < m < n} be independent variables with P[ X,y = 1] = ppm
and P[Xpm =0] =1 — ppm. Suppose

n
anmﬁ)\e (0,0), and max py.m, — 0.

1<m<n

Then .
S# = Z Xp,m = Poisson(\).

m=1

Proof. Let us calculate the characteristic functions of X, ,,, and Sy,:
n
E[exp(itXpm)] = 1+ ppm(e® — 1),  E[exp(itS,) H (14 pnm(e’ —1)).
m=1
Then the goal is the following:

Z log (1 + ppm(e™ —1)) = A(e —1).

m=1

Since Y | Pnm — A, it is sufficient to show

n
Z IOg 1 +an - Z pn,m

m=1 1

m
For z € C such that |z| < 1/2, we have |log(1 + 2) — z| < C|z|?. Thus

n
Z 1Og 1 +pnm - 2 pn,m

m=1 m=1

)| — 0.

n
—)[<C D 4k,

m=1

n
< 4C max ppm Z Pnm — 0.

1<m<
m<n m=1
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Example 4.5.2. In a class with 400 students, the number of students who have their birthday on the day
of the final exam has approzimately a Poisson distribution with mean 400/365 = 1.096.

We will give a second proof which involves the notion of total variation distance, a concept which is
of great interest in “Markov chain”.

Definition 4.5.3. Suppose S is a countable set. The total variation distance between two probability
measures on S is given by

o=l = 5 D llz) — ()]

zeS

Lemma 4.5.4. We have

|l — vl = sup |u[A] — v[A]].
AcS

Proof. On the one hand, for any A < .S, we have

2l — v = ) |ulz] = vl=l| = [u[A] = v[A]| + [u[A]] = v[A“]| = 2|u[A] - v[A]].
zeS

On the other hand, set Ay = {z : p[z] = v[z]}. Then we have

u[Ao] = v[Ao] = Y (ule] —vl=]), v[AF] - nlAf] = ), (vlz] — ul2)).

z€Ap 2€A§

Thus
2(u[Ag] — v[Ao]) = > |ulz] = v[2]| = 2| —v].

z

Lemma 4.5.5. Denote by Pz the collection of probability measures on Z.
(1) The total variation distance |u — v|| defines a metric on Pz.

(2) |pn — | — 0 if and only if py[z] — plz] for all x € Z. In particular, ||, — p| — 0 if and only if

L = [

Proof. To show the total variation distance is a metric, we only need to check the triangle inequality:
suppose (i, v,n € Pz, for any A < S, we have

|u[A] = v[A]] < [plA] = 0l Al + W[A] = nlA]] < g =0l + v =]

Thus
= vl <[ —=mnl+lv—mnl

Lemma 4.5.6.
[ —v|| =inf{P[X # Y] : (X,Y) is a coupling of u,v}.

We call (X,Y) the optimal coupling if P[X # Y] = ||ju—v|.

Proof. There are two steps: first, show that | —v| < P[X # Y] for any coupling (X,Y); next, construct
a coupling (X,Y) such that |u —v| =P[X #Y].
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First step. Suppose that (X,Y’) is any coupling of 1 and v and that A is any subset of S. Note that
ulA] — v[A] = P[X € A] — P[Y € A]

P[XeAY¢Al-P[YeAX¢A]
<P[XeAY ¢ Al <P[X #Y].

Thus |p—v|| < P[X #Y].
Second step. We need to construct a coupling (X,Y") so that X = Y as often as possible. Define three
probability measures
p(x) —v(z)
I =

v(z) — plx) Lop@y  3(@) = M,

) =
(@) =l »

Lin@)sv(@)y,  Te(z) =

where p = 1 — | — v|. We construct the coupling in the following way: Flip a coin with probability of
heads equal to p.

e If head, choose a value Z according to <3, and set X =Y = Z.

e [f tail, choose X according to v1, and independently choose Y according to 2. Since v; and v, are
singular, we have X # Ya.s. in this case.

Now we have a pair (X,Y), and let us check the marginal laws.
e The marginal law of X: pys + (1 — p)y1 = p.
e The marginal law of Y: py3 + (1 — p)y2 = v.

Moreover, we have that
PIX#Y]|=PltaiL X #Y]|=1—-p=|p—v.

O
Lemma 4.5.7. Suppose p1, ua,vi, v are probability measures on Z, then
I x p2 — 1 x va| < flpa — vl + 2 — val|.
Proof. We have
2l|p1 X pp —v1 x v = Z [ (z)p2(y) — vi(@)va(y)|
Zlm ) —vi(z !+Z|V1 y) = vi(x)pa(y)l
= Z (@) — vi(a)pa(y) + ZVl ) p2(y) — p2(y)|
— v + 2| p2 — 2.
O

Lemma 4.5.8. Suppose p1, pa, Vi, v are probability measures on Z, then

lpa * po — v1 # vaf < flpa x p2 —v1 X val|.
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Proof. We have
2 x 2 — va v < D[ — y)pa(y) — i — y)ra(y)|
1’7y

= 2|p1 x p2 —v1 x 1.
O

Second Proof of Theorem 4.5.1. Denote by p, » the law of X, ,, and by v, ,, the law of Poisson distri-
bution with mean p;, ,,. Denote by pu, the law of S , by v, the law of Poisson distribution with mean

271;1:1 Dn,m, and by v the law of Poisson distribution with mean A. Then we have

n
lpn — vn| < Z lttn,m = vnml-
m=1

By direct calculation, we have

H:u'n,m - Vn,mH = pn,m(l - e*pn,m> < pn,m'

Thus .
lpn — va| < Z pi,m — 0.
m=1

4.6 Representation theorems

A characteristic function is the Fourier transform of a probability measure. In this section, we will give
a characterization for the characteristic function.

Definition 4.6.1. A complex-valued function f defined on R is called positive definite if for any finite
set of real numbers t; and complex numbers z;, we have

n
Z f(t]' — tk)zjfk = 0.
Jk=1

The goal of this section is the following theorem.

Theorem 4.6.2. f is a characteristic function if and only if it is positive definite and continuous at zero
with f(0) = 1.

To prove Theorem 4.6.2, we first derive some properties of positive definite functions.

Lemma 4.6.3. If f is positive definite, then for each t € R:

fF(=t) = f(t). |f®)] < f(0). (4.6.1)

If we assume further that f is continuous at t = 0, then it is uniformly continuous in R; furthermore, for
every continuous complex-valued function & on R and every T > 0, we have

T (T L
L L F(s — OE($)E@dsdt > 0. (4.6.2)
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Proof. In Definition 4.6.1, taking n = 1, ¢t; = 0 and 2z; = 1, we have f(0) >0
Taking n =2, t; =0,to =t, 21 = 2z and 22 = w, we have

FO)2P + FO)w]* + f(H)zw + f(—t)2w
Taking z = w = 1 in (4.6.3), we have

0. (4.6.3)

\%

2f(0) + f(&) + f(=t) = 0
Taking z = 1 and w = ¢ in (4.6.3), we have

2f(0) + f(t)i — f(—t)i=0.
These imply that f(t) + f(—t) is real and f(t) — f(—t) is pure imaginary. Thus f(t) = f(—t). We can

rewrite (4.6.3) as follows: )
0 (e o) (@)

The 2 x 2 matrix is self adjoint?. Thus the determinant is positive: f(0)? > |f(¢)|> which completes the
proof of (4.6.1).
Next, we assume f is continuous at zero with f(0) = 1. Taking n = 3 and t; = 0,te = t,t3 =t + h,

we have
fO0)  f(=t) f(=t=h)\ (==
(21 22 2) | f()  fO) f=h) ||=
ft+h)  f(h) f(0) Z3

The determinant of the 3 x 3 matrix has to be positive:

L= [f(R)P = 1fOF = [f(t+ R + 2R () f(R) f(t +h) =0

N

Therefore,

[f(t+h) = @R <IFOF + [ft+ )P —2RF ()t +h)
— |F (W) + 2RF () (f(h) — 1) F(t + h)
= (M) + 21 = F(h)] < 4[1 — f(h)].

This gives the uniform continuity. Finally, since the integrand in (4.6.2) is continuous, the integral is the
limit of Riemann sums which is positive. O

NN

Proof of Theorem 4.6.2. First, we assume that f is the characteristic function of the probability measure
1, then we have

n

2 f(t5 —tk)zZk —f Z &=te) 2.z [ dix]

7,k=1 7,k=1

:fj_l

2

Tty ,,
2%

Next, we assume that f is positive definite and is continuous at zero with f(0) = 1. Taking £(¢) = e
n (4.6.2), we have

z] = 0.

—itx

. - —i(s—t)x >
pr(x) = 27TTJ f f(s—t)e dsdt = 0.

2Any n x n Hermitian matrix H can be diagonalized by a unitary matrix. All eigenvalues of H are real, and H has n
linearly independent eigenvectors.
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By a change of variables, we have

|ul

1 (T :
pr(z) = 7 J_T fr(uw)e ""*du, where fr(u) = < — T) J(u) 1{|u|<T}~

First, we argue that pr is a probability density function. To this end, we calculate

é f: dg fﬁﬁ pr(x)dr = % f; fT(u)dué J : dg JB e Ty

a ﬁ i j e th

_ f (L Cos(@w) 1f°0 i <t> (1—cost) ,

a2 m) o,

Note that |fr| < |f| <1, dominated convergence theorem shows that

hmJ dﬁf pr(a lfo (A =cost) g

a—00 (¥ t2

The last equation is due to the following fact:

JOO 1 —cos(ax)dx _ E|a|.
0 2

22

Since pr(x) = 0 and Sé 8 pr(x)dz is increasing in 3, we have

0 B
f pr(x)dr = lim pr(x)dx = 1.

Thus pr(z) is a probability density function.

(4.6.4)

Second, we argue that fr is the characteristic function of pr. To this end, we calculate the following:

for any t € R,

1 « B . 1 0 1 o 3 ‘
_ J dﬁ J ezt$pT({L‘)d$ = — J fT(U)dU* j dﬁ f e—Z(u—t);de
@ Jo -B 2w —o0 o

L[ [ 2= 1)

o u—t

_ 7ITf_"‘;fT(u)du(l—cos(c»z(u—t))) _ 1JOO Iy <t+2) (1 —cosw)

alu —t)? T J_ o v

Dominated convergence theorem gives

Since § pr(z)dz = 1, the following limit exists and hence equals fr(t):

© B
f epr(z)dr = lim epr(x)dr = fr(t).

This shows that fr is the characteristic function of py(z)dx.

dv.

Finally, we see that f;r — f as T — o0 and f is continuous at zero with f(0) = 1 by the hypothesis,
combining with Theorem 4.3.1, we see that f is the characteristic function of a probability measure. [
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Example 4.6.4. If f is a characteristic function, then so is e~ for X\ = 0.

Proof. For each A = 0, as soon as n > A\, the function

Af—1)

n

1+

is also a characteristic function, hence so is its nth power. As n — oo,
Af—1)\"
(1 N (fn )> L AU,

and the limit is clearly continuous at zero with value one. Hence it is a characteristic function. O

In this example, if we take f(t) = e which is the characteristic function of the dirac mass at one, we
have SN
Meit=1) _ D € A" itn

n!

n=0

which is the characteristic function of the Poisson distribution.

4.7 Exercises

Exercise 4.7.1. If the sequence of characteristic functions { f,} converges uniformly in a neighborhood of
the origin, then {f,} is equicontinuous, and there exists a subsequence that converges to a characteristic
function f.

Exercise 4.7.2. Let {X,,} be i.i.d. with E[X1] =0 and var(X1) = 1. Set S, = >/_; X;. Show that

limnsup j% =00, a.s.; and j% = N(0,1).
Exercise 4.7.3. Let {X,,} be i.i.d. with mean zero and variance o* € (0,0), then
+ 2
limE Su] =2limE Sn | _ —o.
n \/ﬁ n \/ﬁ ™

Exercise 4.7.4. Suppose {X,,} are i.i.d. with mean zero and variance one. Prove that both
21 X Vi X
———, and N x2
\/ 21 X7 2j-1%;
converges in distribution to N(0,1).

Exercise 4.7.5. Let {Xy} be i.i.d. with mean zero and set Sy, = 377y X;. Assume that Sy,/+/n converges
in distribution, prove that E[X?] < 0.

Exercise 4.7.6. Use Theorem 4.4.1 to give a second proof of three series theorem.

Exercise 4.7.7. Suppose {X,,} are independent and
1 1 1
P[Xn:_n]:P[Xn:n]:Tny X Py
Define Sp = 3>}i_; X;j. Show that

var(Sy) Sn

o, 2n
n To\/n

Figure out why the conclusion violates Theorem 4.4.1.
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Exercise 4.7.8. Suppose f(t,u) is a function on R? such that for each u, the function f(-,u) is a
characteristic function; and for each t, the function f(t,-) is continuous. Then, for any probability measure
v, the following function is also a characteristic function:

e ([ st =t

Exercise 4.7.9 (YCMC2013). Let {X,} be i.i.d. with E[X] = p, 02 := var(X) < o0 and characteristic
function px(t). Let N be a non-negative integer-valued random variable with E[N] = v, n? = var(N)and
characteristic function px(t). Suppose {X,} and N are independent. Let Y = Y| Xp.

(1) What is the characteristic function of Y ¢
(2) Evaluate the variance of Y.

Exercise 4.7.10 (YCMC2013). Suppose that X andY are two independent random variables and X has
a density. Does X +Y also have a density?

Exercise 4.7.11 (YCMC2013). Suppose that N is a random wvariable such that P[N = i] = 1/3 for
i € {1,2,3} and X1, X9, X3 are i.i.d with standard normal distribution N'(0,1). Is X = YN X; also
normal?

Exercise 4.7.12 (YCMC2013). Suppose that X andY are independent and the law of the two-dimensional
random vector Z := (X,Y) is rotationally invariant: for any orthogonal matriz O (i.e. O'O = 1,), OZ
has the same law as Z as a random vector. Show that both X and Y have the law of a centered normal
distribution N'(0,02) for some o > 0.

Exercise 4.7.13 (YCMC2013). Show that fi(t) = (cost)? is a characteristic function and fa(t) = | cost|
18 mot a characteristic function.

Exercise 4.7.14 (YCMC2015). Suppose that X and Z are jointly normal with mean zero and standard
deviation one. Show that, for a strictly monotone function f(-),

cov(X,Z) =0, ifandonlyif cov(X,f(Z)) =0,

provided the latter covariance ewists. Hint: Z can be expressed as Z = pX + /1 — p2Y where X and Y
are i.i.d. with N'(0,1).

Exercise 4.7.15 (YCMC2016). Let X,Y be two real-valued random variables such that X —Y and X
are independent, and that X —Y are Y are independent. Show that X —Y is almost surely constant.

Exercise 4.7.16 (YCMC2016). Let X be a Poisson random variable with parameter . What is the
limiting distribution of Xy — vV as A — 0 ?
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5 Martingales

5.1 Conditional expectation

Theorem 5.1.1. Let (2, F,P) be a probability space. Suppose that X is a random variable in L' (2, F,P)
and that A is a sub-o-field of F. Then there exists a random variable Y such that

(1) Y is A-measurable;
(2) EllY]] < ;
(3) for any Ae A, we have E[X 14] = E[Y 14].
Moreover, if Y is another random variable satisfying the above three properties, then Y =Y a.s.

Definition 5.1.2. A random variable Y with the three properties in Theorem 5.1.1 is called the conditional
expectation of X given A, denoted by E[X | A].

We can easily check that the conditional expectation has the following basic properties. Suppose that
X, X1,Xo € L' and A is a sub-o-field.

It A = {@,Q}, then E[X | A] = E[X].

If X is A-measurable, then E[X | A] = X.

If Y = E[X | A], then E[Y] = E[X].

(Linearity). E[a1 X1 + a2 X2 | A] = a1E[ X | A] + a2E[ X2 | A] for constants a, as.

(Positivity). If X > 0, then E[X | A] > 0.
Proof of Positivity. Denote E[X | A] by Y. By the definition, we know that
E[Y14] =E[X14]>0, VA€ A (5.1.1)

For n > 1, define 4,, = {Y < —1/n}. Since Y is A-measurable, we know that A,, € A. Thus, by (5.1.1),
we have

e Evia] =0
n

Thus P[A,] =0, and P[u,A,] = 0. Therefore, P[Y < 0] = 0. O

Proof of Theorem 5.1.1. First, we show the existence of E[X | A] for X € L?(Q, F,P). Consider the
subspace L?(, A,P) of L?(Q, F,P), it is complete under L?-norm. Thus there exists Y € L?(12, A, P)
such that

E[(X —Y)?] =inf{E[(X — 2)*] : Z e L*(Q, A,P)}.

Moreover, we know that, for any Z € L*(, A, P),

E[(X —Y)Z] = 0.
Therefore, for any A € A, we have

E[X 14] = E[Y 14].

Thus, we can choose E[X | A] =Y.

Second, we show the existence of E[X | A] for X € L'(Q,F,P). Since X can be written as the
difference of two non-negative L' random variables, it is sufficient to show the conclusion for non-negative
X € LY(Q, F,P). There exists a sequence of bounded variables {X,,} such that 0 < X,, 1 X a.s. Since
X, € L*(Q, F,P), there exists some Y;, = E[X,, | A]. By “Positivity”, we have that 0 < Y, 1 a.s. Define
Y =limY,,. We will check that Y satisfies all the requirements.
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e Since {Y,,} are A-measurable, the limit Y is also .A-measurable.
e For any A € A, by Monotone Convergence Theorem, we have

E[Y 14] = HmE[Y, 14] = lim E[X,, 14] = E[X 1.4].

In particular E[Y] = E[X] and Y € L.

Thus Y satisfies all the requirements and we can choose E[X | A] =Y.
Finally, we show the uniqueness. If Y is another random variable satisfying the three properties, then
by a similar proof for “Positivity”, we have that

P[Y >Y] =0, P[Y <Y]=0.
O

Proposition 5.1.3. Suppose that X and {X,} are random wvariables in L*(Q, F,P) and that A is a
sub-o-field. We have the following properties.

(1) (Monotone Convergence Theorem). If 0 < X,, 1 X a.s., then E[X,, | A] 1 E[X | A] a.s.
(2) (Fatou’s Lemma). If X,, = 0 for all n, then E[liminf, X, | A] < liminf, E[X,, | A] a.s.

(3) (Dominated Convergence Theorem). If X, — X a.s. and there is Z € LY(Q,F,P) such that
| Xn| < Z for all n, then E[X,, | A] — E[X | A] a.s.

(4) (Jensen’s Inequality). If ¢ : R — R is convex and E[|p(X)|] < o0, then E[p(X) | A] = ¢(E[X | A]).

Proof of Item (4). For convex function ¢, there exists a sequence of pairs of reals {(ay,b,),n = 0} such
that
o(z) = sup(anx + by), VrxeR.
n

Since ¢(X) = a, X + by, a.s., we have
E[p(X)|A] = a,E[X | A] + b, a.s.

Therefore,

Elp(X) [ A] = sup(anB[X | A] + bn) = o(B[X | A])  as.
O

Proposition 5.1.4. Suppose that X and {X,} are random wvariables in L*(Q, F,P) and that A is a
sub-o-field. We have the following properties.

(1) (Tower property). Suppose that B is a sub-o-field of A. Then

E[E[X | A]|B] = E[X | B].
(2) (“Taking out what is known”). Suppose that Z is A-measurable and E[|X Z|] < o, then
E[ZX | A] = ZE[X | A].
(3) (Independence). If B is independent of o(X,.A), then
E[X |o(A,B)] =E[X|A] a.s.

In particular, if X is independent of B, then E[X | B] = E[X] a.s.
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Proof of Item (2). The relation is true when Z is an indicator function (by the definition of the conditional
expectation). Hence, by Linearity, it is true for linear combinations of the indicator functions. Finally,
by Dominated Convergence Theorem, it is true for general Z with E[| X Z|] < . O

Proof of Item (3). Denote E[X | A] by Y. We need to show that
E[X 1c] =E[Y 1¢], VCeo(A, B). (5.1.2)

We first argue that (5.1.2) holds for C' = A n B where A € A and B € B. In other words, we first
show that E[X 14~p] = E[Y 14~5]. We have the following observations:

e Since B is independent of o(X, A), we have E[X 14 15] = E[X 14]|P[B].
e Since Y is A-measurable which is independent of B, we have E[Y 14 1] = E[Y 14]|P[B].
e Since Y = E[X | A], we know that E[X 14] = E[Y 14].

Combining the above three facts, we obtain (5.1.2) for C = A n B.

Denote by C the collection of sets C' € o(A,B) such that (5.1.2) holds. Denote by Cy the field
generated by A n B where A € A, B € B. We can check that Cy < C. It is clear that C is a monotone
class. Lemma 1.1.4 implies that 0(Cp) < C which gives the conclusion. t

Example 5.1.5. Suppose X and Y are independent. Let ¢ be a measurable function on R? such that
E[|lo(X,Y)]] < 0 and let g(z) = E[¢p(x,Y)]. Then we have

E[p(X.Y) |o(X)] = g(X) a.s.

The conclusion in this example looks intuitive, but let us emphasize that the conclusion can not be
true without the assumption that X and Y are independent. For instantce, without such assumption, we
may take Y = X, then we have

E[p(X,Y)[o(X)] = ¢(X, X)  a.s.
Proof. 1t is clear that g(X) € o(X), it remains to show
E[p(X, ) 1a] = E[g(X)1a], VA€ o(X).
This is equivalent to showing, for any measurable function f,
Elp(X, V) f(X)] = E[g(X)f(X)].

Denote by = £(X) and v = L(Y). Then we have

E[p(X, Yu(dx)v(dy) (since X,Y are independent)

(by the definition of g)

=[] et
f,u (dzx)f f (z,y)v(dy) (by Fubini’s theorem)
f
Elg

)F(X)]-
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Example 5.1.6. Suppose that {X,} are i.i.d. with finite expectation. Let S, = X1 +---+ X, and define
Ay, = 0(Sn, Sn+1,---) = 0(Sny Xnt1, -0

Then, for alln =1,
E[X1]A,] = Sn/n.

Proof. Since X1, .5,, are independent of X,,11,..., we have that
E[X1]A,] = E[X1]0(Sh)].

We will argue that, for all 1 < k < n,

E[Xy [o(Sn)] = E[X1|0(Sn)] (5.1.3)
This implies the conclusion. To show (5.1.3), we only need to show

E[Xk1a] =E[X114], VAeoa(S,).
This is equivalent to the following
E[Xkf(Sn)] = E[X1f(Sn)], V bounded measurable function f.

This is true since (X, S,) has the same law as (X1, Sy,). O

Example 5.1.7 (Conditional probability). Suppose A, B are events such that P[B] > 0 and G is a o-field.
We define conditional probability as follows:

PlA|G] =E[14[G], P[A[B] = P[Is[;]B]

In particular, if we have 0 < P[B] <1 and G = {,Q, B, B¢}, we obtain

P[A|G] = P[A| B] 15 +P[A| B 15 .

5.2 Martingales
Suppose that (2, F,P) is a probability space.
e A filtration {F,} is an increasing family of sub-o-fields of F.

e A sequence of random variables {X,} is measurable (adapted) with respect to the filtration {F,}
if, for all n, the random variable X,, is F;,,-measurable.

e The natural filtration associated to {X,} is given by F,, = 0(X1,..., Xy) for n > 1.
e A sequence of random variables {X,,} is integrable if X,, € L! for all n.
Definition 5.2.1. Let X = {X,,} be an integrable process adapted to the filtration {F,,n = 0}.
(1) X is a martingale if E[X,, | Fin] = X a.s. for alln = m.
(2) X is a supermartingale if E[ X, | Frn] < X, a.s. for alln = m.
(3) X is a submartingale if E[ X, | Frn] = X a.s. for alln = m.
Example 5.2.2. (1) Let {&;}i>1 be a sequence of independent random variables in L' with E[&;] = 0.

Then {X,, := > &}n>1 is a martingale.
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(2) Let {&}is1 be a sequence of independent random variables in L' with E[¢] = 1. Then {X, :=
111 &}ns1 is a martingale.

(8) Consider biased random walk on Z: at each step, the walker goes to the right with probability p and
goes to the left with probability (1 — p). Let X,, be the location of the walker at time n.

o Ifp=1/2, then {X,} is a martingale.
o Ifp<1/2, then {X,} is a supermartingale. But {X, —n(2p — 1)} is a martingale.

The martingales have the following basic properties.
o If {X,} is a martingale, then E[X,,] = E[X(] for all n.
e If {X,} is a supermartingale (resp. submartingale), then E[X,,] is decreasing (resp. increasing).

e If {X,,} is a martingale and ¢ is a convex function, then {p(X,)} is a submartingale. In particular,
{|X,|} is a submartingale.

Definition 5.2.3. Suppose that {F,} is a filtration. A stopping time T : Q@ — N* = {0,1,2,....,0} is a
random variable such that
{T'=n}eF, Vn

Lemma 5.2.4. The following statements are equivalent.
(1) {T =n} e F, for all n.
(2) {T < n}eF, forall n.
(3) {T > n} e F, for aln.
(4) {T =n} e Fpy for all n.

Lemma 5.2.5. If S,T,T} are stopping times for j = 1. The following random variables are also stopping
times:
SvT, SAT, infT;, supTj, liminfT7};, limsup7j.
J J J J

Proof. First, for the random variable S v T', we have that
{SvT <n}={S<n}n{T <n}eF,.
Next, for the random variable inf; T);, we have that

{irj;ij <n} = u{T; <n}eF,.

Finally, for the random variable lim inf; T}, we have that

{limjinij <n} =N Ujzm {T; <n}eF,.

Definition 5.2.6. Suppose that {F,} is a filtration and that T is a stopping time. Define
Fr={AeF:An{T <n}eF,,n}.
Intuitively, Fr is the information available by time 7.

o If T' = ng, then Fr = F,,.
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e The random variable X7 1¢7_. is measurable with respect to Fr.
e Suppose S and T are stopping times that S < T, then Fg < Fr.

e Suppose {X,} is a process adapted to {F,}, define X! := X7,,. Then {XI} is also adapted to
{Fn}-

Proof. We leave the first and the second items as exericese. We first show the third item. For any A € Fg,
in order to show that A € Fr, it is sufficient to show that A n {T' < n} € F, for all n.

Since S < T, the event A n {S < n} is the disjoint union of A~ {T' < n} and An {T">n > S}. Since
A € Fg, we have that

An{S<nteF,, An{T>n=S}=(An{S<n})n{T >n}eF,.

This implies that A n {T < n} € F,.
Next, we show the last item. It is equivalent to showing that { X7, € B} € F, for any Borel set B
and for any n. Note that

{Xran€ B} ={X,€eB,T>n}u{XreB,T<nj}.

The first part {X,, € B,T > n} = {X,, € B} n{T > n} € F,. The second part {X7 € B,T < n} =
Vi_{X; € B, T = j} € Fy. O

Theorem 5.2.7 (Optional Stopping Theorem). Let {X,} be a martingale.
(1) If T is a stopping time, then {X1} is also a martingale. In particular, E[ X1 rn] = E[X0].

(2) If T is a stopping time bounded by a constant N, then E[ Xy | Fr]| = X7 a.s. Furthermore, if S is
stopping time such that S < T a.s., we have E[ X1 | Fs] = Xg a.s. In particular, E[X1] = E[X0].

(3) Suppose that there is a random variable Y € L' such that | X,| <Y for alln and that T is a stopping
time which is a.s. finite. Then E[X7] = E[X].

(4) Suppose that X has bounded increments, i.e. there is M < o such that | X111 — Xpn| < M for all n,
and that T is a stopping time with E[T] < oco. Then E[Xr] = E[X(].

Proof of Item (1). We first show that {X '} is integrable. Since {X,} is integrable, we have

n

T . .
e [1x71] <€ |max x| < IEEIRES

iz
We already see that { X'} is adapted to {F,}. It remains to check the conditional expectation. For every
n=l1,

E[Xg ‘ Fn—l] = E[Xg—l + (Xn - Xn—l) 1{T>n—l} ‘Fn—l]
= X0 1+ Loy E[Xn = Xt | Faca] = X700

By Tower Property, we could conclude that {X '} is a martingale. O
Proof of Item (2). For A € Fr,

E[Xn1a] = ) E[Xn14lip_y]

=

~
Il
—

E[E[Xn|Fi]lalir_y]

I
.MZ

-
Il
—_

E[Xi1alir—y| = E[X714].

Il
.MZ

~
Il
—_
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Therefore E[ Xy | Fr] = Xr. Similarly, we have E[ Xy | Fs] = Xg. The tower property gives
Xs = E[XN | Fs] = E[E[Xn | Fr]| Fs] = E[X7T| Fs].
O

Proof of Item (3). Since |X,,| <Y for all n and T is finite a.s., we have |X,,,7| < Y. Then Dominated
Convergence Theorem implies that

lim E[X,nr] = E[ lim X,.7] = E[X7].

n—ao0

As n A T is a bounded stopping time, Item (2) implies that E[X,, 7] = E[Xo]. Hence we conclude that
E[X7] = E[X0]. O

Proof of Item (4). We can write E[X7] = E[Xo] + E [ZiT:1(Xi - Xi_l)], so it suffices to show that the
last term is zero. Note that

T T
DX = X)) < DX — X < MTe L.
=1 ]

Then Dominated Convergence Theorem implies that

T 0
E [Z(Xi—Xi 1 ] = [Z (Xi — Xi1 1{T>7,}]
=1

=1

E[(Xi — Xi—1) Lir=4]

I

@
Il
—

E[E[(Xi — Xi—1) Lrsay [ Fical]

[|
‘M8 TP

@
Il
—_

[1{T>z} E[(X Xi— 1) ’]:z 1]] 0,

where we used that {T' > i} = {T' <i—1}°€ F;_1 as T is a stopping time. O

Example 5.2.8. Let {X,} be a simple random walk on Z starting from k € {0,1,...,N}. Define 7 =
min{n : X;, =0 or N}. Then
P[X, = N] =k/N.

First proof. We denote the probability measure for the simple random walk starting from k& by Pj and
set
p(k) = Pi[X7 = N].

Forl<k<N-—1,
1 1
P(k)=Pk[XT=N,X1=/<:+1]+Pk[XT:N,X1:k_1]:§p(k+1>+§p(k_1)_

Thus p is a harmonic function on {0,1,..., N} and it has boundary values p(0) = 0 and p(N) = 1, thus
it is uniquely determined: p(k) = k/N. O
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Second proof. The process {X,,} is a martingale:

1 1
E[Xn | O‘(Xl, C ,anl)] = i(Xnil + 1) + §(Xn,1 — 1) = X,_1.

By Optional Stopping Theorem, we have E[ X, .,,] = k. Note that |X;,,| < N. Then Bounded Conver-

gence Theorem gives
E[X;] = imE[X,.,] = k.
n

Thus
NP[X, =N]=k

which gives the conclusion. O
Theorem 5.2.9 (Optional Stopping Theorem for supermartingale). Let {X,,} be a supermartingale.
(1) If T is a stopping time, then {XI'} is also a supermartingale. In particular, E[ X1 rn] < E[Xo].

(2) If T is a stopping time bounded by a constant N, then E[ Xy | Fr] < Xr a.s. Furthermore, if S is
a stopping time such that S < T, we have E[ X7 | Fs| < Xg a.s. In particular, E[X 7] < E[X(].

(3) Suppose that there is a random variable Y € L' such that | X,,| <Y for alln and that T is a stopping
time which is a.s. finite. Then E[X7] < E[Xo].

(4) Suppose that X has bounded increments, i.e. there is M < o such that | X111 — Xpn| < M for all n,
and that T is a stopping time with E[T| < co. Then E[X7] < E[X(].

(5) Suppose that X is a non-negative supermartingale. Then for any stopping time T which is finite
a.s., we have E[ X7] < E[X].

Proof of Item (2). We only show E[ X7 | Fs] < Xg. To this end, it suffices to show E[X714] < E[Xg14]
for any A € Fg. By Item (1), we have E[Xprp | Fin] < X7 am for m < n. In particular, we have

E[X1 | F] < Xrpm, Vm <N. (5.2.1)

Therefore,

=

E[X71a] = ) E[X71an(5-1]

>
Il
o

I
M=

E[Langs=r} E[XT | Fi]]

x>
Il
(=]

E[1an{s=k} X1 k] (by (5.2.1))

I\
M=

>
Il
o

E[Langs—k} Xr] = E[X514a].

I
=

k=0
0
Proof of Item (5). By Item (1), we have that E[X7p.,] < E[X(]. By Fatou’s Lemma, we have
E[X7] = E[lim inf X7..,,] < lim inf E[X7 5] < E[Xo]-
0
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5.3 Martingale convergence theorem

In this section, we will discuss three different notions of convergence of the martingales: almost sure
convergence, convergence in LP for p > 1, and convergence in L'.

Almost sure convergence

Theorem 5.3.1 (Almost Sure Martingale Convergence). Let {X,,} be a supermartingale which is bounded
in L', i.e. sup, E[|X,|] < 0. Then, for some Xo € L1,

X, — Xo, almost surely, as n — c0.

Let © = {z,,} be a sequence of real numbers. Let a < b be two real numbers. We define Ty(z) = 0 and
inductively, for £ > 0,

Sk+1(z) = inf{n = Ti(z) : z, < a}, Tri1(x) =inf{n = Sgi1(z) : z, = b},

with the usual convention that inf ¢ = co.
Define the number of upcrossings of [a,b] by = = {z,,} by time n to be

Ny, ([a,b], ) = sup{k = 0 : Ti(x) < n}.

As n 1 oo, we have
Nn([av b],l‘) T N([CL, b],l‘) = Sup{k =0: Tk(x) < 00}7

which is the total number of upcrossings of [a, b] by =.

Lemma 5.3.2. A sequence of real numbers x converges in R = R U {£o0} if and only if
N([a,b],z) < oo for all rationals a < b.

Lemma 5.3.3 (Doob’s upcrossing inequality). Let X = {X,} be a supermartingale and a < b be two real
numbers. Then, for all n,
(b—a)E[Ny([a,b], X)] < E[(a — X5)"].

Proof. To simplify the notations, we write
Tp =T(X), Sk=5Sk(X), N = Ny(a,b],X).
On the one hand, by the definition of {T}} and {Si}, we have that, for all £ > 1,
X7, — Xg, = b—a. (5.3.1)

On the other hand, we have

M=

(XTk N X,S'k /\n)

B
Il

I
M=~

n

(XTk - XSk) + Z (XTL - XSk/\n)
k=N+1

ey
I
—

I
=
3

— Xsk) + (Xn — XSN+1) 1{SN+1<71} . (Note that Ty < n,Sy11 <Tni1 < SN+2).

=
Il
—
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Since {T}} and {S;} are stopping times, we have that Sy A n < T A n are bounded stopping times.
Optional stopping theorem implies

E[Xs,an] = E[X1 An], VEk.

Combining with (5.3.1), we have

n

0>E| > (X1an — Xsean) | = (b= )E[N] —E[(a — X,)*],
k=1

since (Xn — X5y, ) Ly, <ny = —(a— Xy,)*. This implies the conclusion. O
Proof of Theorem 5.3.1. Let a < b be rationals. By Lemma 5.3.3, we have that

_ El(a— X,)*]

= b—a

Monotone convergence theorem implies

_ sup, E[|X, ]

E[N ([a,b], X)] < T LIS

Therefore, we have almost surely that N([a,b], X) < co. Write

Q=[] {N(ab],X) < o0},
a<b:a,beQ

Then P[] = 1. By Lemma 5.3.2 on €, we have that X converges to a possibly infinite limit. Set

lim, X,,, on Q,
XCD =
0 on O\ Q.

Then X, is Fp-measurable and by Fatou’s lemma, we have

E[|Xo|] < Efliminf | X,|] < sup E[|Xa|] < .

Therefore X, € L. ]

Corollary 5.3.4. Let {X,} be a non-negative supermartingale. Then X, converges a.s. to some a.s.
finite limit.

Example 5.3.5. Let {&}i>1 be a sequence of non-negative independent random wvariables in L' with
E[¢] = 1. Then {X,, := Y& }n=1 is a non-negative martingale and X,, converges a.s. to some limit
Xy € L.

When we have almost sure convergence, a natural question is: Do we have E[ X ]| = E[X(]|? Answer:
It is true when we have convergence in L'. We will discuss convergence in LP for p > 1 (which implies
convergence in L') and convergence in L! separately.
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Convergence in LP

Theorem 5.3.6 (Doob’s Maximal Inequality). Let {X,} be a non-negative submartingale. Define X} =
maXg<n Xk. Then

NPLX > A < B[ X Lixgn] < ELX0]

n

Proof. Define the stopping time 7' = min{n : X,, > A\}. Then we have {X} > A\} = {T' < n}. Moreover,

E[Xn Lireny] = D JE[Xn Lir—jy] = D E[X; Lir—jy] = D AP[T = 4] = AP[T < n].
0 0 0

O

Theorem 5.3.7 (Doob’s Maximal Inequality). Let {X,} be a non-negative submartingale. Define X =
maxg<n Xg. Lhen, for all p > 1, we have

p

12y < = 11 Xallp-

Proof.

E
o0
= J prPP[XF = x]dx (by Monotone Cvg Thm)
< | pePPE[Xn Lxaspylde

o0
=E [f prP X, 1ixr>ay dﬂf] (by Monotone Cvg Thm)

<

E[X (X7 <p Xl lE[CG)PT P

Theorem 5.3.8. Let {X,,} be a martingale and p > 1, then the following statements are equivalent.

(1) {Xy} is bounded in LP: sup, || Xy,||, < ©

(2) X, converges a.s and in LP to a random variable Xo,.

(3) There exists a random variable Z € LP such that

X, =E[Z|F.] as. Vn.
Proof of Item (1) to (2). Assume that sup,, E[|X,|P] < C. This implies that {X,} is bounded in L!, thus
we know that X, converges a.s. to some limit Xq.
Define X* = maxy<, |Xx|. By Doob’s Maximal Inequality, we have that E[(X*)?] < (p/(p — 1))PC

Note that the sequence {X/} is increasing in n, thus we may define X% = lim, X;¥ and X e LP.

For the sequence {X,}, we have | X, | < X% € LP. Therefore, by Dominated Convergence Theorem,
we have that X,, converges to X, in LP. O

Proof of Item (2) to (3). We may take Z = X,. We have that,
| X0 — E[ X | Ful| = |E[Xm | Fn] — E[Xoo | Ful]l < E[|Xm — Xoo| | Fn] — 0, as m — .
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Proof of Item (8) to (1). By Jensen’s Inequality, we have

| Xnl” < E[|Z]P | Fnl.
This implies the conclusion. O
Corollary 5.3.9. Let Z € LP forp > 1. Then

E[Z|F.] — E[Z]|Fx], a.s.and in LP.

Convergence in L'

Next, we discuss convergence in L', to this end, we need the notion of “uniform integrable (UI)” introduced
in Definition 2.5.1.

Lemma 5.3.10. If Z € L', then the family

{E[Z | A] : A sub-o-field of F}
s UL
Proof. First, recall from (2.5.1) that, for any € > 0, there exists § > 0 such that

E[|Z|14] <€ aslongas P[A] <.
Next, we show the conclusion. It is sufficient to show that, for any € > 0, there exists a such that

E[ELZ | All 1ggz) a5ay] < e

Note that the event {|E[Z | A]| > a} is A-measurable, thus
E[IELZ | All etz a1=a1] < E[IZ] Lierz ) ag=ap]
By (2.5.1), it is sufficient to show that, there exists o such that
PlIE[Z | A]| > o] < 6.

Note that,
PIE[Z | A]l > o] < E[[E[Z | A][]/a < E[|Z]]/c

This implies the conclusion. O
Lemma 5.3.11. Suppose that X,,, X € L' and X,, — X a.s. Then
X, — X in L' if and only if {X,} is UL.
Proof. See Proposition 2.5.4. O
Theorem 5.3.12. Let {X,,} be a martingale. The following statements are equivalent.
(1) {X,} is UL
(2) X, converges to X, a.s. and in L'.

(3) There exists Z € L' such that
X, =E[Z|F.] as. Vn.

Proof of Item (1) to (2). Combining Lemma 5.3.11 and Theorem 5.3.1. O
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Proof of Item (2) to (3). The same as the proof of Theorem 5.3.8. O
Proof of Item (3) to (1). Lemma 5.3.10. O

Example 5.3.13. Let {£;}i>1 be a sequence of non-negative independent random variables in L' with
E[&] = 1. Then {X, := I}& n>1 is a non-negative martingale and X, converges a.s. to some limit

X € LY. Define, fori>1,
a; = E[v/&].

(1) If ;a; > 0, then X,, converges in L' and E[X»] = 1.
(2) If I a; =0, then Xy, =0 a.s.

Proof of Case (1). Define Y;, = II" 14/&/a;. Then {Y,} is a martingale and the relation with {X,} is
Y2 = X,,/TI? ;a?. Thus,

E[Y?] = 1/ a?, supE[V?] < 1/TI2 a7 < oo.
n

Define Y, = maxy<, Y, by Doob’s Maximal Inequality, we have that
YrYE E[(VE)’] < 2/ a? < .

Note that
X, = Y2 a; < (V)% e LY

By Dominated Convergence Theorem, we have that X,, converges to X, in L. ]

Proof of Case (2). Define Y,, in the same way. Since {Y, } is a non-negative martingale, it converges a.s.
to some limit Y., € L!. Therefore, a.s.

X, =Y?xI" a7 - Y2 x0=0.
O

Example 5.3.14 (Kolmogorov’s 0-1 Law, Another proof). Let {{;}i=1 be a sequence of independent
random variables. Let G, = o (&g, k =n) and Gy = Np=1Gn. Then Gy is trivial, i.e. for any A € Gy, we
have

P[A] =0 or 1.

Proof. Define {F,} to be the natural filtration:
Fn =0 (& k <n).
Fix an event A € Gy.
e On the one hand, the sequence {E[14 | ]} is a Ul martingale, thus
E[14 | Fn] = E[14 | Fo] = 14, a.s.
where F, = o(Fp,n = 1).
e On the other hand, since A € G5, < G,.1 which is independent of F,,, thus

E[1a | Fn] = P[A].
Combining these two facts, we have that P[A] = 14 a.s. Therefore P[A] is 0 or 1. O
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Theorem 5.3.15 (Optional Stopping Theorem for UI Martingale). Let X = {X,} be a Ul martingale.
If S < T are stopping times, then E[ X1 | Fs] = Xg,a.s. In particular, E[X71] = E[Xg].

Compare with Optional Stopping Theorem for Martingale: Let X = {X,,} be a martingale. If S < T
are bounded stopping times, then E[ X7 | Fs] = Xg, a.s. In particular, E[X7]| = E[Xg].

Proof. 1t is sufficient to show that X7 = E[X | Fr]. Assume this is true, then we have that
E[Xr | Fs] = E[E[Xw | Fr]| Fs] = E[Xe | Fs] = Xg,  a.s.

To show X7 = E[X | Fr], we have two steps.
First, we show X7 € L. Since {X,,} is UI, we have that X,, = E[Xo, | Fn], thus | X,| < E[|Xw|| Fn].
Therefore,

o0 o0
E[[X7[] < )] ElNXnl Lir—my] + E[Xa| Lir—ooy] < D E[Xoo| Lireny] + E[|Xo0| Lp—oo] = E[| X0 []-
n=0 n=0

Next, for any A € Fr, we have

E[Xr1al = . E[Xulalir—nyl= > E[Xolalyr_yl =E[Xy14].

neNu{w} neNu{w}

This completes the proof. O

5.4 Applications: Galton-Watson Tree

A tree is a connected graph with no cycles. A rooted tree has a distinguished vertex vg, called the root.
The depth of a vertex v is its graph distance to the root. A leaf is a vertex with degree one.
Consider a regular rooted tree:

e Each vertex has a fixed number (say m) of offspring;
n

e Let Z, be the number vertices in the n-th generation, then Z,, = m™.

In real life, we often encounter trees where the number of offspring of a vertex is random. In this section,
we will talk about the simplest random tree—Galton-Watson Tree:

e It starts with one initial ancestor;

e [t produces a certain number of offspring according to some distribution u;

e The new particles form the first generation;

e Each of the new particles produces offspring according to u, independently of each other;
e The system regenerates.

Let Z, be the number of particles in n-th generation. Note that, if Z, = 0 for some n, then Z,, = 0
for all m > n, and this is the situation that the family become extinct. The natural question here is
whether or not the family become extinct, and what is the extinction probability

q = P[Z,, = 0 eventually]?

Of course, the answer to these questions depend on the reproduction law u. For the measure p, let pg
denote the probability that a particle has k children for £ > 0. Clearly, >}, pr = 1. To avoid trivial
situation, throughout this section, we are always under the assumption that py + p1 < 1.
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(a) A binary tree. (b) A GW tree.

Figure 5.1

Define the mean of the measure

m:=E[Z1] = ) kp.
k=0

Define the generating function of u:

with the convention that 0° = 1. Note that

f0)=po, f(1)=1, f(1)=m.

Theorem 5.4.1. The extinction probability q is the smallest root of f(s) = s for s € [0,1]. In particular,
g=1ifm<1,andqg<1ifm>1.

Proof. First, we will give a mathematical description of the model. The tree starts with one ancestor:
Zy = 1. The ancestor has Z; (with the law u) children which form the 1st generation. For the particles

in the 1st generation, they have §§1) children for j = 1, ..., Z;. The random variables §J(1) are i.i.d. with
the common law p. The number of particles in 2nd generation is then

29
Zy = Z f](- )
=1

Generally, given Z,, the particles in n-th generation have fj(n) children for j = 1,..., Z,. Given Z,,
these random variables are i.i.d. with the common law . The number of particles in (n+ 1)-th generation
is then

Zn
Znt1 = Z gj(n)
j=1

It is clear that, we have E[Z,] = m™ for all n > 1.

Second, we will prove by induction that the generating function of Z,, is the n-th fold composition of
f (denoted by f,), i.e.
E[s%"] = fu(s), Vse[0,1], n=>1.
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This is true for n = 1. Assume it holds for n, and consider n + 1, we have

E[s71 |0(Zy)] = f(s)%, E[s”] =E[f(9)7] = fulF(5) = fasr(s).

Third, we will relate the extinction probability to the generating function. On the one hand, we have
P[Z, = 0] = f»(0). On the other hand, the events {Z,, = 0} is increasing in n, i.e.

{(Zy = 0} < {Zns1 = O},
Thus, the probabilities P[Z,, = 0] is increasing, and we have
q=Plu{Z, =0}] = li7rln P[Z, =0] = liTan fn(0).
Finally, let us find the limit lim,, f,,(0). Consider the generating function f:

f(s)=p0+sp1+52p2+~~, f(0)=po, f()=1, f'(1)=m.

It is clear that the function is strictly increasing (f/(s) > 0) and is strictly convex (f”(s) > 0). Therefore,
it has at most two fixed points.? The sequence

f(0) =po, f1(0) = f(po),- -

is increasing, and converges to some fixed point of the function f.

If f/(1) =m < 1, then pp > 0 and f(s) > s for all s €[0,1). Thus f,(0) — 1, and ¢ = 1 which is the
unique root of f(s) = s.

If f/(1) = m > 1, then the function f has exactly two fixed points, and f,,(0) converges to the root of
f(s) = s for s €[0,1). In particular, ¢ < 1. O

g=1 qg<1 1

(a) When f/(1) < 1, the sequence f,(0) converges to 1  (b) When f’(1) > 1, the sequence f,(0) converges to the
which is the unique fixed point. smaller fixed point.

Figure 5.2: Figure from Zhan Shi.

From this theorem, we have that

3A fixed point of function f is a point z such that f(z) = z.
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e In the subcritical case (m < 1), the GW tree dies out with probability 1.
e In the critical case (m = 1), the GW tree dies out with probability 1.
e In the supercritical case (m > 1), the GW tree survives with strictly positive probability 1 — gq.

In the supercritical case m > 1, we know that the tree survives with positive probability 1—g. Our next
question is, conditioned on survival, how fast does the population Z,, grow? We know that E[Z,,] = m",
and whether do we have that Z,, grows like m"?

Assume the supercritical case m € (1,00). Define W,, = Z,/m™. Then {W,} is a non-negative
martingale, therefore W,, converges a.s. to some limit . By Fatou’s Lemma, we have that E[W] < 1.
Note that, if W > 0, then Z,, ~ m"; and if W = 0, then Z,, << m™. Thus, in order to see whether or not
Zy grows like m™, we need to examine whether W is strictly positive or not.

Theorem 5.4.2 (Kesten-Stigum Theorem).
EW]=1 < P[W>0|suwvivall=1 < E[Z1log" Z1] <.t
Proof. Bonus. O

From Theorem 5.4.2, if E[Z; log® Z1] < o0, then W > 0 almost surely on survival. In particular, we
know that Z,, grows like m™ as n — o0 on survival. The next question is the following: If E[Z; log™ Z1] =
o0, we have W = 0 almost surely, thus Z,, << m™. This implies that m” is not the correct normalization.
It is natural to ask whether there exists ¢, such that c,Z, converges to non-trivial limit. This is the
so-called Seneta-Hedye norming problem.

We do not plan to give a proof of Theorem 5.4.2 in this note, instead we give a weaker version of this
theorem.

Lemma 5.4.3. The probability P[W = 0] is either q or 1.

Proof. Given Zy, for n > 1, we have that
i
Zun L3029,
j=1

where Z,(lj ) are independent copies of Z,,. Rearranging, we have

4 J
mZn+1 d Z Z’r(z)
mntl L opn
Jj=1

Note that, LHS will converges to mW a.s. and RHS will converge a.s. to
Z w0,
1
where W) are independent copies of W. Denote by p the probability P[W = 0], then
p=PW =01 =PWW =0,j=1..7%]=Ep"] = f(p).
Thus p is a fixed point of f. O

Theorem 5.4.4. If E[Z?] < o0, then E[W] =1 and P[W > 0| survival] = 1.

“Notation log" 2 means log(1 v z).
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Proof. We will show that the martingale {W,,} is bounded in L?. Assume this is true, then the martingale
converges in L' and therefore
E[W]=1, P[W =0]=g¢.

To show {W,} is bounded in L?, we need to calculate E[Z2]. Define

0% = var(Zy) = E[Z}] — m*.

Then
E[Z2,1|0(Zn)] = Zno® + Z2m?, E[Z2.,] = o*m™ + m*E[Z2].
Thus,
2 o 2
E[Wyii] = oS S E[W,].
Note that E[WZ] = 02/m? + 1, therefore
2 2 2
9 1. O o o
E[Wn+1]—W+W+"‘+W+1.

This implies that {W,,} is bounded in L. O

5.5 Applications: continued
Polya’s Urn

Example 5.5.1. An urn contains r red balls and g green balls. At each time, we draw a ball out, put it
back, and add ¢ more balls of the same color. Let X,, be the fraction of green balls after the nth draw.
Then {X,} is a martingale and thus X,, —> X4 a.s.

o When g =1 =c=1, the limit Xy is uniform in (0, 1).
o When g =2,7 =c =1, the limit Xo, has density function p(r) = 2z Lic(1)}-
e Derive the distribution of X in general case. Bonus.

Proof. We first check that {X,} is a martingale. Given all the information by time n, let us consider
Xp+1: suppose there are j green balls and ¢ red balls by time n (after the nth draw is completed and the
new balls have been added), i.e. X,, = j/(i + j). Then we have

j+c . .. j
X, = {Hﬁc, with probability s
J . o1 ‘
e with probability s
Thus = . ) ) _
J c J ] 7 7
1+7+c 1+ i+j+c i+7 i+ g

This confirms that {X,,} is a martingale. As 0 < X,, < 1, Theorem 5.3.1 gives X,, = X a.s. It remains
to derive the distribution of X.
We have the following two observations.

e The probability of getting green balls on the first m draws then red on the next ¢ = n —m draws is

g gtc  g+(m-—-1c r o r+ (=1
g+r g+r+c g+r+(m—1c g+r+mec g+r+(n—1)c

e Any other outcome of the first n draws with m green balls and ¢ red balls has the same probability.
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Combining the two facts, we obtain the probability for X,, = (¢ + mc)/(g + r + nc).
When g = r = ¢ =1, we have

P{Xn:m+1] _ (n)m!(n—m)! _ 1

n+2 m) (n+1)! n+1

Thus X is uniform in (0, 1).
When g = 2,7 = c =1, we have

P[] - ) e -
n + m

(n+2)!/2 (n+2)(n+1)

Thus Xo, has density function p(z) = 22 1(,(0,1)}- O

Backwards martingales

Definition 5.5.2. Let --- < G_o < G_1 < Gg be a sequence of sub-o-fields indexed by Z_. Given such a
filtration, a process {Xn,n < 0} is called a backwards martingale, if it is adapted to the filtration, Xo € L*,
and for all n < —1, we have

E[Xni1|Gn] =X, a.s.

Suppose that {X,,n < 0} is a backwards martingale. By Tower Property, we have that
E[Xo|Gn] = X, a.s.

Thus the backwards martingale is automatically UI, and all conclusions for (forward) martingales con-
vergence also hold for backwards martingales.

Theorem 5.5.3. Let {X,,,n < 0} be a backwards martingale, with Xy € LP for some p € [1,00). Then
X, — X_o =E[X0|G-w], as.andin LP,

where G_o = Np<oGn.-

We leave the proof of this theorem as an exercise. By the convergence theorem of backwards martin-
gales, we could give a new proof of Strong Law of Large Numbers.

Corollary 5.5.4 (Strong Law of Large Numbers, Another proof). Let {{}i>1 be i.i.d with E[&] = m.
Let Sy, =" 1 &. Then
S,/n —m, a.s. and in L.

Proof. For n > 1, define
g—n = U(Sn78n+l7 )7 X p= n/n

We will prove that {X,,n < 0} is a backwards martingale with respect to {G,,n < 0}. Assume this
is true, then by Theorem 5.5.3, we have that S, /n converges a.s. and in L' to some random variable,

denoted by Y. Note that, for any k,
k+n

!
Y = lim ~ Ek;g
1=

Thus Y is 0(&;,i = k)-measurable, for all k. By Kolmogorov 0-1 Law, we conclude that there exists a
constant ¢ € R such that P[Y = ¢] = 1. At the same time, since we also have convergence in L', we derive
that

c=E[Y] = h,an E[Sn/n] = m.
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In order to show that {X,,n < 0} is a backwards martingale with respect to {G,,n < 0}, we need to
calculate E[X_,,11|G_p]. Recall Example 5.1.6, we have that

n—1

E[X—n+1 ‘g |: el |U Snan+1u-~):|

| |
l—|

1
= (Sn E[Xn ’ U(Sn)D
_ 1 S _5Sn _
T n—1\"" n) n 77
as desired. O

Law of the Iterated Logarithm

Example 5.5.5. Let {X,} be i.i.d. with the common law N(0,1). Define S, = >\ X;. Then, almost
surely,

Sn

=1, lminf—" — — 1.

n—o 4/2nloglogn

: Sn
lim sup

n—wo +/2nloglogn
h(n) = 4/2nloglogn.

It is sufficient to show that, for any p > 1 > v, we have almost surely,

Define

: Sn . n
1 — <p, | — =

1mnsup h(n) p 1mnsup h(n) v

Proof. Upper bound. We know that {S,} is a martingale. For # > 0, the function x — e is convex,
thus {exp(0S,)} is a submartingale. By Doob’s Maximal Inequality Theorem 5.3.6, we have that, for any
c> 0,

P [max Sk = ] =P |:I]£laX exp(0Sk) = exp(Gc)] < exp(—0c)E[exp(0S,)] = exp(—bc + 6°n/2).

k<n

Pick 6 = ¢/n, we have that, for any ¢ > 0,

P {maXSk > c] < exp(—c?/(2n)).

k<n
Thus,
P [max Sk = ph(n)] < exp(—p*h(n)?/(2n)) = exp(—p?loglogn) = (logn)*pz.

<n

Fix some N > 1, then we have

my | < —p
P LT]%)’% Sk = ph(N )} < (mlog N)

Thus
;P [;5% Sk = ph(N )} < .
By Borel-Cantelli Lemma, we have almost surely

max Sk < ph(N™), for m large enough. (5.5.1)
< m
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On this event, for N™ < n < N™*! we have

S, < max S < ph(N™) < ph(Nn).

ng'rrH»l

Therefore, almost surely,

n . N
lim sup hfn) < plim h}(L(TZ;) = p\/ﬁ.

This holds for any N > 1,p > 1. Let N — 1,p — 1, we have almost surely,

lim sup hn) <1
n n

Proof. Lower bound. Note that S, is Gaussian with mean zero and variance n. Thus
1
v2loglogn V 2

It is known for standard normal distribution that, for x large,

P[S, = vh(n)] = f eV’ 2qy.

1
f \/72771—6_2/2/260!/ I~ x_l exp(—x2/2).
Therefore

2

P[S, = vh(n)] ~ v~} (2loglogn)~?(logn)™"".

Fix some N > 1, then we have
P[S(N™1) — S(N™) = vh(N™! — N'™)] ~ v~ 1(2log(mlog N))~2(mlog N)~*".

Therefore,
D IPIS(N™H) = S(N™) = vh(N™*! — N™)] = o,

By Borel-Cantelli Lemma, we have almost surely
S(N™Y — S(N™) = vh(N™ — N™), i.o.
By (5.5.1), we have almost surely
S(N™) = —ph(N™), for m large.
Combining these two, we have almost surely,
S(N™H) > yh(N™E — N™) — ph(N™), i.o.
Therefore, almost surely

S(N™) _ [N—1  p

N VN

This holds for any N > 1 and v < 1. Let N — o0,v — 1, we have almost surely,

lim sup hfn) > lim sup (N
n n m

limsup —— > 1

no h(n) ~
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The above example is a particular case of the following theorem.
Theorem (Law of the iterated logarithm). Let {X,,} be i.i.d. random variables with mean zero and unit

variance. Define S, = Z?Zl X;. Then, almost surely,

lim sup Sn 1, liminf Sn

n—ow +/2nloglogn B n—o +/2nloglogn -
Proof. Bonus. O

—1.

Let us summarize LLN, CLT and Law of the iterated logarithm here: Suppose {X,,} are i.i.d. random
variables with zero mean and unit variance. Then

Sn

— — 0, a.s.

n

li —_ =1 .8.
lnmjcgp v2nloglogn @8
5.6 Exercises
Exercise 5.6.1. o Chebshev’s inequality. For a > 0, we have

P[IX| > a|A] < a2E[|X|?| A].

e Cauchy-Schwarz inequality.
E[XY | A]? <E[X?|A] x E[Y?] A].

Exercise 5.6.2. Show that if X and Y are random variables with E[Y | A] = X and E[X?] = E[Y?] < 0,
then X =Y a.s.

Exercise 5.6.3. Let X,Y be two random wvariables on (0, F,P). Let A < F be a sub-o-field. The
random variables X andY are said to be independent conditionally on A if for all non-negative measurable
functions f and g, we have

E[f(X)g(Y) | A] = E[F(X) | A] x E[g(Y) [ A] a.s.

Show that X,Y are independent conditionally on A if and only if for every non-negative A-measurable
random variable Z, and all non-negative measurable functions f and g, we have

E[f(X)g(Y)Z] = E[f(X)ZE[9(Y) | A]]

Exercise 5.6.4. Let {&;} be i.i.d non-negative random variables with E[{1] = 1 and P[§; = 1] < 1. Set
Xn = H?=1 g’L

o Show that X,, — 0 a.s.
e Show that %log X, — c a.s. where c <0 is a constant.

Exercise 5.6.5. Suppose X andY are two random variables which are integrable. Assume that E[X |o(Y)] =
Y and E[Y |o(X)] = X. Show that X =Y almost surely.

Exercise 5.6.6. Let {X,,} be a martingale in L>.
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(1) Show that its increments {X,+1 — Xy} are pairwise orthogonal, i.e. for all n # m, we have

E[(Xnr1 — X)) (Xt — X)] = 0.
(2) Show that {X,} is bounded in L? if and only if
D IE[(Xni1 — Xn)?] < .
Exercise 5.6.7. Let {X,} be a simple random walk on Z starting from k € {0,1,...,N}. Define T =
min{n : X, =0 or N}.
(1) Show that {X,} is a martingale and prove that
P[X, = N] = k/N.
(2) Show that {X2 —n} is a martingale and prove that
E[7] = k(N — k).
(8) Show that {X3 — 3nX,} is a martingale and prove that

E[|X, — N] — %(NQ _ ).

(4) Compute E[T?].

Exercise 5.6.8 (YCMC2012). Suppose that {& : k = 1,2,...,n} are i.i.d. random variables with uniform
distribution on the interval [0,1]. Let Y = max{{; : 1 <k < n}.

(1) What is the joint distribution of (£&1,Y)
(2) Ewaluate the probability P[& =Y.
(3) Evaluate the conditional expectation E[&1]a(Y)].

Exercise 5.6.9 (YCMC2013). Let X be an integrable random variable, G a o-algebra, and Y = E[X | G].
Assume that X andY have the same distribution.

(1) Prove that if X is square-integrable, then X =Y a.s. (i.e. X must be G-measurable) ;

(2) Using (1) to prove that for any pair of real numbers a,b with a < b, we have min {max {X,a},b} =
min {max {Y,a},b}, and consequently, X =Y a.s.

Exercise 5.6.10 (YCMC2013). Let X and Y be independent N'(0,1) random variables.
(1) Pind E[X +Y|X >0,Y > 0];

(2) Find the distribution function of X +Y given that X > 0 and Y > 0. (Hint: Using the fact that
U=(X+Y)/V2and V = (X —Y)/v/2 are independent and N'(0,1) distributed.)

Exercise 5.6.11 (YCMC2014). Suppose that (X,Y) is a two-dimensional Gaussian with mean (0,0),
variance (02,7%) and correlation coefficient p. Determine E[X |o(X + Y)].

Exercise 5.6.12 (YCMC2014). Given two independent random variables X and Y such that X has the
uniform law on [0,1] and P[Y = 0] = P[Y = 1/2] = 1/2. Show that W := X + 1/2Y has the uniform law
on [0,1] and compute E[Y | o(W)].
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Exercise 5.6.13 (YCMC2015). (a) Let X andY be two random variables with zero means, unit vari-
ances, and correlation p. Prove that

E [max{X? Y?}] < 1++/1—p2

(b) Let X andY be a two-dimensional Gaussian with means zero, variances o and 72, and correlation
p. Find the conditional expectation E[X |o(Y)].

Exercise 5.6.14 (YCMC2016). Suppose {X,,} are i.i.d. random variables in L*. Define S, = 2 X
What is the conditional expectation of Sp—1 given o(Sy)?

Exercise 5.6.15 (YCMC2017). Let {X,} be a sequence of non-negative random variables. Let {Fy,} be
a sequence of increasing o-algebras. Assume that E[X,, | F,] — 0 in probability. Show that X,, — 0 in
probability. Is it true reversely? If yes, prove it; if not, give a counterexample.

Exercise 5.6.16 (YCMC2018). Suppose that a random vector x = (z1,...,xn) € R™ is distributed as
n-dimensional Gaussian N (0,%) where X is an n x n positive definite matriz. Let the (i,7) element of
Y1 be wij with 1 < 4,5 <n. For 1 <i# j <n, show that, if w;j = 0, then x; and x; are conditionally
independent when the other elements of x are given.
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6 Markov chain: finite state space

6.1 Finite Markov chains: introduction

A finite Markov chain is a process which moves among the vertices of a finite set S which is called state
space. The law of the Markov chain is characterized by the transition matrix P of size |S| x |S].

Definition 6.1.1. A sequence of random wvariables {X,} is a Markov chain with state space S and
transition matriz P if for alln =0, and all sequences (xg, x1, ..., Tpn, Tny1) with ; € S, we have that

P[Xn+1 = Tn+1 |X0 = Z0y ey Xy = Jf'n] = P[Xn+1 = Tn+1 |Xn = xn] = P($n,l‘n+1).
In the above definition,

e the conditional probability of jumping from x to y is the same P(x,y), no matter what sequence
xg, ..., Tn_1 Of states proceeds the current state z;

e the transition matrix P is stochastic:

— P(z,y) = 0 for all z,y;
— > Plz,y) =1 for all z.

It is clear that the largest eigenvalue of P is one.

Example 6.1.2 (Gambler’s ruin). Consider a gambler betting on the outcome of a sequence of independent
fair coin tosses. If head, he gains one dollar. If tail, he loses one dollar. If he reaches a fortune of N
dollars, he stops. If his purse is ever empty, he stops. Questions:

e What are the probabilities of the two possible fates?
e How long will it take for the gambler to arrive at one of the two possible fates?
The gambler’s situation can be modeled by a Markov chain on the state space § = {0,1,..., N}:
e Xy : initial money in purse; X, : the gambler’s fortune at time n.
e P[X,11=X,+1]|X,]=1/2and P[X,,11 = X,, — 1| X,,] = 1/2.
e The states 0 and N are absorbing.
e 7 : the time that the gambler stops.

Following is the transition matrix when N = 4:

= w N = O

Example (Example 6.1.2 continued). Let X,, be the gambler’s fortune at time n and let T be the time
required to be absorbed at either 0 or N. Assume that xo = k for some 0 < k < n. Then

P[X, = N] = k/N, (6.1.1)
E[7] = k(N — k). (6.1.2)
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Proof of (6.1.1). Let py be the probability P[X; = N | Xy = k]. Then we have that, pg = 0,pny = 1, and,
forl<k<N-1,

pk:P[XT:N‘XOZk]
=P[X;1=k—-1,X, =N |Xo=k]+P[X1 =k+1,X, = N| X, = k]

1 1
=§P[XT=N|X1:k—1]+§P[XT=N|X1:k:+1]
_1 Jr1
—2Pk—1 2pk+1-

There exists a unique solution of p with pg = 0,pny = 1, pr = (Pr—1 + Pr+1)/2:
pr=k/N, 0<k<N.

O

Proof of (6.1.2). Let my, be the expectation E[7 | Xy = k]. Then we have that, my = 0, my = 0, and, for

1<k<N-1,

1 1 1 1
my = 5E[T\Xl =k—1]+ 5E[ryXl =k+1] = 5(mk,l +1) + 5(mkH +1).
There exists a unique solution of m with my = 0, my = 0, m = (Mmg—1 + Mmg+1 + 2)/2:
mg = k(N —k), 0<k<N.

O

Example 6.1.3 (Coupon collecting). A company issues N different types of coupons. A collector desires
a complete set. Question: How many coupons must he obtain so that his collection contains all N types.
Assumption: each coupon is equally likely to be each of the N types.

The collector’s situation can be modeled by a Markov chain on the state space S = {0,1,..., N}:
e Xy = 0; X, : the number of different types among the collector’s first n coupons.
e P X11=k+1|X,,=k]=(N—k)/N and P[X,,41 = k| X,, = k] = k/N.
e 7 : the first time that the collector obtains all N types.

Following is the transition matrix when N = 4:

[ 0 1 2 3 4 ]
0 0 1 0 0 0
1 0 1/4 3/4 0 0
210 0 2/4 2/4 0
3 0 0 0 3/4 1/4
| 4 0 0 0 0 1 ]
Example (Example 6.1.3 continued). We have
N1
E[r] =N Y| - ~ NlogN. (6.1.3)
k
k=1
Moreover, for any ¢ > 0, we have that
P[r > Nlog N + ¢N] < e L. (6.1.4)
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Proof of (6.1.3). For 1 < k < N, let 7, be the first time that the collector has k different types. Then
(Tk+1 — Tx) satisfies geometric distribution:

PlTks1 — 7 >n] = (k/N)".

Therefore
E[Tk+1 — Tk] = N/(N - ]{))

Thus,
N-1 N
E[r] =E[r~] = )| Elmes1 — 7] = D N/k.
k=0 =
O

Proof of (6.1.4). For 1 <i < N, let A; be the event that ith type does not appear in the first N log N +cN
coupons. Then

N
P[r > Nlog N + ¢cN] = P[uy Ai] < ) P[Ai] = NP[A,].
1

Then let us evaluate P[A4]:

1 Nlog N+cN—-1
P[Al] < (1 — N>

=exp ((NlogN +¢N —1)log(l —1/N))

1
<exp((NlogN +¢N —1)(-1/N)) < Ne—cﬂ.

Thus,
P[r > Nlog N + cN] < e “th

Random mapping representation

Definition 6.1.4. A random mapping representation of a transition matriz P on state space S is a
function f: S x A — S, along with a A—wvalued random variable Z, satisfying

Plf(z,2) = y] = P(z,y).

Question: How is it related to Markov chain? Suppose (f, Z) is a random mapping representation, let
{Z,} be i.i.d. with common law the same as Z and be independent of Xj. Define X,, = f(X,—1, Z,) for
n > 1. Then {X,} is a Markov chain with transition matrix P.

Theorem 6.1.5. Every transition matriz on a finite state space has a random mapping representation.

Proof. Let P be the transition matrix of a Markov chain with state space S = {z1,z9,...,xn}. Take
A =[0,1], and let Z be a uniform random variable on [0, 1]. Set, for 1 < n,k < N

k
=Z (xn,z;), forl<n,k<N;
=1

(xna )—l‘k, lank 1<2z< Fnk

Then
P[f(l‘n, Z) = .’Ek] = Fn,k - Fn,k—l = P(CCn,ﬂ?k).
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6.2 Irreducible, aperiodic, stationary, reversible
Irreducible and aperiodic

Definition 6.2.1. A transition matrix P is called irreducible, if for any x,y € S, there exists a number
n (possibly depending on x,y) such that P™(x,y) > 0.

Definition 6.2.2. For any x € S, define T'(x) = {n > 1 : P"(z,x) > 0}. The period of state x is the
greatest common divisor of T'(x), denoted by gcd(T(z)).
Lemma 6.2.3. If P is irreducible, then ged(T(x)) = ged(T'(y)) for all x,y € S. We define this common

number to be the period of the chain.

Proof. Fix two states x,y € S. Since P is irreducible, there exist integers n, m such that P"(z,y) > 0
and P™(y,z) > 0. Then

Pz, 2) = P"(z,y)P"(y,7) >0 = n+meT(z);
Py, y) = P (y,2)P"(2,y) >0 = n+meT(y).
For any u € T'(x), we have that P"(z,z) > 0; moreover
P (y,y) = P (y, ) P (@, 2) P™ (x,y) > 0.

Combining the facts that n+m € T(y) and that n+m+wu € T(y), we see ged(T'(y)) divides u. This holds
for any u € T'(z), therefore ged(T'(y)) divides ged(T'(z)). Symmetrically, ged(T(z)) divides ged(T'(y)).
Thus ged(T'(y)) = ged(T'(z)). O

Definition 6.2.4. For an irreducible chain, the chain is aperiodic if all states have period 1.
Example 6.2.5 (Simple Random Walk on Cycles). Consider a simple random walk on N -cycle.
o The walk is irreducible.
o When N is odd, the walk is aperiodic.
e When N is even, the walk is not aperiodic.

Proof. On N-cycle, each vertex has two neighbors. At each step, the walk jumps to the left vertex with
probability 1/2 and jumps to the right vertex with probability 1/2.
For vertex i and j on the cycle, define r = |i — j|, then

Pr(i,j) = (1/2)" >

Thus the walk is irreducible.
For any vertex ¢, we have

P2(i,i) = P(i,i+ 1)P(i+ 1,4) = 1/4 >0, = 2eT(i);
PN@G) = (12N >0, = NeT(@).
Thus ged(7'(7)) = 1 when N is odd.

When N is even, the walk always needs even number of steps to come back to the starting position,
thus the period is two. O

Theorem 6.2.6. If P is irreducible and aperiodic, then there exists an integer r such that

P"(z,y) >0, Vx,yeS,Vn=r
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Proof. Recall a standard fact in number theory:
Fact. Any set of non-negative integers, which is closed under addition and which has ged 1, must contain
all but finitely many of the non-negative integers.

First, we show that, for 2 € S, there exist n(z) such that the set T'(x) contains all n > n(x). This is
true by combining the following two facts and the above fact.

o I'(x) ={n>1:P"(z,x) > 0} is closed under addition. For any n,m € T'(x), we have

P (g, 2) = P"(z,2)P™(2,2) >0, = n+meT(x).

e T'(z) has ged 1, since this is an aperiodic chain.

Second, we show that, for x € S, there exists n/(z) such that P"(z,y) > 0 for all y € S and all
n = n'(z). We have the following two observations.

e By the first step, there exists n(z) such that P"(z,z) > 0 for all n > n(z).
e Since the chain is irreducible, for any y € S, there exists r = r(x,y) such that P"(z,y) > 0.

Combining these two facts, we have that, for any m > n(z) + r,
P"(xz,y) = P" " (x,z)P"(x,y) > 0.

Define
n'(z) = n(x) + maxr(z,y),
y

and it satisfies the desired property.
Finally, define

N = maxn/(z),
x

and it satisfies the property in the conclusion. O

Stationary distribution
Consider a Markov chain with state space S and transition matrix P. Recall that
P[Xn+1 =y Xn = 2] = P(z,y).
We introduce the following notations:
e 1 : the distribution of Xy;
® i, : the distribution of X,.

Then we have that
fnt1 = pin Py pn = poP",  E[f(Xn)] = poP" f.

Definition 6.2.7. We call a probability measure w stationary if # = wP.
If 7 is stationary and the initial measure ug equals 7, then p, = m, for all n.

Example 6.2.8 (Simple Random Walk on Graph). A graph G = (V, E) consists of a vertex set V and
an edge set E:

o V' : set of vertices

o I : set of pairs of vertices
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o When (z,y) € E, we write x ~y : x and y are joined by an edge. We say y is a neighbor of x.
o Forx eV, deg(x) : the number of neighbors of x.

Given a graph G = (V, E), we define simple random walk on G to be the Markov chain with state space
V' and transition matriz:

1/deg(x), ify~

0, else.

P(.I,y) :{

For the random walk on graph, it is the Markov chain such that, when the chain is at vertex x, it
examines all its neighbors, picks one uniformly at random, and jumps to the chosen vertex. For the
following graph, we have that V = {1,2,3,4,5} and FE = {(1,2), (1,3), (2,3), (2,4), (3,4), (3,5)}.

The corresponding transition matrix for the simple random walk on this graph is the following:

i 1 2 3 4 5]
0 12 1/2 0 0
1/3 0 1/3 1/3 0
14 14 0 14 1/4|
0
0

0 1/2 1/2 0
0 0 1 0

U W N =

Example (Example 6.2.8 continued). Define

d
m(x) = ;i(;), VeeV.

Then m is a stationary distribution for the simple random walk on graph G.

Proof. First, 7 is a probability measure:
Y, deg(z) = 2|E|,
T

since each edge is counted twice in the LHS.
Next, 7 is stationary:

deg(z) 1 1 _ deg(z
21B] deg(2) 7 2lE]

~—

(xP)(@) = Y w(z)P(z,2) = )

zeV zeV

Time-reversal of Markov chains

Definition 6.2.9. We say that a probability measure ™ on S satisfies detailed balance equations if

w(x)P(x,y) = n(y)P(y,z), Vx,yeS.
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Note that any distribution 7 satisfying the detailed balance equations is stationary for P.
Suppose that a probability measure 7 satisfies the detailed balance equations. Then, for any sequence
xQ, ..., Tn, We have

m(xo)P(zo,21) -+ - P(xp—1,2n) = m(xn)P(zn, Tn-1) - - - P(x1,x0).
Or equivalently,
Pﬂ—[XO = xo,Xl =T, ,Xn = $n] = Pﬂ-[XO = $n,X1 = Tn—-1, ,Xn = .290].

In other words, if the Markov chain has initial distribution , then the distribution of (Xo, X1, ..., X;)
is the same as its time-reversal (X, X,,_1, ..., Xo). For this reason, a chain satisfying detailed balance
equations is called reversible.

Example 6.2.10 (Birth-and-Death Chain). A birth-and-death chain has state space S = {0,1,..., N}. In
one step the state can increase or decrease by at most one. The current state can be thought of as the size
of some population; in a single step of the chain, there can be at most one birth or death. Then transition
probabilities can be specified by {(pr, Tk, qx),0 < k < N} where py, + 1 + qx = 1 for each k and

e pi is the probability of moving from k to k +1 when 0 < k < N; py = 0;
® g is the probability of moving from k to k — 1 when 0 < k < N; gy = 0;
o 15 is the probability of remaining at k when 0 < k < N.

Every birth-and-death chain is reversible.

Proof. A measure 7 on S satisfies detailed balance equations if and only if, for all 1 < k< N

TPk — 1) = 7k — )Pk — 1K), or —F) __ Pet

(k=1
Define
7(0) =1, #(k) =1 _1pa-1/gn, 1<k<N.
Set e
wwp:{ﬁia 0<k<N
2 T(n)
Then 7 is a probability measure on S satisfying detailed balance equations. O

Proposition 6.2.11. Let {X,} be an irreducible Markov chain with transition matriz P and stationary
distribution w. Define P to be

N

Pz, y) = m(y) Py, x)/m(x).

Then P is a stochastic matriz and 7 is stationary for P. Let {Xn} be a Markov chain with transition
matriz P, then, for any xg,x1, ..., Tn,

PW[XO = ZUo,Xl = iL'l,...,Xn = .’L'n] = PW[XO = xn,Xl = 1, ,Xn = iC()].

For this reason, we call X the time-reversal of X .

Proof. First, we show that P is stochastic. For z € S,

Zp(x,y) = Zw(y)P(y,x)/W(x) = 1. (Since 7 is stationary for P)
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Second, we show that 7 is stationary for P.

ZW(y)P(y, x) = ZW(Z’)P(l’,y) = m(z). (Since P is stochastic)
y y

Finally,

Px[Xo = 20, X1 = 71, ..., X5 = 2] = 7(20) P(20, 71) - - P(T0—1, T)
(2n) P(2n, Tn1) -+ P(x1, 20)

T
PW[XO =2, X1 = X1y 00y Xy = xo].

O

If a Markov chain with transition matrix P is reversible, then P = P and X has the same law as X.

6.3 Stationary measure

Definition 6.3.1. Let {X,,} be a Markov chain on S. For x € S, define

m=inf{n>0:X, =2}, 7 =inf{n>1:X, =2z}

We call 1, the hitting time for x, and 7,7 the first return time when Xy = .

The goal of this section is the following existence and uniqueness of stationary measure of irreducible
Markov chains.

Theorem 6.3.2. Suppose P is irreducible, then there exists a unique probability measure w such that

m =7nP. Moreover, for all x € S,
1
=——>>0.
() Er]

Lemma 6.3.3. Suppose that P is irreducible. Then, for any z,y € S, we have
E.[7, ] < .
Proof. Since P is irreducible, for any x,y € S, there exists 7(z, %) such that P"@¥)(z,y) > 0. Define
e = min{P"®Y (z,y) : x,y € S}, R = max{r(z,y):z,yeS}

Then, for any value of X,,, the probability of hitting state y at a time between n and n + R is at least e.
Thus,
P.[r, > Rl <1—¢ Pglr) > (k+1)R] < (1—¢)P,[r, > kR].

Repeating this inequality, we have that, for any k£ > 1,
P.[r, > kR] < (1—e)".

Therefore,
Eu[r, ] =) Palry >n] <R).P.[r,) > kR <R) (1-€)" < R/e <.
k

n k
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Proof of Theorem 6.3.2—-existence. Fix a state z € §, we will examine the time that the chain spends at
each state in between two visits to z. Define, for z € S,

7(x) = E,[#tvisits to x before returning to z].
Note that, we can write 7(z) in the following way

7(x) = Z P.[Xn =2,n< T;_]

n=0

We claim that 7 = 7P. For any x € S,

#P(z) = > #(w)P(w,x)

weS
e}
= Z Z P.[X, = w,n < 7}]P(w,x)
weS n=0
o0
= 2 Z P.[X, =w, Xpp1 = 2,n+1<7]]
weS n=0

0 0
= Y PfXpi=zn+ 1< 7] = Y Pf[Xy =z,n< 7],
n=0

n=

—_

In short, we need to compare the following two terms
o0 0
7P(x) = Z P.[Xn=x,n<7]], 7x)= Z P.[X, =x,n < 7]
n=0
There are two different cases: x # z or = z. If © # z, we have that
a0 e}
7P(x) = Z P.[Xpn=z,n<7]]= Z P.[X, =2,n < 1] =7(x).
n=0

If x = z, we have that
o0
w(z) = D Prh =n] =1=7#(2).
n=1

In any case, we have 7P(x) = 7(x).
To make 7 a probability measure, we need to normalize it by its total mass:
Zﬁ(m) =E.[7].
xT
Define, for any x € S,
m(z) = 7(x)/E[7.1].

Then the probability measure 7 is a stationary distribution. O

From the proof of Theorem 6.3.2—existence, we do not know whether the measure m depends on the
choice of state z. By the construction of 7w, we have that

7(z) = 1/E,[]].

We will show that there is a unique stationary measure. After we show the uniqueness, we could conclude
that, for all x € S,
m(x) = 1/Es[7,].
Recall that a measure p on S is stationary if uP = . The corresponding notion for functions on S is
harmonic.
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Definition 6.3.4. A function f on S is harmonic if f = Pf.
Lemma 6.3.5. Suppose P is irreducible. Then any harmonic function f on S has to be constant.

Proof. Since S is finite, there must be a state xg such that f(zg) = max{f(x): x € S}. Denote the value

f(zo) by M.
For any state z such that P(xo,2) > 0, if f(2) < M, we have

f(wo) = Y Plwo, ) f(x) < Y, Plzo,z)M = M,

which is a contradiction. Thus, we must have f(z) = M provided P(zo,z) > 0.
For any state z, since P is irreducible, there exists a sequence xg, 1, ..., z, = 2z such that P(x;,x;41) >
0 for j =0,...,n — 1. Repeating the same argument as above tells us that

f(xo) = f(z1) =+ = f(an) = f(z) = M.
Therefore f is constant. ]

Proof of Theorem 6.3.2-uniqueness. From Lemma 6.3.5, we know that the kernel of P — I has dimension
one. Therefore, the row-vector equation y = pP also has a one-dimensional space of solutions; and this
space contains only one vector whose entries sum to one.

From the proof of existence, we know that m = 7/E.[7,'] is stationary. Note that the definition of 7
depends on z, but since there is a unique stationary distribution, the measure 7= does not depend on the
choice of z. In particular, for all z, we have 7(z) = 1/E,[7,}]. O

Theorem 6.3.6 (Ergodic Theorem). Let f be a real-valued function defined on S. If {X,} is an irreducible
Markov chain with stationary distribution 7, then for any starting distribution u, we have

In particular,
n

1
lim — Z lix;=2y = 7(x), Pu—as.

n—o n,

j=0

Proof. Since any probability measure p is a linear combination of Dirac masses pu = >, p(x)d,, it suffices
to show the conclusion for p = .. In other words, the chain starts at x. Define the sequence of return
times: for k > 1

+
=0, m=1,,

Consider one block (X, , X7, 41, ..., X7, , 1), define

Tk+1 = min{n > 7 : X,, = x}.

T+1—1

Y= > f(X)).

J=Tk
By Markov property, the random variables {Y;} are i.i.d. By Strong Law of Large Numbers, we have
1 n—1
- 2 Y, — E.[Yo], P.—a.s.
n
0
Since 7, = Zgzl(TjH — 7;), by Strong Law of Large Numbers again, we have

1
ETn — E.[7], Ps—a.s.
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Therefore, we have

Note that ) L
T1 T1
:[Y0] = E [2 FX ] Ex[Z 1ix,- y}] 2 fW7(w)
y
where 7(y) = E,[#visits to y before 7.7]. Since 7(y) = m(y)E.[7,[], we have that

Zf 7 1 =7(f)Er ]

Therefore,
Tn—1
07_f(]) — 7(f), Pz—a.s. (6.3.1)
The goal is to show the following
m—1
X.
Owj(j) —7(f), Pz—a.s. (6.3.2)

It remains to derive from (6.3.1) to (6.3.2). Denote by M = max, |f(z)| and we may assume 7 (f) = 0.
For large m, suppose 7, < m < Tp4+1. Then we have

m—1 Tn—1 ) o Tn—1 )
3 ) _ [Z5TO0)  m—md [T a)] (2t 1)
m m Tn Tn
Plugging in (6.3.1) and 7,+1/7, — 1, we obtain (6.3.2). O

6.4 The convergence theorem

Theorem 6.4.1. Suppose that P is irreducible, aperiodic, with stationary distribution w. Then there exist
constants a € (0,1) and C > 0 such that

\Y

max |P"(z,-) — 7|7ty < Ca”™ VYn > 1.
zesS

Proof. Define II to be the matrix with |S| rows, each of which is the row vector m. It is clear that
IIP = PII = II, and TI?> = II. We only need to show that

|P" — 11| < Ca™.®
Since P is irreducible and aperiodic, there exists r such that
P"(z,y) >0, VYx,yeS.
Thus, for sufficiently small § > 0 we have
P'(z,y) = dn(y), Vx,yes.
Define matrix ) such that P" = §II + (1 — §)Q. Then we can check that

@ is stochastic, QII = I1Q = II.

Here we use distance between matrices: |A — B|| = 3, ; [A(4,7) — B(i,7)|. Note that ||p —v| = 2[p —v|rv.

106



Denote 1 — 0 by 6, then P"" = (1 — ™)I1 + §"Q™. Thus
|P - 11| < 671 — Q"] < Co,
where C = 2|S| x |S|. For 0 < j < r, we have P/ = P PJ = (1 — ")[IP? + 0"Q"PJ = (1 — 0™)II +
6"Q"PJ. Therefore, ‘ ‘
[P 1T = 6711 — Q" P7| < C",
O
Example (Example 6.2.5 continued). Suppose {X,} is a simple random walk on N-cycle. It is clear

that the stationary measure 7 is uniform over the cycle. Recall that the walk is irreducible. By ergodic
theorem, we have, for any x € S:

1 & 1 1 & 1
- Z 1ix, =2} = N @S and - Z P[X, =z] — N (6.4.1)
7j=1 7j=1
When N is odd, the walk is aperiodic, and thus for any x € S:
1
PIX, =x] - —. 4.2
[Xo =] = (6.42)

When N is even. Suppose xg,x € S and the distance between these two points is even, then we have
2
P:co[XQn = !T] - N; PJ:()[XZn-i-l = l‘] = 0.

Thus, the conclusion (6.4.2) can not hold in this case; whereas, the conclusion (6.4.1) is still true.

6.5 Exercises

Exercise 6.5.1. A graph G is connected when, for two vertices x and y of G, there exists a sequence
of wvertices xg,T1,...,xE such that xg = x, 2 =y, and x; ~ x;41 for 0 < i < k — 1. Show that simple
random walk on G is irreducible if and only if G is connected.

Exercise 6.5.2. Let P be the transition matrixz of a Markov chain with state space S and let p and v be
any two distributions on S. Prove that

luP = vP|rv < |p— vV,
(This in particular shows that |uP'™! — | py < |uPt — |1y, that is, advancing the chain can only move

it closer to stationary.)

Exercise 6.5.3. A professor has n umbrellas, of which initially k € (0,n) are at his office and n — k are
at his home. Every day, the professor walks to the office in the morning and returns home in the evening.
In each trip, he takes an umbrella with him only if it is raining. Assume that in every trip between home
and office or back, the chance of rain is p € (0,1), independently of other trips.

(1) Asymptotically, in what fraction of his trips does the professor get wet?
(2) Determine the expected number of trips until all n umbrellas at the same location.

(8) Determine the expected number of trips until the professor gets wet.

Exercise 6.5.4 (YCMC2016). Consider the numbers 1, 2, ..., 12 written around a ring as they usually
are on a clock. A random walker starts at 12 and at each step moves at random to one of its two nearest
neighbors (with probability half-half). What is the probability that she will visit all the other numbers
before her first returning back to 127

Exercise 6.5.5 (YCMC2016). A boy tries to collect some special tennis cards. There are 100 different
types. Fach time he put 1 yuan into the card machine, he will randomly get a tennis card. The type of
the card is uniformly distributed. Let T be the total money he will spend to collect all different types of
cards. What is the expectation and variance of T ¢
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7 Markov chain: countable state space

7.1 Recurrence and positive recurrence

In this section, we will consider Markov chain on countable state space S. The following notions for
Markov chain on finite state space can be generalized to the countable space.

Definition 7.1.1. A sequence of random wvariables {X,} is a Markov chain with state space S and
transition matrix P if for alln = 0, and all sequences (xg, x1, ..., Tn, Tpny1) with x; € S, we have that

P[Xn+1 = Tn+1 |X0 = X0y .ery Xpp = 33'71] = P[Xn+1 = Tn+1 |Xn = xn] = P(xnaxn+1)'

For the Markov chain on S with transition matriz P, the stationary distribution and irreducibility are
defined in the same way as before.

o A measure ™ on S is a stationary distribution if 1 = P and 7 has unit total mass.

e The transition matriz P is irreducible if for any x,y € S, there exists n such that P"(x,y) > 0.
Definition 7.1.2. For the Markov chain {X,}, define hitting time and first return time: for x € S
=min{n >1: X,, = x}.

. =min{n >0: X, =z}, 7

We say a state x € S is recurrent if
P.[r} <] =1.

Otherwise, we say x is transient.

If S is finite and P is irreducible, every state is recurrent by Lemma 6.3.3. However, when S is infinite
countable, we have two different cases: recurrent or transient.

Lemma 7.1.3. Suppose that P is irreducible. The following two conditions are equivalent.
(1) Pyl <] =1 for somexeS
(2) Pelr, <] =1 forallz,yeS

Proof. Suppose that P [7 < o] =1 for some zg € S. First, we show that, for any y # x¢, we have

Puo[ry < 0] = 1. By irreducibility, we know that ¢ := Py, [, < 7,5 < 0] > 0. Thus

P = Puy[ry < %) = Puy[ry < 7 < 0] + Py [

<y <x]=q+ {1 —qp

Therefore, ¢(1 — p) = 0. Since ¢ > 0, we have p = 1.
Second, we show that, for any = # xg, we have P,[m,, < o] = 1. By irreducibility, we know that
q := Py [ < 7,5, < 0] > 0. Thus, by Markov property,

q = Popl1e < 75 < 0] = qPe[12, < 0]

Since ¢ > 0, we have Py[7,, < ®0] = 1.
Finally, for any z,y € S, define 7,,, = min{n > 7, : X, = y}, we have

P17y < 0] = Py[12, < 00, Tapy < 0] = Py[Ts, < ©|Py,[7y < 0] = 1.
Ul

From this lemma, we know that, for an irreducible chain, a single state is recurrent if and only if all
states are recurrent. For this reason, an irreducible Markov chain can be classified as either recurrent or
transient.
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Definition 7.1.4. A state x is positive recurrent if Ex[1,}] < o0.

Lemma 7.1.5. Suppose that P is irreducible. The following two conditions are equivalent.
(1) Ex[1}] < o0 for some x € S.
(2) Ex[1,[] < 0 forallz,y€S.

Proof. Suppose that E[7,] < oo for some xq. First, we show that, for = # 29, we have E;[7,,] < 0.

© > Ba[Th) 2 Eug [T Loy | 2 Buo | (7 = 70) Lty | = Pl < 7o Bl ).

Since Pyy[7, < 7,4 ] > 0 (by irreducibility), we have E[7,,] < 0.
Second, we show that, for y # o, we have E;,[7,] < 00. Define

0=0, T =7}

2y Thel =min{n > 7 1 X;, = 20},

By irreducibility, we have g := P, [11 < 7,] < 1; moreover, P, [ < 7,] = ¢*. Thus

E:Eo [Ty] = 2 EIO [Ty 1{Tk<7'y<7'k+1}]
k
< Z E{L‘Q [Tk+1 1{7'k<7'y<7'k+1}]
k

= Z Exo [(Tk-i-l - Tk) 1{Tk<7'y}:|
k

= Z Eao [71]Pao [Tk < 7]
k

= Z Exo[r1]d" < 0.
k

Finally, for any x,y, we have
= [Tz;r] < Eu[Tao + Taoy]l = EalTae] 4+ Eaol7y] < 0.
O

Therefore, for an irreducible chain, a single state is positive recurrent if and only if all states are
positive recurrent. For this reason, an irreducible recurrent Markov chain can be classified as either
positive recurrent or else which we call null recurrent.

Example 7.1.6. Simple random walk on Z is null recurrent.
Proof. Denote Eq[79] by a. Note that

1 1 1
— - +-(1+E —1+-E

where
Ea[70] = E2[71] + E1[70] = 20

Therefore a = 1 4+ o and « has to be infinite. Furthermore, Eg[7,"] = E;1[79] = . See another proof in
Section 7.2. O

Theorem 7.1.7. An irreducible Markov chain is positive recurrent if and only if there exists a probability
measure ™ on S such that m = wP.
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Proof of Theorem 7.1.7-positive recurrence implies stationary distribution. Fix xg, define
m(z) = Eg, [#visits to x before 7,1 | /E4, [7a ]
We could show that 7 is a stationary distribution in the same way as in finite state space case. ]

Proof of Theorem 7.1.7-stationary distribution implies positive recurrence. Suppose that there exists a
probability measure 7 such that # = wP. First, we show that 7(z) > 0 for all z € S. Assume that
m(xo) = 0 for some zg. Since m = 7P, we have

m(wo) = Y, m(y) P(y, z0)-

Y

Thus, combining 7(x¢) = 0 and P(y,xo) > 0, we obtain that m(y) = 0.

By irreducibility, for any z € S, there exists sequence yo = 2, Y1, ..., Yo = xo such that P(y;,y;+1) > 0,
thus 7(z) = 0 by the above analysis. Therefore, m(z) = 0 for all z, contradicts with the fact that 7 is a
probability measure.

Second, we show that the chain is recurrent, i.e. we will show that P,[7, < o] = 1 for some fixed z.
For n > 0, define

a(n) =P, X, =z, X;, # z,Ym > n].
On the one hand,
a(n) = Pr[X, = z]P.[r)] = o] = n(2)P.[r}] = o0].

On the other hand, the events {X,, = z, X;;, # z,Vm > n} are disjoint for different n’s. Thus ), a(n) < 1.
Combining these two facts, we have P,[7,;f = o0] = 0.

Third, we show that the time reversal of {X,} is recurrent. Let {Y,} be the Markov chain with
transition matrix P(z,y) = n(y)P(y, x)/m(z). We know that

T@)P[Xo=2,X1=21,... Xn 1 =2, 1, X =yl =7(@)PNo =y, Y1 = 2p_1,...., Y1 = 21, Y, = z].

Moreover, 7 is also stationary for P. by the second step, we know that {Y},} is recurrent.
Finally, we show that m(z)E,[7,] = 1.

I |
7 v
[ <[

3 3
S
o o
= =

I |
i 8

\%
=,

= > 7(y) (Since {Y, } is recurrent)

Corollary 7.1.8. If an irreducible Markov chain is positive recurrent, then

e there exists a probability measure m such that m = wP;
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o 7(z) >0 for all x. In fact,
1

m(x) = e

Theorem 7.1.9. Suppose that the Markov chain is irreducible, aperiodic and positive recurrent, then
li7£n\|P”(33, ) = 7|y = 0.

In particular, for any state y, we have
liTILnP"(a;,y) =7(y) > 0.

Proof. Idea: construct a coupling {(X,,Y,)} of two Markov chains such that Xy = x and Yy ~ 7, and
that X, = Y,, as often as possible.
First, construct a transition matrix on S x S. Define

Q((xvy)a (Zaw)) = P(:E,Z)P(y,w), Vx,y,z,w €S.

It is clear that the matrix @ is stochastic. We first show that the matrix @ is irreducible. We need to
show that, for any x, ¥, z, w, there exists N such that

QN ((z,y), (z,w)) = PN(z,y) PN (z,w) > 0.

Define T'(z) = {n : P"(z,x) > 0}. Note that T'(z) is closed under addition and has gcd 1. Thus, there
exists N(x) such that P"(z,x) > 0 for all n > N(z). By irreducibility, there exists r = r(z,z) such
that P"(z,z) > 0. Define M (z,z) := N(x) + r(z,2), then P"(x,z) > 0 for all n > M(x,z). Similarly,
there exists M (y,w) such that P"(y,w) > 0 for all n > M(y,w). Let N = max(M(zx,z), M (y,w)), then
Q¥ (@), (2 w)) = PN (2,5) PN (2,w) > 0.

Second, we show that () is positive recurrent. Define 7 ® w on § x S to be

T@m(z,y) = m(x)m(y).
It is clear that m ® 7 is a probability measure. Moreover, ™ ® 7 is stationary for Q:

s ®7TQ(Z7U)) = Zﬂ'® W(li)y)Q((‘Tvy)? (Z7w))

= Y m(@)m(y) Pz, 2) P(y, w)
T,y
=7n(2)m(w) = T@7(2, w).

Finally, we construct the coupling. The Markov chain {(X,,Y,)} starts from (Xo, Yy) ~ d; ® 7 and
moves by Q). Define
7 =min{n = 0: (X,,Yn) = (v0,%)}-

Run the chain by @ until time 7. After 7, we keep them together. Note that X,, ~ P"(x,-) and Y, ~ 7.

|P"(z,) — 7|lpy < P[X, # Y,] <P[r>n] = ZT['(y)Qx’y[T > n.
y

Since @ is recurrent, we have Qg ,[7 > n] — 0 as n — co. This implies the conclusion. O
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7.2 Simple random walk on Z¢

We have shown in Example 7.1.6 that the simple random walk on Z is null recurrent. In this section, we
will show that the simple random walk on Z? is recurrent; and the simple random walk on Z3 is transient,
which implies that simple random walk on Z? is transient for all d > 3.

Theorem 7.2.1. o Simple random walk on Z? is recurrent.
o Simple random walk on Z3 is transient.

Suppose {S,,} is a simple random walk in Z¢ starting from the origin. Define the sequence of stopping
times that the walk returns to the origin:

70 =0, Tkr1 =min{n >r7,:95,=0}, k=0.
Lemma 7.2.2. The following three assertions are equivalent:
e the walk is recurrent;
o Pl <] =1;
e > P[Sn=0]=o00.

Proof. Let us calculate the expectation of the number of visits to the origin. On the one hand,

E[#visits to 0] = > P[r, < o] = > P[r < o0]".

On the other hand,
E[#visits to 0] = > P[Sp, = 0].

m

These give the conclusion. O

From the above lemma, to obtain recurrence, it suffices to determine the asymptotic of the probability
pa(m) := P[S;, = 0] as m — o0. Since pg(m) = 0 for odd m, we only need to consider pg(m) with even
m.

Lemma 7.2.3. When d =1, we have
1

p1(2n) ~ \/ﬁ

p1(2n) = <2n> 9=2n,

n

Proof. 1t is clear that

The conclusion follows by combining with Stirling’s formula:

n! ~ <E>n 2mn.

e

Lemma 7.2.4. When d = 2, we have

1
2n) = p1(2n)? ~ —.
p2(2n) = p1(2n)” ~ —
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Proof. In order for Sa,, = 0, there exists m € {0, 1,...,n} so that the walk has m up steps, m down steps,
n — m to the left, and n — m to the right. Thus

Lemma 7.2.5. When d = 3, we have
p3(2n) < O(n=%?).

Proof. In order for Sa, = 0, there exists j,k € {0,1,...,n} so that the walk has j up steps, j down steps,
k to the left, k to the right, n — j — k to the forward, and n — j — k to the back. Thus

o 2n)!
ps(2n) =672 z}; (j!k!(n(—j?—k)!)Q

)

() () = S ()

J:k

Note that

Z 3_”n! _1
S ik(n =5 — k)! -

)

thus

(2n) < p1(2n) max 3!
& P TR == R

The max will be obtained when j, k are integers close to n/3. By Stirling’s formula, we have

37 "n! 1
M = — & o)

Combining with the asymptotic of pj(2n), we obtain the conclusion. ]

Proof of Theorem 7.2.1. Combining Lemmas 7.2.2 and 7.2.4, we obtain the recurrence when d = 2. Com-
bining Lemmas 7.2.2 and 7.2.5, we obtain the transience when d = 3. 0

7.3 Exercises

Exercise 7.3.1 (YCMC2016). For a random walk process on the complete infinite binary tree starting
from root (i.e. level 0), we assume that the object moves to the neighbor nodes with equal probability. Let
X, denote the level number at time n. Prove that E[X,,] <n/3 +4/3.

Exercise 7.3.2 (YCMC2016). A random walker moves on the lattice Z* according to the following rule:
in the first step it moves to one of its neighbors with probability 1/4, and then in step n > 1 it moves to
one of the neighbors that it didn’t visit in the step n — 1 with equal probability. Let T be the time when
the random walker steps on a site that it already visited. Show that the expectation of T is less than 35.

Exercise 7.3.3 (YCMC2017). Let {S,} and {S!} be two independent simple random walks on Z* such
that Xo = X, = 0. Define T = {(s,t) : Xs = X[}. Prove that |Z| < w0 a.s.
Hint: You can first prove that

P[X, =0] = O(n"%?), n— 0.
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Exercise 7.3.4 (YCMC2017). Suppose a number Xo € {1,—1} at the root of a binary tree is propagated
away from the root as follows. The root is the node at level 0. After obtaining the 2" numbers at the nodes
at level h, each number at level h + 1 is obtained from the number adjacent to it (at level h) by flipping
its sign with probability p € (0,1/2) independently. Let X, be the average of the 2" values received at the
nodes at level h. Define the signal-to-noise ratio at level h to be

(E[Xn | Xo = 1] — E[X} | Xo = —1])2.

By = var(Xp, | Xo = 1)

Find the threshold number p. such that Ry converges to 0 if p € (pe, 1/2) and diverges if p € (0,p.), as
h — 0.
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