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1 Probability Space and Random Variable

1.1 Probability space

A probability space pΩ,F ,Pq contains three elements:

• The space Ω: this is a non-empty set. It can be viewed as the set of all possible outcomes.

• The σ-field F : this can be viewed as a collection of all the events.

• The probability measure P: this is a function from F to r0, 1s. It gives a probability to each event.

Definition 1.1.1. Suppose F is a non-empty collection of subsets of Ω.

• It is a field, if it is closed under complementation and closed under union:

A P F ùñ Ac P F .

A1, A2 P F ùñ A1 YA2 P F .

• It is a monotone class if

Aj P F , Aj Ă Aj`1, 1 ď j ă 8 ùñ YjAj P F .

Aj P F , Aj Ą Aj`1, 1 ď j ă 8 ùñ XjAj P F .

• It is a σ-field if it is closed under complementation and closed under countable union:

A P F ùñ Ac P F .

Aj P F , 1 ď j ă 8 ùñ YjAj P F .

Lemma 1.1.2. A field is a σ-field if and only if it is a monotone class.

Note that the collection tH,Ωu is a σ-field, and we call it the trivial σ-field; the collection of all subsets
of Ω is a σ-field, and we call it the total σ-field. Suppose J is an index-set (not necessarily countable),
and Fj is a σ-field for each j P J , then XjPJFj is also a σ-field.

Definition 1.1.3. Given any collection C of sets, the σ-field (resp. monotone class) generated by C is
the intersection of all σ-fields (resp. monotone classes) containing C.

Lemma 1.1.4. Suppose A is a field. Denote by F the σ-field generated by A and by G the monotone
class generated by A. Then F “ G.

Proof. Since F is a monotone class, we have G Ă F . To prove F Ă G, it is sufficient to show that G is a
σ-field. By Lemma 1.1.2, it is sufficient to show G is a field, i.e. to show G is closed under intersection
and is closed under complementation.

We first show that G is closed under intersection. Define

G1 “ tE P G : E X F P G,@F P Au, G2 “ tE P G : E X F P G,@F P Gu.

For G1, we see A Ă G1 since A is a field, and G1 is a monotone class. By the minimality of G, we find
G Ă G1 and hence G “ G1. For G2, we see A Ă G2 since G “ G1, and G2 is a monotone class. Again we
find G “ G2. Hence G is closed under intersection.

Next, we show that G is closed under complementation. Define

G3 “ tE P G : Ec P Gu.

Since A Ă G3 and G3 is a monotone class, we find G “ G3 as desired.
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Example 1.1.5. The union of a countable collection of σ-fields tFju such that Fj Ă Fj`1 need not be
a σ-fields. For example, Ω “ Zą0 and Fj is the σ-field generated by tt1u, t2u, . . . , tjuu. For each j, the
σ-field Fj is finite; but the σ-field generated by YjFj is nolonger countable.

In contrast, the intersection of σ-fields is always a σ-field. Suppose J is an index set and Fj is a
σ-field for each j P J . The intersection XjPJFj is a σ-field. But the union need not be a σ-field. We
denote by _jPJFj the σ-field generated by YjPJFj.

Definition 1.1.6. Suppose F is a σ-field on Ω. A probability measure P is a function from F to r0, 1s
satisfying the following axioms:

• PrEs ě 0 for all E P F ;

• PrΩs “ 1.

• If tEjuj is a countable collection of pairwise disjoint sets in F , then PrYjEjs “
ř

j PrEjs.

These axioms imply the following consequences:

• PrEcs “ 1´ PrEs.

• PrE Y F s ` PrE X F s “ PrEs ` PrF s.

• Continuity: if En Ò E or En Ó E then PrEns Ñ PrEs.

• PrYjEjs ď
ř

j PrEjs.

Example 1.1.7. Suppose Ω is a countable set: Ω “ tωj , j P Ju where J is countable. Let F be the total
σ-field. Suppose tpj , j P Ju is a sequence of numbers satisfying

pj ě 0,@j P J ;
ÿ

j

pj “ 1.

Define P : F Ñ r0, 1s as follows:

PrEs :“
ÿ

j:ωjPE

pj , @E P F .

Then pΩ,F ,Pq is a probability space.

Example 1.1.8. Let U “ p0, 1s and let C be the collection of intervals pa, bs where 0 ď a ă b ď 1. Let B be
the σ-field generated by C and let Leb be the Lebesgue measure on p0, 1s. Then pU ,B,Lebq is a probability
measure.

Theorem 1.1.9 (Carathéodory’s Extension Theorem). Suppose F0 is a field and F is the σ-field generated
by F0. Suppose µ is a probability measure on F0. Then there exists a unique probability measure on F
that coincides with µ on F0.

Proof. Proof of existence: reading. Proof of uniqueness: Suppose µ and ν are probability measures on F
such that µ “ ν on F0. Then µ “ ν on F .

Define
C “ tE P F : µrEs “ νrEsu.

We see F0 Ă C by the hypothesis, and we find C is a monotone class. Lemma 1.1.4 gives that F Ă C
which completes the proof.
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Let us discuss the probability measures on R “ p´8,8q. Let C be the collection of intervals of the
form pa, bs with a ă b. The field B0 generated by C consists of finite union of disjoint sets of the form
pa, bs, p´8, as or pb,8q. Denote by B the σ-field generated by C. It coincides with the Borel field on R.
However, the Borel-Lebesgue measure is not a probability measure on R.

The question of probability measures on R is closely related to distribution functions. A function
F : R Ñ r0, 1s is a distribution function if it is increasing and right-continuous with F p´8q “ 0 and
F p`8q “ 1.

Proposition 1.1.10. Each probability measure µ on R uniquely determines a distribution function F
through:

µpp´8, xsq “ F pxq, @x P R. (1.1.1)

Conversely, given a distribution function F , there exists a unique probability measure µ on R satisfy-
ing (1.1.1).

It is clear that the function F defined by a probability measure µ via (1.1.1) is a distribution function.
Moreover, we have µppa, bsq “ F pbq´F paq for a ă b; and µptxuq “ F pxq´F px´q for x P R. The converse
direction is a particular case of the extension theorem.

Corollary 1.1.11. If two probability measures on R agree on all intervals of the form pa, bs with a ă b,
then they agree on B.

Definition 1.1.12. The probability space pΩ,F ,Pq is complete if any subset of a set in F with PrF s “ 0
also belongs to F .

We call a set F P F a null set if PrF s “ 0. We say a property holds almost surely if it holds except on
a null set. Any probability space can be completed by the following theorem. What is the advantage of
completion? Suppose a property holds almost surely, i.e. it holds outside a certain set N with PrN s “ 0.
Then the set on which it fails to hold is a subset of N , not necessarily in F . However, we sometimes need
the measurability of the exact exceptional set to proceed.

Theorem 1.1.13. Given any probability space pΩ,F ,Pq, there exists a complete space pΩ,F ,Pq such that
F Ă F and P “ P on F .

Proof. Denote by N the collection of sets that are subsets of null sets, and define

F “ tE Ă Ω : E∆F P N , for some F P Fu.

We can check that F Ă F and F is a σ-field. Define P on F as follows:

PrEs “ PrF s,

where F P F is any set such that E∆F P N . This is well-defined, because

F1∆F2 “ pE∆F1q∆pE∆F2q

which implies F1∆F2 P N and PrF1s “ PrF2s. In order to check pΩ,F ,Pq is a completion of pΩ,F ,Pq, it
remains to check:

• P “ P on F : this is clear.

• P is a probability measure on F : exercise.

• P is complete: in fact, we can show that if PrEs “ 0 for E P F , then E P N . Hence any subset of
E belongs to N Ă F .

Hereafter, we always assume the probability space is complete.
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1.2 Random variable

Suppose pΩ,F ,Pq is a probability space. Denote by R “ p´8,8q and by B the Borel-field on R.

Definition 1.2.1. A real-valued random variable is a function X : Ω Ñ R such that

X´1pBq P F , @B P B.

In other words, a random variable is just a measurable function from pΩ,Fq to pR,Bq.

This definition of random variable is the one we mostly use. But for logical reasons, we sometimes
need its generalization, see [Chu01, Section 3.1].

Note that, if X is a random variable and f is a Borel measurable function on pR,Bq, then fpXq is also
a random variable. The indicator function 1A : Ω Ñ t0, 1u is a random variable if and only if A P F .

Lemma 1.2.2. X is a random variable if and only if

X´1pp´8, xsq P F , @x P R.

Proof. Only need to show the “only if” part. Define

C “ tB P B : X´1pBq P Fu.

We can check C is a σ-field. By the hypothesis, C contains tp´8, xs : x P Ru which generates B. This
implies C “ B as desired.

Lemma 1.2.3. If tXj , j ě 1u is a sequence of random variables, then

inf
j
Xj , sup

j
Xj , lim inf

j
Xj , lim sup

j
Xj

are random variables. Note that they are everywhere well-defined, but they are not necessarily finite-valued
with probability one. If they are not finite-valued, then we need to use the generalized definition of random
variables.

Proof. Note that

tinf
j
Xj ě xu “ XjtXj ě xu, tsup

j
Xj ď xu “ XjtXj ď xu, @x P R.

Combining with Lemma 1.2.2, we see that infj Xj , supj Xj are random variables.
Note that

lim inf
j

Xj “ sup
n
p inf
jěn

Xjq, lim sup
j

Xj “ inf
n
psup
jěn

Xjq.

These guarantee that they are random variables.

Definition 1.2.4. Each random variable X induces a probability measure µ on pR,Bq by the following
correspondence:

µrBs “ PrX´1pBqs “ PrX P Bs, @B P B.

The measure µ is called the law (or the distribution) of X, denoted by LpXq; its associated distribution
function is called the distribution function of X, denoted by FX .

Specifically, the distribution function F of X is given by

F pxq “ PrX ď xs, @x P R.

The random variable X determines µ and hence F ; whereas, its converse is obviously false. A family of
random variables having the same distribution is said to be identically distributed.
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Example 1.2.5. Suppose pU ,B,Lebq is the probability measure in Example 1.1.8. The functions Xpωq “
ω and Y pωq “ 1 ´ ω are random variables. They are not identical but they are identically distributed;
their common law is Leb.

Next, we discuss the density of distribution function. To this end, we need to discuss absolute conti-
nuity.

Definition 1.2.6. A function F : I Ă R Ñ R is absolutely continuous if, for every ε ą 0, there exists δ ą 0
such that whenever a finite sequence of pairwise disjoint intervals pxk, ykq of I satisfies

ř

kpyk ´ xkq ă δ,
then

ÿ

k

|F pykq ´ F pxkq| ă ε.

Lemma 1.2.7. The following conditions of F on a compact interval I “ ra, bs are equivalent.

(1) F is absolutely continuous.

(2) F has derivative F 1 almost everywhere, the derivative is Lebesgue integrable, and

F pxq “ F paq `

ż x

a
F 1pyqdy, @x P ra, bs.

(3) There exists a Lebesgue integrable function g on ra, bs such that

F pxq “ F paq `

ż x

a
gpyqdy, @x P ra, bs.

Moreover, we have the following relation: suppose functions are defined on a compact interval, then

tcontinuously differentiableu Ă tLipschitz continuousu Ă tabsolutely continuousu

Ă tdifferentiable almost everywhereu.

Suppose the distribution function F is absolutely continuous, then there exists an integrable function
p such that

F pbq “ F paq `

ż b

a
ppxqdx.

We define the function p as the density function. Note that it is defined up to a zero-measure set. As we
usually consider the integral of p, its value on a zero-measure set does not contribute. Thus there is no
ambiguity.

Definition (Definition 1.2.6 bis). A probability measure µ on pR,Bq is absolutely continuous (with respect
to Lebesgue measure) if, for every measurable set A, LebrAs “ 0 implies µrAs “ 0.

Lemma (Lemma 1.2.7 bis). The following conditions of a probability measure µ are equivalent.

(1) µ is absolutely continuous.

(2) For every ε ą 0, there exists δ ą 0 such that

µrAs ď ε, as long as LebrAs ď δ.

(3) There exists a Lebesgue integrable function p such that

µrAs “

ż

A
ppxqdx, for all Borel sets A.
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Example 1.2.8 (Uniform distribution).

PrX ď xs “

$

’

&

’

%

0, x ď 0,

x, 0 ď x ď 1,

1, x ą 1.

ppxq “

$

’

&

’

%

0, x ď 0,

1, 0 ď x ď 1,

0, x ě 1.

Example 1.2.9 (Exponential distribution with parameter λ ą 0).

PrX ď xs “

#

0, x ď 0,

1´ e´λx, x ě 0.
ppxq “

#

0, x ď 0,

λe´λx, x ě 0.

We denote this law by Exppλq.

Example 1.2.10 (Normal distribution).

PrX ď xs “

ż x

8

ppyqdy, where ppxq “
1
?

2π
expp´

x2

2
q.

We denote this law by N p0, 1q. Suppose X „ N p0, 1q, for m P R, σ ą 0, we see that σX `m has density

ppxq “
1

?
2πσ2

exp

ˆ

´
px´mq2

2σ2

˙

.

We denote this law by N pm,σq.

Example 1.2.11 (Bernoulli distribution with parameter p P p0, 1q).

PrX “ 1s “ p, PrX “ 0s “ 1´ p.

Example 1.2.12 (Poisson distribution with parameter λ ą 0).

PrX “ ks “
λk

k!
e´λ, for k “ 0, 1, 2, . . . .

We denote this law by Poissonpλq.

Example 1.2.13 (Geometric distribution with success probability p P p0, 1q).

PrN “ ks “ pp1´ pqk´1, for k “ 1, 2, . . . .

Next, we will discuss random vector. This is just a vector each of whose components is a random
variable. It is sufficient to consider the case of two dimensions.

Recall that the Borel field B2 on R2 is the σ-field generated by rectangles of the form pa, bs ˆ pc, ds.
It is also generated by product sets of the form B1 ˆ B2 where B1, B2 P B. Let X,Y be two random
variables on pΩ,F ,Pq. The random vector pX,Y q induces a probability measure on B2:

νrAs “ PrpX,Y q P As, @A P B2. (1.2.1)

If X,Y are random variables, and f is a Borel measurable function on pR2,B2q, then fpX,Y q is also a
random variable.
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1.3 Expectation

The concept of “expectation” is the same as integration in the probability space pΩ,F ,Pq which we briefly
review.

A random variable X is discrete if it takes values in a countable set, i.e. there exists a countable set
B Ă R such that PrX P Bs “ 1. In this case, we write B “ tbjuj and denote by Λj “ tω P Ω : Xpωq “ bju
for each j. Suppose X is positive discrete, and define its expectation to be

ErXs “
ÿ

j

bjPrΛjs.

One can check that this is well-defined.
Suppose X is a positive random variable. For m,n P Zą0, define

Λnm “

"

ω :
n

2m
ď X ă

n` 1

2m

*

.

For m P Zą0, define

Xmpωq “
ÿ

n

n

2m
1Λn

m
pωq.

Then Xm is positive discrete and

Xmpωq ď Xm`1pωq, 0 ď Xpωq ´Xmpωq ď
1

2m
.

The expectation ErXms is defined as above and this is a sequence increasing in m. Define

ErXs “ lim
m

ErXms.

This is well-defined and its definition agrees with the previous definition if X is discrete.
For an arbitrary random variable X, put

X “ X` ´X´, where X` “ X _ 0, X´ “ p´Xq _ 0.

Both X` and X´ are positive random variables, their expectations are defined. If both ErX`s and ErX´s
are infinite, we say that the expectation of X does not exist; otherwise, we define

ErXs “ ErX`s ´ ErX´s.

In the case of pU ,B,Lebq, the expectation reduces to the ordinary Lebesgue integral.
Now, we collect some basic properties of the expectation. Suppose X,Y,Xn are random variables and

a, b are constants.

• ErXs is finite if and only if Er|X|s is finite.

• Linearity: EraX ` bY s “ aErXs ` bErY s, provided that the right hand side is meaningful.

• Positivity: If X ě 0 a.s., then ErXs ě 0.

• Monotonicity: If X ď Y a.s., then ErXs ď ErY s.

• Dominated convergence theorem: If limnXn “ X a.s. and |Xn| ď Y a.s. where ErY s ă 8, then X
is integrable and

lim
n

Er|Xn ´X|s “ 0, lim
n

ErXns “ ErXs.
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• Monotone convergence theorem: if Xn ě 0 and Xn Ò X a.s., then

lim
n

ErXns “ ErXs.

• Fatou’s lemma: If Xn ě 0 a.s., then

Erlim inf
n

Xns ď lim inf
n

ErXns.

• If Λn’s are disjoint and YnΛn “ Ω, then ErXs “
ř

n ErX 1Λns.

The following inequality is quite helpful in future.

Lemma 1.3.1. We have

8
ÿ

n“1

Pr|X| ě ns ď Er|X|s ď 1`
8
ÿ

n“1

Pr|X| ě ns.

In particular, Er|X|s ă 8 if and only if the above series converges.

Proof. For n ě 0, define Λn “ tn ď |X| ă n` 1u. We find (check)

Er|X|s “
8
ÿ

n“0

Er|X| 1Λns,

where
nPrΛns ď Er|X| 1Λns ď pn` 1qPrΛns.

Thus
8
ÿ

n“1

nPrΛns ď Er|X|s ď 1`
8
ÿ

n“1

nPrΛns.

It remains to show
8
ÿ

n“1

nPrΛns “
8
ÿ

n“1

Pr|X| ě ns. (1.3.1)

Note that, either side can be infinite.
For large N , we write

N
ÿ

n“1

nPrΛns “
N
ÿ

n“1

npPr|X| ě ns ´ Pr|X| ě n` 1sq

“

N
ÿ

n“1

nPr|X| ě ns ´
N`1
ÿ

n“2

pn´ 1qPr|X| ě nsq

“

N
ÿ

n“1

Pr|X| ě ns ´NPr|X| ě N ` 1s.

Thus
N
ÿ

n“1

nPrΛns ď
N
ÿ

n“1

Pr|X| ě ns ď
N
ÿ

n“1

nPrΛns `NPr|X| ě N ` 1s. (1.3.2)

Note that
NPr|X| ě N ` 1s ď Er|X|1 t|X| ě N ` 1us.

If Er|X|s ă 8, we have Er|X| 1 t|X| ě N ` 1us Ñ 0 (check) and hence NPr|X| ě N ` 1s Ñ 0. Taking
N Ñ8 in (1.3.2), we obtain (1.3.1).

If Er|X|s “ 8, then
řN

1 nPrΛns Ñ 8 and hence
řN

1 Pr|X| ě ns Ñ 8. In this case, we also
obtain (1.3.1).
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Corollary 1.3.2. If X takes only positive integer values, we have

ErXs “
8
ÿ

n“1

PrX ě ns.

There is a basic relation between the abstract integral with respect to P on F on the one hand, and
the Lebesgue integral with respect to Leb on B, induced by each random variable. We first give the
conclusion in one-dimension, and it is easy to generalize to high dimension.

Theorem 1.3.3. Suppose X is a random variable on pΩ,F ,Pq. It induces the probability space pR,B, µq
as in Definition 1.2.4. For any Borel measurable function f , we have

ErfpXqs “
ż

R
fpxqµrdxs,

provided that either side exists.

Proof. If f “ 1B for some B P B, then we have

ErfpXqs “ PrX P Bs,

ż

R
fpxqµrdxs “ µrBs.

They are equal by definition. Then the proof can be generalized to simple f , i.e. linear combination
of indicator functions. For any arbitrary positive Borel function f , we can define a sequence of simple
functions tfmum such that fm Ò f everywhere. Since fm is simple, we have

ErfmpXqs “
ż

R
fmpxqµrdxs.

Let m Ñ 8, by monotone convergence theorem, we obtain the conclusion for f positive. The general
case follows as usual.

Theorem (Theorem 1.3.3 bis). Suppose pX,Y q is a random vector on pΩ,F ,Pq. It induces the probability
space pR2,B2, νq as in (1.2.1). For any Borel measurable function f , we have

ErfpX,Y qs “
ż

R2

fpx, yqνrdx, dys,

provided that either side exists.

Definition 1.3.4. For any p P p0,8q, define

LppΩ,F ,Pq “ tX random variable on pΩ,F ,Pq : Er|X|ps ă 8u.

For X P Lp, we call Er|X|ps the p-th moment of X.

We are usually interested in p ě 1, as Lp is a Banach space when p ě 1: we define the norm on Lp by

}X}p :“ Er|X|ps1{p.

Then one can check that Lp is complete under the norm and hence it is a Banach space.
Note that, for 1 ď p ă q, we have Lq Ă Lp because

Er|X|p 1t|X| ě 1us ď Er|X|q 1t|X| ě 1us ď Er|X|qs.

We collect several well-known inequalities. We suggest the readers to remember the names as well as
the inequalities.

11



• Chebyshev inequality. Suppose X is a random variable and ϕ is a strictly positive and increasing
function on r0,8q. Then for each x ą 0, we have

Pr|X| ě xs ď
Erϕp|X|qs
ϕpxq

.

• Hölder inequality. Suppose X and Y are random variables. For 1 ă p ă 8 and 1{p ` 1{q “ 1,
we have

Er|XY |s ď Er|X|ps1{pEr|Y |qs1{q.

• Minkowski inequality. Suppose X and Y are random variables. For 1 ď p ă 8, we have

Er|X ` Y |ps1{p ď Er|X|ps1{p ` Er|Y |ps1{p,

or equivalently
}X ` Y }p ď }X}p ` }Y }p.

• Jensen’s inequality. If ϕ is a convex function on R, and X and ϕpXq are integrable random
variables, then

ϕpErXsq ď ErϕpXqs.

Example. Let us calculate moments of random variables in Examples 1.2.8 to 1.2.13. If the distribution
function is absolutely continuous, we denote by p its density, then we have

ErfpXqs “
ż

fpxqµrdxs “

ż

fpxqppxqdx.

• Uniform distribution:

ErXns “

ż 1

0
xndx “

1

n` 1
.

• Exponential distribution:

ErXns “

ż 8

0
xnλe´λxdx “ n!λ´n.

• Normal distribution:

ErX2n´1s “ 0, ErX2ns “

ż

x2n 1
?

2π
expp´

x2

2
qdx “ p2n´ 1q!!.

In particular varpXq “ 1.

• Poisson distribution:
ErXpX ´ 1q ¨ ¨ ¨ pX ´ n` 1qs “ λn.

In particular ErXs “ λ and varpXq “ λ.

• Geometric distribution:

ErN s “
1

p
, varpNq “

1´ p

p2
.

The case of p “ 2 is of particular interest, as it is a Hilbert space: we define the inner product on L2

by
xX,Y y “ ErXY s.

12



Suppose X P L2pΩ,F ,Pq, we define its variance and its deviation by

varpXq “ ErpX ´ ErXsq2s, σpXq “
a

varpXq.

Suppose X,Y P L2pΩ,F ,Pq, we define their covariance by

covpX,Y q :“ ErpX ´ ErXsqpY ´ ErY sqs “ ErXY s ´ ErXsErY s.

We say that X and Y are uncorrelated if covpX,Y q “ 0.

Exercise 1.3.5. Suppose tXj , 1 ď j ď nu have finite second moments and they are uncorrelated, then

var

˜

n
ÿ

j“1

Xj

¸

“

n
ÿ

j“1

varpXjq.

1.4 Independence

Definition 1.4.1. The random variables tXj , 1 ď j ď nu are independent if, for any Borel sets tBj , 1 ď
j ď nu, we have

P
“

Xnj“1tXj P Bju
‰

“

n
ź

j“1

PrXj P Bjs.

The random variables tXj , j ě 1u are independent if tXj , 1 ď j ď nu are independent for all n.

In terms of the law µ induced by the random vector pX1, . . . , Xnq on pRn,Bnq, and the laws tµj , 1 ď
j ď nu induced by each Xj on pR,Bq, the independence may be written as

µrB1 ˆ ¨ ¨ ¨ ˆBns “
n
ź

j“1

µjrBjs.

In other words, if tXj , 1 ď j ď nu are independent, then the induced measure µ is the same as the product
measure on the product space.

In terms of the distribution function F px1, . . . , xnq induced by the random vector pX1, . . . , Xnq on
Rn, and the distribution functions tFj , 1 ď j ď nu induced by each Xj on R, the independence may be
written as

F px1, . . . , xnq “
n
ź

j“1

Fjpxjq.

Exercise 1.4.2. If tXj , 1 ď j ď nu are independent random variables, and tfj , 1 ď j ď nu are Borel
measurable functions, then tfjpXjq, 1 ď j ď nu are also independent.

Generally, let 1 ď n1 ă n2 ă ¨ ¨ ¨ ă nk “ n, and f1 be a Borel measurable function of n1 variables, f2

be a Borel measurable function of n2 ´ n1 variables, . . ., fk be a Borel measurable function of nk ´ nk´1

variables. Then

f1pX1, . . . , Xn1q, f2pXn1`1, . . . , Xn2q, . . . , fkpXnk´1`1, . . . , Xnk
q

are also independent.

Proposition 1.4.3. Suppose X and Y are independent random variables and both of them have finite
expectations. Then we have

ErXY s “ ErXsErY s.

We will give two proofs of this theorem. Both of them are instructive.
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First proof. First, assume both X and Y are positive discrete:

X “
ÿ

j

aj 1Aj , Y “
ÿ

j

bj 1Bj ,

where tajuj are distinct and Aj “ tω : Xpωq “ aju, and tbjuj are distinct and Bj “ tω : Y pωq “ bju.
Then we have

XY “
ÿ

j,k

ajbk 1AjXBk
.

Thus

ErXY s “
ÿ

j,k

ajbkPrAj XBks (by def. of expectation)

“
ÿ

j,k

ajbkPrAjsPrBks (by the independence)

“

˜

ÿ

j

ajPrAjs

¸˜

ÿ

k

bkPrBks

¸

“ ErXsErY s.

Next, assume both X and Y are positive. We define the approximations Xm and Ym the same as the
beginning of Section 1.3. Then we have the followings.

• We have ErXms Ò ErXs and ErYms Ò ErY s.

• Since X and Y are independent, we know that Xm “ 2´mt2mXu and Ym “ 2´mt2mY u are indepen-
dent. Both Xm and Ym are positive discrete. Thus ErXmYms “ ErXmsErYms.

• The product XmYm is increasing in m, and 0 ď XY ´ XmYm Ñ 0 as m Ñ 0. By monotone
convergence theorem, we have ErXmYms Ñ ErXY s.

Combining these three observations, we have ErXY s “ ErXsErY s as desired.
Finally, consider random variables X and Y with finite expectation. Write X “ X` ´ X´ and

Y “ Y ` ´ Y ´ and the rest is as usual.

Second proof. Let µX be the law of X, µY be the law of Y , and µ be the law of pX,Y q. Then we have

ErXY s “
ĳ

R2

xyµrdx, dys

“

ż

R

ż

R
xyµXrdxsµY rdys

“

ż

R
xµXrdxs

ż

R
yµY rdys “ ErXsErY s.

This proof is pretty short! This is because we use Fubini’s theorem in the second equal sign.

Corollary 1.4.4. If tXj , 1 ď j ď nu are independent random variables with finite expectations, then

E

«

n
ź

j“1

Xj

ff

“

n
ź

j“1

ErXjs.

Proof. Induction, using Exercise 1.4.2.

Next, we turn to the most exciting question of the section: do independent random variables exist?
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Example 1.4.5. Denote by Un the n-dimensional cube:

Un “ tpx1, . . . , xnq : 0 ď xj ď 1, 1 ď j ď nu.

Denote by Bn the Borel field and Lebn the Lebesgue measure. Then pUn,Bn,Lebnq is a probability space.
Let tfj , 1 ď j ď nu be n Borel measurable functions on U , and set

Xjppx1, . . . , xnqq “ fjpxjq.

Then tXj , 1 ď j ď nu are independent random variables. In particular, if fj ” id for all j, then
tXj , 1 ď j ď nu are independent identically distributed (i.i.d.) random variables, and their common law
is the uniform distribution on r0, 1s.

Example 1.4.6. In the previous example, we construct independent random variables through product
space. We can also construct independent random variables on the space pU ,B,Lebq itself.

For each real number x P p0, 1s, consider its binary expansion:

x “
8
ÿ

n“1

εn
2n
, each εn P t0, 1u.

Such an expansion is unique except when x is of the form m{2n; the set of such x is countable and hence
of zero measure, and we can ignore them. Each εj is a function of x. Define

Xjpxq “ εjpxq.

Then tXj , j ě 1u are independent. For any n, and any sequence pc1, . . . , cnq P t0, 1u
n, we have

P
“

Xnj“1tXj “ cju
‰

“ Lebpx : ε1pxq “ c1, . . . , εnpxq “ cnq “
1

2n
;

PrXj “ cjs “ Lebpx : εjpxq “ cjq “
1

2
,

n
ź

j“1

PrXj “ cjs “
1

2n
.

Theorem 1.4.7. Suppose tµj , j ě 1u is a sequence of probability measures on pR,Bq. There exists a
probability space pΩ,F ,Pq and a sequence of independent random variables tXj , j ě 1u on pΩ,F ,Pq such
that the law of Xj is µj for each j.

Proof. For each n, let pΩn,Fn,Pnq be a probability space in which there exists a random variable with
law µn. Indeed, we can take pΩn,Fn,Pnq “ pR,B, µnq and take the random variable id. Define the infinite
product space

Ω “
8
ą

n“1

Ωn.

A point in Ω will be written as ω “ pω1, ω2, . . .q where ωn P Ωn. A set E in Ω is a finite-product set if it
is of the form

E “
8
ą

n“1

Fn,

where Fn P Fn and all but finitely many Fn’s are equal to the corresponding Ωn’s. Let F0 be the collection
of the subsets which are the union of a finite number of disjoint finite-product sets, then F0 is a field. Let
F be the σ-field generated by F0. This is called the product σ-field and is denoted by

F “
8
ą

n“1

Fn.
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Define P on F0 as follows. First, for each finite-product set E “
Ś

n Fn, define

PrEs “
8
ź

n“1

PnrFns.

This is well-defined as all but finitely PnrFns’s equal one. Next, for E P F0 and E “ Ynk“1Ek where Ek’s
are disjoint finite-product sets, set

PrEs “
n
ÿ

k“1

PrEks.

This is well-defined: one can check that if E has two representations of the form above, then the two
definitions of PrEs agree.

For P defined on F0 as above, it is positive, PrΩs “ 1, and it has finite additivity. We will use the
extension theorem to extend P to a probability measure on F . To this end, we only need to check the
countable additivity: reading. Now, we have defined the probability measure P on F . This is called the
product measure, and it is denoted by

P “
8
ą

n“1

Pn.

So far, we have constructed the probability space pΩ,F ,Pq. Define, for each n,

Xnpωq “ ωn.

Then Xn is a random variable on pΩ,F ,Pq and its law is given by µn: for any B P B, we need to calculate
PrXn P Bs. Note that

tXn P Bu “
8
ą

j“1

Fj ,

where Fn “ B and Fj “ Ωj for j ‰ n. This is a finite-product set, thus

PrXn P Bs “
n
ź

j“1

PjrFjs “ PnrBs “ µnrBs.

It remains to show that tXj , j ě 1u are independent: for all n, tXj , 1 ď j ď nu are independent, because,
for any Borel sets tBj , 1 ď j ď nu, the set

Xnj“1tXj P Bju

is a finite-product set and, by definition,

P
“

Xnj“1tXj P Bju
‰

“

n
ź

j“1

PjrXj P Bjs.

1.5 Independence continued

Collections of sets tAj , 1 ď j ď nu, where Aj Ă F , are independent if, for any subset I Ă t1, . . . , nu and
for any Ai P Ai, we have

P rXiPIAis “
ź

iPI

PrAis.
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We may assume Ω P Aj for each j, then the above definition is equivalent to the following: tAj , 1 ď j ď nu
are independent if

P
“

Xnj“1Aj
‰

“

n
ź

j“1

PrAjs, for anyAj P Aj , 1 ď j ď n.

Let us explain how the above definition relates to independent random variables. Suppose X is a
random variable on pΩ,F ,Pq, denote by

σpXq “ tX´1pBq : B P Bu.

One can check that this is a σ-field, and X is measurable with respect to σpXq. Suppose X and Y are two
random variables, then X,Y are independent if and only if σpXq, σpY q are independent. In this sense,
the above definition is a generalization of Definition 1.4.1.

Definition 1.5.1. A collection of sets A is a π-system if it is closed under intersection.

Note that a field is a π-system, but a π-system may not be a field.

Theorem 1.5.2. Suppose tAj , 1 ď j ď nu are independent and each Aj is a π-system. Denote by σpAjq
the σ-field generated by Aj for each j. Then tσpAjq, 1 ď j ď nu are independent.

Proof. We may assume Ω P Aj for each j, because Aj YtΩu is still a π-system and tAj YtΩu, 1 ď j ď nu
are still independent. We will prove that tσpA1q,A2, . . . ,Anu are independent. If this holds, we can
repeat the same argument to show tσpA1q, σpA2q,A3 . . . ,Anu are independent. After n iterations, we
obtain the conclusion.

Let Aj P Aj for j “ 2, . . . , n and set F “ A2 X ¨ ¨ ¨ XAn. Define

C “ tA P F : PrAX F s “ PrAsPrF su.

From the hypothesis, we know A1 Ă C. It suffices to show σpA1q Ă C.

• A P C ùñ Ac P C: since A P C, we have PrAX F s “ PrAsPrF s, hence

PrAc X F s “ PrF s ´ PrAX F s “ PrAcsPrF s.

• B1, . . . , Bk P A1 ùñ XjB̂j P C for all B̂j P tBj , B
c
ju: we will show the case of k “ 2, and the general

case can be proved similarly. Since A1 is a π-system, we know B1 XB2 P A1, thus

PrB1 XB
c
2 X F s “ PrB1 X F s ´ PrB1 XB2 X F s

“ PrB1sPrF s ´ PrB1 XB2sPrF s

“ PrB1 XB
c
2sPrF s.

PrBc
1 XB

c
2 X F s “ PrF s ´ PrB1 X F s ´ PrB2 X F s ` PrB1 XB2 X F s

“ PrF s ´ PrB1sPrF s ´ PrB2sPrF s ` PrB1 XB2sPrF s

“ PrBc
1 XB

c
2sPrF s.

Note that we are NOT claiming that C is a field.

• C is a monotone class: if Bj P C and Bj Ă Bj`1, set B “ YjBj . By the continuity of the probability,
we have

PrB X F s “ lim
j

PrBj X F s “ lim
j

PrBjsPrF s “ PrBsPrF s.

Denote by σ0pA1q the field generated by A1. The first two items guarantee that σ0pA1q Ă C. Combining
with Lemma 1.1.4, we find σpA1q Ă C.
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Example 1.5.3 (Wald’s equation). Let tXnu be i.i.d. with finite mean and Sn “
řn
i“1Xi. For k ě 1, let

Fk “ σpXj , 1 ď j ď kq.

Suppose N is a random variable taking positive integer values such that

tN ď ku P Fk, @k,

and ErN s ă 8. Then we have
ErSN s “ ErX1sErN s.

In Example 1.5.3, suppose B Ă R is a measurable set, and define N “ mintn : Xn P Bu, then we have

tN ď ku “ Ykj“1tXj P Bu P Fk, @k.

Proof. We have

ErSN s “
8
ÿ

k“1

ErSk 1tN“kus “
8
ÿ

k“1

k
ÿ

j“1

ErXj 1tN“kus

“

8
ÿ

j“1

ÿ

kěj

ErXj 1tN“kus “
8
ÿ

j“1

ErXj 1tNějus.

(Attention: check that the first equal sign holds.) Note that tN ě ju “ tN ď j ´ 1uc P Fj´1, thus
tN ě ju is independent of Xj . Therefore,

ErSN s “
8
ÿ

j“1

ErXj 1tNějus “
8
ÿ

j“1

ErXjsPrN ě js

“

8
ÿ

j“1

ErX1sPrN ě js “ ErX1sErN s.

Example 1.5.4 (Kolmogorov’s 0-1 Law). Let tXnu be a sequence of independent random variables. Let
Gn “ σpXk, k ě nq and G8 “ Xně1Gn. Then G8 is trivial, i.e. for any A P G8, we have

PrAs “ 0 or 1.

In Example 1.5.4, define Sn “
řn
j“1Xj . It is clear that the following events are in G8:

lim
n
Sn exists, lim

n

Sn
n

exists, lim sup
n

Sn
n
ą 0.

Whereas, the following event is not in G8:

lim sup
n

Sn ą 0.

Proof. On the one hand, we have A P Gn`1 for any n. Thus A is independent of σpX1, . . . , Xnq for any n.
Therefore A is independent of σpXn, n ě 1q (Exercise: why?). On the other hand, A is measurable with
respect to σpXn, n ě 1q. Therefore A is independent of itself. This implies PrAs “ PrA X As “ PrAs2,
thus PrAs P t0, 1u.
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If you have learned “probability theory” before, you may have encountered the following definition of
“independence”: Sets tAj , 1 ď j ď nu Ă F are independent if, for any subset I Ă t1, . . . , nu, we have

PrXiPIAis “
ź

iPI

PrAis.

This definition is a particular case in the above definition when Aj “ tAju. We end this section with an
instructive example.

Example 1.5.5. Suppose X1, X2, X3 are i.i.d. Bernoulli random variable with parameter 1{2. Define

A1 “ tX2 “ X3u, A2 “ tX1 “ X3u, A3 “ tX1 “ X2u.

Then the events A1, A2, A3 are pairwise independent, but they are not independent: for any i ‰ j

PrAi XAjs “ PrX1 “ X2 “ X3s “ 1{4 “ PrAisPrAjs;

however,
PrA1 XA2 XA3s “ PrX1 “ X2 “ X3s “ 1{4, PrA1sPrA2sPrA3s “ 1{8.

1.6 Sums of independent random variables

For a random variable X, we denote its law by µX and its distribution function by FX . In this section, we
study the sum of two independent random variables. To this end, we need the notation of convolution.

Definition 1.6.1. The convolution of two distribution functions F1 and F2 is defined to be

F pxq “

ż

F1px´ yqF2rdys, @x.

This is still a distribution function, and we denote it by F “ F1 ˚ F2. The corresponding measure is
denoted by µ “ µ1 ˚ µ2.

Lemma 1.6.2. If X and Y are independent, then we have

PrX ` Y ď zs “

ĳ

1tx`yďzu µXrdxsµY rdys “ FX ˚ FY pzq.

In particular, if X has density function, then X ` Y has density function which is given by

pX`Y pzq “

ż

pXpz ´ yqµY rdys.

In this lemma, if both X and Y have density functions, we X ` Y has density function

pX`Y pzq “ pX ˚ pY pzq :“

ż

pXpz ´ yqpY pyqdy.

Example (Example 1.2.9 continued). Suppose tXj , 1 ď j ď nu are i.i.d. whose common law is exponential
with parameter λ ą 0, then Sn :“

řn
j“1Xj has the law of gamma distribution Γpn, λq whose density is

given by

ppxq “
λn

Γpnq
xn´1e´λx 1txě0u .
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Proof. For y ě 0, let us calculate

PrSn ď ys “

ż

¨ ¨ ¨

ż

xiě0,
řn

1 xiďy

n
ź

i“1

λe´λxidxi

“

ż

¨ ¨ ¨

ż

xiě0,
řn

1 xiďy

λne´λ
řn

1 xidx1 ¨ ¨ ¨ dxn

“

ż

¨ ¨ ¨

ż

xiě0,
řn´1

1 xiďxďy

λne´λxdx1 ¨ ¨ ¨ dxn´1dx (set xi “ xi for 1 ď i ď n´ 1 and x “
řn

1 xi)

“

ż y

0
λne´λx

xn´1

pn´ 1q!
dx.

This gives the desired density function of Sn.

Exercise (Example 1.2.10 continued). Suppose tXj , 1 ď j ď nu are independent and Xj „ N pmj , σ
2
j q.

Then
n
ÿ

j“1

Xj „ N

˜

n
ÿ

j“1

mj ,
n
ÿ

j“1

σ2
j

¸

.

Theorem (Cramér’s theorem). Suppose tXj , 1 ď j ď nu are independent real-valued random variables
such that

řn
j“1Xj has a normal distribution, then all of tXj , 1 ď j ď nu must have normal distributions

as well.

Proof. Bonus.

Example (Example 1.2.12 continued). Suppose tXj , 1 ď j ď nu are independent and Xj „ Poissonpλjq.

n
ÿ

j“1

Xj „ Poisson

˜

n
ÿ

j“1

λj

¸

.

Proof. It suffices to show the conclusion for n “ 2. Suppose X „ Poissonpλq, Y „ Poissonpµq and X,Y
are independent. Let us calculate, for n ě 0,

PrX ` Y “ ns “
n
ÿ

k“0

PrX “ k, Y “ n´ ks

“

n
ÿ

k“0

PrX “ ksPrY “ n´ ks

“

n
ÿ

k“0

λk

k!
e´λ

µn´k

pn´ kq!
e´µ

“
pλ` µqn

n!
e´λ´µ.

Thus X ` Y „ Poissonpλ` µq.

Theorem (Raikov’s theorem). Suppose tXj , 1 ď j ď nu are independent non-negative random variables
such that

řn
j“1Xj has a Poisson distribution, then all of tXj , 1 ď j ď nu must have Poisson distribution

as well.

Proof. Bonus.
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1.7 Exercises

Exercise 1.7.1. Suppose X is a random variable. The median of X is any real number m that satisfies

PrX ď ms ě 1{2, and PrX ě ms ě 1{2.

(1) Show that X has at least one median.

(2) Suppose X has finite mean. Show that m is a median of X if and only if m minimizes

tEr|X ´ c|s : c P Ru.

(3) Suppose X is square integrable. Show that ErXs minimizes

tErpX ´ cq2s : c P Ru.

In particular, ErpX ´ cq2s ě varpXq for all c P R.

(4) Suppose X is square integrable, and m is a median. Show that

pm´ ErXsq2 ď varpXq.

Exercise 1.7.2. Suppose tXnu are i.i.d. with finite second moment. Define Sn “
řn
j“1Xj. Suppose τ

is a positive integer-valued random variable that is independent of tXnu, and suppose it has finite second
moment.

(1) Show that
ErSτ s “ ErX1sErτ s.

(2) Show that
varpSτ q “ Erτ s varpX1q ` varpτqErX1s

2.

Exercise 1.7.3. Suppose Er|X|s “ a ą 0 and ErX2s “ 1. Show that, for any λ P p0, 1q,

Pr|X| ě λas ě p1´ λq2a2.

Exercise 1.7.4. Suppose that X,Y, Z are independent and that Z has the same law as X ` Y . Can we
say that Z ´X has the same law as Y ?

Exercise 1.7.5. Suppose that Z is a random variable such that Z is independent of itself. Show that Z
is almost surely a constant.

Exercise 1.7.6 (YCMC2012). Take two points ξ and η independently with respect to the uniform distri-
bution from the unit interval r0, 1s. Then in general these two points divide the interval r0, 1s into three
sub-intervals with lengths X,Y and Z.

(1) What is the probability that X,Y, Z constitute the lengths of three sides of a triangle in the plane?

(2) What are the distributions of X, Y and Z?

Exercise 1.7.7 (YCMC2012). Suppose that tξk : k “ 1, 2, ..., nu are i.i.d. with uniform distribution on
the interval r0, 1s. Let Y “ maxtξk : 1 ď k ď nu.

(1) What is the joint distribution of pξ1, Y q

(2) Evaluate the probability Prξ1 “ Y s.
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Exercise 1.7.8 (YCMC2012). Suppose S “ X1`X2`¨ ¨ ¨`Xn is a sum of independent random variables
with Xi distributed as Bernoulli with parameter pi: PrXi “ 1s “ pi and PrXi “ 0s “ 1 ´ pi. Show that
PrS is evens “ 1

2 if and only if at least one pi equals 1
2 .

Exercise 1.7.9 (YCMC2012). Let tXiu be i.i.d exponential random variables with rate one. Let N be a
geometric random variable with success probability p P p0, 1q, i.e. PrN “ ks “ p1 ´ pqk´1p, k “ 1, 2, . . .,
and it is independent of tXiu. Find the distribution of

řN
i“1Xi.

Exercise 1.7.10 (YCMC2012). Let X be a random variable with E
“

X2
‰

ă 8, and Y “ |X|. Assume
that X has a Lebesgue density that is symmetric about 0. Show that random variables X and Y are
uncorrelated, but they are not independent.

Exercise 1.7.11 (YCMC2012). Let X and Y be two random variables with |Y | ą 0 a.s.. Let Z “ X{Y .

(1) Assume the distribution of pX,Y q has a density ppx, yq. What is the density function of Z?

(2) Assume X and Y are independent, and X „ N p0, 1q and Y is uniform on p0, 1q. Give the density
function of Z.

Exercise 1.7.12 (YCMC2013). Suppose that 0 ď X ď 1 is a random variable. For what distributions of
X does varpXq have the largest value?

Exercise 1.7.13 (YCMC2013). Suppose that X and Y are i.i.d with normal distribution N p0, 1q. Give
the distribution of

ˆ

X
?
X2 ` Y 2

,
Y

?
X2 ` Y 2

˙

.

Exercise 1.7.14 (YCMC2013). Suppose that X,Y, Z are i.i.d with uniform distribution on r0, 1s. Show
that pXY qZ also has the uniform distribution on r0, 1s.

Exercise 1.7.15 (YCMC2014). Given two independent random variables X and Y such that Y has the
uniform law on r0, 1s and PrX “ 0s “ PrX “ 1{2s “ 1{2. Show that W :“ X ` 1{2Y has the uniform law
on r0, 1s.

Exercise 1.7.16 (YCMC2014). Suppose Z has the exponential law with parameter one. Let rZs and tZu
be the integral and fractional parts of Z, i.e., Z “ rZs` tZu with rZs P Z and tZu P r0, 1q. Show that rZs
and tZu are independent and determine their laws.

Exercise 1.7.17 (YCMC2014). Let X be a real-valued random variable such that for all smooth functions
f : R Ñ R with compact support we have ErXfpXqs “ Erf 1pXqs. Show that X has the standard normal
distribution.

Exercise 1.7.18 (YCMC2015). Suppose X and Y are independent integrable random variables and
ErXs “ 0. Show that Er|X ` Y |s ě Er|Y |s.

Exercise 1.7.19 (YCMC2015). Suppose tXi : i P Nu are i.i.d. with exponential law of parameter one.
For x ą 0, define Npxq “ inf tn :

řn
i“1Xi ą xu. Calculate the mean of Npxq.

Exercise 1.7.20 (YCMC2016). Choose 2016 points on the circle x2` y2 “ 1 at random. Interpret them
as cuts that divide the circle into 2016 arcs. Compute the expected length of the arc that contains the
point p1, 0q. How about the variance ?

Exercise 1.7.21 (YCMC2016). Let N ě 2 be an integer, and let X be a random variable taking values
in t0, 1, 2, ...u such that PrX ” kpmodNqs “ 1

N for all k P t0, 1, ..., N ´ 1u. Compute E
“

eip2πmqX{N
‰

for
all integers m ě 1.

Exercise 1.7.22 (YCMC2016). Let b ą a ą 0 be real numbers. Let X be a random variable taking values
in ra, bs, and let Y “ 1

X . Determine the set of all possible values of ErXs ˆ ErY s.
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2 Convergence Concepts

We will study the convergence of a sequence of random variables tXn, n ě 1u (or tXnu for short). When
we say “convergence”, we mean “convergence to a finite limit”. Recall that we assumed the probability
space pΩ,F ,Pq to be complete. In this section, we will introduce the following different concepts of
convergence:

• almost sure convergence,

• convergence in probability,

• convergence in Lp with p P r1,8q,

• convergence in distribution (also called convergence in law, weak convergence);

and we will study the relation between them.

2.1 Convergence: almost sure, in probability, and in Lp

Definition 2.1.1 (Almost sure convergence (a.s.)). The sequence of random variables tXnu converges
a.s. to the random variable X if there exists a null set N such that

lim
n
Xnpωq “ Xpωq, @ω P ΩzN . (2.1.1)

Lemma 2.1.2. The sequence tXnu converges a.s. to X if and only if, for any ε ą 0, we have

lim
mÑ8

Pr|Xn ´X| ď ε, @n ě ms “ 1. (2.1.2)

Proof. From (2.1.1) to (2.1.2). Suppose tXnu converges to X on Ω0 with PrΩ0s “ 1. For ε ą 0, define

Ampεq “ X
8
n“mt|Xn ´X| ď εu.

The sequence of events tAmpεqu is increasing in m, and we find

Ω0 Ă YmAmpεq.

By monotone convergence theorem, we have limm PrAmpεqs “ 1 as desired.

From (2.1.2) to (2.1.1). Define Ampεq in the same way as above. Set

A “ Xkě1 Ymě1 Amp2
´kq.

By the hypothesis, we have limm PrAmp2´kqs “ 1. Since the events tAmp2
´kqu is increasing in m, we

have PrYmAmp2´kqs “ 1. This gives that PrAs “ 1. One can check that tXnu converges to X on A. This
completes the proof.

Definition 2.1.3 (Convergence in probability). The sequence tXnu converges in probability to the random
variable X if, for every ε ą 0, we have

lim
n

Pr|Xn ´X| ą εs “ 0.

As a consequence of Lemma 2.1.2, we see that almost sure convergence implies convergence in proba-
bility. But the converse is false, see Example 2.1.6

Definition 2.1.4 (Convergence in Lp). Assume p ě 1. The sequence tXnu converges in Lp to the random
variable X if Xn P L

p, X P Lp and
lim
n

Er|Xn ´X|
ps “ 0.
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Lemma 2.1.5. Assume p ą 0. If Xn Ñ X in Lp, then Xn Ñ X in probability.

Proof. Assume Xn Ñ X in Lp. For any ε ą 0, we have

Pr|Xn ´X| ą εs ď ε´pEr|Xn ´X|
ps Ñ 0.

Example 2.1.6. Almost sure convergence does not imply convergence in Lp.
In pU ,B,Lebq, define

Xnpωq “

#

2n, if ω P p0, 1{nq,

0, otherwise.

We have Xn Ñ 0 almost surely, but ErXp
ns “ 2np{nÑ8 as nÑ8 for any p ą 0.

Example 2.1.7. Convergence in Lp does not imply almost sure convergence.
In pU ,B,Lebq, let ϕk,j be the indicator function of the interval

ˆ

j ´ 1

k
,
j

k

˙

, k ě 1, 1 ď j ď k.

Order these functions first according to k increasing, and then for each k according to j increasing, into
one sequence ϕkn,jn. Set Xn “ ϕkn,jn. Then we have

ErXp
ns “

1

kn
Ñ 0.

So Xn Ñ 0 in Lp. But tXnu does not converge. For each ω and every k, there exists j such that
ϕkjpωq “ 1. Thus there exist infinitely many n such that Xnpωq “ 1. Similarly, there exist infinitely
many n such that Xnpωq “ 0. Thus tXnpωqu does not converge. In other words, the set on which tXnu

converges is empty.

Example 2.1.8 (L2 weak law). Let tXnu be independent random variables with ErXis “ m and varpXiq ď

C ă 8. Set Sn “
řn
j“1Xj. Then

Sn
n
Ñ m, in L2.

Proof. We observe that

ErpSn{n´mq
2s “ varpSn{nq “

1

n2
varpSnq “

1

n2

n
ÿ

j“1

varpXjq ď
C

n
Ñ 0.

Example 2.1.9 (Polynomial approximation). Let f be a continuous function on r0, 1s. Define the poly-
nomial:

fnpxq “
n
ÿ

j“0

ˆ

n

j

˙

xjp1´ xqn´jfpj{nq.

This is called Bernstein polynomial of degree n associated to f . Then we have

sup
xPr0,1s

|fnpxq ´ fpxq| Ñ 0, nÑ8.
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Proof. Suppose tXj , j ě 1u are i.i.d. Bernoulli variable with parameter p P r0, 1s: PrXj “ 1s “ p,PrXj “

0s “ 1´ p, and set Sn “
řn
j“1Xj . Then we find

ErXjs “ p, varpXjq “ pp1´ pq, ErSns “ np, varpSnq “ npp1´ pq.

Moreover,

PrSn “ js “

ˆ

n

j

˙

pjp1´ pqn´j , thus fnppq “ ErfpSn{nqs.

Note that f is bounded: |f | ď M , and it is uniformly continuous: for any ε ą 0, there exists δ ą 0 such
that |fpxq ´ fpyq| ď ε as long as |x´ y| ď δ. Thus

|fnppq ´ fppq| ď Er|fpSn{nq ´ fppq|s ď ε` 2MPr|Sn{n´ p| ą δs.

Note that

Pr|Sn{n´ p| ą δs ď
varpSnq

n2δ2
“
pp1´ pq

nδ2
ď

1

4nδ2
.

Thus

|fnppq ´ fppq| ď ε`
M

2nδ2
.

This gives the conclusion.

Example 2.1.10 (Coupon collecting). Let tXnu be i.i.d. uniform on t1, 2, . . . , Nu. Let TN be the first
time n that #tX1, . . . , Xnu “ N . Then

TN
N logN

Ñ 1, in L2.

Proof. For 1 ď k ď N , define τk to be the first time n that #tX1, . . . , Xnu “ k. It is clear that τ1 “ 1,
and that Yk :“ τk ´ τk´1 satisfies geometric distribution:

PrYk ě ms “

ˆ

k ´ 1

N

˙m´1

.

Moreover, tYk, 1 ď k ď Nu are independent and TN “
řN
k“1 Yk. Let us calculate:

ErYks “

ˆ

1´
k ´ 1

N

˙´1

, varpYkq ď

ˆ

1´
k ´ 1

N

˙´2

.

ErTN s “ N
N
ÿ

k“1

1

k
„ N logN, varpTN q ď N2

N
ÿ

k“1

1

k2
ď CN2.

Denote by

errN :“ N
N
ÿ

k“1

1

k
´N logN “ opN logNq.

We have

E

«

ˆ

TN
N logN

´ 1

˙2
ff

“
ErpTN ´N logNq2s

pN logNq2

“
varpTN q ` err

2
N

pN logNq2

ď
CN2 ` err2

N

pN logNq2
Ñ 0, N Ñ8.
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2.2 Borel Cantelli lemma

Definition 2.2.1. Let tEnu be a sequence of subsets in F . Define

lim sup
n

En “ X
8
m“1 Yněm En, lim inf

n
En “ Y

8
m“1 Xněm En.

Note that

lim inf
n

En “

ˆ

lim sup
n

Ecn

˙c

,

so that, in a sense, one of the two notions suffices. We will focus on lim supnEn.

Lemma 2.2.2. A point belongs to lim supnEn if and only if it belongs to infinitely many terms of the
sequence tEn, n ě 1u. In more intuitive language: the event lim supnEn occurs if and only if the events
En occur infinitely many often, and we write

tlim sup
n

Enu “ tEn, i.o.u.

Proof. If ω belongs to infinitely many En’s, then it belongs to

Fm :“ YněmEn, for every m.

Thus it belongs to
Xmě1Fm “ lim sup

n
En.

Conversely, if ω P lim supnEn, then it belongs to Fm for every m. If ω only belongs to finite many En’s,
then there exists Npωq such that ω R En for n ě Npωq, then ω R Fm for m ě Npωq, contradiction.

As an illustration of the convenience of the new notions, we may restate Lemma 2.1.2 as follows.

Lemma (Lemma 2.1.2 bis).

Xn Ñ X a.s. if and only if Pr|Xn ´X| ą ε i.o.s “ 0,@ε ą 0.

Theorem 2.2.3 (Borel Cantelli lemma). • For arbitrary sequence tEnu, we have

ÿ

n

PrEns ă 8 ùñ PrEn i.o.s “ 0. (2.2.1)

• If the events tEnu are independent, we have

ÿ

n

PrEns “ 8 ùñ PrEn i.o.s “ 1. (2.2.2)

Proof of Theorem 2.2.3—(2.2.1). Since
ř

n PrEns ă 8, we have

PrFms ď
ÿ

něm

PrEns Ñ 0, as mÑ8.

By monotone convergence theorem, we have

PrEn i.o.s “ lim
m

PrFms “ 0.

Corollary 2.2.4. Convergence in probability implies almost sure convergence along subsequence.
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Proof. Suppose Xn Ñ X in probability. Then we have, for any ε ą 0,

lim
n

Pr|Xn ´X| ą εs “ 0.

For each k, there exists nk such that

P
”

|Xnk
´X| ą 2´k

ı

ď 2´k,

and that nk Ò 8 as k Ò 8. Thus
ÿ

k

P
”

|Xnk
´X| ą 2´k

ı

ă 8.

By Borel Cantelli lemma, we have

P
”

|Xnk
´X| ą 2´k i.o.

ı

“ 0.

In other words, there exits Ω0 with PrΩ0s “ 1 such that the following holds. For each ω P Ω0, there exists
Kpωq such that

|Xnk
´X| ď 2´k, @k ě Kpωq.

Then it is immediate that Xnk
pωq Ñ Xpωq as k Ñ8. Hence Xnk

Ñ X on Ω0.

We will give another application of Borel-Cantelli lemma.

Example 2.2.5. Suppose X1, X2, . . . are i.i.d. with ErXjs “ m and ErX4
j s ă 8. Set Sn “

řn
j“1Xj.

Then
Sn
n
Ñ m, a.s.

Proof. We may assume m “ 0. Let us calculate ErS4
ns:

ErS4
ns “ E

»

–

ÿ

1ďi,j,k,lďn

XiXjXkXl

fi

fl “ nErX4
1 s ` 3pn2 ´ nqErX2

1 s
2 ď Cn2.

Chebyshev’s inequality gives

P

„

|Sn|

n
ą ε



ď
C

n2ε4
.

Summing over n is finite. Thus Borel-Cantelli lemma implies

P

„

|Sn|

n
ą ε i.o.



“ 0.

Thus

P

„

Y8k“1

"

|Sn|

n
ą 2´k i.o.

*

“ 0.

This gives Sn{nÑ 0 almost surely.

Proof of Theorem 2.2.3—(2.2.2). It suffices to show

Prlim inf
n

Ecns “ lim
m

PrXněmE
c
ns “ 0. (2.2.3)
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Since tEcnu are independent, we have, for m ď m1,

PrXm
1

n“mE
c
ns “

m1
ź

n“m

PrEcns “
m1
ź

n“m

p1´ PrEnsq

ď

m1
ź

n“m

expp´PrEnsq “ exp

˜

´

m1
ÿ

n“m

PrEns

¸

.

Let m1 Ñ8, the right hand side goes to zero, combining with monotone convergence theorem, we have

PrXněmE
c
ns “ 0,

which gives (2.2.3) as desired.

Theorem 2.2.6. The implication (2.2.2) remains true if the events tEnu are pairwise independent.

Proof. Denote by In the indicator function of En. Set

pn “ ErIns “ PrEns, Sn “
n
ÿ

j“1

Ij .

Then the hypothesis is equivalent to

ErSns Ñ 8, as nÑ8, (2.2.4)

and the conclusion is equivalent to

P
”

lim
n
Sn “ 8

ı

“ 1. (2.2.5)

By Chebyshev’s inequality, we have, for any A ą 0,

Pr|Sn ´ ErSns| ď AσpSnqs ě 1´
σpSnq

2

A2σpSnq2
“ 1´

1

A2
.

By pairwise independence, we have

σpSnq
2 “

n
ÿ

j“1

varpIjq “
n
ÿ

j“1

ppj ´ p
2
j q ď ErSns.

Since ErSns Ñ 8, we find σpSnq “ opErSnsq. Thus, there exists n0pAq such that,for n ě n0pAq, we have

P

„

Sn ě
1

2
ErSns



ě 1´
1

A2
.

Since tSnu is an increasing sequence, we have

P

„

lim
m
Sm ě

1

2
ErSns



ě 1´
1

A2
.

Let nÑ8, we have

P
”

lim
m
Sm “ 8

ı

ě 1´
1

A2
.

Let AÑ8, we obtain (2.2.5).
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2.3 Weak convergence

Definition 2.3.1. A sequence of measures tµnu converges weakly to a measure µ if

µnppa, bsq Ñ µppa, bsq, for all continuity points a, b of µ. (2.3.1)

We denote by µn ùñ µ.

We have several remarks about this definition.

• The requirement that the convergence only holds for continuity points of µ is essential. For instance,
suppose µn is uniform on p0, 1{nq with total mass one, the sequence converges weakly to δ0. However,
we do not have the convergence at the discontinuous point x “ 0.

• Denote by Fn the distribution function of µn and by F the distribution function of µ. Then (2.3.1)
is equivalent to

Fnpxq Ñ F pxq, for all continuity point x of F .

Denote by CF the set of continuity points of F . Note that RzCF is countable: Since F is increasing
and right-continuous, if F is discontinuous at two distinct points x and y, the two open intervals
pF px´q, F pxqq and pF py´q, F pyqq are disjoint. This implies that the set of discontinuous points are
countable.

• In the definition, we do not require tµnu or µ to be probability measures. Usually, we are interested
in the case when tµnu are probability measures. However, even if tµnu are probability measures,
the limit may nolonger be a probability measure. This is why we give the definition in a general
form.

• The set of probability measures is “compact”, i.e. any sequence of probability measures has a weakly
convergent subsequence, but the limiting measure may nolonger be “probability measure”. To give
the precise statement, we need the following definition: a measure µ on pR,Bq is a subprobability
measure if µpRq ď 1.

Proposition 2.3.2 (Helly’s extraction principle). Given any sequence of subprobability measures, there
is a subsequence that converges weakly to a subprobability measure.

Proof. It is more convenient to work with the distribution functions: for n ě 1, define

Fnpxq “ µnp´8, xs, @x P R.

Since µn is a subprobability measure, the function Fn is increasing and right-continuous with Fnp´8q “ 0
and Fnp`8q “ µnpRq ď 1.

Denote by Q the set of rational numbers and enumerate it as trk, k ě 1u. Consider the sequence
tFnpr1q, n ě 1u. It is bounded, and hence there exists convergent subsequence, denoted by F1npr1q Ñ

Gpr1q. Consider the sequence tF1npr2q, n ě 1u. It is bounded, and contains a convergent subsequence,
denoted by F2npr2q Ñ Gpr2q. Note that tF2nu is a subsequence of tF1nu, thus F2npr1q Ñ Gpr1q. Continue
in this way, we obtain

F11, F12, ¨ ¨ ¨ , F1n, ¨ ¨ ¨ , converging at r1;
F21, F22, ¨ ¨ ¨ , F2n, ¨ ¨ ¨ , converging at r1, r2;
¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ ;
Fn1, Fn2, ¨ ¨ ¨ , Fnn, ¨ ¨ ¨ , converging at r1, r2, . . . , rn;
¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ , ¨ ¨ ¨ .

Choose the diagonal sequence tFnn, n ě 1u. We assert that it converges along all rj ’s. Define

Gprjq “ lim
n
Fnnprjq, @j ě 1.
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It is clear that the function G is defined on Q and it is increasing on Q. Set

F pxq “ inftGprq : x ă r P Qu, @x P R.

The function F has the following properties.

• First, F is increasing because G is increasing on Q.

• Second, F is right-continuous. To see this, one needs to check that, for each x P R, for any ε ą 0,
there exists δ ą 0 such that F pyq ď F pxq ` ε as long as y ď x ` δ. This is true because, by the
definition, one can find q P Q such that x ă q and F pxq ď Gpqq ď F pxq ` ε. Then for any y ď q, we
have F pyq ď Gpqq ď F pxq ` ε.

• Finally, we will show that
lim
n
Fnnpxq “ F pxq, @x P CF . (2.3.2)

For any p ă p1 ă x ă q1 ă q with p, p1, q, q1 P Q, we have

F ppq ď Gpp1q “ lim
n
Fnnpp

1q ď lim inf
n

Fnnpxq

ď lim sup
n

Fnnpxq ď lim
n
Fnnpq

1q “ Gpq1q ď F pqq.

Thus, for any p ă x ă q with p, q P Q, we have

F ppq ď lim inf
n

Fnnpxq ď lim sup
n

Fnnpxq ď F pqq.

Let p Ò x and q Ó x with p, q P Q, since x is a continuity point of F , we obtain (2.3.2).

Now, let µ be the unique measure on R such that µpa, bs “ F pbq ´ F paq for F ’s continuity points a
and b. By (2.3.2), we see that µnn converges weakly to µ as desired.

Proposition 2.3.3. Suppose tµnu is a sequence of subprobability measures. If every weakly convergent
subsequence converges to the same limit µ, then µn ùñ µ.

Proof. We prove by contradiction. If tµnu do not converge to µ, there exists continuity points a, b of µ
such that µnpa, bs Û µpa, bs. Consider the sequence tµnpa, bs, n ě 1u, it is bounded, and hence contains a
convergent subsequence, denoted by µnk

pa, bs Ñ L ‰ µpa, bs. Consider the sequence tµnk
u, it is a sequence

of subprobability measures, by Proposition 2.3.2, there exists a convergent subsequence, denoted by µnkj
.

By the hypothesis, we have µnkj
ùñ µ. In particular, µnkj

pa, bs Ñ µpa, bs. This is a contradiction.

In the above two propositions, we work with subprobability measures, and the reason is that, the
subsequential limit of sequence of probability measures may nolonger be a probability measure. If we
require the subsequential limit to be a probability measure, we need to impose the tightness on the
sequence of probability measures.

Definition 2.3.4. A family of probability measures tµα, α P Au is tight if, for any ε ą 0, there exists a
finite interval I,

inf
αPA

µαpIq ě 1´ ε.

Theorem 2.3.5. Let tµα, α P Au be a family of probability measures. In order that any sequence contains
a subsequence which converges weakly to a probability measure, it is necessary and sufficient that the family
is tight.

This statement can also be phrased as follows: a family of probability measures is relatively compact
if and only if it is tight.
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Proof. Suppose the family is tight. Proposition 2.3.2 asserts that any sequence tµnu contains a convergent
subsequence µnk

ùñ µ. It remains to show that µpRq “ 1. For any ε ą 0, since the family is tight, there
is a finite interval I such that µnk

pIq ě 1 ´ ε. We can find two continuity points a, b of µ such that
I Ă pa, bq. Then we have

µpa, bs “ lim
k
µnk
pa, bs ě lim

k
µnk
pIq ě 1´ ε.

Thus µpRq ě 1´ ε. Let εÑ 0, we have µpRq “ 1.
Conversely, we prove by contradiction. If the family is not tight, then there exists ε0 ą 0 such that

for each interval In “ p´n, nq, there exists µn in the family such that

µnpInq ď 1´ ε0, @n.

Proposition 2.3.2 asserts that tµnu contains a convergent subsequence µnk
ùñ µ. On the one hand,

µ is a probability measure by the hypothesis. Thus there exist continuity points a, b of µ such that
µpa, bs ě 1´ ε0{2. Thus

lim
k
µnk
pa, bs “ µpa, bs ě 1´ ε0{2.

On the other hand, since nk Ñ8, we have Ink
Ñ R, thus pa, bs Ă Ink

for k large enough. Therefore,

lim
k
µnk
pa, bs ď lim inf

k
µnk
pInk

q ď 1´ ε0.

Contradiction.

Next, we will discuss other criterion of the weak convergence. This has to do with classes of continuous
functions on R. We first collection some related notations.

Cc “ tcontinuous functions which vanish outside a compact setu,

C0 “ tcontinuous functions f such that fpxq Ñ 0 as |x| Ñ 8u,

Cb “ tbounded continuous functionsu,

C “ tcontinuous functionsu.

We have Cc Ă C0 Ă Cb Ă C. It is well known that C0 is the closure of Cc with respect to uniform
convergence.

Proposition 2.3.6. Suppose tµnu and µ are probability measures. Then µn ùñ µ if and only if

lim
n

ż

fpxqµnrdxs Ñ

ż

fpxqµrdxs, @f P Cb. (2.3.3)

Proof. Suppose (2.3.3) holds. For any continuity points a, b of µ, for any ε ą 0, let fε “ 1 on pa, bq, and
fε “ 0 on p8, a´ εq Y pb` ε,8q, and fε is linear on ra´ ε, as and rb, b` εs. Then fε P Cb, and

lim sup
n

µnpa, bs ď lim
n

ż

fεpxqµnrdxs “

ż

fεpxqµrdxs ď µpa´ ε, b` εq.

Let εÑ 0, since a, b are continuity points of µ, we have

lim sup
n

µnpa, bs ď µpa, bs.

Similarly, we can show
lim inf

n
µnpa, bs ě µpa, bs.

These give µn ùñ µ.
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Suppose µn ùñ µ. Denote by Cµ the set of continuity points of µ. By the definition, we know
that (2.3.3) holds for f “ 1pa,bs with a, b P Cµ. We first show that (2.3.3) holds for f P Cc by constructing
approximations of f . Since f P Cc, we may assume supppfq Ă ra, bs. Note that f is uniformly continuous,
thus, for any ε ą 0, there exists δ ą 0 such that |fpxq´ fpyq| ď ε as long as |x´ y| ď δ. Since Cµ is dense,
there exists N and taj , 1 ď j ď Nu such that

aj P Cµ, 1 ď j ď N ; aj ď aj`1 ă aj ` δ, 1 ď j ď N ´ 1; a1 ă a, b ă aN .

Define fε as follows:

fε “
N´1
ÿ

j“1

fpajq1paj ,aj`1s
.

Since f is uniformly continuous, we have supxPR |fpxq ´ fεpxq| ď ε. Thus
ˇ

ˇ

ˇ

ˇ

ż

fdµn ´

ż

fdµ

ˇ

ˇ

ˇ

ˇ

ď

ż

|f ´ fε|dµn `

ˇ

ˇ

ˇ

ˇ

ż

fεdµn ´

ż

fεdµ

ˇ

ˇ

ˇ

ˇ

`

ż

|f ´ fε|dµ

ď 2ε`

ˇ

ˇ

ˇ

ˇ

ż

fεdµn ´

ż

fεdµ

ˇ

ˇ

ˇ

ˇ

,

where
ż

fεdµn ´

ż

fεdµ “
N´1
ÿ

j“1

fpajq pµnpaj , aj`1s ´ µpaj , aj`1sq Ñ 0

because aj P Cµ. This implies

lim sup
n

ˇ

ˇ

ˇ

ˇ

ż

fdµn ´

ż

fdµ

ˇ

ˇ

ˇ

ˇ

ď 2ε.

Let εÑ 0, we obtain (2.3.3) for f P Cc.
Generally, consider f P Cb. Suppose supx |fpxq| ď M . For any ε ą 0, there exist a, b P Cµ such that

µppa, bscq ď ε and µnppa, bs
cq ď 2ε for n large enough. Define fε “ f on pa, bq, fε “ 0 on p´8, a ´ εq Y

pb` ε,8q, and fε linear on pa´ ε, aq and pb, b` εq. Then fε P Cc, supx |fpxq ´ fεpxq| ď 2M . We have
ˇ

ˇ

ˇ

ˇ

ż

fdµn ´

ż

fdµ

ˇ

ˇ

ˇ

ˇ

ď

ż

|f ´ fε|dµn `

ˇ

ˇ

ˇ

ˇ

ż

fεdµn ´

ż

fεdµ

ˇ

ˇ

ˇ

ˇ

`

ż

|f ´ fε|dµ

ď 4Mε`

ˇ

ˇ

ˇ

ˇ

ż

fεdµn ´

ż

fεdµ

ˇ

ˇ

ˇ

ˇ

` 2Mε,

where
ˇ

ˇ

ˇ

ˇ

ż

fεdµn ´

ż

fεdµ

ˇ

ˇ

ˇ

ˇ

Ñ 0,

because fε P Cc. This gives

lim sup
n

ˇ

ˇ

ˇ

ˇ

ż

fdµn ´

ż

fdµ

ˇ

ˇ

ˇ

ˇ

ď 6Mε.

Let εÑ 0, we obtain (2.3.3) for f P Cb.

Remark 2.3.7. Assume the same assumption as in Proposition 2.3.6. From the above proof, we see that
µn ùñ µ if and only if (2.3.3) holds for all f P Cc.

A function f on R is lower semicontinuous if

fpxq ď lim inf
yÑx,y‰x

fpyq, @x.

A function f is upper semicontinuous if ´f is lower semicontinuous. There are several equivalent defini-
tions of lower/upper semicontinuous, but the following characterization is the most useful: f is bounded
and lower semicontinuous if and only if there exists a sequence fn P Cb which increases to f everywhere.
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Corollary 2.3.8. Suppose tµnu and µ are probability measures. Then the following statements are equiv-
alent.

µn ùñ µ. (2.3.4)

lim
n

ż

fdµn “

ż

fdµ, @f P Cb. (2.3.5)

lim inf
n

ż

fdµn ě

ż

fdµ, @bounded lower semicontinuous f. (2.3.6)

lim sup
n

ż

fdµn ď

ż

fdµ, @bounded upper semicontinuous f. (2.3.7)

Proof. We already have (2.3.4) and (2.3.5) are equivalent. It is clear that (2.3.6) and (2.3.7) are equivalent.
It remains to show (2.3.5) and (2.3.6) are equivalent.

From (2.3.5) to (2.3.6). Since f is lower semicontinuous, there exists a sequence fk P Cb such that
fk Ò f . We have, for each k,

lim inf
n

ż

fdµn ě lim inf
n

ż

fkdµn “

ż

fkdµ.

By monotone convergence theorem, we have

lim inf
n

ż

fdµn ě lim
k

ż

fkdµ “

ż

fdµ.

From (2.3.6) to (2.3.5). Since (2.3.6) holds, we have (2.3.7) holds. For any f P Cb, it is both lower
semicontinuous and upper semicontinuous, thus (2.3.6) and (2.3.7) imply (2.3.5).

Corollary 2.3.9. Suppose tµnu and µ are probability measures. Then the following statements are equiv-
alent.

µn ùñ µ. (2.3.8)

lim inf
n

µnpOq ě µpOq, @open set O. (2.3.9)

lim sup
n

µnpKq ď µpKq, @closed set K. (2.3.10)

Proof. From (2.3.8) to (2.3.9): The indicator function on open set 1O is bounded lower semicontinuous.
Since (2.3.8) implies (2.3.6), we see (2.3.9) holds.

It is clear that (2.3.9) and (2.3.10) are equivalent. It remains to show (2.3.9) implies (2.3.8): for any
µ’s continuity points a and b, we have

lim inf
n

µnpa, bs ě lim inf
n

µnpa, bq ě µpa, bq, (by (2.3.9))

lim sup
n

µnpa, bs ď lim sup
n

µnra, bs ď µra, bs. (by (2.3.10))

Since a, b are µ’s continuity points, we have µpa, bq “ µra, bs. Thus limn µnpa, bs “ µpa, bs as desired.

2.4 Convergence in distribution

Definition 2.4.1. A sequence of random variables tXnu converges in distribution to a random variable

X if LpXnq ùñ LpXq. We denote by Xn
d
ùñ X, or Xn Ñ X in distribution.

We first discuss the relation between convergence in distribution and convergence in probability.

Lemma 2.4.2. Convergence in probability implies convergence in distribution.
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Proof. Suppose Xn Ñ X in probability. It suffices to show that ErfpXnqs Ñ ErfpXqs for any f P Cc.
Since f P Cc, we know that it is bounded. Suppose |f | ďM . Furthermore, it is uniformly continuous,

i.e. for any ε ą 0, there exists δ ą 0 such that |fpxq ´ fpyq| ď ε as long as |x´ y| ď δ. Thus

Er|fpXnq ´ fpXq|s ď εPr|Xn ´X| ď δs ` 2MPr|Xn ´X| ą δs.

Let nÑ8, we have
lim sup

n
Er|fpXnq ´ fpXq|s ď ε.

Let εÑ 0, we have ErfpXnqs Ñ ErfpXqs as desired.

Lemma 2.4.3. Suppose Xn converges to a constant c in distribution. Then Xn Ñ c in probability.

Proof. The limiting distribution µ is dirac, and its continuity points is Rztcu. In particular, c ´ ε and
c` ε are continuity points. Thus

Pr|Xn ´ c| ą εs “ PrXn P p´8, c´ εqs ` PrXn P pc` ε,8qs Ñ 0, nÑ8.

This gives the convergence in probability.

Convergence of random variables in distribution is merely a convenience of speech, it does not have

the usual properties associated with convergence. Suppose Xn
d
ùñ X, the random variables tXnu and X

may be not in the same probability space! Suppose Xn
d
ùñ X and Yn

d
ùñ Y and suppose they are in

the same probability space, it does not follow by any means that Xn` Yn will converge in distribution to
X ` Y . Nevertheless, the following simple situation still holds.

Lemma 2.4.4. Suppose Xn Ñ X in distribution, and Yn Ñ 0 in distribution, then

(1) Xn ` Yn Ñ X in distribution.

(2) XnYn Ñ 0 in distribution.

Proof. By Lemma 2.4.3, we know that Yn Ñ 0 in probability.
We first show (1). Suppose f P Cc. Then f is uniformly continuous and it is bounded: |f | ďM . For

any ε ą 0, there exists δ ą 0 such that |fpxq ´ fpyq| ď ε as long as |x´ y| ď δ. Thus

Er|fpXn ` Ynq ´ fpXnq|s

ď Er|fpXn ` Ynq ´ fpXnq|1t|Yn| ď δus ` Er|fpXn ` Ynq ´ fpXnq|1t|Yn| ą δus

ď ε` 2MPr|Yn| ą δs.

Let nÑ8 and then εÑ 0, we obtain Er|fpXn`Ynq´fpXnq|s Ñ 0, and hence ErfpXn`Ynqs Ñ ErfpXqs
as desired.

Next, we show (2). We choose M large such that ˘M are both continuity points of X. We have

Pr|XnYn| ą εs ď Pr|Xn| ąM s ` Pr|Yn| ą ε{M s.

Since Xn Ñ X in distribution, we have limn Pr|Xn| ą M s “ Pr|X| ą M s. Since Yn Ñ 0 in probability,
we have limn Pr|Yn| ą ε{M s “ 0. Thus

lim sup
n

Pr|XnYn| ą εs ď Pr|X| ąM s.

Let M Ñ 8 in the way that ˘M are both continuity points of X, we have limn Pr|XnYn| ą εs “ 0 as
desired.
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As a consequence of Lemmas 2.4.3 and 2.4.4, we have the following.

Proposition 2.4.5. If Xn Ñ X, αn Ñ a, βn Ñ b in distribution where a, b are constants, then αnXn `

βn Ñ aX ` b in distribution.

Proof. We refer to the two conclusions in Lemma 2.4.4 as (1) and (2) respectively. Combining Xn Ñ X
and αn ´ a Ñ 0 in distribution and (2), we have pαn ´ aqXn Ñ 0 in distribution. Combining with
aXn Ñ aX in distribution and (1), we have αnXn Ñ aX in distribution. Combining with βn ´ bÑ 0 in
distribution and (1), we have αnXn ` βn ´ bÑ aX in distribution. This implies αnXn ` βn Ñ aX ` b in
distribution. Exercise: give a direct proof of this proposition.

Next, let us discuss the relation between convergence in distribution and almost sure convergence. As
almost sure convergence implies convergence in probability which implies convergence in distribution, the
direction of implication is clear. In a sense, the following theorem gives the reverse direction.

Theorem 2.4.6. Suppose Xn Ñ X in distribution. Then there exists a probability space and random
variables in the space tYnu and Y such that

Yn Ñ Y a.s., LpYnq “ LpXnq, LpY q “ LpXq.

Proof. Take the probability space pU ,B,Lebq. Denote by Fn the distribution function of Xn. Denote by
F the distribution function of X. Define

Ynpxq :“ supty : Fnpyq ă xu; Y pxq :“ supty : F pyq ă xu.

One can check that LpYnq “ LpXnq and LpY q “ LpXq. To this end, we only need to show

tx : Y pxq ď zu “ tx : x ď F pzqu. (2.4.1)

We have the following observations:

• If x ď F pzq, then Y pxq ď z.

• If x ą F pzq, since F is right-continuous, there exists ε ą 0 such that F pz`εq ă x, thus Y pxq ě z`ε.
Therefore, x ą F pzq implies Y pxq ą z.

Combining these two observations, we obtain (2.4.1).
Denote by CF the set of continuity points of F . Define ax “ supty : F pyq ă xu and bx “ infty :

F pyq ą xu, and set U0 “ tx : pax, bxq “ Hu. Since tpax, bxq : x P UzU0u are disjoint open intervals, the set
UzU0 is at most countable. We will show that Yn Ñ Y on U0.

We first show that lim infn Ynpxq ě Y pxq. For y ă Y pxq and y P CF , we have F pyq ă x. Since
y P CF and Fn ùñ F , we have Fnpyq ă x for n large enough, thus y ď Ynpxq for n large enough. Hence
lim infn Ynpxq ě y for any y ă Y pxq and y P CF . This implies that lim infn Ynpxq ě Y pxq.

Next we show that lim supn Ynpxq ď Y pxq for x P U0. For y ą Y pxq and y P CF , we have F pyq ě x.
Since x P U0, we have F pyq ą x. Since y P CF and Fn ùñ F , we have Fnpyq ą x for n large enough, thus
Ynpxq ď y for n large enough. Hence lim supn Ynpxq ď y for any y ą Y pxq and y P CF . This implies that
lim supn Ynpxq ď Y pxq.

2.5 Uniform integrability

In this section, we discuss the relation between convergence in distribution and the convergence in L1. As
convergence in L1 implies the convergence in probability which implies convergence in distribution, the
direction of implication is clear. In reality, we are usually interested in the following question: we have
Xn Ñ X in distribution, and we desire ErXns Ñ ErXs. This is false in general, but under the condition
of “uniform integrability”, it is true.
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Definition 2.5.1. A collection tXi, i P Iu of random variables is Uniform Integrable (UI) if

sup
i

E
“

|Xi| 1t|Xi|ěαsu

‰

Ñ 0, as αÑ8.

Suppose X P L1, since
E
“

|X| 1t|X|ěαu
‰

Ñ 0, αÑ8,

we know that the family containing only X is UI. From the definition, it is clear that the union of two
UI families is still UI. Thus we have the following conclusion.

Lemma 2.5.2. If the family contains finitely many random variables in L1, then it is UI.

Lemma 2.5.3. (1) A UI family is bounded in L1.

(2) If a family of random variables is bounded in Lp for some p ą 1, then it is UI.

Proof. The first item is clear. We only need to show the second. Suppose tXi, i P Iu is bounded in Lp

with p ą 1, i.e. supi Er|Xi|
ps ď C ă 8. We have

Er|Xi|
ps ě E

“

|Xi|
p 1t|Xi|ąαu

‰

ě αp´1E
“

|Xi| 1t|Xi|ąαu

‰

.

Thus

sup
i

Er|Xi| 1t|Xi|ěαus ď
C

αp´1
Ñ 0, αÑ8.

Proposition 2.5.4. Suppose that Xn, X P L1 and Xn Ñ X a.s. Then

Xn Ñ X in L1 if and only if tXn, n ě 1u is UI.

Proof of ñ. We will show that, for any ε ą 0, there exists α such that Er|Xn| 1t|Xn|ąαus ď 2ε.
Since Xn Ñ X in L1, there exists N such that Er|Xn ´X|s ď ε for all n ě N . Moreover, there exists

M such that Er|Xn|s ďM . For β ą 0, we have that

Er|Xn| 1t|Xn|ąβus ď Er|Xn ´X|s ` Er|X|1t|Xn|ąβus ď ε` Er|X| 1t|Xn|ąβus.

We have the following claim: Suppose Z P L1, for any ε ą 0, there exists δ ą 0 such that

Er|Z|1As ď ε, as long as PrAs ď δ. (2.5.1)

Assume (2.5.1) holds, we choose β “M{δ, then Pr|Xn| ą βs ď Er|Xn|s{β ď δ and therefore,

Er|X|1t|Xn|ąβus ď ε.

This implies that, for all n ě N ,
Er|Xn|1t|Xn|ąβus ď 2ε.

Note that the finite family tX1, ..., XNu is UI, and we can find β1 such that, for all 1 ď n ď N ,

Er|Xn| 1t|Xn|ąβ1us ď ε.

Set α “ β _ β1, and it is the desired quantity.
It remains to show (2.5.1). Since Z P L1, there exists C such that Er|Z|1t|Z|ěCus ď ε{2. Then we

have
E r|Z|1As ď E

“

|Z| 1t|Z|ěCu
‰

` CPrAs ď ε{2` Cδ.

We can choose δ “ ε{p2Cq.
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Proof of ð. It suffices to show that, for any ε ą 0, there exists N such that Er|Xn ´X|s ď ε for n ě N .
Since tXn, n ě 1u is UI and X P L1, there exists M such that

E
“

|Xn| 1t|Xn|ąMu

‰

ď ε{4, E
“

|X| 1t|X|ąMu
‰

ď ε{4.

Define the cutoff function:

ϕM pxq “

$

’

&

’

%

M, x ěM ;

x, |x| ďM ;

´M, x ď ´M.

Note that ϕM pXnq Ñ ϕM pXq almost surely, hence by dominated convergence theorem, we have ϕM pXnq Ñ

ϕM pXq in L1. Thus, there exists N such that, for all n ě N ,

Er|ϕM pXnq ´ ϕM pXq|s ď ε{4.

Therefore, for all n ě N , we have

Er|Xn ´X|s ď Er|ϕM pXnq ´ ϕM pXq|s ` E
“

|Xn| 1t|Xn|ąMu

‰

` E
“

|X| 1t|X|ąMu
‰

ď ε,

as desired.

From the proof of Proposition 2.5.4, we have several consequences.

Corollary 2.5.5. (1) Suppose Xn Ñ X in L1, then tXnu is UI.

(2) Suppose tXn, n ě 1u is UI, and that Xn Ñ X in distribution. Then ErXns Ñ ErXs.

To end this chapter, let us summarize the relation between different notions of convergence.

almost sure cvg cvg in probability cvg in distribution

cvg in L1

=⇒ =⇒

⇑
+ UI

coupling

Figure 2.1

2.6 Exercises

Exercise 2.6.1. Let tXnu be independent. Show that supnXn ă 8 almost surely if and only if

ÿ

n

PrXn ą As ă 8, for some A.

Exercise 2.6.2. Suppose tAnu is a sequence of events. Show that

PrAn i.o.s ě lim sup
n

PrAns.

Exercise 2.6.3. Let tXnu be i.i.d. Poisson random variables with ErXns “ 1. Define Sn “
řn
j“1Xj.
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(1) Show that Sn{nÑ 1 in L2.

(2) Show that Sn{nÑ 1 almost surely.

Exercise 2.6.4. Suppose f is continuous. If Xn Ñ X in probability, then fpXnq Ñ fpXq in probability.

Exercise 2.6.5. Suppose Xn Ó X a.s., each Xn is integrable and infn ErXns ą ´8, then Xn Ñ X in L1.

Exercise 2.6.6. Let tXnu be a sequence of independent random variables with mean 0 and variance 1.
Show that for any bounded random variable Y we have limnÑ8 ErXnY s “ 0.

Exercise 2.6.7 (YCMC2012). Let tXnu be a sequence of random variables satisfying

lim
aÑ8

sup
ně1

Pr|Xn| ą as “ 0.

Assume that Yn Ñ 0 in probability. Show that XnYn Ñ 0 in probability.

Exercise 2.6.8 (YCMC2014). Let tXnu be a sequence of uncorrelated random variables of mean zero
such that

8
ÿ

n“1

nE
“

X2
n

‰

ă 8.

Show that Sn “
řn
i“1Xi converges almost surely.

Exercise 2.6.9 (YCMC2015). Suppose tξnu are independent with Bernoulli distribution Prξn “ 1s “ pn
and Prξn “ 0s “ 1´ pn. Assume

ř8
n“1 pnpn`1 ă `8, show that

ř8
n“1 ξnξn`1 converges almost surely.

Exercise 2.6.10 (YCMC2015). Suppose Xn converges in distribution to X. Let tNt, t ě 0u be a set of
positive-integer-valued random variables, which is independent of tXnu and converges in probability to 8
as tÑ8. Show that tXNtu converges in distribution to X as tÑ8.

Exercise 2.6.11 (YCMC2015). Let tXnu be independent and Xn „ N pµn, σ2
nq.

(1) If
ř

X2
n converges in L1, then

ř

X2
n converges in Lp, for every p P r1,8q.

(2) Assume that µn “ 0 for every n. If
ř

σ2
n “ 8, then P

“
ř

X2
n “ 8

‰

“ 1.

Exercise 2.6.12 (YCMC2016). For each n, let Xn be an exponential random variable with parameter
qn. Suppose that tXnu are independent.

(1) What is E
“

e´Xn
‰

?

(2) Suppose
ř 1

qn
ă 8, show that

ř

Xn ă 8 almost surely.

(3) Suppose
ř 1

qn
“ 8, show that

ř

Xn “ 8 almost surely.

Exercise 2.6.13 (YCMC2016). Let tXnu be i.i.d. Prove or disprove: If lim supnÑ8 |Xn|{n ď 1 almost
surely, then

ř8
n“1 P r|Xn| ě ns ă 8.

Exercise 2.6.14 (YCMC2017). Let tXnu be positive random variables. Assume that Xn Ñ 0 in proba-
bility, and that limnÑ8 ErXns “ 2. Show that limnÑ8 Er|Xn ´ 1|s exists and compute its value.
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3 Law of Large Numbers

3.1 Weak law of large numbers

The goal of this section is the following “weak law of large numbers”.

Theorem 3.1.1. Let tXnu be i.i.d. with finite mean m. Define Sn “
řn
j“1Xj, then we have

Sn
n
Ñ m, in probability.

To prove this theorem, we need to truncate Xn’s and then show the conclusion for the truncated
random variables. For the truncation to work, we need to first understand what are the good truncations.

Definition 3.1.2. Two sequences of random variables tXnu and tYnu are equivalent if

ÿ

n

PrXn ‰ Yns ă 8.

Suppose tXnu and tYnu are equivalent, by Borel-Cantelli lemma, there exists Ω0 with PrΩ0s “ 1 such
that, for any ω P Ω0, we have Xnpωq “ Ynpωq for all but finitely many n. Thus it is clear that

•
ř

npXn ´ Ynq converges almost surely.

• 1
n

řn
j“1pXj ´ Yjq Ñ 0 almost surely.

• 1
n

řn
j“1Xj

proba.
ÝÑ X implies 1

n

řn
j“1 Yj

proba.
ÝÑ X.

Proof of Theorem 3.1.1. Denote by µ the common law of Xn’s, and suppose Z „ µ. Since Z P L1, we
have

ÿ

n

Pr|Z| ě ns ă 8.

We introduce random variables Yn’s by truncating Xn’s:

Yn “ Xn 1t|Xn|ďnu .

Then
ÿ

n

PrXn ‰ Yns “
ÿ

n

Pr|Xn| ą ns “
ÿ

n

Pr|Z| ě ns ă 8.

Hence tYnu and tXnu are equivalent. Define Tn “
řn
j“1 Yj . If we prove

Tn ´ ErTns
n

Ñ 0 in probability, (3.1.1)

then the conclusion follows, because ErTns{nÑ m as nÑ8. It remains to show (3.1.1). We see, for any
ε ą 0,

P r|Tn ´ ErTns| ě nεs ď
varpTnq

n2ε2
.

It suffices to show varpTnq “ opn2q. Let us calculate varpTnq.

varpTnq “
n
ÿ

j“1

varpYjq ď
n
ÿ

j“1

ErY 2
j s “

n
ÿ

j“1

E
“

Z2 1t|Z|ďju
‰

.
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The most naive estimate is the following:

varpTnq ď
n
ÿ

j“1

E
“

Z2 1t|Z|ďju
‰

ď

n
ÿ

j“1

j2,

which is Opn3q. The less naive estimate is the following:

varpTnq ď
n
ÿ

j“1

E
“

Z2 1t|Z|ďju
‰

ď

n
ÿ

j“1

jE
“

|Z| 1t|Z|ďju
‰

ď

n
ÿ

j“1

jEr|Z|s,

which is Opn2q. But we desire a control of opn2q. To improve it, let tanu be a sequence of integers such
that 1 ď an ď n, an Ñ8, but an “ opnq. Then we have

varpTnq ď
n
ÿ

j“1

E
“

Z2 1t|Z|ďju
‰

“
ÿ

jďan

`
ÿ

anăjďn

“
ÿ

jďan

E
“

Z2 1t|Z|ďju
‰

`
ÿ

anăjďn

E
“

Z2 1t|Z|ďanu
‰

`
ÿ

anăjďn

E
“

Z2 1tană|Z|ďju
‰

ď
ÿ

jďan

anE r|Z|s `
ÿ

anăjďn

anE r|Z|s `
ÿ

anăjďn

nE
“

|Z| 1tană|Z|ďju
‰

ď Op1qnan `Op1qn
2E

“

|Z|1t|Z|ąanu
‰

.

The first term is nan “ opn2q because an “ opnq; the second term is also opn2q because E
“

|Z| 1t|Z|ąanu
‰

Ñ

0 since an Ñ8. Therefore, we have varpTnq “ opn2q as desired.

The following example explains that the finite expectation in the hypothesis of Theorem 3.1.1 is not
a necessary condition for the convergence in probability.

Example 3.1.3. Let tXnu be i.i.d. with the common law given by

PrZ “ ns “ PrZ “ ´ns “
c

n2 log n
, n “ 2, 3, . . . ,

where c is a normalizing constant. Define Sn “
řn
j“1Xj. It is clear that Er|Z|s “ 8, but we have

Sn
n
Ñ 0, in probability.

Proof. Define

Tn “
n
ÿ

j“1

Xj 1t|Xj |ďnu .

(Note that, this is different from the definition in the proof of Theorem 3.1.1, as all Xj in the summation
are truncated at the same constant n. ) Let us calculate PrTn ‰ Sns and varpTnq.

PrTn ‰ Sns ď
n
ÿ

j“1

Pr|Xj | ą ns “ nPr|Z| ą ns „
c

log n
.

varpTnq “ nE
“

Z2 1t|Z|ďnu
‰

“ n
n
ÿ

j“2

c

log j
„

cn2

log n
.

Thus

P

„ˇ

ˇ

ˇ

ˇ

Sn
n

ˇ

ˇ

ˇ

ˇ

ą ε



ď P

„ˇ

ˇ

ˇ

ˇ

Tn
n

ˇ

ˇ

ˇ

ˇ

ą ε



` PrTn ‰ Sns ď
varpTnq

n2ε2
` PrTn ‰ Sns Ñ 0.
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3.2 Three series theorem

The goal of this section is Kolmogorov’s three series theorem.

Theorem 3.2.1. Let tXnu be independent random variables and define the truncation for a fixed constant
A ą 0:

Yn “ Xn 1t|Xn|ďAu .

Then the series
ř

nXn converges almost surely if and only if the following three series all converge:
ÿ

n

Pr|Xn| ą As,
ÿ

n

ErYns,
ÿ

n

varpYnq.

To show the direction of ðù, we need the following lemma.

Lemma 3.2.2. Let tXnu be independent random variables such that ErXns “ 0 and ErX2
ns ă 8. Define

Sn “
řn
j“1Xj. Then we have

P

„

max
1ďjďn

|Sj | ě ε



ď
ErS2

ns

ε2
.

Proof. Fix ε ą 0 and define

Λ “

"

max
1ďjďn

|Sj | ě ε

*

.

Define T “ mintj : |Sj | ě εu to be the first time that |Sj | exceeds ε, and define Λk “ tT “ ku:

Λk “

"

max
1ďjďk´1

|Sj | ă ε, |Sk| ě ε

*

.

Note that Λk’s are disjoint and Λ “ \nk“1Λk. We have

E
“

S2
n 1Λ

‰

“

n
ÿ

k“1

E
“

S2
n 1Λk

‰

“

n
ÿ

k“1

E
“

S2
k 1Λk

`2SkpSn ´ Skq 1Λk
`pSn ´ Skq

2 1Λk

‰

.

Note that Sk 1Λk
and Sn ´ Sk are independent, thus

E rSkpSn ´ Skq 1Λk
s “ E rSk 1Λk

sE rpSn ´ Skqs “ 0.

Therefore,

ErS2
n 1Λs “

n
ÿ

k“1

E
“

S2
k 1Λk

`pSn ´ Skq
2 1Λk

‰

ě

n
ÿ

k“1

E
“

S2
k 1Λk

‰

ě

n
ÿ

k“1

ε2PrΛks “ ε2PrΛs.

Thus we have PrΛs ď ErS2
ns{ε

2, as desired.

Proof of Theorem 3.2.1ðù. Suppose the three series all converge. Since the first series converges, we
have

ř

n PrXn ‰ Yns ă 8. Thus tXnu and tYnu are equivalent, it suffices to show that
ř

n Yn converges
almost surely. Since the second series converges, it suffices to show that

ř

npYn´ErYnsq converges almost
surely. Let us consider the tail of this series

T pn,mq :“
m
ÿ

j“n

pYj ´ ErYjsq.
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We need to show that, almost surely, the oscillation

Wn :“ max
`ěkěn

|T pk, `q|

is small when n is large.
Fix ε ą 0, by Lemma 3.2.2, we have

P

„

max
nďjďm

|T pn, jq| ě ε{2



ď 4ε´2
m
ÿ

j“n

varpYjq.

Let mÑ8, we have

P

„

max
jěn

|T pn, jq| ě ε{2



ď 4ε´2
ÿ

jěn

varpYjq.

For ` ě k ě n, we have
T pk, `q “ T pn, `q ´ T pn, kq.

Thus

PrWn ě εs “ P

„

max
`ěkěn

|T pk, `q| ě ε



ď P

„

max
jěn

|T pn, jq| ě ε{2



ď 4ε´2
ÿ

jěn

varpYjq.

Since the third series converges, we have

lim
n

PrWn ě εs “ 0.

Since the sequence of events tWn ě εu is decreasing in n, we have

P
”

lim
n
Wn ě ε

ı

“ 0.

Let εÑ 0, we have

P
”

lim
n
Wn “ 0

ı

“ 1.

This implies the almost sure convergence.

To show the direction of ùñ, we need the following lemma.

Lemma 3.2.3. Let tXnu be independent random variables which are bounded: there exists a constant A
such that |Xn| ď A almost surely for all n. Define Sn “

řn
j“1Xj. Then we have

P

„

max
1ďjďn

|Sj | ď B



ď
p2B `Aq2

varpSnq
.

Proof. Define T “ mintj : |Sj | ą Bu to be the first time that |Sj | exceeds B. Then we have

tT ą ku “

"

max
1ďjďk

|Sj | ď B

*

, tT “ ku “

"

max
1ďjďk´1

|Sj | ď B, |Sk| ą B

*

.

We need to give a upper bound for PrT ą ns varpSnq. Let us consider the expectation and the variance
of Sk on tT ą ku:

ak :“ E
“

Sk 1tTąku
‰

{PrT ą ks, E
“

pSk ´ akq
2 1tTąku

‰

.
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It is clear that |ak| ď B. We write

E
“

pSk`1 ´ ak`1q
2 1tTąk`1u

‰

“ E
“

pSk`1 ´ ak`1q
2 1tTąku

‰

´ E
“

pSk`1 ´ ak`1q
2 1tT“k`1u

‰

.

For the first term,

E
“

pSk`1 ´ ak`1q
2 1tTąku

‰

“ E
“

pSk ´ ak `Xk`1 ´ ak`1 ` akq
2 1tTąku

‰

“ E
“

pSk ´ akq
2 1tTąku

‰

` E
“

pXk`1 ´ ak`1 ` akq
2 1tTąku

‰

(by indep.)

“ E
“

pSk ´ akq
2 1tTąku

‰

` E
“

pXk`1 ´ ak`1 ` akq
2
‰

PrT ą ks (by indep.)

ě E
“

pSk ´ akq
2 1tTąku

‰

` varpXk`1qPrT ą ks. (by Exercise 1.7.1)

For the second term,

E
“

pSk`1 ´ ak`1q
2 1tT“k`1u

‰

“ E
“

pSk `Xk`1 ´ ak`1q
2 1tT“k`1u

‰

.

Note that, |Sk| ď B on tT “ k ` 1u, and |Xk`1| ď A, and |ak`1| ď B. Thus, for the second term,

E
“

pSk`1 ´ ak`1q
2 1tT“k`1u

‰

ď p2B `Aq2PrT “ k ` 1s.

Combining the two estimates, we have

E
“

pSk`1 ´ ak`1q
2 1tTąk`1u

‰

ě E
“

pSk ´ akq
2 1tTąku

‰

` varpXk`1qPrT ą ks ´ p2B `Aq2PrT “ k ` 1s.

Summing over k, we have

E
“

pSn ´ anq
2 1tTąnu

‰

ě E
“

pX1 ´ a1q
2 1tTą1u

‰

`

n´1
ÿ

k“1

varpXk`1qPrT ą ks ´ p2B `Aq2Pr2 ď T ď ns

ě E
“

pX1 ´ a1q
2 1tTą1u

‰

` pvarpSnq ´ varpX1qqPrT ą ns ´ p2B `Aq2Pr2 ď T ď ns

Thus

varpSnqPrT ą ns

ď E
“

pSn ´ anq
2 1tTąnu

‰

` varpX1qPrT ą ns ` p2B `Aq2Pr2 ď T ď ns.

Note that
E
“

pSn ´ anq
2 1tTąnu

‰

“ ErS2
n 1tTąnus ´ a

2
nPrT ą ns ď B2PrT ą ns.

Thus

varpSnqPrT ą ns ď B2PrT ą ns `A2PrT ą ns ` p2B `Aq2Pr2 ď T ď ns

ď p2B `Aq2.

This gives the conclusion.

Proof of Theorem 3.2.1 ùñ. Suppose
ř

nXn converges almost surely, then we have

Pr|Xn| ą A i.o.s “ 0.
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Then Borel Cantelli lemma guarantees the convergence of the first series. As a consequence, the sequences
tYnu and tXnu are equivalent, hence

ř

n Yn converges almost surely as well. By Lemma 3.2.3, we have

P

«

max
nďkďm

|

k
ÿ

j“n

Yj | ď 1

ff

ď
pA` 2q2

řm
j“n varpYjq

.

If the third series diverges, then the right hand-side will go to zero as m Ñ 8. Hence the tail of
ř

n Yn almost surely would not be bounded by one, so the series could not converge. This confirms the
convergence of the third series. By the proof of direction ofðù, the convergence of the third series implies
the convergence of

ř

npYn ´ ErYnsq. Combining with the convergence of
ř

n Yn, we have the convergence
of the second series.

Example 3.2.4. Suppose tXnu are i.i.d. Bernoulli random variables with parameter 1{2: PrXn “ 1s “
PrXn “ ´1s “ 1{2.

• Consider the series
ÿ

n

Xn

n
.

There is no absolute convergence, but there is almost sure convergence.

• Consider the series
ÿ

n

Xn
?
n
.

It diverges almost surely. Note that this is different from
ř

np´1qn{
?
n which does converge.

Proof. By three series theorem, we see that the series
ř

nXn{n converges almost surely: take Yn “ Xn{n
and A “ 1, we have Pr|Xn{n| ą 1s “ 0, ErYns “ 0, and varpY 2

n q “ 1{n2.
Next, we consider

ř

nXn{
?
n: take Yn “ Xn{

?
n and A “ 1, we have Pr|Xn{

?
n| ą 1s “ 0, ErYns “ 0,

and varpYnq “ 1{n. By three series law, we see that

P

«

ÿ

n

Xn
?
n

converges

ff

ă 1.

By Kolmogorov’s 0-1 law in Example 1.5.4, we have

P

«

ÿ

n

Xn
?
n

converges

ff

“ 0.

3.3 Strong law of large numbers

The goal of this section is the following “strong law of large numbers”.

Theorem 3.3.1. Let tXnu be i.i.d. Define Sn “
řn
j“1Xj. Then we have

Er|X1|s ă 8 ùñ
Sn
n
Ñ ErX1s, almost surely; (3.3.1)

Er|X1|s “ 8 ùñ lim sup
n

|Sn|

n
“ 8, almost surely. (3.3.2)
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Lemma 3.3.2 (Kronecker’s lemma). Let txnu be a sequence of real numbers, tanu be a sequence of
numbers such that 0 ă an Ò 8. Then

ÿ

n

xn
an

converges ùñ
1

an

n
ÿ

j“1

xj Ñ 0.

Proof. Define bn “
řn
j“1 xj{aj and set a0 “ b0 “ 0. Then we have

1

an

n
ÿ

j“1

xj “
1

an

n
ÿ

j“1

ajpbj ´ bj´1q “ bn ´
1

an

n´1
ÿ

j“0

paj`1 ´ ajqbj .

Note that aj`1 ´ aj ě 0 and

1

an

n´1
ÿ

j“0

paj`1 ´ ajq “ 1.

Combining with the fact that bj Ñ b8, we have

1

an

n´1
ÿ

j“0

paj`1 ´ ajqbj Ñ b8.

Thus
1

an

n
ÿ

j“1

xj “ bn ´
1

an

n´1
ÿ

j“0

paj`1 ´ ajqbj Ñ 0.

Lemma 3.3.3. Let tXnu be independent random variables with ErXns “ 0. Suppose tanu is a sequence
of numbers such that 0 ă an Ò 8. Suppose ϕ : R Ñ R` is positive, even and continuous function on R
such that

ϕpxq

|x|
Ò,

ϕpxq

x2
Ó, as |x| Ò .

Assume ϕ satisfies the following condition:

ÿ

n

ErϕpXnqs

ϕpanq
ă 8.

Then
ÿ

n

Xn

an
converges almost surely.

Consequently,
1

an

n
ÿ

j“1

Xj Ñ 0, almost surely.

Note that there is a wide range of choice of ϕ in Lemma 3.3.3, for instance ϕpxq “ |x|p with 1 ď p ď 2.

Proof. Define
Yn “ Xn 1t|Xn|ďanu .

We will use three series theorem for tXn{anu and tYn{anu with A “ 1. First of all,

ÿ

n

P

„

Xn

an
‰
Yn
an



“
ÿ

n

Pr|Xn| ą ans

“
ÿ

n

PrϕpXnq ą ϕpanqs ď
ÿ

n

ErϕpXnqs

ϕpanq
ă 8.
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Second,

ÿ

n

|ErYns|
an

“
ÿ

n

|ErXn 1t|Xn|ąanus|

an
(since ErXns “ 0)

ď
ÿ

n

E

„

|Xn|

an
1t|Xn|ąanu



ď
ÿ

n

E

„

ϕpXnq

ϕpanq



ă 8. (since ϕpxq{|x| is increasing)

Finally,

ÿ

n

varpYn{anq ď
ÿ

n

E

„

Y 2
n

a2
n



“
ÿ

n

E

„

X2
n

a2
n

1t|Xn|ďanu



ď
ÿ

n

E

„

ϕpXnq

ϕpanq



ă 8. (since ϕpxq{x2 is decreasing)

Proof of Theorem 3.3.1—(3.3.1). Define

Yn “ Xn 1t|Xn|ďnu .

The sequences tXnu and tYnu are equivalent:
ÿ

n

PrXn ‰ Yns “
ÿ

n

Pr|X1| ą ns ă 8.

To apply Lemma 3.3.3 to tYn´ErYnsu with an “ n and ϕpxq “ x2, suppose Z has the same law as tXnu,
we calculate

ÿ

n

varpYnq

n2
ď

ÿ

n

ErY 2
n s

n2
“

ÿ

n

1

n2
E
“

X2 1t|X|ďnu
‰

“

8
ÿ

n“1

1

n2

n
ÿ

j“1

ErX2 1tj´1ă|X|ďjus

“

8
ÿ

j“1

ErX2 1tj´1ă|X|ďjus
ÿ

něj

1

n2

“

8
ÿ

j“1

ErX2 1tj´1ă|X|ďjus
Op1q

j

ď Op1q
8
ÿ

j“1

Er|X|1tj´1ă|X|ďjus “ Op1qEr|X|s ă 8.

Applying Lemma 3.3.3 to tYn ´ ErYnsu, we obtain

1

n

n
ÿ

j“1

pYj ´ ErYjsq Ñ 0, almost surely.

Therefore

lim
n

Sn
n
“ lim

n

1

n

n
ÿ

j“1

Yj “ lim
n

1

n

n
ÿ

j“1

ErYjs “ ErXs.
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Proof of Theorem 3.3.1—(3.3.2). Since Er|X1|s “ 8, we have Er|X1|{As “ 8 for any A ą 0. Thus

ÿ

n

Pr|Xn| ą Ans “ 8.

By Borel-Cantelli lemma, we have
Pr|Xn| ą An i.o.s “ 1.

Note that |Sn ´ Sn´1| “ |Xn| ą An implies |Sn| ą An{2 or |Sn´1| ą An{2. Thus

P

„

|Sn| ě
An

2
i.o.



“ 1.

This means that, for each A, there exists a null set N pAq such that

lim sup
n

|Sn|

n
ě
A

2
, on ΩzN pAq.

Take N “ Y8m“1N pmq, then it is still a null set and

lim sup
n

|Sn|

n
“ 8, on ΩzN .

Example (Example 3.1.3 continued). In this example, we have Sn{n Ñ 0 in probability. However, by
strong law of large numbers, we have

lim sup
n

Sn
n
“ `8, lim inf

Sn
n
“ ´8, almost surely.

Example 3.3.4. Suppose tXnu are i.i.d. with ErX1s “ 0 and varpX1q “ 1. Define Sn “
řn
j“1Xj. For

ε ą 0, we have
Sn

n1{2plog nq1{2`ε
Ñ 0, a.s. (3.3.3)

Proof. By strong law of large numbers, we have Sn{n Ñ 0 a.s. Thus (3.3.3) is a better conclusion. For
the convergence in (3.3.3), by law of the iterated logarithm in Example 5.5.5, we have

lim sup
n

Sn
?

2n log log n
“ 1, a.s.

Thus the convergence in (3.3.3) is not far from the best possible.
Next, we show (3.3.3). Set an “ n1{2plog nq1{2`ε and Yn “

Xn
an

1t|Xn|ďanu. Then we have

ÿ

n

Pr|Xn| ą ans ď
ÿ

n

ErX2
ns

a2
n

“
ÿ

n

1

a2
n

ă 8;

ÿ

n

|ErYns| ď
ÿ

n

E

„

|Xn|

an
1t|Xn|ěanu



ď
ÿ

n

ErX2
ns

a2
n

“
ÿ

n

1

a2
n

ă 8;

ÿ

n

varpYnq ď
ÿ

n

ErX2
ns

a2
n

“
ÿ

n

1

a2
n

ă 8.

By three series law, we see
ř

nXn{an converges a.s. Combining with Lemma 3.3.2, we have Sn{an Ñ 0
a.s.
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Example 3.3.5. Suppose tXnu are i.i.d. with ErX1s “ 0 and Er|X1|
ps ă 8 for some p P p1, 2q. Define

Sn “
řn
j“1Xj. Then

Sn

n1{p
Ñ 0, a.s.

Proof. Strong law of large numbers gives Sn{nÑ 0 a.s. The conclusion here is better. Set an “ n1{p and
Yn “ Xn 1t|Xn|ďanu. Then tXnu and tYnu are equivalent, because

ÿ

n

Pr|Xn| ą ans “
ÿ

n

Pr|X1|
p ą ns ď Er|X1|

ps ă 8.

Define Tn “
řn
j“1 Yj . It suffices to show Tn{an Ñ 0 a.s. We will show

ÿ

n

varpYn{anq ă 8, (3.3.4)

and
ErTns
an

Ñ 0. (3.3.5)

Assuming (3.3.4) holds, by Lemma 3.3.3 with ϕpxq “ x2, we have

Tn ´ ErTns
an

Ñ 0, a.s.

Combining with (3.3.5), we have Tn{an Ñ 0 a.s. Thus it remains to show (3.3.4) and (3.3.5).
Suppose Z has the same law as X1. We have

ÿ

ně1

varpYn{anq ď
ÿ

ně1

1

a2
n

ErY 2
n s “

ÿ

ně1

1

a2
n

E
“

Z2 1t|Z|ďanu
‰

“
ÿ

ně1

1

a2
n

n
ÿ

j“1

E
”

Z2 1taj´1ă|Z|ďaju

ı

“
ÿ

jě1

E
”

Z2 1taj´1ă|Z|ďaju

ı

ÿ

něj

1

a2
n

“
ÿ

jě1

E
”

Z2 1taj´1ă|Z|ďaju

ı

Op1qap´2
j

ď Op1q
ÿ

jě1

E
”

|Z|p 1taj´1ă|Z|ďaju

ı

“ Op1qEr|Z|ps ă 8.

This gives (3.3.4).
Finally, we derive (3.3.5): for 1 ď m ď n,

|ErTns|
an

ď
1

an

n
ÿ

j“1

E
”

|Z|1t|Z|ąaju
ı

ď
1

an

n
ÿ

j“1

a1´p
j E

”

|Z|p 1t|Z|ąaju
ı

ď
1

an

m
ÿ

j“1

a1´p
j E

”

|Z|p 1t|Z|ąaju
ı

`
1

an

n
ÿ

j“m

a1´p
j E

”

|Z|p 1t|Z|ąaju
ı

ď
1

an

m
ÿ

j“1

a1´p
j E

”

|Z|p 1t|Z|ąaju
ı

`
1

an

n
ÿ

j“m

a1´p
j E

“

|Z|p 1t|Z|ąamu
‰

ď
1

an

m
ÿ

j“1

a1´p
j E

”

|Z|p 1t|Z|ąaju
ı

`Op1qE
“

|Z|p 1t|Z|ąamu
‰

.
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We let nÑ8 and then mÑ8, we obtain (3.3.5).

Example 3.3.6 (Renewal theory). Suppose tXnu are i.i.d. with 0 ă X1 ă 8. Let Tn “
řn
j“1Xj. For a

concrete situation, consider a janitor who replaces a light bulb the instant it burns out. Suppose a bulb is
put in at time 0 and let Xi be the lifetime of the ith light bulb. In this interpretation, Tn is the time that
the nth light bulb burns out and Nt “ suptn : Tn ď tu is the number of light bulbs that have burnt out by
time t. If ErX1s “ µ ď 8, then

Nt

t
Ñ

1

µ
, as tÑ8, almost surely; (3.3.6)

ErNts

t
Ñ

1

µ
, as tÑ8. (3.3.7)

If µ “ 8, then 1{µ “ 0.

Proof of (3.3.6). By strong law of large number, we have Tn{n Ñ µ almost surely. By the definition of
Nt, we have TNt ď t ď TNt`1. Thus

TNt

Nt
ď

t

Nt
ď

TNt`1

Nt ` 1

Nt ` 1

Nt
.

Strong law of large number implies that, there exists a null set N such that

Tnpωq

n
Ñ µ as nÑ8, Ntpωq Ò 8 as t Ò 8, @ω P ΩzN .

Therefore,
TNtpωqpωq

Ntpωq
Ñ µ,

Ntpωq ` 1

Ntpωq
Ñ 1, @ω P ΩzN .

This gives the conclusion.

Proof of (3.3.7). We have shown the almost sure convergence, in order to have convergence in L1, we
need to check the collection tNt{t : t ą 0u is UI. To this end, we will show that it is bounded in L2.

Since X1 ą 0 a.s., there exists δ ą 0 such that

PrX1 ě δs “ p ą 0.

Define X 1n “ δ 1tXněδu. The sequence tX 1nu is i.i.d. Bernoulli random variables and define T 1n and N 1t
for tX 1nu. Since X 1n ď Xn, we have T 1n ď Tn and Nt ď N 1t . From Exercise 3.3.7, ErpN 1t{tq

2s is bounded
uniform over t. Thus ErpNt{tq

2s ď ErpN 1t{tq
2s is bounded uniform over t. This completes the proof.

Exercise 3.3.7. Suppose tXnu are i.i.d. Bernoulli random variables with parameter p P p0, 1q: PrX1 “

1s “ p and PrX1 “ 0s “ 1 ´ p. Define Sn “
řn
j“1Xj and Nt “ suptn : Sn ď tu. We have ErNts “ Optq

and ErN2
t s “ Opt2q as tÑ8.

Proof. For t ą 0 and n ě 1, we have tNt ě nu “ tSn ď tu. Note that Sn takes values in t0, 1, . . . , nu. We
have

#

t ě n, PrNt ě ns “ 1,

t ă n, PrNt ě ns “ PrSn ď ts “
řrts
j“0

`

n
j

˘

pjp1´ pqn´j .

Let us evaluate ErNts:

ErNts “
ÿ

n

PrNt ě ns “ rts `
ÿ

nąt

rts
ÿ

j“0

ˆ

n

j

˙

pjp1´ pqn´j “ t`Op1q.
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Then we evaluate ErN2
t s:

ErN2
t s “

ÿ

ně1

n2PrNt “ ns

“
ÿ

ně1

n2PrNt ě n´ 1s ´
ÿ

ně1

n2PrNt ě ns

“ 1`
ÿ

ně1

p2n` 1qPrNt ě ns

“ Opt2q `
ÿ

nět

p2n` 1q

rts
ÿ

j“0

ˆ

n

j

˙

pjp1´ pqn´j “ Opt2q.

3.4 Exercises

Exercise 3.4.1. For arbitrary tXnu, if
ř

n Er|Xn|s ă 8, then
ř

nXn converges almost surely.

Exercise 3.4.2. If tXnu is a sequence of independent random variables, then the convergence of the series
ř

nXn in probability is equivalent to its almost sure convergence.

Exercise 3.4.3. Let tXnu be independent Poisson random variables with ErXns “ λn. Define Sn “
řn
j“1Xj. If

ř

λn “ 8 then Sn{ErSns Ñ 1 almost surely.

Exercise 3.4.4. Suppose tXnu satisfies the following assumptions:

• There are constants C and µ such that varpXnq ď C and ErXns “ µ for all n.

• There exists a function f : N Ñ R` such that fpnq Ñ 0 and covpXi, Xjq ď fp|i´ j|q for all i, j.

Show that
X1 `X2 ` ¨ ¨ ¨ `Xn

n
Ñ µ in L2pΩ,F ,Pq.

Exercise 3.4.5. Suppose tXnu is a sequence of random variables.

(1) Show that Xn Ñ 0 almost surely if and only if, for any ε ą 0, Pr|Xn| ą ε i.o.s “ 0.

(2) Show that there exists a sequence an Ò 8 such that Xn{an converges to 0 almost surely.

Exercise 3.4.6. Suppose that tXk : k P Nu are i.i.d. and set Sn :“
řn
j“1Xj. Show that Sn{nÑ 0 almost

surely if and only if the following two conditions are satisfied:

(1)
Sn
n
Ñ 0 in probability,

(2)
S2n

2n
Ñ 0 a.s.

An alternative set of conditions is (1) as above and

(3) for any ε ą 0,
ÿ

n

P r|S2n`1 ´ S2n | ą 2nεs ă 8.
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Exercise 3.4.7. If tXn : n P Nu is a sequence of positive, non-decreasing random variables such that
Xn Ñ8 almost surely, show that

lim sup
nÑ8

logXn

log ErXns
ď 1 a.s.

Exercise 3.4.8. Suppose that
ř8
n“1 PrAns “ 8 for pairwise independent events tAnu. Let Sn “

řn
i“1 1Ai

be the number of events occurring among the first n events.

(1) Show that varpSnq ď ErSns and deduce from it that Sn{ErSns Ñ 1 in probability.

(2) Applying Borel-Cantelli lemma to show that Snk
{E rSnk

s Ñ 1 almost surely as k Ñ 8, where
nk :“ mintn : ErSns ě k2u.

(3) Show that E
“

Snk`1

‰

{E rSnk
s Ñ 1 as k Ñ8. Deduce that Sn{ErSns Ñ 1 almost surely.

Exercise 3.4.9 (YCMC2013). Let tXnu be a sequence of random variables.

(1) Assume that
ř8
n“0 Pr|Xn| ą ns ă 8. Show that lim supnÑ8

|Xn|

n ď 1 almost surely.

(2) Show that tXnu converges in probability to 0 if and only if for certain r ą 0,

E

„

|Xn|
r

1` |Xn|
r



Ñ 0.

Exercise 3.4.10 (YCMC2014). Suppose Xn is n-dimensional standard Gaussian random vector and
denote by }Xn} its Euclidean norm. Show that for any ε ą 0,

lim
nÑ8

P

„

1´ ε ď
}Xn}
?
n
ď 1` ε



“ 1.

Exercise 3.4.11 (YCMC2016). Let tXnu be i.i.d. such that ErX1s “ ´1. Let Sn “ X1 ` ¨ ¨ ¨ `Xn for
all n ě 1, and let T be the total number of n ě 1 satisfying Sn ě 0. Compute PrT “ 8s.
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4 Central Limit Theorem

4.1 Characteristic function

Definition 4.1.1. For any random variable X with distribution µ, its characteristic function is defined
to be:

f : R Ñ C, fptq :“ E
“

eitX
‰

“

ż

eitxµrdxs.

The first equal sign is the definition, the second equal sign is due to Theorem 1.3.3.

In analysis, the characteristic function is known as the Fourier transform of µ.

Lemma 4.1.2. The characteristic function has the following basic properties.

(1) fp0q “ 1, |fptq| ď 1, and fp´tq “ fptq.

(2) f is uniformly continuous.

(3) We write fX for the characteristic function of X, then for any real numbers a and b, we have

faX`bptq “ fXpatqe
ibt, f´Xptq “ fXp´tq.

(4) If tfnu are characteristic functions and tλnu are positive numbers such that
ř

n λn “ 1, then

ÿ

n

λnfn

is a characteristic function. Briefly: convex combination of characteristic functions is a character-
istic function.

(5) Suppose X and Y are independent, then the characteristic function of X ` Y is fX ˆ fY .

(6) If f is a characteristic function, so is |f |2.

Proof of (2). We have

|fpt` εq ´ fptq| “ |

ż

eitxpeiεx ´ 1qµrdxs| ď

ż

|eiεx ´ 1|µrdxs.

By bounded convergence theorem, the last term goes to zero as εÑ 0.

Proof of (4). If tµnu are the corresponding probability measures, then
ř

n λnµn is a probability measure.

Proof of (5).
EreitpX`Y qs “ EreitXeitY s “ EreitXsEreitY s.

Proof of (6). Suppose X and Y are i.i.d., then

EreitpX´Y qs “ EreitXsEre´itY s “ fptqfp´tq “ |fptq|2.

We emphasize that the introduction of characteristic function simplifies the calculation for sum of
independent random variables.
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Lemma 4.1.3. Suppose X and Y are independent.

• The distribution function of X ` Y is FX ˚ FY .

• The characteristic function of X ` Y is fX ˆ fY .

Example 4.1.4. We list characteristic functions of a few well-known probability measures.

• Dirac mass at a:
eiat.

• Bernoulli distribution on t´1,`1u with p “ 1{2:

cosptq.

• Uniform distribution on r´a, as:
sin at

at
.

• Exponential distribution with density λe´λx:

λ

λ´ it
.

• Normal distribution N pm,σ2q:

exp

ˆ

imt´
σ2t2

2

˙

.

• Poisson distribution with parameter λ ą 0:

exp
`

λpeit ´ 1q
˘

.

• Geometric distribution with probability p P p0, 1q:

peit

1´ p1´ pqeit
.

Exercise. Calculate examples in Section 1.6 using characteristic functions.

4.2 Uniqueness and inversion

We have defined characteristic function for each probability measure. Then the following question comes:
given a characteristic function, how can we find the corresponding probability measure? The formula for
doing is called inversion formula.

Theorem 4.2.1. Suppose f is the characteristic function for the probability measure µ. For x ă y, we
have

µrpx, yqs `
1

2
µrtxus `

1

2
µrtyus “ lim

TÑ8

1

2π

ż T

´T

e´itx ´ e´ity

it
fptqdt.

Observe that the integrand in the right hand side is bounded by Op|t|´1q as |t| Ñ 8; yet we cannot
assert the “infinite integral” exists (in the Lebesgue sense). Indeed, it does not in general. The fact that
the limit in the right hand side does exist is part of the assertion.
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Proof. We claim that

1

2π

ż T

´T

e´itx ´ e´ity

it

ˆ
ż

eitzµrdzs

˙

dt “

ż

µrdzs

ż T

´T

eitpz´xq ´ eitpz´yq

2πit
dt. (4.2.1)

This is true due to Fubini’s theorem, because the integrand in the right hand side is bounded by integrable
function with respect to µrdzsdt on Rˆ r´T, T s:

ˇ

ˇ

ˇ

ˇ

ˇ

eitpz´xq ´ eitpz´yq

it

ˇ

ˇ

ˇ

ˇ

ˇ

ď |x´ y|.

This proves (4.2.1). Define

IpT, z;x, yq :“

ż T

´T

eitpz´xq ´ eitpz´yq

2πit
dt.

It is clear that

IpT, z;x, yq “

ż T

0

sinptpz ´ xqq

πt
dt´

ż T

0

sinptpz ´ yqq

πt
dt.

The quantity I is bounded in T , because for any w ě 0

0 ď sgnpαq

ż w

0

sinpαtq

t
dt ď

ż π

0

sin t

t
dt. (4.2.2)

Therefore, we can interchange the limit and the integral. It remains to derive the limit of I as T Ñ 8.
Note that

lim
TÑ8

ż T

0

sinpαtq

t
dt “

π

2
sgnpαq. (4.2.3)

As a consequence, we have

lim
TÑ8

IpT, z;x, yq “

$

’

&

’

%

0, if z ă x ă y or x ă y ă z,

1{2, if z “ x or z “ y,

1, if x ă z ă y.

Therefore,

lim
TÑ8

1

2π

ż T

´T

e´itx ´ e´ity

it
fptqdt “

ż

µrdzs lim
TÑ8

IpT, z;x, yq

“ µrpx, yqs `
1

2
µrtxus `

1

2
µrtyus.

Corollary 4.2.2. If two probability measures µ and ν have the same characteristic function, then µ “ ν.

Proof. Suppose Aµ is the set of atoms of µ and Aν is the set of atoms of ν. From the inversion formula,
we have

µrpa, bqs “ νrpa, bqs, for any a, b P RzpAµ YAνq.

Note that Aµ and Aν are countable, thus RzpAµYAνq is dense. The intervals tpa, bq : a, b P RzpAµYAνqu
generates B. Thus µ “ ν.
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Corollary 4.2.3. Suppose f is the characteristic function for the distribution function F . If f P L1pRq,
then F is differentiable and

ppxq “ F 1pxq “
1

2π

ż

e´ixtfptqdt.

In other words, when f P L1pRq, we have

ppxq “
1

2π

ż

e´ixtfptqdt, fptq “

ż

eitxppxqdx.

Proof. Write the inversion formula in terms of F :

F pyq ` F py´q

2
´
F pxq ` F px´q

2
“

1

2π

ż

e´itx ´ e´ity

it
fptqdt.

Let x Ñ y´, the right hand side goes to zero (we are allowed to interchange the limit and the integral
due to the hypothesis on f). Thus F is continuous. The above formula then writes:

F pyq ´ F pxq “
1

2π

ż

e´itx ´ e´ity

it
fptqdt.

Divide both sides by y´ x and then let y Ñ x`, we obtain the conclusion (we are allowed to interchange
the limit and the integral due to the hypothesis on f).

Corollary 4.2.4. For each x, we have

lim
TÑ8

1

2T

ż T

´T
e´itxfptqdt “ µrtxus. (4.2.4)

Moreover, we have

lim
TÑ8

1

2T

ż T

´T
|fptq|2dt “

ÿ

xPR

µrtxus2. (4.2.5)

Proof. For (4.2.4), we have

1

2T

ż T

´T
e´itxfptqdt “

ż

µrdzs
1

2T

ż T

´T
eitpz´xqdt

“

ż

µrdzs
1

T

ż T

0
cosptpz ´ xqqdt

“

ż

Rztxu
µrdzs

sinpT pz ´ xqq

T pz ´ xq
` µrtxus.

Then, Eq. (4.2.4) holds by the following observation:

lim
TÑ8

ż

Rztxu
µrdzs

sinpT pz ´ xqq

T pz ´ xq
“ 0.

For (4.2.5), recall that |f |2 is the characteristic function of X ´ Y where X,Y are i.i.d. The law of
X ´ Y is µ ˚ µ1 where µ1rBs “ µr´Bs for all B P B. Applying (4.2.4) with x “ 0 and X ´ Y , we have

lim
TÑ8

1

2T

ż T

´T
|fptq|2dt “ µ ˚ µ1rt0us.

Note that

µ ˚ µ1rt0us “

ż

µ1pt´yuqµrdys “

ż

µptyuqµrdys “
ÿ

y

µrtyus2.
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Definition 4.2.5. The random variable X is symmetric if X and ´X have the same law.

Lemma 4.2.6. The random variable X is symmetric if and only if its characteristic function is real-valued
for all t.

Proof. Suppose the characteristic function of X is f . Then the characteristic function of ´X is f . By
Corollary 4.2.2, the random variables X and ´X have the same law if and only if f “ f .

4.3 Characteristic function and convergence

The goal of this section is the following convergence theorem.

Theorem 4.3.1. Let tµnu be a sequence of probability measures with characteristic functions tfnu. Sup-
pose that

(a) fn converges everywhere in R and defines the limiting function f ;

(b) f is continuous at t “ 0.

Then we have

(1) µn ùñ µ where µ is a probability measure;

(2) the characteristic function of µ is f .

We first discuss the converse direction of this theorem.

Lemma 4.3.2. Let tµnu and µ be a sequence of probability measures with characteristic functions tfnu
and f respectively. If µn converges weakly to µ, then fn converges to f uniformly in every finite interval.
Furthermore, the family tfnu is equicontinuous on R.

Proof. Since the real part and the imaginary part of eitx are bounded continuous functions, the weak
convergence implies fn Ñ f pointwise.

We first show the equicontinuity, i.e. we show that, for any ε ą 0, there exists δ ą 0 such that
|fnpt` hq ´ fnptq| ď ε as long as |h| ď δ. For any t P R and h P R, we have

|fnpt` hq ´ fnptq| ď

ż

|eihx ´ 1|µnrdxs ď

ż

t|x|ďAu
|hx|µnrdxs `

ż

t|x|ąAu
2µnrdxs

ď |h|A` 2

ż

t|x|ąAu
µnrdxs.

For any ε ą 0, there exists n0 “ n0pA, εq such that

|fnpt` hq ´ fnptq| ď |h|A` 2

ż

t|x|ąAu
µrdxs ` ε{4.

This gives the equicontinuity for tfnu: for any ε ą 0, we choose A large enough such that µrt|x| ą Aus ď
ε{4, then for any h such that |h| ď δ :“ ε{p4Aq, we have

|fnpt` hq ´ fnptq| ď ε, @t P R, @n ě n0,

as desired.
Next, we show the uniform convergence on compact interval I, i.e. we show that, for any ε ą 0, there

exists n0 “ n0pI, εq such that |fnptq ´ fptq| ď ε for n ě n0. From the equicontinuity, there exists δ such
that |fnptq´fnpsq| ď ε as long as |t´ s| ď δ. Choose finite sequence of points ta1, . . . , am0u Ă I such that
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Y
m0
j“1paj´δ, aj`δq is a cover of I. By the pointwise convergence, we have fnpajq Ñ fpajq for 1 ď j ď m0.

Thus there exists n0 “ n0pI, εq such that

|fnpajq ´ fpajq| ď ε, @1 ď j ď m0, @n ě n0.

For any t P I, there exists j such that t P paj ´ δ, aj ` δq, thus

|fnptq ´ fptq| ď |fnptq ´ fnpajq| ` |fnpajq ´ fpajq| ` |fpajq ´ fptq| ď 3ε, @n ě n0.

This gives the uniform convergence.

By Proposition 2.3.2, we know that tµnu contains convergent subsequence: µnk
ùñ µ where µ is a

subprobability measure. To show Theorem 4.3.1, we need to argue that all subsequential limit are the
same which is given by f . To this end, we first argue that, under the assumption of the theorem, any
subsequential limit is indeed a probability measure, which needs the following lemma.

Lemma 4.3.3. Suppose f is the characteristic function of the probability measure µ. For each A ą 0,
we have

µpr´2A, 2Asq ě A

ˇ

ˇ

ˇ

ˇ

ˇ

ż A´1

´A´1

fptqdt

ˇ

ˇ

ˇ

ˇ

ˇ

´ 1.

Proof. By the proof of Theorem 4.2.1, we have

1

2T

ż T

´T
fptqdt “

ż

sinpTxq

Tx
µrdxs.

Thus

1

2T

ˇ

ˇ

ˇ

ˇ

ż T

´T
fptqdt

ˇ

ˇ

ˇ

ˇ

ď µpr´2A, 2Asq `
1

2TA
p1´ µpr´2A, 2Asqq “

ˆ

1´
1

2TA

˙

µpr´2A, 2Asq `
1

2TA
.

Set T “ A´1, we obtain the conclusion.

Proof of Theorem 4.3.1. Suppose µnk
is a convergent subsequence of tµnu and denote the limit by µ.

First, we argue that µ is a probability measure. By the above lemma, we have, (when ˘2δ´1 P Cµ)

µpRq ě µpr´2δ´1, 2δ´1sq “ lim
k
µnk
pr´2δ´1, 2δ´1sq ě lim sup

k

1

δ

ˇ

ˇ

ˇ

ˇ

ż δ

´δ
fnk
ptqdt

ˇ

ˇ

ˇ

ˇ

´ 1.

Since fnk
Ñ f everywhere, and by bounded convergence theorem, we have

lim sup
k

1

δ

ˇ

ˇ

ˇ

ˇ

ż δ

´δ
fnk
ptqdt

ˇ

ˇ

ˇ

ˇ

“
1

δ

ˇ

ˇ

ˇ

ˇ

ż δ

´δ
fptqdt

ˇ

ˇ

ˇ

ˇ

.

Since f is continuous at zero, we have

lim
δÑ0

1

2δ

ˇ

ˇ

ˇ

ˇ

ż δ

´δ
fptqdt

ˇ

ˇ

ˇ

ˇ

“ 1.

Thus, for any ε ą 0, there exists δ0 ą 0 such that, for any 0 ă δ ď δ0,

1

δ

ˇ

ˇ

ˇ

ˇ

ż δ

´δ
fptqdt

ˇ

ˇ

ˇ

ˇ

ě 2´ ε.

Therefore,
µpRq ě 1´ ε.

This holds for any ε ą 0. Thus µpRq “ 1 and µ is indeed a probability measure.
Let g be the characteristic function of µ. By Lemma 4.3.2, we know that fnk

Ñ g everywhere. By the
hypothesis, g ” f . We see that any subsequential limit has the characteristic function f , and hence, by
Theorem 4.2.1, any subsequential limit has the same probability measure whose characteristic function is
given by f .
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Corollary 4.3.4. Suppose tµnu and µ are probability measures whose characteristic functions are tfnu
and f respectively. Then

µn ùñ µ ðñ fn Ñ f uniformly on every finite interval.

Proof. The direction ùñ is guaranteed by Lemma 4.3.2. The direction ðù is due to Theorem 4.3.1 and
the fact that the characteristic function f is uniformly continuous.

The following examples show the necessity of the assumption in Lemma 4.3.2 and Theorem 4.3.1.

Example 4.3.5. Let µn be the probability measure such that it has mass 1{2 at t0u and 1{2 at tnu. Then
µn ùñ µ where µ has mass 1{2 at t0u and zero elsewhere. For the characteristic functions, we have

fnptq “
1

2
`

1

2
eitn.

They do not converge.

Example 4.3.6. Let µn be the uniform distribution on r´n, ns. Then µn ùñ µ where µ is identically
zero. For the characteristic functions, we have

fnptq “

#

sinpntq
nt , if t ‰ 0;

1, if t “ 0.

They converge and the limiting function is

fptq “

#

0, if t ‰ 0;

1, if t “ 0.

The limiting function is not continuous at zero.

The following examples are applications of the theorem.

Example 4.3.7. Suppose tµnu, tνnu and µ, ν are probability measures, and µn ùñ µ and νn ùñ ν. Then
µn ˚ νn ùñ µ ˚ ν.

Proposition 4.3.8. Suppose µ is a probability measure and f is its characteristic function.

(1) If µ has a finite moment of order k ě 1, then f has a bounded continuous derivative of order k
given by

f pkqptq “

ż

pixqkeitxµrdxs.

(2) If f has a finite derivative of even order k at t “ 0, then µ has a finite moment of order k.1

Proof. The first conclusion is clear. For the second conclusion, we start with k “ 2 and suppose f2p0q
exists and is finite. We have

f2p0q “ lim
εÑ0

fpεq ´ 2fp0q ` fp´εq

ε2
.

For the right hand side, we have

fpεq ´ 2fp0q ` fp´εq

ε2
“

ż

eiεx ´ 2` e´iεx

ε2
µrdxs

“ ´2

ż

1´ cospεxq

ε2
µrdxs

1Bonus. Suppose f has finite (first order) derivative, can you conclude that µ has finite expectation?
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By Fatou’s lemma, we have
ż

x2µrdxs “ 2

ż

lim
εÑ0

1´ cospεxq

ε2
µrdxs ď 2 lim inf

εÑ0

ż

1´ cospεxq

ε2
µrdxs “ ´f2p0q.

Therefore, µ has finite second moment.
For general 2k, suppose the conclusion holds for 2k ´ 2 and f p2kqp0q exists and is finite. By the

induction hypothesis, we have

f p2k´2qp0q “

ż

pixq2k´2eitxµrdxs.

Define

Gpxq “

ż x

´8

y2k´2µrdys, @x P R.

If Gp8q ą 0, then Gp¨q{Gp8q is a distribution function. For its corresponding probability measure,
its characteristic function is given by

gptq “
1

Gp8q

ż

eitxx2k´2µrdxs “
p´1qk´1f p2k´2qptq

Gp8q
.

By the induction hypothesis, g2p0q exists and is finite. By the proof of the case with k “ 2, we know that
G has finite moment of order 2, and thus µ has finite moment of order 2k as desired.

If Gp8q “ 0, then µ “ δ0. Then f ” 1 and µ has finite moment of order 2k.

Corollary 4.3.9. If µ has a finite moment of order k ě 1, then f has the following expansion in the
neighborhood of t “ 0:

fptq “
k
ÿ

j“0

µrpixqjs

j!
tj ` op|t|kq.

Moreover, we have
ˇ

ˇ

ˇ

ˇ

ˇ

fptq ´
k
ÿ

j“0

E

„

pitXqj

j!



ˇ

ˇ

ˇ

ˇ

ˇ

ď E
”

|tX|k`1 ^ 2|tX|k
ı

.

Proof. The first conclusion is due to Taylor expansion. The second one is due to the following control:
ˇ

ˇ

ˇ

ˇ

ˇ

eix ´
k
ÿ

j“0

pixqj

j!

ˇ

ˇ

ˇ

ˇ

ˇ

ď
|x|k`1

pk ` 1q!
^

2|x|k

k!
.

Example 4.3.10. Suppose tXnu are i.i.d. and denote by Sn “
řn
j“1Xj. If Er|X1|s ă 8, then

Sn
n
Ñ ErX1s, in probability.

Proof. Suppose f is the characteristic function of X1 and denote by m “ ErX1s. Then the characteristic
function of Sn{n is given by

gnptq “ E
”

eitSn{n
ı

“ fpt{nqn.

By Corollary 4.3.9, we have

fpt{nq “ 1` im
t

n
` opt{nq.

Therefore,

gnptq “

ˆ

1` im
t

n
` opt{nq

˙n

Ñ eimt, nÑ8.

In other words, the characteristic functions gn converge to the characteristic function of the dirac measure
δm. This gives the convergence in probability.
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Theorem 4.3.11. Let tXnu be i.i.d. with ErX1s “ m and varpX1q “ σ2 P p0,8q. Define Sn “
řn
j“1Xj.

Then
Sn ´ nm

σ
?
n

ùñ N p0, 1q,

where N p0, 1q is the standard normal distribution.

Proof. We may assume m “ 0. Let us calculate the characteristic function of Sn{
?
n:

E
“

exppitSn{pσ
?
nqq

‰

“ fpt{pσ
?
nqqn.

By Corollary 4.3.9, we have the expansion

fpt{pσ
?
nqq “ 1´

t2

2n
` o

ˆ

t2

σ2n

˙

.

Therefore,

E
“

exppitSn{pσ
?
nqq

‰

Ñ e´
t2

2 , nÑ8.

This gives the weak convergence.

Compare Theorem 4.3.11 with Cramér’s theorem in Section 1.6.

Example 4.3.12. Let tXnu be i.i.d. Bernoulli random variables with PrXn “ 0s “ PrXn “ 1s “ 1{2.
Set Sn “

řn
j“1Xj. Let us estimate PrS16 “ 8s. The exact probability is given by

PrS16 “ 8s “

ˆ

16

8

˙

2´16 “ 0.1964.

The approximation given by central limit theorem is the following:

P rS16 P p7.5, 8.5qs “ P

„

S16 ´ 8

2
P p´0.25, 0.25q



« Prχ P p´0.25, 0.25qs “ 0.1974.

Example 4.3.13. Let Zλ have a Poisson distribution with mean λ. Show that

Zλ ´ λ
?
λ

ùñ N p0, 1q, as λÑ8.

Proof. Suppose tXnu are i.i.d. with Poisson distribution with mean one, then ErXns “ 1 and varpXnq “ 1.
Set Sn “

řn
j“1Xj , then Sn has the law of Poisson distribution with mean n. Central limit theorem implies

Sn ´ n
?
n

ùñ N p0, 1q.

This gives the conclusion for λ “ nÑ8. For general λ, we have Stλu ďst Zλ ďst Stλu`1. Thus for any x,

P

„

Stλu`1 ´ λ
?
λ

ď x



ď P

„

Zλ ´ λ
?
λ

ď x



ď P

„

Stλu ´ λ
?
λ

ď x



.

As λÑ8, we have

P

„

Zλ ´ λ
?
λ

ď x



Ñ Prχ ď xs where χ „ N p0, 1q.

Example 4.3.14. Let X and Y are i.i.d. with mean zero and variance one. If X ` Y and X ´ Y are
independent, then the common law of X and Y is N p0, 1q.
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Proof. Let f be the characteristic function of X. By the hypothesis, we have f 1p0q “ 0 and f2p0q “ ´1.
The characteristic function of X `Y is fptq2 and the characteristic function of X ´Y is fptqfp´tq. Since
they are independent, the characteristic function of 2X “ pX ` Y q ` pX ´ Y q is fptq3fp´tq. In other
words,

fp2tq “ fptq3fp´tq. (4.3.1)

First, we argue that f never vanishes. If fpt0q “ 0 for some t0. By (4.3.1), we have fpt0{2q “ 0 or
fp´t0{2q “ 0. By induction, we have either fpt0{2

nq “ 0 or fp´t0{2
nq “ 0. Since f is continuous at zero,

this implies fp0q “ 0, contradiction.
Next, we argue that fptq “ fp´tq. Define gptq “ fptq{fp´tq. Then g has finite second derivative.

Eq. (4.3.1) gives gp2tq “ gptq2. By iteration, we have

gptq “ gpt{2nq2
n
“ p1` opt{2nqq2

n

Ñ 1, nÑ8.

Thus g ” 1. This gives fptq “ fp´tq. Then (4.3.1) comes

fp2tq “ fptq4.

By iteration, we have

fptq “ fpt{2nq4
n
“

ˆ

1´
t2

2ˆ 4n
` opt2{4nq

˙4n

Ñ e´t
2{2, nÑ8.

This gives fptq “ e´t
2{2 as desired.

4.4 The Lindeberg-Feller Theorem

The goal of this section is the following generalization of central limit theorem.

Theorem 4.4.1. For each n, let tXn,m : 1 ď m ď nu be independent random variables with ErXn,ms “ 0.
Suppose

lim
nÑ8

n
ÿ

m“1

ErX2
n,ms “ σ2 P p0,8q; (4.4.1)

and, for all ε ą 0,

lim
nÑ8

n
ÿ

m“1

E
“

X2
n,m 1t|Xn,m|ąεu

‰

“ 0. (4.4.2)

Then

S#
n :“

n
ÿ

m“1

Xn,m ùñ N p0, σ2q.

Theorem 4.4.1 does imply Theorem 4.3.11: suppose tYnu are i.i.d. with ErY1s “ 0 and varpY1q “ σ2 P

p0,8q. Denote by Sn “
řn
j“1 Yj . Set Xn,m “ Ym{

?
n, then we have

n
ÿ

m“1

ErX2
n,ms “ σ2;

n
ÿ

m“1

E
“

X2
n,m 1t|Xn,m|ąεu

‰

“ E
”

Y 2
1 1t|Y1|ąε

?
nu

ı

Ñ 0, as nÑ8.

Thus Sn{
?
n “ S#

n ùñ N p0, σ2q.

Proof. Define fn,mptq “ ErexppitXn,mqs, then the goal is to show that

lim
n

n
ź

m“1

fn,mptq “ expp´t2σ2{2q.
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Define σ2
n,m “ ErX2

n,ms, then we have

σ2
n,m ď ε2 ` ErX2

n,m 1t|Xn,m|ąεus.

From the hypotheses, we have
lim
n

max
m

σ2
n,m “ 0.

Define gn,mptq “ 1´ t2σ2
n,m{2. Then gn,m approximates fn,m:

|fn,mptq ´ gn,mptq| ď E
“

|tXn,m|
3 ^ 2|tXn,m|

2
‰

(by Corollary 4.3.9)

ď E
“

|tXn,m|
3 1t|Xn,m|ďεu

‰

` E
“

2|tXn,m|
2 1t|Xn,m|ąεu

‰

ď t3εE
“

X2
n,m 1t|Xn,m|ďεu

‰

` 2t2E
“

X2
n,m 1t|Xn,m|ąεu

‰

.

Summing over m from 1 to n, from the hypotheses, we have

lim sup
n

n
ÿ

m“1

|fn,mptq ´ gn,mptq| ď εt3σ2.

Let εÑ 0, we have

lim
n

n
ÿ

m“1

|fn,mptq ´ gn,mptq| “ 0.

Since |fn,mptq| ď 1 and |gn,mptq| ď 1 for n large enough, thus

ˇ

ˇ

ˇ

ˇ

ˇ

n
ź

m“1

fn,mptq ´
n
ź

m“1

gn,mptq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

m“1

|fn,mptq ´ gn,mptq| Ñ 0, as nÑ8.

It remains to show

lim
n

n
ź

m“1

gn,mptq “ expp´t2σ2{2q, or lim
n

n
ÿ

m“1

log gn,mptq “ ´t
2σ2{2.

For any ρ ą 1, we have ´ρx ď logp1 ´ xq ď ´x for x ą 0 small enough. Since limn maxm σ
2
n,m “ 0, we

have, for n large enough,
´ρt2σ2

n,m{2 ď log gn,mptq ď ´t
2σ2
n,m{2.

Summing over m and let nÑ8, we have

´ρt2σ2{2 ď lim inf
n

n
ÿ

m“1

log gn,mptq ď lim sup
n

n
ÿ

m“1

log gn,mptq ď ´t
2σ2{2.

Let ρÑ 1`, we obtain the conclusion.

Example 4.4.2. Suppose tYnu are independent Bernoulli random variables with PrYn “ 1s “ 1{n and
PrYn “ 0s “ 1´ 1{n. Define Sn “

řn
j“1 Yj. Then we have

Sn ´ log n
?

log n
ùñ N p0, 1q.

Proof. Since ErYns “ 1{n and varpYnq “ 1{n ´ 1{n2, we find ErSns „ log n and varpSnq „ log n. For
1 ď m ď n, define

Xn,m “
Ym ´ 1{m
?

log n
.
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Then we have ErXn,ms “ 0, and
řn
m“1 ErX2

n,ms Ñ 1, and for any ε ą 0,

lim
nÑ8

n
ÿ

m“1

E
“

X2
n,m 1t|Xn,m|ąεu

‰

“ 0,

because |Xn,m| ď 1{
?

log n. Then by Theorem 4.4.1, we obtain the conclusion.

Example 4.4.3 (Lyapunov’s Theorem). Suppose tYnu are independent and define Sn “
řn
j“1 Yj. Define

αn “
a

varpSnq. If there is δ ą 0 such that

lim
nÑ8

α´2´δ
n

n
ÿ

m“1

Er|Ym ´ ErYms|
2`δs “ 0,

then we have
Sn ´ ErSns
a

varpSnq
ùñ N p0, 1q.

Proof. For 1 ď m ď n, set

Xn,m “
Ym ´ ErYms

αn
.

Then we have ErXn,ms “ 0, and
řn
m“1 ErX2

n,ms “ 1. For any ε ą 0, we have

E
“

X2
n,m 1t|Xn,m|ąεu

‰

“
1

α2
n

E
“

pYm ´ ErYmsq
2 1t|Ym´ErYms|ąεαnu

‰

ď
1

εδα2`δ
n

Er|Ym ´ ErYms|
2`δs.

Thus we can apply Theorem 4.4.1 to tXn,mu and we obtain the conclusion.

Example 4.4.4. Suppose tYnu are i.i.d. with the common law given by PrZ ą xs “ PrZ ă ´xs and
Pr|Z| ą xs “ x´2 for x ě 1. Define Sn “

řn
j“1 Yj. Then we have

Sn
?
n log n

ùñ N p0, 1q.

Proof. Note that ErZ2s “ 8. But this example tells us that, when we renormalize correctly, we still have
the convergence of Sn to the normal distribution.

We truncate the random variables at the level cn whose value is to be decided later: define for
1 ď m ď n,

Yn,m “ Ym 1t|Ym|ďcnu, S̃n “
n
ÿ

m“1

Yn,m.

A good choice of cn should satisfy PrSn ‰ S̃ns Ñ 0 as nÑ 8 and it is close to the lowest possible level.
Since

PrS̃n ‰ Sns ď nPr|Z| ą cns,

we need to choose cn so that n{c2
n Ñ 0 as nÑ8.

Consider tYn,mu, we have ErYn,ms “ 0, and
řn
m“1 ErY 2

n,ms “ 2n log cn. This indicates that we should
define

Xn,m “
Yn,m

?
2n log cn

, S̃#
n “

n
ÿ

m“1

Xn,m.

Then we have ErXn,ms “ 0 and
řn
m“1 ErX2

n,ms Ñ 1. For any ε ą 0, we need

n
ÿ

m“1

ErX2
n,m 1t|Xn,m|ąεus “

1

log cn

´

log cn ´ logpε
a

2n log cnq
¯

Ñ 0.
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Combining all the requirements, we need to choose cn Ò 8 such that

n

c2
n

Ñ 0,
1

log cn

ˆ

log cn ´
1

2
plog n` log log cnq

˙

Ñ 0.

We can choose cn “
?
n log n. Then we can apply Theorem 4.4.1 to S̃#

n and we have

S̃n
?
n log n

ùñ N p0, 1q.

Finally, for any x P R, we have
ˇ

ˇ

ˇ

ˇ

ˇ

P

„

Sn
?
n log n

ď x



´ P

«

S̃n
?
n log n

ď x

ffˇ

ˇ

ˇ

ˇ

ˇ

ď PrSn ‰ S̃ns Ñ 0.

Thus
Sn

?
n log n

ùñ N p0, 1q.

4.5 Poisson convergence

The goal of this section is the following “weak law of small numbers” or the “law of rare events”.

Theorem 4.5.1. For each n, let tXn,m : 1 ď m ď nu be independent variables with PrXn,m “ 1s “ pn,m
and PrXn,m “ 0s “ 1´ pn,m. Suppose

n
ÿ

m“1

pn,m Ñ λ P p0,8q, and max
1ďmďn

pn,m Ñ 0.

Then

S#
n “

n
ÿ

m“1

Xn,m ùñ Poissonpλq.

Proof. Let us calculate the characteristic functions of Xn,m and Sn:

ErexppitXn,mqs “ 1` pn,mpe
it ´ 1q, ErexppitSnqs “

n
ź

m“1

`

1` pn,mpe
it ´ 1q

˘

.

Then the goal is the following:

n
ÿ

m“1

log
`

1` pn,mpe
it ´ 1q

˘

Ñ λpeit ´ 1q.

Since
řn
m“1 pn,m Ñ λ, it is sufficient to show

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

m“1

log
`

1` pn,mpe
it ´ 1q

˘

´

n
ÿ

m“1

pn,mpe
it ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0.

For z P C such that |z| ď 1{2, we have | logp1` zq ´ z| ď C|z|2. Thus
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

m“1

log
`

1` pn,mpe
it ´ 1q

˘

´

n
ÿ

m“1

pn,mpe
it ´ 1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď C
n
ÿ

m“1

4p2
n,m

ď 4C max
1ďmďn

pn,m

n
ÿ

m“1

pn,m Ñ 0.
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Example 4.5.2. In a class with 400 students, the number of students who have their birthday on the day
of the final exam has approximately a Poisson distribution with mean 400{365 “ 1.096.

We will give a second proof which involves the notion of total variation distance, a concept which is
of great interest in “Markov chain”.

Definition 4.5.3. Suppose S is a countable set. The total variation distance between two probability
measures on S is given by

}µ´ ν} :“
1

2

ÿ

zPS

|µpzq ´ νpzq|.

Lemma 4.5.4. We have
}µ´ ν} “ sup

AĂS
|µrAs ´ νrAs|.

Proof. On the one hand, for any A Ă S, we have

2}µ´ ν} “
ÿ

zPS

|µrzs ´ νrzs| ě |µrAs ´ νrAs| ` |µrAcs ´ νrAcs| “ 2|µrAs ´ νrAs|.

On the other hand, set A0 “ tz : µrzs ě νrzsu. Then we have

µrA0s ´ νrA0s “
ÿ

zPA0

pµrzs ´ νrzsq, νrAc0s ´ µrA
c
0s “

ÿ

zPAc
0

pνrzs ´ µrzsq.

Thus
2pµrA0s ´ νrA0sq “

ÿ

z

|µrzs ´ νrzs| “ 2}µ´ ν}.

Lemma 4.5.5. Denote by PZ the collection of probability measures on Z.

(1) The total variation distance }µ´ ν} defines a metric on PZ.

(2) }µn ´ µ} Ñ 0 if and only if µnrxs Ñ µrxs for all x P Z. In particular, }µn ´ µ} Ñ 0 if and only if
µn ùñ µ.

Proof. To show the total variation distance is a metric, we only need to check the triangle inequality:
suppose µ, ν, η P PZ, for any A Ă S, we have

|µrAs ´ νrAs| ď |µrAs ´ ηrAs| ` |νrAs ´ ηrAs| ď }µ´ η} ` }ν ´ η}.

Thus
}µ´ ν} ď }µ´ η} ` }ν ´ η}.

Lemma 4.5.6.
}µ´ ν} “ inftPrX ‰ Y s : pX,Y q is a coupling of µ, νu.

We call pX,Y q the optimal coupling if PrX ‰ Y s “ }µ´ ν}.

Proof. There are two steps: first, show that }µ´ ν} ď PrX ‰ Y s for any coupling pX,Y q; next, construct
a coupling pX,Y q such that }µ´ ν} “ PrX ‰ Y s.
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First step. Suppose that pX,Y q is any coupling of µ and ν and that A is any subset of S. Note that

µrAs ´ νrAs “ PrX P As ´ PrY P As

“ PrX P A, Y R As ´ PrY P A,X R As

ď PrX P A, Y R As ď PrX ‰ Y s.

Thus }µ´ ν} ď PrX ‰ Y s.

Second step. We need to construct a coupling pX,Y q so that X “ Y as often as possible. Define three
probability measures

γ1pxq “
µpxq ´ νpxq

}µ´ ν}
1tµpxqąνpxqu, γ2pxq “

νpxq ´ µpxq

}µ´ ν}
1tνpxqąµpxqu, γ3pxq “

µpxq ^ νpxq

p
,

where p “ 1 ´ }µ ´ ν}. We construct the coupling in the following way: Flip a coin with probability of
heads equal to p.

• If head, choose a value Z according to γ3, and set X “ Y “ Z.

• If tail, choose X according to γ1, and independently choose Y according to γ2. Since γ1 and γ2 are
singular, we have X ‰ Y a.s. in this case.

Now we have a pair pX,Y q, and let us check the marginal laws.

• The marginal law of X: pγ3 ` p1´ pqγ1 “ µ.

• The marginal law of Y : pγ3 ` p1´ pqγ2 “ ν.

Moreover, we have that
PrX ‰ Y s “ Prtail, X ‰ Y s “ 1´ p “ }µ´ ν}.

Lemma 4.5.7. Suppose µ1, µ2, ν1, ν2 are probability measures on Z, then

}µ1 ˆ µ2 ´ ν1 ˆ ν2} ď }µ1 ´ ν1} ` }µ2 ´ ν2}.

Proof. We have

2}µ1 ˆ µ2 ´ ν1 ˆ ν2} “
ÿ

x,y

|µ1pxqµ2pyq ´ ν1pxqν2pyq|

ď
ÿ

x,y

|µ1pxqµ2pyq ´ ν1pxqµ2pyq| `
ÿ

x,y

|ν1pxqµ2pyq ´ ν1pxqµ2pyq|

“
ÿ

x,y

|µ1pxq ´ ν1pxq|µ2pyq `
ÿ

x,y

ν1pxq|µ2pyq ´ µ2pyq|

“ 2}µ1 ´ ν1} ` 2}µ2 ´ ν2}.

Lemma 4.5.8. Suppose µ1, µ2, ν1, ν2 are probability measures on Z, then

}µ1 ˚ µ2 ´ ν1 ˚ ν2} ď }µ1 ˆ µ2 ´ ν1 ˆ ν2}.
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Proof. We have

2}µ1 ˚ µ2 ´ ν1 ˚ ν2} ď
ÿ

x,y

|µ1px´ yqµ2pyq ´ ν1px´ yqν2pyq|

“ 2}µ1 ˆ µ2 ´ ν1 ˆ ν2}.

Second Proof of Theorem 4.5.1. Denote by µn,m the law of Xn,m and by νn,m the law of Poisson distri-

bution with mean pn,m. Denote by µn the law of S#
n , by νn the law of Poisson distribution with mean

řn
m“1 pn,m, and by ν the law of Poisson distribution with mean λ. Then we have

}µn ´ νn} ď
n
ÿ

m“1

}µn,m ´ νn,m}.

By direct calculation, we have

}µn,m ´ νn,m} “ pn,mp1´ e
´pn,mq ď p2

n,m.

Thus

}µn ´ νn} ď
n
ÿ

m“1

p2
n,m Ñ 0.

4.6 Representation theorems

A characteristic function is the Fourier transform of a probability measure. In this section, we will give
a characterization for the characteristic function.

Definition 4.6.1. A complex-valued function f defined on R is called positive definite if for any finite
set of real numbers tj and complex numbers zj, we have

n
ÿ

j,k“1

fptj ´ tkqzjzk ě 0.

The goal of this section is the following theorem.

Theorem 4.6.2. f is a characteristic function if and only if it is positive definite and continuous at zero
with fp0q “ 1.

To prove Theorem 4.6.2, we first derive some properties of positive definite functions.

Lemma 4.6.3. If f is positive definite, then for each t P R:

fp´tq “ fptq, |fptq| ď fp0q. (4.6.1)

If we assume further that f is continuous at t “ 0, then it is uniformly continuous in R; furthermore, for
every continuous complex-valued function ξ on R and every T ą 0, we have

ż T

0

ż T

0
fps´ tqξpsqξptqdsdt ě 0. (4.6.2)
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Proof. In Definition 4.6.1, taking n “ 1, t1 “ 0 and z1 “ 1, we have fp0q ě 0.
Taking n “ 2, t1 “ 0, t2 “ t, z1 “ z and z2 “ w, we have

fp0q|z|2 ` fp0q|w|2 ` fptqzw ` fp´tqzw ě 0. (4.6.3)

Taking z “ w “ 1 in (4.6.3), we have

2fp0q ` fptq ` fp´tq ě 0.

Taking z “ 1 and w “ i in (4.6.3), we have

2fp0q ` fptqi´ fp´tqi ě 0.

These imply that fptq ` fp´tq is real and fptq ´ fp´tq is pure imaginary. Thus fptq “ fp´tq. We can
rewrite (4.6.3) as follows:

`

z w
˘

ˆ

fp0q fp´tq
fptq fp0q

˙ˆ

z
w

˙

.

The 2ˆ 2 matrix is self adjoint2. Thus the determinant is positive: fp0q2 ě |fptq|2 which completes the
proof of (4.6.1).

Next, we assume f is continuous at zero with fp0q “ 1. Taking n “ 3 and t1 “ 0, t2 “ t, t3 “ t ` h,
we have

`

z1 z2 z3

˘

¨

˝

fp0q fp´tq fp´t´ hq
fptq fp0q fp´hq

fpt` hq fphq fp0q

˛

‚

¨

˝

z1

z2

z3

˛

‚.

The determinant of the 3ˆ 3 matrix has to be positive:

1´ |fphq|2 ´ |fptq|2 ´ |fpt` hq|2 ` 2<fptqfphqfpt` hq ě 0.

Therefore,

|fpt` hq ´ fptq|2 ď |fptq|2 ` |fpt` hq|2 ´ 2<fptqfpt` hq
ď 1´ |fphq|2 ` 2<fptqpfphq ´ 1qfpt` hq

ď 1´ |fphq|2 ` 2|1´ fphq| ď 4|1´ fphq|.

This gives the uniform continuity. Finally, since the integrand in (4.6.2) is continuous, the integral is the
limit of Riemann sums which is positive.

Proof of Theorem 4.6.2. First, we assume that f is the characteristic function of the probability measure
µ, then we have

n
ÿ

j,k“1

fptj ´ tkqzjzk “

ż n
ÿ

j,k“1

eixptj´tkqzjzkµrdxs

“

ż

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

eixtjzj

ˇ

ˇ

ˇ

ˇ

ˇ

2

µrdxs ě 0.

Next, we assume that f is positive definite and is continuous at zero with fp0q “ 1. Taking ξptq “ e´itx

in (4.6.2), we have

pT pxq :“
1

2πT

ż T

0

ż T

0
fps´ tqe´ips´tqxdsdt ě 0.

2Any n ˆ n Hermitian matrix H can be diagonalized by a unitary matrix. All eigenvalues of H are real, and H has n
linearly independent eigenvectors.
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By a change of variables, we have

pT pxq “
1

2π

ż T

´T
fT puqe

´iuxdu, where fT puq “

ˆ

1´
|u|

T

˙

fpuq 1t|u|ďT u .

First, we argue that pT is a probability density function. To this end, we calculate

1

α

ż α

0
dβ

ż β

´β
pT pxqdx “

1

2π

ż 8

´8

fT puqdu
1

α

ż α

0
dβ

ż β

´β
e´iuxdx

“
1

2π

ż 8

´8

fT puqdu
1

α

ż α

0
dβ

2 sinpβuq

u

“
1

π

ż 8

´8

fT puqdu
p1´ cospαuqq

αu2
“

1

π

ż 8

´8

fT

ˆ

t

α

˙

p1´ cos tq

t2
dt.

Note that |fT | ď |f | ď 1, dominated convergence theorem shows that

lim
αÑ8

1

α

ż α

0
dβ

ż β

´β
pT pxqdx “

1

π

ż 8

´8

p1´ cos tq

t2
dt “ 1.

The last equation is due to the following fact:

ż 8

0

1´ cospαxq

x2
dx “

π

2
|α|. (4.6.4)

Since pT pxq ě 0 and
şβ
´β pT pxqdx is increasing in β, we have

ż 8

´8

pT pxqdx “ lim
βÑ8

ż β

´β
pT pxqdx “ 1.

Thus pT pxq is a probability density function.
Second, we argue that fT is the characteristic function of pT . To this end, we calculate the following:

for any t P R,

1

α

ż α

0
dβ

ż β

´β
eitxpT pxqdx “

1

2π

ż 8

´8

fT puqdu
1

α

ż α

0
dβ

ż β

´β
e´ipu´tqxdx

“
1

2π

ż 8

´8

fT puqdu
1

α

ż α

0
dβ

2 sinpβpu´ tqq

u´ t

“
1

π

ż 8

´8

fT puqdu
p1´ cospαpu´ tqqq

αpu´ tq2
“

1

π

ż 8

´8

fT

´

t`
v

α

¯

p1´ cos vq

v2
dv.

Dominated convergence theorem gives

lim
αÑ8

1

α

ż α

0
dβ

ż β

´β
eitxpT pxqdx “ fT ptq.

Since
ş

pT pxqdx “ 1, the following limit exists and hence equals fT ptq:

ż 8

´8

eitxpT pxqdx “ lim
βÑ8

ż β

´β
eitxpT pxqdx “ fT ptq.

This shows that fT is the characteristic function of pT pxqdx.
Finally, we see that fT Ñ f as T Ñ 8 and f is continuous at zero with fp0q “ 1 by the hypothesis,

combining with Theorem 4.3.1, we see that f is the characteristic function of a probability measure.
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Example 4.6.4. If f is a characteristic function, then so is eλpf´1q for λ ě 0.

Proof. For each λ ě 0, as soon as n ě λ, the function

1`
λpf ´ 1q

n

is also a characteristic function, hence so is its nth power. As nÑ8,
ˆ

1`
λpf ´ 1q

n

˙n

Ñ eλpf´1q,

and the limit is clearly continuous at zero with value one. Hence it is a characteristic function.

In this example, if we take fptq “ eit which is the characteristic function of the dirac mass at one, we
have

eλpe
it´1q “

8
ÿ

n“0

e´λλn

n!
eitn

which is the characteristic function of the Poisson distribution.

4.7 Exercises

Exercise 4.7.1. If the sequence of characteristic functions tfnu converges uniformly in a neighborhood of
the origin, then tfnu is equicontinuous, and there exists a subsequence that converges to a characteristic
function f .

Exercise 4.7.2. Let tXnu be i.i.d. with ErX1s “ 0 and varpX1q “ 1. Set Sn “
řn
j“1Xj. Show that

lim sup
n

Sn
?
n
“ 8, a.s.; and

Sn
?
n
ùñ N p0, 1q.

Exercise 4.7.3. Let tXnu be i.i.d. with mean zero and variance σ2 P p0,8q, then

lim
n

E

„

|Sn|
?
n



“ 2 lim
n

E

„

S`n?
n



“

c

2

π
σ.

Exercise 4.7.4. Suppose tXnu are i.i.d. with mean zero and variance one. Prove that both
řn
j“1Xj

b

řn
j“1X

2
j

, and

?
n
řn
j“1Xj

řn
j“1X

2
j

converges in distribution to N p0, 1q.

Exercise 4.7.5. Let tXnu be i.i.d. with mean zero and set Sn “
řn
j“1Xj. Assume that Sn{

?
n converges

in distribution, prove that ErX2
1 s ă 8.

Exercise 4.7.6. Use Theorem 4.4.1 to give a second proof of three series theorem.

Exercise 4.7.7. Suppose tXnu are independent and

PrXn “ ´ns “ PrXn “ ns “
1

2n2
, PrXn “ ´1s “ PrXn “ 1s “

1

2
´

1

2n2
.

Define Sn “
řn
j“1Xj. Show that

varpSnq

n
Ñ 2,

Sn
?
n
ùñ N p0, 1q.

Figure out why the conclusion violates Theorem 4.4.1.
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Exercise 4.7.8. Suppose fpt, uq is a function on R2 such that for each u, the function fp¨, uq is a
characteristic function; and for each t, the function fpt, ¨q is continuous. Then, for any probability measure
ν, the following function is also a characteristic function:

exp

ˆ
ż 8

´8

pfpt, uq ´ 1qνrdus

˙

.

Exercise 4.7.9 (YCMC2013). Let tXnu be i.i.d. with ErXs “ µ, σ2 :“ varpXq ă 8 and characteristic
function ϕXptq. Let N be a non-negative integer-valued random variable with ErN s “ ν, η2 “ varpNqand
characteristic function ϕN ptq. Suppose tXnu and N are independent. Let Y “

řN
k“1Xk.

(1) What is the characteristic function of Y ?

(2) Evaluate the variance of Y .

Exercise 4.7.10 (YCMC2013). Suppose that X and Y are two independent random variables and X has
a density. Does X ` Y also have a density?

Exercise 4.7.11 (YCMC2013). Suppose that N is a random variable such that PrN “ is “ 1{3 for
i P t1, 2, 3u and X1, X2, X3 are i.i.d with standard normal distribution N p0, 1q. Is X “

řN
i“1Xi also

normal?

Exercise 4.7.12 (YCMC2013). Suppose that X and Y are independent and the law of the two-dimensional
random vector Z :“ pX,Y q is rotationally invariant: for any orthogonal matrix O (i.e. OtO “ I2), OZ
has the same law as Z as a random vector. Show that both X and Y have the law of a centered normal
distribution N p0, σ2q for some σ2 ą 0.

Exercise 4.7.13 (YCMC2013). Show that f1ptq “ pcos tq2 is a characteristic function and f2ptq “ | cos t|
is not a characteristic function.

Exercise 4.7.14 (YCMC2015). Suppose that X and Z are jointly normal with mean zero and standard
deviation one. Show that, for a strictly monotone function fp¨q,

covpX,Zq “ 0, if and only if covpX, fpZqq “ 0,

provided the latter covariance exists. Hint: Z can be expressed as Z “ ρX `
a

1´ ρ2Y where X and Y
are i.i.d. with N p0, 1q.

Exercise 4.7.15 (YCMC2016). Let X,Y be two real-valued random variables such that X ´ Y and X
are independent, and that X ´ Y are Y are independent. Show that X ´ Y is almost surely constant.

Exercise 4.7.16 (YCMC2016). Let Xλ be a Poisson random variable with parameter λ. What is the
limiting distribution of

?
Xλ ´

?
λ as λÑ8?
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5 Martingales

5.1 Conditional expectation

Theorem 5.1.1. Let pΩ,F ,Pq be a probability space. Suppose that X is a random variable in L1pΩ,F ,Pq
and that A is a sub-σ-field of F . Then there exists a random variable Y such that

(1) Y is A-measurable;

(2) Er|Y |s ă 8;

(3) for any A P A, we have ErX 1As “ ErY 1As.

Moreover, if Ỹ is another random variable satisfying the above three properties, then Ỹ “ Y a.s.

Definition 5.1.2. A random variable Y with the three properties in Theorem 5.1.1 is called the conditional
expectation of X given A, denoted by ErX |As.

We can easily check that the conditional expectation has the following basic properties. Suppose that
X,X1, X2 P L

1 and A is a sub-σ-field.

• If A “ tH,Ωu, then ErX |As “ ErXs.

• If X is A-measurable, then ErX |As “ X.

• If Y “ ErX |As, then ErY s “ ErXs.

• (Linearity). Era1X1 ` a2X2 |As “ a1ErX1 |As ` a2ErX2 |As for constants a1, a2.

• (Positivity). If X ě 0, then ErX |As ě 0.

Proof of Positivity. Denote ErX |As by Y . By the definition, we know that

ErY 1As “ ErX 1As ě 0, @A P A. (5.1.1)

For n ě 1, define An “ tY ď ´1{nu. Since Y is A-measurable, we know that An P A. Thus, by (5.1.1),
we have

´1

n
PrAns ě ErY 1Ans ě 0.

Thus PrAns “ 0, and PrYnAns “ 0. Therefore, PrY ă 0s “ 0.

Proof of Theorem 5.1.1. First, we show the existence of ErX |As for X P L2pΩ,F ,Pq. Consider the
subspace L2pΩ,A,Pq of L2pΩ,F ,Pq, it is complete under L2-norm. Thus there exists Y P L2pΩ,A,Pq
such that

E
“

pX ´ Y q2
‰

“ inftE
“

pX ´ Zq2
‰

: Z P L2pΩ,A,Pqu.

Moreover, we know that, for any Z P L2pΩ,A,Pq,

ErpX ´ Y qZs “ 0.

Therefore, for any A P A, we have
ErX 1As “ ErY 1As.

Thus, we can choose ErX |As “ Y .
Second, we show the existence of ErX |As for X P L1pΩ,F ,Pq. Since X can be written as the

difference of two non-negative L1 random variables, it is sufficient to show the conclusion for non-negative
X P L1pΩ,F ,Pq. There exists a sequence of bounded variables tXnu such that 0 ď Xn Ò X a.s. Since
Xn P L

2pΩ,F ,Pq, there exists some Yn “ ErXn |As. By “Positivity”, we have that 0 ď Yn Ò a.s. Define
Y “ limYn. We will check that Y satisfies all the requirements.
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• Since tYnu are A-measurable, the limit Y is also A-measurable.

• For any A P A, by Monotone Convergence Theorem, we have

ErY 1As “ lim
n

ErYn 1As “ lim
n

ErXn 1As “ ErX 1As.

In particular ErY s “ ErXs and Y P L1.

Thus Y satisfies all the requirements and we can choose ErX |As “ Y .
Finally, we show the uniqueness. If Ỹ is another random variable satisfying the three properties, then

by a similar proof for “Positivity”, we have that

PrY ą Ỹ s “ 0, PrY ă Ỹ s “ 0.

Proposition 5.1.3. Suppose that X and tXnu are random variables in L1pΩ,F ,Pq and that A is a
sub-σ-field. We have the following properties.

(1) (Monotone Convergence Theorem). If 0 ď Xn Ò X a.s., then ErXn |As Ò ErX |As a.s.

(2) (Fatou’s Lemma). If Xn ě 0 for all n, then Erlim infnXn |As ď lim infn ErXn |As a.s.

(3) (Dominated Convergence Theorem). If Xn Ñ X a.s. and there is Z P L1pΩ,F ,Pq such that
|Xn| ď Z for all n, then ErXn |As Ñ ErX |As a.s.

(4) (Jensen’s Inequality). If ϕ : R Ñ R is convex and Er|ϕpXq|s ă 8, then ErϕpXq |As ě ϕpErX |Asq.

Proof of Item (4). For convex function ϕ, there exists a sequence of pairs of reals tpan, bnq, n ě 0u such
that

ϕpxq “ sup
n
panx` bnq, @x P R.

Since ϕpXq ě anX ` bn a.s., we have

ErϕpXq |As ě anErX |As ` bn a.s.

Therefore,
ErϕpXq |As ě sup

n
panErX |As ` bnq “ ϕpErX |Asq a.s.

Proposition 5.1.4. Suppose that X and tXnu are random variables in L1pΩ,F ,Pq and that A is a
sub-σ-field. We have the following properties.

(1) (Tower property). Suppose that B is a sub-σ-field of A. Then

ErErX |As |Bs “ ErX |Bs.

(2) (“Taking out what is known”). Suppose that Z is A-measurable and Er|XZ|s ă 8, then

ErZX |As “ ZErX |As.

(3) (Independence). If B is independent of σpX,Aq, then

ErX |σpA,Bqs “ ErX |As a.s.

In particular, if X is independent of B, then ErX |Bs “ ErXs a.s.

73



Proof of Item (2). The relation is true when Z is an indicator function (by the definition of the conditional
expectation). Hence, by Linearity, it is true for linear combinations of the indicator functions. Finally,
by Dominated Convergence Theorem, it is true for general Z with Er|XZ|s ă 8.

Proof of Item (3). Denote ErX |As by Y . We need to show that

ErX 1Cs “ ErY 1Cs, @C P σpA,Bq. (5.1.2)

We first argue that (5.1.2) holds for C “ A X B where A P A and B P B. In other words, we first
show that ErX 1AXBs “ ErY 1AXBs. We have the following observations:

• Since B is independent of σpX,Aq, we have ErX 1A 1Bs “ ErX 1AsPrBs.

• Since Y is A-measurable which is independent of B, we have ErY 1A 1Bs “ ErY 1AsPrBs.

• Since Y “ ErX |As, we know that ErX 1As “ ErY 1As.

Combining the above three facts, we obtain (5.1.2) for C “ AXB.
Denote by C the collection of sets C P σpA,Bq such that (5.1.2) holds. Denote by C0 the field

generated by A X B where A P A, B P B. We can check that C0 Ă C. It is clear that C is a monotone
class. Lemma 1.1.4 implies that σpC0q Ă C which gives the conclusion.

Example 5.1.5. Suppose X and Y are independent. Let ϕ be a measurable function on R2 such that
Er|ϕpX,Y q|s ă 8 and let gpxq “ Erϕpx, Y qs. Then we have

ErϕpX,Y q |σpXqs “ gpXq a.s.

The conclusion in this example looks intuitive, but let us emphasize that the conclusion can not be
true without the assumption that X and Y are independent. For instantce, without such assumption, we
may take Y “ X, then we have

E rϕpX,Y q |σpXqs “ ϕpX,Xq a.s.

Proof. It is clear that gpXq P σpXq, it remains to show

ErϕpX,Y q 1As “ ErgpXq1As, @A P σpXq.

This is equivalent to showing, for any measurable function f ,

ErϕpX,Y qfpXqs “ ErgpXqfpXqs.

Denote by µ “ LpXq and ν “ LpY q. Then we have

ErϕpX,Y qfpXqs “
ĳ

ϕpx, yqfpxqµpdxqνpdyq (since X,Y are independent)

“

ż

µpdxqfpxq

ż

ϕpx, yqνpdyq (by Fubini’s theorem)

“

ż

µpdxqfpxqgpxq (by the definition of g)

“ ErgpXqfpXqs.
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Example 5.1.6. Suppose that tXnu are i.i.d. with finite expectation. Let Sn “ X1`¨ ¨ ¨`Xn, and define

An “ σpSn, Sn`1, ...q “ σpSn, Xn`1, ...q.

Then, for all n ě 1,
ErX1 |Ans “ Sn{n.

Proof. Since X1, Sn are independent of Xn`1, ..., we have that

ErX1 |Ans “ ErX1 |σpSnqs.

We will argue that, for all 1 ď k ď n,

ErXk |σpSnqs “ ErX1 |σpSnqs (5.1.3)

This implies the conclusion. To show (5.1.3), we only need to show

ErXk 1As “ ErX1 1As, @A P σpSnq.

This is equivalent to the following

ErXkfpSnqs “ ErX1fpSnqs, @ bounded measurable function f.

This is true since pXk, Snq has the same law as pX1, Snq.

Example 5.1.7 (Conditional probability). Suppose A,B are events such that PrBs ą 0 and G is a σ-field.
We define conditional probability as follows:

PrA |Gs “ Er1A |Gs, PrA |Bs “
PrAXBs

PrBs
.

In particular, if we have 0 ă PrBs ă 1 and G “ tH,Ω, B,Bcu, we obtain

PrA |Gs “ PrA |Bs1B `PrA |Bcs1Bc .

5.2 Martingales

Suppose that pΩ,F ,Pq is a probability space.

• A filtration tFnu is an increasing family of sub-σ-fields of F .

• A sequence of random variables tXnu is measurable (adapted) with respect to the filtration tFnu
if, for all n, the random variable Xn is Fn-measurable.

• The natural filtration associated to tXnu is given by Fn “ σpX1, ..., Xnq for n ě 1.

• A sequence of random variables tXnu is integrable if Xn P L
1 for all n.

Definition 5.2.1. Let X “ tXnu be an integrable process adapted to the filtration tFn, n ě 0u.

(1) X is a martingale if ErXn |Fms “ Xm a.s. for all n ě m.

(2) X is a supermartingale if ErXn |Fms ď Xm a.s. for all n ě m.

(3) X is a submartingale if ErXn |Fms ě Xm a.s. for all n ě m.

Example 5.2.2. (1) Let tξiuiě1 be a sequence of independent random variables in L1 with Erξis “ 0.
Then tXn :“

řn
1 ξiuně1 is a martingale.
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(2) Let tξiuiě1 be a sequence of independent random variables in L1 with Erξis “ 1. Then tXn :“
śn

1 ξiuně1 is a martingale.

(3) Consider biased random walk on Z: at each step, the walker goes to the right with probability p and
goes to the left with probability p1´ pq. Let Xn be the location of the walker at time n.

• If p “ 1{2, then tXnu is a martingale.

• If p ă 1{2, then tXnu is a supermartingale. But tXn ´ np2p´ 1qu is a martingale.

The martingales have the following basic properties.

• If tXnu is a martingale, then ErXns “ ErX0s for all n.

• If tXnu is a supermartingale (resp. submartingale), then ErXns is decreasing (resp. increasing).

• If tXnu is a martingale and ϕ is a convex function, then tϕpXnqu is a submartingale. In particular,
t|Xn|u is a submartingale.

Definition 5.2.3. Suppose that tFnu is a filtration. A stopping time T : Ω Ñ N˚ “ t0, 1, 2, ....,8u is a
random variable such that

tT “ nu P Fn, @n.

Lemma 5.2.4. The following statements are equivalent.

(1) tT “ nu P Fn for all n.

(2) tT ď nu P Fn for all n.

(3) tT ą nu P Fn for all n.

(4) tT ě nu P Fn´1 for all n.

Lemma 5.2.5. If S, T, Tj are stopping times for j ě 1. The following random variables are also stopping
times:

S _ T, S ^ T, inf
j
Tj , sup

j
Tj , lim inf

j
Tj , lim sup

j
Tj .

Proof. First, for the random variable S _ T , we have that

tS _ T ď nu “ tS ď nu X tT ď nu P Fn.

Next, for the random variable infj Tj , we have that

tinf
j
Tj ď nu “ YjtTj ď nu P Fn.

Finally, for the random variable lim infj Tj , we have that

tlim inf
j

Tj ď nu “ Xm Yjěm tTj ď nu P Fn.

Definition 5.2.6. Suppose that tFnu is a filtration and that T is a stopping time. Define

FT “ tA P F : AX tT ď nu P Fn,@nu.

Intuitively, FT is the information available by time T .

• If T “ n0, then FT “ Fn0 .
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• The random variable XT 1tTă8u is measurable with respect to FT .

• Suppose S and T are stopping times that S ď T , then FS Ă FT .

• Suppose tXnu is a process adapted to tFnu, define XT
n :“ XT^n. Then tXT

n u is also adapted to
tFnu.

Proof. We leave the first and the second items as exericese. We first show the third item. For any A P FS ,
in order to show that A P FT , it is sufficient to show that AX tT ď nu P Fn for all n.

Since S ď T , the event AXtS ď nu is the disjoint union of AXtT ď nu and AXtT ą n ě Su. Since
A P FS , we have that

AX tS ď nu P Fn, AX tT ą n ě Su “ pAX tS ď nuq X tT ą nu P Fn.

This implies that AX tT ď nu P Fn.
Next, we show the last item. It is equivalent to showing that tXT^n P Bu P Fn for any Borel set B

and for any n. Note that

tXT^n P Bu “ tXn P B, T ą nu Y tXT P B, T ď nu.

The first part tXn P B, T ą nu “ tXn P Bu X tT ą nu P Fn. The second part tXT P B, T ď nu “
Ynj“1tXj P B, T “ ju P Fn.

Theorem 5.2.7 (Optional Stopping Theorem). Let tXnu be a martingale.

(1) If T is a stopping time, then tXT
n u is also a martingale. In particular, ErXT^ns “ ErX0s.

(2) If T is a stopping time bounded by a constant N , then ErXN |FT s “ XT a.s. Furthermore, if S is
stopping time such that S ď T a.s., we have ErXT |FSs “ XS a.s. In particular, ErXT s “ ErX0s.

(3) Suppose that there is a random variable Y P L1 such that |Xn| ď Y for all n and that T is a stopping
time which is a.s. finite. Then ErXT s “ ErX0s.

(4) Suppose that X has bounded increments, i.e. there is M ă 8 such that |Xn`1´Xn| ďM for all n,
and that T is a stopping time with ErT s ă 8. Then ErXT s “ ErX0s.

Proof of Item (1). We first show that tXT
n u is integrable. Since tXnu is integrable, we have

E
“

|XT
n |
‰

ď E

„

max
iďn

|Xi|



ď

n
ÿ

i“1

Er|Xi|s ă 8.

We already see that tXT
n u is adapted to tFnu. It remains to check the conditional expectation. For every

n ě 1,

ErXT
n |Fn´1s “ ErXT

n´1 ` pXn ´Xn´1q 1tTąn´1u |Fn´1s

“ XT
n´1 ` 1tTąn´1u ErXn ´Xn´1 |Fn´1s “ XT

n´1.

By Tower Property, we could conclude that tXT
n u is a martingale.

Proof of Item (2). For A P FT ,

ErXN 1As “
N
ÿ

i“1

ErXN 1A 1tT“ius

“

N
ÿ

i“1

E
“

ErXN |Fis1A 1tT“iu
‰

“

N
ÿ

i“1

E
“

Xi 1A 1tT“iu
‰

“ ErXT 1As.
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Therefore ErXN |FT s “ XT . Similarly, we have ErXN |FSs “ XS . The tower property gives

XS “ ErXN |FSs “ ErErXN |FT s |FSs “ ErXT |FSs.

Proof of Item (3). Since |Xn| ď Y for all n and T is finite a.s., we have |Xn^T | ď Y . Then Dominated
Convergence Theorem implies that

lim
nÑ8

ErXn^T s “ Er lim
nÑ8

Xn^T s “ ErXT s.

As n ^ T is a bounded stopping time, Item (2) implies that ErXn^T s “ ErX0s. Hence we conclude that
ErXT s “ ErX0s.

Proof of Item (4). We can write ErXT s “ ErX0s ` E
”

řT
i“1pXi ´Xi´1q

ı

, so it suffices to show that the

last term is zero. Note that

|

T
ÿ

i“1

pXi ´Xi´1q| ď

T
ÿ

i“1

|Xi ´Xi´1| ďMT P L1.

Then Dominated Convergence Theorem implies that

E

«

T
ÿ

i“1

pXi ´Xi´1q

ff

“ E

«

8
ÿ

i“1

pXi ´Xi´1q1tTěiu

ff

“

8
ÿ

i“1

ErpXi ´Xi´1q 1tTěius

“

8
ÿ

i“1

ErErpXi ´Xi´1q1tTěiu |Fi´1ss

“

8
ÿ

i“1

Er1tTěiu ErpXi ´Xi´1q |Fi´1ss “ 0,

where we used that tT ě iu “ tT ď i´ 1uc P Fi´1 as T is a stopping time.

Example 5.2.8. Let tXnu be a simple random walk on Z starting from k P t0, 1, . . . , Nu. Define τ “
mintn : Xn “ 0 or Nu. Then

PrXτ “ N s “ k{N.

First proof. We denote the probability measure for the simple random walk starting from k by Pk and
set

ppkq “ PkrXτ “ N s.

For 1 ď k ď N ´ 1,

ppkq “ PkrXτ “ N,X1 “ k ` 1s ` PkrXτ “ N,X1 “ k ´ 1s “
1

2
ppk ` 1q `

1

2
ppk ´ 1q.

Thus p is a harmonic function on t0, 1, . . . , Nu and it has boundary values pp0q “ 0 and ppNq “ 1, thus
it is uniquely determined: ppkq “ k{N .
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Second proof. The process tXnu is a martingale:

ErXn |σpX1, . . . , Xn´1qs “
1

2
pXn´1 ` 1q `

1

2
pXn´1 ´ 1q “ Xn´1.

By Optional Stopping Theorem, we have ErXτ^ns “ k. Note that |Xτ^n| ď N . Then Bounded Conver-
gence Theorem gives

ErXτ s “ lim
n

ErXτ^ns “ k.

Thus
NPrXτ “ N s “ k

which gives the conclusion.

Theorem 5.2.9 (Optional Stopping Theorem for supermartingale). Let tXnu be a supermartingale.

(1) If T is a stopping time, then tXT
n u is also a supermartingale. In particular, ErXT^ns ď ErX0s.

(2) If T is a stopping time bounded by a constant N , then ErXN |FT s ď XT a.s. Furthermore, if S is
a stopping time such that S ď T , we have ErXT |FSs ď XS a.s. In particular, ErXT s ď ErX0s.

(3) Suppose that there is a random variable Y P L1 such that |Xn| ď Y for all n and that T is a stopping
time which is a.s. finite. Then ErXT s ď ErX0s.

(4) Suppose that X has bounded increments, i.e. there is M ă 8 such that |Xn`1´Xn| ďM for all n,
and that T is a stopping time with ErT s ă 8. Then ErXT s ď ErX0s.

(5) Suppose that X is a non-negative supermartingale. Then for any stopping time T which is finite
a.s., we have ErXT s ď ErX0s.

Proof of Item (2). We only show ErXT |FSs ď XS . To this end, it suffices to show ErXT 1As ď ErXS 1As
for any A P FS . By Item (1), we have ErXT^n |Fms ď XT^m for m ď n. In particular, we have

ErXT |Fms ď XT^m, @m ď N. (5.2.1)

Therefore,

ErXT 1As “
N
ÿ

k“0

ErXT 1AXtS“kus

“

N
ÿ

k“0

Er1AXtS“ku ErXT |Fkss

ď

N
ÿ

k“0

Er1AXtS“kuXT^ks (by (5.2.1))

“

N
ÿ

k“0

Er1AXtS“kuXks “ ErXS 1As.

Proof of Item (5). By Item (1), we have that ErXT^ns ď ErX0s. By Fatou’s Lemma, we have

ErXT s “ Erlim inf
n

XT^ns ď lim inf ErXT^ns ď ErX0s.
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5.3 Martingale convergence theorem

In this section, we will discuss three different notions of convergence of the martingales: almost sure
convergence, convergence in Lp for p ą 1, and convergence in L1.

Almost sure convergence

Theorem 5.3.1 (Almost Sure Martingale Convergence). Let tXnu be a supermartingale which is bounded
in L1, i.e. supn Er|Xn|s ă 8. Then, for some X8 P L

1,

Xn Ñ X8, almost surely, as nÑ8.

Let x “ txnu be a sequence of real numbers. Let a ă b be two real numbers. We define T0pxq “ 0 and
inductively, for k ě 0,

Sk`1pxq “ inftn ě Tkpxq : xn ď au, Tk`1pxq “ inftn ě Sk`1pxq : xn ě bu,

with the usual convention that infH “ 8.
Define the number of upcrossings of ra, bs by x “ txnu by time n to be

Nnpra, bs, xq “ suptk ě 0 : Tkpxq ď nu.

As n Ò 8, we have
Nnpra, bs, xq Ò Npra, bs, xq “ suptk ě 0 : Tkpxq ă 8u,

which is the total number of upcrossings of ra, bs by x.

Lemma 5.3.2. A sequence of real numbers x converges in R “ RY t˘8u if and only if

Npra, bs, xq ă 8 for all rationals a ă b.

Lemma 5.3.3 (Doob’s upcrossing inequality). Let X “ tXnu be a supermartingale and a ă b be two real
numbers. Then, for all n,

pb´ aqErNnpra, bs, Xqs ď Erpa´Xnq
`s.

Proof. To simplify the notations, we write

Tk “ TkpXq, Sk “ SkpXq, N “ Nnpra, bs, Xq.

On the one hand, by the definition of tTku and tSku, we have that, for all k ě 1,

XTk ´XSk
ě b´ a. (5.3.1)

On the other hand, we have

n
ÿ

k“1

pXTk^n ´XSk^nq

“

N
ÿ

k“1

pXTk ´XSk
q `

n
ÿ

k“N`1

pXn ´XSk^nq

“

N
ÿ

k“1

pXTk ´XSk
q `

`

Xn ´XSN`1

˘

1tSN`1ďnu . pNote that TN ď n, SN`1 ă TN`1 ă SN`2q.
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Since tTku and tSku are stopping times, we have that Sk ^ n ď Tk ^ n are bounded stopping times.
Optional stopping theorem implies

ErXSk^ns ě ErXTk^ns, @k.

Combining with (5.3.1), we have

0 ě E

«

n
ÿ

k“1

pXTk^n ´XSk^nq

ff

ě pb´ aqErN s ´ Erpa´Xnq
`s,

since
`

Xn ´XSN`1

˘

1tSN`1ďnu ě ´pa´Xnq
`. This implies the conclusion.

Proof of Theorem 5.3.1. Let a ă b be rationals. By Lemma 5.3.3, we have that

ErNnpra, bs, Xqs ď
Erpa´Xnq

`s

b´ a
ď

Er|Xn|s ` |a|

b´ a
.

Monotone convergence theorem implies

ErNpra, bs, Xqs ď
supn Er|Xn|s ` |a|

b´ a
ă 8.

Therefore, we have almost surely that Npra, bs, Xq ă 8. Write

Ω0 “
č

aăb:a,bPQ

tNpra, bs, Xq ă 8u.

Then PrΩ0s “ 1. By Lemma 5.3.2 on Ω0, we have that X converges to a possibly infinite limit. Set

X8 “

#

limnXn, on Ω0,

0 on ΩzΩ0.

Then X8 is F8-measurable and by Fatou’s lemma, we have

Er|X8|s ď Erlim inf
n

|Xn|s ď sup
n

Er|Xn|s ă 8.

Therefore X8 P L
1.

Corollary 5.3.4. Let tXnu be a non-negative supermartingale. Then Xn converges a.s. to some a.s.
finite limit.

Example 5.3.5. Let tξiuiě1 be a sequence of non-negative independent random variables in L1 with
Erξis “ 1. Then tXn :“ Πn

1ξiuně1 is a non-negative martingale and Xn converges a.s. to some limit
X8 P L

1.

When we have almost sure convergence, a natural question is: Do we have ErX8s “ ErX0s? Answer:
It is true when we have convergence in L1. We will discuss convergence in Lp for p ą 1 (which implies
convergence in L1) and convergence in L1 separately.

81



Convergence in Lp

Theorem 5.3.6 (Doob’s Maximal Inequality). Let tXnu be a non-negative submartingale. Define X˚n “
maxkďnXk. Then

λPrX˚n ě λs ď E
”

Xn 1tX˚něλu
ı

ď ErXns.

Proof. Define the stopping time T “ mintn : Xn ě λu. Then we have tX˚n ě λu “ tT ď nu. Moreover,

ErXn 1tTďnus “
n
ÿ

0

ErXn 1tT“jus ě
n
ÿ

0

ErXj 1tT“jus ě
n
ÿ

0

λPrT “ js “ λPrT ď ns.

Theorem 5.3.7 (Doob’s Maximal Inequality). Let tXnu be a non-negative submartingale. Define X˚n “
maxkďnXk. Then, for all p ą 1, we have

||X˚n ||p ď
p

p´ 1
||Xn||p.

Proof.

ErpX˚nq
ps “ E

„
ż 8

0
pxp´1 1tX˚něxu dx



“

ż 8

0
pxp´1PrX˚n ě xsdx (by Monotone Cvg Thm)

ď

ż 8

0
pxp´2ErXn 1tX˚něxusdx

“ E

„
ż 8

0
pxp´2Xn 1tX˚něxu dx



(by Monotone Cvg Thm)

“
p

p´ 1
ErXnpX

˚
nq
p´1s ď

p

p´ 1
||Xn||pErpX

˚
nq
ps1´1{p.

Theorem 5.3.8. Let tXnu be a martingale and p ą 1, then the following statements are equivalent.

(1) tXnu is bounded in Lp: supn ||Xn||p ă 8

(2) Xn converges a.s and in Lp to a random variable X8.

(3) There exists a random variable Z P Lp such that

Xn “ ErZ |Fns a.s. @n.

Proof of Item (1) to (2). Assume that supn Er|Xn|
ps ď C. This implies that tXnu is bounded in L1, thus

we know that Xn converges a.s. to some limit X8.
Define X˚n “ maxkďn |Xk|. By Doob’s Maximal Inequality, we have that ErpX˚nq

ps ď pp{pp ´ 1qqpC.
Note that the sequence tX˚nu is increasing in n, thus we may define X˚8 “ limnX

˚
n and X˚8 P L

p.
For the sequence tXnu, we have |Xn| ď X˚8 P L

p. Therefore, by Dominated Convergence Theorem,
we have that Xn converges to X8 in Lp.

Proof of Item (2) to (3). We may take Z “ X8. We have that,

|Xn ´ ErX8 |Fns| “ |ErXm |Fns ´ ErX8 |Fns| ď Er|Xm ´X8| |Fns Ñ 0, as mÑ8.
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Proof of Item (3) to (1). By Jensen’s Inequality, we have

|Xn|
p ď Er|Z|p |Fns.

This implies the conclusion.

Corollary 5.3.9. Let Z P Lp for p ą 1. Then

ErZ |Fns Ñ ErZ |F8s, a.s.and in Lp.

Convergence in L1

Next, we discuss convergence in L1, to this end, we need the notion of “uniform integrable (UI)” introduced
in Definition 2.5.1.

Lemma 5.3.10. If Z P L1, then the family

tErZ |As : A sub-σ-field of Fu

is UI.

Proof. First, recall from (2.5.1) that, for any ε ą 0, there exists δ ą 0 such that

Er|Z|1As ď ε as long as PrAs ď δ.

Next, we show the conclusion. It is sufficient to show that, for any ε ą 0, there exists α such that

E
“

|ErZ |As| 1t|ErZ |As|ąαu
‰

ď ε.

Note that the event t|ErZ |As| ą αu is A-measurable, thus

E
“

|ErZ |As|1t|ErZ |As|ąαu
‰

ď Er|Z| 1t|ErZ |As|ąαus.

By (2.5.1), it is sufficient to show that, there exists α such that

Pr|ErZ |As| ą αs ď δ.

Note that,
Pr|ErZ |As| ą αs ď Er|ErZ |As|s{α ď Er|Z|s{α.

This implies the conclusion.

Lemma 5.3.11. Suppose that Xn, X P L1 and Xn Ñ X a.s. Then

Xn Ñ X in L1 if and only if tXnu is UI .

Proof. See Proposition 2.5.4.

Theorem 5.3.12. Let tXnu be a martingale. The following statements are equivalent.

(1) tXnu is UI.

(2) Xn converges to X8 a.s. and in L1.

(3) There exists Z P L1 such that
Xn “ ErZ |Fns a.s. @n.

Proof of Item (1) to (2). Combining Lemma 5.3.11 and Theorem 5.3.1.
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Proof of Item (2) to (3). The same as the proof of Theorem 5.3.8.

Proof of Item (3) to (1). Lemma 5.3.10.

Example 5.3.13. Let tξiuiě1 be a sequence of non-negative independent random variables in L1 with
Erξis “ 1. Then tXn :“ Πn

1ξiuně1 is a non-negative martingale and Xn converges a.s. to some limit
X8 P L

1. Define, for i ě 1,
ai “ Er

a

ξis.

(1) If Πiai ą 0, then Xn converges in L1 and ErX8s “ 1.

(2) If Πiai “ 0, then X8 “ 0 a.s.

Proof of Case (1). Define Yn “ Πn
i“1

?
ξi{ai. Then tYnu is a martingale and the relation with tXnu is

Y 2
n “ Xn{Π

n
i“1a

2
i . Thus,

ErY 2
n s “ 1{Πn

i“1a
2
i , sup

n
ErY 2

n s ď 1{Π8i“1a
2
i ă 8.

Define Y ˚n “ maxkďn Yk, by Doob’s Maximal Inequality, we have that

Y ˚n Ò Y
˚
8, ErpY ˚8q

2s ď 2{Π8i“1a
2
i ă 8.

Note that
Xn “ Y 2

nΠn
i“1ai ď pY

˚
8q

2 P L1.

By Dominated Convergence Theorem, we have that Xn converges to X8 in L1.

Proof of Case (2). Define Yn in the same way. Since tYnu is a non-negative martingale, it converges a.s.
to some limit Y8 P L

1. Therefore, a.s.

Xn “ Y 2
n ˆΠn

i“1a
2
i Ñ Y 2

8 ˆ 0 “ 0.

Example 5.3.14 (Kolmogorov’s 0-1 Law, Another proof). Let tξiuiě1 be a sequence of independent
random variables. Let Gn “ σpξk, k ě nq and G8 “ Xně1Gn. Then G8 is trivial, i.e. for any A P G8, we
have

PrAs “ 0 or 1.

Proof. Define tFnu to be the natural filtration:

Fn “ σpξk, k ď nq.

Fix an event A P G8.

• On the one hand, the sequence tEr1A |Fnsu is a UI martingale, thus

Er1A |Fns Ñ Er1A |F8s “ 1A, a.s.

where F8 “ σpFn, n ě 1q.

• On the other hand, since A P G8 Ă Gn`1 which is independent of Fn, thus

Er1A |Fns “ PrAs.

Combining these two facts, we have that PrAs “ 1A a.s. Therefore PrAs is 0 or 1.
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Theorem 5.3.15 (Optional Stopping Theorem for UI Martingale). Let X “ tXnu be a UI martingale.
If S ď T are stopping times, then ErXT |FSs “ XS , a.s. In particular, ErXT s “ ErXSs.

Compare with Optional Stopping Theorem for Martingale: Let X “ tXnu be a martingale. If S ď T
are bounded stopping times, then ErXT |FSs “ XS , a.s. In particular, ErXT s “ ErXSs.

Proof. It is sufficient to show that XT “ ErX8 |FT s. Assume this is true, then we have that

ErXT |FSs “ ErErX8 |FT s |FSs “ ErX8 |FSs “ XS , a.s.

To show XT “ ErX8 |FT s, we have two steps.
First, we show XT P L

1. Since tXnu is UI, we have that Xn “ ErX8 |Fns, thus |Xn| ď Er|X8| |Fns.
Therefore,

Er|XT |s ď

8
ÿ

n“0

Er|Xn| 1tT“nus ` Er|X8| 1tT“8us ď
8
ÿ

n“0

Er|X8| 1tT“nus ` Er|X8| 1tT“8us “ Er|X8|s.

Next, for any A P FT , we have

ErXT 1As “
ÿ

nPNYt8u

ErXn 1A 1tT“nus “
ÿ

nPNYt8u

ErX8 1A 1tT“nus “ ErX8 1As.

This completes the proof.

5.4 Applications: Galton-Watson Tree

A tree is a connected graph with no cycles. A rooted tree has a distinguished vertex v0, called the root.
The depth of a vertex v is its graph distance to the root. A leaf is a vertex with degree one.

Consider a regular rooted tree:

• Each vertex has a fixed number (say m) of offspring;

• Let Zn be the number vertices in the n-th generation, then Zn “ mn.

In real life, we often encounter trees where the number of offspring of a vertex is random. In this section,
we will talk about the simplest random tree—Galton-Watson Tree:

• It starts with one initial ancestor;

• It produces a certain number of offspring according to some distribution µ;

• The new particles form the first generation;

• Each of the new particles produces offspring according to µ, independently of each other;

• The system regenerates.

Let Zn be the number of particles in n-th generation. Note that, if Zn “ 0 for some n, then Zm “ 0
for all m ě n, and this is the situation that the family become extinct. The natural question here is
whether or not the family become extinct, and what is the extinction probability

q “ PrZn “ 0 eventuallys?

Of course, the answer to these questions depend on the reproduction law µ. For the measure µ, let pk
denote the probability that a particle has k children for k ě 0. Clearly,

ř

k pk “ 1. To avoid trivial
situation, throughout this section, we are always under the assumption that p0 ` p1 ă 1.
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(a) A binary tree. (b) A GW tree.

Figure 5.1

Define the mean of the measure
m :“ ErZ1s “

ÿ

kě0

kpk.

Define the generating function of µ:

fpsq “ E
“

sZ1
‰

“
ÿ

kě0

skpk,

with the convention that 00 “ 1. Note that

fp0q “ p0, fp1q “ 1, f 1p1q “ m.

Theorem 5.4.1. The extinction probability q is the smallest root of fpsq “ s for s P r0, 1s. In particular,
q “ 1 if m ď 1, and q ă 1 if m ą 1.

Proof. First, we will give a mathematical description of the model. The tree starts with one ancestor:
Z0 “ 1. The ancestor has Z1 (with the law µ) children which form the 1st generation. For the particles

in the 1st generation, they have ξ
p1q
j children for j “ 1, ..., Z1. The random variables ξ

p1q
j are i.i.d. with

the common law µ. The number of particles in 2nd generation is then

Z2 “

Z1
ÿ

j“1

ξ
p1q
j .

Generally, given Zn, the particles in n-th generation have ξ
pnq
j children for j “ 1, ..., Zn. Given Zn,

these random variables are i.i.d. with the common law µ. The number of particles in pn`1q-th generation
is then

Zn`1 “

Zn
ÿ

j“1

ξ
pnq
j .

It is clear that, we have ErZns “ mn for all n ě 1.

Second, we will prove by induction that the generating function of Zn is the n-th fold composition of
f (denoted by fn), i.e.

ErsZns “ fnpsq, @s P r0, 1s, n ě 1.
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This is true for n “ 1. Assume it holds for n, and consider n` 1, we have

E
“

sZn`1 |σpZnq
‰

“ fpsqZn , ErsZn`1s “ E
“

fpsqZn
‰

“ fnpfpsqq “ fn`1psq.

Third, we will relate the extinction probability to the generating function. On the one hand, we have
PrZn “ 0s “ fnp0q. On the other hand, the events tZn “ 0u is increasing in n, i.e.

tZn “ 0u Ă tZn`1 “ 0u.

Thus, the probabilities PrZn “ 0s is increasing, and we have

q “ PrYntZn “ 0us “ lim
n

PrZn “ 0s “ lim
n
fnp0q.

Finally, let us find the limit limn fnp0q. Consider the generating function f :

fpsq “ p0 ` sp1 ` s
2p2 ` ¨ ¨ ¨ , fp0q “ p0, fp1q “ 1, f 1p1q “ m.

It is clear that the function is strictly increasing (f 1psq ą 0) and is strictly convex (f2psq ą 0). Therefore,
it has at most two fixed points.3 The sequence

fp0q “ p0, f1p0q “ fpp0q, ¨ ¨ ¨

is increasing, and converges to some fixed point of the function f .
If f 1p1q “ m ď 1, then p0 ą 0 and fpsq ą s for all s P r0, 1q. Thus fnp0q Ñ 1, and q “ 1 which is the

unique root of fpsq “ s.
If f 1p1q “ m ą 1, then the function f has exactly two fixed points, and fnp0q converges to the root of

fpsq “ s for s P r0, 1q. In particular, q ă 1.

(a) When f 1p1q ď 1, the sequence fnp0q converges to 1
which is the unique fixed point.

(b) When f 1p1q ą 1, the sequence fnp0q converges to the
smaller fixed point.

Figure 5.2: Figure from Zhan Shi.

From this theorem, we have that

3A fixed point of function f is a point x such that fpxq “ x.
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• In the subcritical case pm ă 1q, the GW tree dies out with probability 1.

• In the critical case pm “ 1q, the GW tree dies out with probability 1.

• In the supercritical case pm ą 1q, the GW tree survives with strictly positive probability 1´ q.

In the supercritical case m ą 1, we know that the tree survives with positive probability 1´q. Our next
question is, conditioned on survival, how fast does the population Zn grow? We know that ErZns “ mn,
and whether do we have that Zn grows like mn?

Assume the supercritical case m P p1,8q. Define Wn “ Zn{m
n. Then tWnu is a non-negative

martingale, therefore Wn converges a.s. to some limit W . By Fatou’s Lemma, we have that ErW s ď 1.
Note that, if W ą 0, then Zn „ mn; and if W “ 0, then Zn ăă mn. Thus, in order to see whether or not
Zn grows like mn, we need to examine whether W is strictly positive or not.

Theorem 5.4.2 (Kesten-Stigum Theorem).

ErW s “ 1 ô PrW ą 0 | survivals “ 1 ô ErZ1 log` Z1s ă 8.
4

Proof. Bonus.

From Theorem 5.4.2, if ErZ1 log` Z1s ă 8, then W ą 0 almost surely on survival. In particular, we
know that Zn grows like mn as nÑ8 on survival. The next question is the following: If ErZ1 log` Z1s “

8, we have W “ 0 almost surely, thus Zn ăă mn. This implies that mn is not the correct normalization.
It is natural to ask whether there exists cn such that cnZn converges to non-trivial limit. This is the
so-called Seneta-Hedye norming problem.

We do not plan to give a proof of Theorem 5.4.2 in this note, instead we give a weaker version of this
theorem.

Lemma 5.4.3. The probability PrW “ 0s is either q or 1.

Proof. Given Z1, for n ě 1, we have that

Zn`1
d
“

Z1
ÿ

j“1

Zpjqn ,

where Z
pjq
n are independent copies of Zn. Rearranging, we have

m
Zn`1

mn`1

d
“

Z1
ÿ

j“1

Z
pjq
n

mn
.

Note that, LHS will converges to mW a.s. and RHS will converge a.s. to

Z1
ÿ

1

W pjq,

where W pjq are independent copies of W . Denote by p the probability PrW “ 0s, then

p “ PrW “ 0s “ PrW pjq “ 0, j “ 1, ..., Z1s “ ErpZ1s “ fppq.

Thus p is a fixed point of f .

Theorem 5.4.4. If ErZ2
1 s ă 8, then ErW s “ 1 and PrW ą 0 | survivals “ 1.

4Notation log` x means logp1_ xq.
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Proof. We will show that the martingale tWnu is bounded in L2. Assume this is true, then the martingale
converges in L1 and therefore

ErW s “ 1, PrW “ 0s “ q.

To show tWnu is bounded in L2, we need to calculate ErZ2
ns. Define

σ2 “ varpZ1q “ ErZ2
1 s ´m

2.

Then
ErZ2

n`1 |σpZnqs “ Znσ
2 ` Z2

nm
2, ErZ2

n`1s “ σ2mn `m2ErZ2
ns.

Thus,

ErW 2
n`1s “

σ2

mn`1
` ErW 2

ns.

Note that ErW 2
1 s “ σ2{m2 ` 1, therefore

ErW 2
n`1s “

σ2

mn`2
`

σ2

mn`1
` ¨ ¨ ¨ `

σ2

m2
` 1.

This implies that tWnu is bounded in L2.

5.5 Applications: continued

Polya’s Urn

Example 5.5.1. An urn contains r red balls and g green balls. At each time, we draw a ball out, put it
back, and add c more balls of the same color. Let Xn be the fraction of green balls after the nth draw.
Then tXnu is a martingale and thus Xn Ñ X8 a.s.

• When g “ r “ c “ 1, the limit X8 is uniform in p0, 1q.

• When g “ 2, r “ c “ 1, the limit X8 has density function ppxq “ 2x 1txPp0,1qu.

• Derive the distribution of X8 in general case. Bonus.

Proof. We first check that tXnu is a martingale. Given all the information by time n, let us consider
Xn`1: suppose there are j green balls and i red balls by time n (after the nth draw is completed and the
new balls have been added), i.e. Xn “ j{pi` jq. Then we have

Xn`1 “

#

j`c
i`j`c , with probability j

i`j ,
j

i`j`c , with probability i
i`j .

Thus

ErXn`1 |Fns “
j ` c

i` j ` c
ˆ

j

i` j
`

j

i` j ` c
ˆ

i

i` j
“

j

i` j
“ Xn.

This confirms that tXnu is a martingale. As 0 ď Xn ď 1, Theorem 5.3.1 gives Xn Ñ X8 a.s. It remains
to derive the distribution of X8.

We have the following two observations.

• The probability of getting green balls on the first m draws then red on the next ` “ n´m draws is

g

g ` r
¨

g ` c

g ` r ` c
¨ ¨ ¨

g ` pm´ 1qc

g ` r ` pm´ 1qc
¨

r

g ` r `mc
¨ ¨ ¨

r ` p`´ 1qc

g ` r ` pn´ 1qc
.

• Any other outcome of the first n draws with m green balls and ` red balls has the same probability.
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Combining the two facts, we obtain the probability for Xn “ pg `mcq{pg ` r ` ncq.
When g “ r “ c “ 1, we have

P

„

Xn “
m` 1

n` 2



“

ˆ

n

m

˙

m!pn´mq!

pn` 1q!
“

1

n` 1
.

Thus X8 is uniform in p0, 1q.
When g “ 2, r “ c “ 1, we have

P

„

Xn “
m` 2

n` 3



“

ˆ

n

m

˙

pm` 1q!pn´mq!

pn` 2q!{2
“

2pm` 1q

pn` 2qpn` 1q
.

Thus X8 has density function ppxq “ 2x 1txPp0,1qu.

Backwards martingales

Definition 5.5.2. Let ¨ ¨ ¨ Ă G´2 Ă G´1 Ă G0 be a sequence of sub-σ-fields indexed by Z´. Given such a
filtration, a process tXn, n ď 0u is called a backwards martingale, if it is adapted to the filtration, X0 P L

1,
and for all n ď ´1, we have

ErXn`1 |Gns “ Xn a.s.

Suppose that tXn, n ď 0u is a backwards martingale. By Tower Property, we have that

ErX0 |Gns “ Xn a.s.

Thus the backwards martingale is automatically UI, and all conclusions for (forward) martingales con-
vergence also hold for backwards martingales.

Theorem 5.5.3. Let tXn, n ď 0u be a backwards martingale, with X0 P L
p for some p P r1,8q. Then

Xn Ñ X´8 :“ ErX0 |G´8s, a.s. and in Lp,

where G´8 “ Xnď0Gn.

We leave the proof of this theorem as an exercise. By the convergence theorem of backwards martin-
gales, we could give a new proof of Strong Law of Large Numbers.

Corollary 5.5.4 (Strong Law of Large Numbers, Another proof). Let tξiuiě1 be i.i.d with Erξis “ m.
Let Sn “

řn
i“1 ξi. Then

Sn{nÑ m, a.s. and in L1.

Proof. For n ě 1, define
G´n “ σpSn, Sn`1, ...q, X´n “ Sn{n.

We will prove that tXn, n ď 0u is a backwards martingale with respect to tGn, n ď 0u. Assume this
is true, then by Theorem 5.5.3, we have that Sn{n converges a.s. and in L1 to some random variable,
denoted by Y . Note that, for any k,

Y “ lim
n

1

n

k`n
ÿ

i“k

ξi.

Thus Y is σpξi, i ě kq-measurable, for all k. By Kolmogorov 0-1 Law, we conclude that there exists a
constant c P R such that PrY “ cs “ 1. At the same time, since we also have convergence in L1, we derive
that

c “ ErY s “ lim
n

ErSn{ns “ m.
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In order to show that tXn, n ď 0u is a backwards martingale with respect to tGn, n ď 0u, we need to
calculate ErX´n`1 |G´ns. Recall Example 5.1.6, we have that

ErX´n`1 |G´ns “ E

„

Sn´1

n´ 1
|σpSn, Xn`1, ...q



“ E

„

Sn´1

n´ 1
|σpSnq



“
1

n´ 1
pSn ´ ErXn |σpSnqsq

“
1

n´ 1

ˆ

Sn ´
Sn
n

˙

“
Sn
n
“ X´n,

as desired.

Law of the Iterated Logarithm

Example 5.5.5. Let tXnu be i.i.d. with the common law N p0, 1q. Define Sn “
řn

1 Xj. Then, almost
surely,

lim sup
nÑ8

Sn
?

2n log log n
“ 1, lim inf

nÑ8

Sn
?

2n log log n
“ ´1.

Define
hpnq “

a

2n log logn.

It is sufficient to show that, for any ρ ą 1 ą ν, we have almost surely,

lim sup
n

Sn
hpnq

ď ρ, lim sup
n

Sn
hpnq

ě ν.

Proof. Upper bound. We know that tSnu is a martingale. For θ ą 0, the function x ÞÑ eθx is convex,
thus texppθSnqu is a submartingale. By Doob’s Maximal Inequality Theorem 5.3.6, we have that, for any
c ą 0,

P

„

max
kďn

Sk ě c



“ P

„

max
kďn

exppθSkq ě exppθcq



ď expp´θcqErexppθSnqs “ expp´θc` θ2n{2q.

Pick θ “ c{n, we have that, for any c ą 0,

P

„

max
kďn

Sk ě c



ď expp´c2{p2nqq.

Thus,

P

„

max
kďn

Sk ě ρhpnq



ď expp´ρ2hpnq2{p2nqq “ expp´ρ2 log log nq “ plog nq´ρ
2
.

Fix some N ą 1, then we have

P

„

max
kďNm

Sk ě ρhpNmq



ď pm logNq´ρ
2
.

Thus
ÿ

m

P

„

max
kďNm

Sk ě ρhpNmq



ă 8.

By Borel-Cantelli Lemma, we have almost surely

max
kďNm

Sk ď ρhpNmq, for m large enough. (5.5.1)
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On this event, for Nm ď n ď Nm`1, we have

Sn ď max
kďNm`1

Sk ď ρhpNm`1q ď ρhpNnq.

Therefore, almost surely,

lim sup
n

Sn
hpnq

ď ρ lim
n

hpNnq

hpnq
“ ρ

?
N.

This holds for any N ą 1, ρ ą 1. Let N Ñ 1, ρÑ 1, we have almost surely,

lim sup
n

Sn
hpnq

ď 1.

Proof. Lower bound. Note that Sn is Gaussian with mean zero and variance n. Thus

PrSn ě νhpnqs “

ż

ν
?

2 log logn

1
?

2π
e´y

2{2dy.

It is known for standard normal distribution that, for x large,
ż

x

1
?

2π
e´y

2{2dy « x´1 expp´x2{2q.

Therefore
PrSn ě νhpnqs « ν´1p2 log log nq´1{2plog nq´ν

2
.

Fix some N ą 1, then we have

PrSpNm`1q ´ SpNmq ě νhpNm`1 ´Nmqs « ν´1p2 logpm logNqq´1{2pm logNq´ν
2
.

Therefore,
ÿ

m

PrSpNm`1q ´ SpNmq ě νhpNm`1 ´Nmqs “ 8.

By Borel-Cantelli Lemma, we have almost surely

SpNm`1q ´ SpNmq ě νhpNm`1 ´Nmq, i.o.

By (5.5.1), we have almost surely

SpNmq ě ´ρhpNmq, for m large.

Combining these two, we have almost surely,

SpNm`1q ě νhpNm`1 ´Nmq ´ ρhpNmq, i.o.

Therefore, almost surely

lim sup
n

Sn
hpnq

ě lim sup
m

SpNmq

hpNmq
ě ν

c

N ´ 1

N
´

ρ
?
N
.

This holds for any N ą 1 and ν ă 1. Let N Ñ8, ν Ñ 1, we have almost surely,

lim sup
n

Sn
hpnq

ě 1.
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The above example is a particular case of the following theorem.

Theorem (Law of the iterated logarithm). Let tXnu be i.i.d. random variables with mean zero and unit
variance. Define Sn “

řn
j“1Xj. Then, almost surely,

lim sup
nÑ8

Sn
?

2n log log n
“ 1, lim inf

nÑ8

Sn
?

2n log log n
“ ´1.

Proof. Bonus.

Let us summarize LLN, CLT and Law of the iterated logarithm here: Suppose tXnu are i.i.d. random
variables with zero mean and unit variance. Then

Sn
n
Ñ 0, a.s.

Sn
?
n
ùñ N p0, 1q

lim sup
nÑ8

Sn
?

2n log log n
“ 1, a.s.

5.6 Exercises

Exercise 5.6.1. • Chebshev’s inequality. For a ą 0, we have

Pr|X| ą a |As ď a´2Er|X|2 |As.

• Cauchy-Schwarz inequality.

ErXY |As2 ď ErX2 |As ˆ ErY 2 |As.

Exercise 5.6.2. Show that if X and Y are random variables with ErY |As “ X and ErX2s “ ErY 2s ă 8,
then X “ Y a.s.

Exercise 5.6.3. Let X,Y be two random variables on pΩ,F ,Pq. Let A Ă F be a sub-σ-field. The
random variables X and Y are said to be independent conditionally on A if for all non-negative measurable
functions f and g, we have

ErfpXqgpY q |As “ ErfpXq |As ˆ ErgpY q |As a.s.

Show that X,Y are independent conditionally on A if and only if for every non-negative A-measurable
random variable Z, and all non-negative measurable functions f and g, we have

ErfpXqgpY qZs “ ErfpXqZErgpY q |Ass.

Exercise 5.6.4. Let tξiu be i.i.d non-negative random variables with Erξ1s “ 1 and Prξ1 “ 1s ă 1. Set
Xn “

śn
i“1 ξi.

• Show that Xn Ñ 0 a.s.

• Show that 1
n logXn Ñ c a.s. where c ă 0 is a constant.

Exercise 5.6.5. Suppose X and Y are two random variables which are integrable. Assume that ErX |σpY qs “
Y and ErY |σpXqs “ X. Show that X “ Y almost surely.

Exercise 5.6.6. Let tXnu be a martingale in L2.
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(1) Show that its increments tXn`1 ´Xnu are pairwise orthogonal, i.e. for all n ‰ m, we have

ErpXn`1 ´XnqpXm`1 ´Xmqs “ 0.

(2) Show that tXnu is bounded in L2 if and only if

ÿ

n

ErpXn`1 ´Xnq
2s ă 8.

Exercise 5.6.7. Let tXnu be a simple random walk on Z starting from k P t0, 1, . . . , Nu. Define τ “
mintn : Xn “ 0 or Nu.

(1) Show that tXnu is a martingale and prove that

PrXτ “ N s “ k{N.

(2) Show that tX2
n ´ nu is a martingale and prove that

Erτ s “ kpN ´ kq.

(3) Show that tX3
n ´ 3nXnu is a martingale and prove that

Erτ |Xτ “ N s “
1

3
pN2 ´ k2q.

(4) Compute Erτ2s.

Exercise 5.6.8 (YCMC2012). Suppose that tξk : k “ 1, 2, ..., nu are i.i.d. random variables with uniform
distribution on the interval r0, 1s. Let Y “ maxtξk : 1 ď k ď nu.

(1) What is the joint distribution of pξ1, Y q

(2) Evaluate the probability Prξ1 “ Y s.

(3) Evaluate the conditional expectation Erξ1 |σpY qs.

Exercise 5.6.9 (YCMC2013). Let X be an integrable random variable, G a σ-algebra, and Y “ ErX |Gs.
Assume that X and Y have the same distribution.

(1) Prove that if X is square-integrable, then X “ Y a.s. (i.e. X must be G-measurable) ;

(2) Using p1q to prove that for any pair of real numbers a, b with a ă b, we have min tmax tX, au , bu “
min tmax tY, au , bu, and consequently, X “ Y a.s.

Exercise 5.6.10 (YCMC2013). Let X and Y be independent N p0, 1q random variables.

(1) Find ErX ` Y |X ě 0, Y ě 0s;

(2) Find the distribution function of X ` Y given that X ě 0 and Y ě 0. (Hint: Using the fact that
U “ pX ` Y q{

?
2 and V “ pX ´ Y q{

?
2 are independent and N p0, 1q distributed.)

Exercise 5.6.11 (YCMC2014). Suppose that pX,Y q is a two-dimensional Gaussian with mean p0, 0q,
variance pσ2, τ2q and correlation coefficient ρ. Determine ErX |σpX ` Y qs.

Exercise 5.6.12 (YCMC2014). Given two independent random variables X and Y such that X has the
uniform law on r0, 1s and PrY “ 0s “ PrY “ 1{2s “ 1{2. Show that W :“ X ` 1{2Y has the uniform law
on r0, 1s and compute ErY |σpW qs.
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Exercise 5.6.13 (YCMC2015). (a) Let X and Y be two random variables with zero means, unit vari-
ances, and correlation ρ. Prove that

E
“

maxtX2, Y 2u
‰

ď 1`
a

1´ ρ2.

(b) Let X and Y be a two-dimensional Gaussian with means zero, variances σ2 and τ2, and correlation
ρ. Find the conditional expectation ErX |σpY qs.

Exercise 5.6.14 (YCMC2016). Suppose tXnu are i.i.d. random variables in L1. Define Sn “
řn
j“1Xj.

What is the conditional expectation of Sn´1 given σpSnq?

Exercise 5.6.15 (YCMC2017). Let tXnu be a sequence of non-negative random variables. Let tFnu be
a sequence of increasing σ-algebras. Assume that ErXn |Fns Ñ 0 in probability. Show that Xn Ñ 0 in
probability. Is it true reversely? If yes, prove it; if not, give a counterexample.

Exercise 5.6.16 (YCMC2018). Suppose that a random vector x “ px1, ..., xnq P Rn is distributed as
n-dimensional Gaussian N p0,Σq where Σ is an n ˆ n positive definite matrix. Let the pi, jq element of
Σ´1 be ωij with 1 ď i, j ď n. For 1 ď i ‰ j ď n, show that, if ωij “ 0, then xi and xj are conditionally
independent when the other elements of x are given.
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6 Markov chain: finite state space

6.1 Finite Markov chains: introduction

A finite Markov chain is a process which moves among the vertices of a finite set S which is called state
space. The law of the Markov chain is characterized by the transition matrix P of size |S| ˆ |S|.

Definition 6.1.1. A sequence of random variables tXnu is a Markov chain with state space S and
transition matrix P if for all n ě 0, and all sequences px0, x1, ..., xn, xn`1q with xi P S, we have that

PrXn`1 “ xn`1 |X0 “ x0, ..., Xn “ xns “ PrXn`1 “ xn`1 |Xn “ xns “ P pxn, xn`1q.

In the above definition,

• the conditional probability of jumping from x to y is the same P px, yq, no matter what sequence
x0, ..., xn´1 of states proceeds the current state x;

• the transition matrix P is stochastic:

– P px, yq ě 0 for all x, y;

–
ř

y P px, yq “ 1 for all x.

It is clear that the largest eigenvalue of P is one.

Example 6.1.2 (Gambler’s ruin). Consider a gambler betting on the outcome of a sequence of independent
fair coin tosses. If head, he gains one dollar. If tail, he loses one dollar. If he reaches a fortune of N
dollars, he stops. If his purse is ever empty, he stops. Questions:

• What are the probabilities of the two possible fates?

• How long will it take for the gambler to arrive at one of the two possible fates?

The gambler’s situation can be modeled by a Markov chain on the state space S “ t0, 1, ..., Nu:

• X0 : initial money in purse; Xn : the gambler’s fortune at time n.

• PrXn`1 “ Xn ` 1 |Xns “ 1{2 and PrXn`1 “ Xn ´ 1 |Xns “ 1{2.

• The states 0 and N are absorbing.

• τ : the time that the gambler stops.

Following is the transition matrix when N “ 4:

»

—

—

—

—

—

—

–

0 1 2 3 4

0 1 0 0 0 0
1 1{2 0 1{2 0 0
2 0 1{2 0 1{2 0
3 0 0 1{2 0 1{2
4 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Example (Example 6.1.2 continued). Let Xn be the gambler’s fortune at time n and let τ be the time
required to be absorbed at either 0 or N . Assume that x0 “ k for some 0 ď k ď n. Then

PrXτ “ N s “ k{N, (6.1.1)

Erτ s “ kpN ´ kq. (6.1.2)
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Proof of (6.1.1). Let pk be the probability PrXτ “ N |X0 “ ks. Then we have that, p0 “ 0, pN “ 1, and,
for 1 ď k ď N ´ 1,

pk “ PrXτ “ N |X0 “ ks

“ PrX1 “ k ´ 1, Xτ “ N |X0 “ ks ` PrX1 “ k ` 1, Xτ “ N |X0 “ ks

“
1

2
PrXτ “ N |X1 “ k ´ 1s `

1

2
PrXτ “ N |X1 “ k ` 1s

“
1

2
pk´1 `

1

2
pk`1.

There exists a unique solution of p with p0 “ 0, pN “ 1, pk “ ppk´1 ` pk`1q{2:

pk “ k{N, 0 ď k ď N.

Proof of (6.1.2). Let mk be the expectation Erτ |X0 “ ks. Then we have that, m0 “ 0,mN “ 0, and, for
1 ď k ď N ´ 1,

mk “
1

2
Erτ |X1 “ k ´ 1s `

1

2
Erτ |X1 “ k ` 1s “

1

2
pmk´1 ` 1q `

1

2
pmk`1 ` 1q.

There exists a unique solution of m with m0 “ 0,mN “ 0,mk “ pmk´1 `mk`1 ` 2q{2:

mk “ kpN ´ kq, 0 ď k ď N.

Example 6.1.3 (Coupon collecting). A company issues N different types of coupons. A collector desires
a complete set. Question: How many coupons must he obtain so that his collection contains all N types.
Assumption: each coupon is equally likely to be each of the N types.

The collector’s situation can be modeled by a Markov chain on the state space S “ t0, 1, ..., Nu:

• X0 “ 0; Xn : the number of different types among the collector’s first n coupons.

• PrXn`1 “ k ` 1 |Xn “ ks “ pN ´ kq{N and PrXn`1 “ k |Xn “ ks “ k{N .

• τ : the first time that the collector obtains all N types.

Following is the transition matrix when N “ 4:

»

—

—

—

—

—

—

–

0 1 2 3 4

0 0 1 0 0 0
1 0 1{4 3{4 0 0
2 0 0 2{4 2{4 0
3 0 0 0 3{4 1{4
4 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Example (Example 6.1.3 continued). We have

Erτ s “ N
N
ÿ

k“1

1

k
« N logN. (6.1.3)

Moreover, for any c ą 0, we have that

Prτ ą N logN ` cN s ď e´c`1. (6.1.4)
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Proof of (6.1.3). For 1 ď k ď N , let τk be the first time that the collector has k different types. Then
pτk`1 ´ τkq satisfies geometric distribution:

Prτk`1 ´ τk ą ns “ pk{Nqn.

Therefore
Erτk`1 ´ τks “ N{pN ´ kq.

Thus,

Erτ s “ ErτN s “
N´1
ÿ

k“0

Erτk`1 ´ τks “
N
ÿ

k“1

N{k.

Proof of (6.1.4). For 1 ď i ď N , let Ai be the event that ith type does not appear in the first N logN`cN
coupons. Then

Prτ ą N logN ` cN s “ PrYN1 Ais ď
N
ÿ

1

PrAis “ NPrA1s.

Then let us evaluate PrA1s:

PrA1s ď

ˆ

1´
1

N

˙N logN`cN´1

“ exp ppN logN ` cN ´ 1q logp1´ 1{Nqq

ď exp ppN logN ` cN ´ 1qp´1{Nqq ď
1

N
e´c`1.

Thus,
Prτ ą N logN ` cN s ď e´c`1.

Random mapping representation

Definition 6.1.4. A random mapping representation of a transition matrix P on state space S is a
function f : S ˆ Λ Ñ S, along with a Λ´valued random variable Z, satisfying

Prfpx, Zq “ ys “ P px, yq.

Question: How is it related to Markov chain? Suppose pf, Zq is a random mapping representation, let
tZnu be i.i.d. with common law the same as Z and be independent of X0. Define Xn “ fpXn´1, Znq for
n ě 1. Then tXnu is a Markov chain with transition matrix P .

Theorem 6.1.5. Every transition matrix on a finite state space has a random mapping representation.

Proof. Let P be the transition matrix of a Markov chain with state space S “ tx1, x2, ..., xNu. Take
Λ “ r0, 1s, and let Z be a uniform random variable on r0, 1s. Set, for 1 ď n, k ď N ,

Fn,k “
k
ÿ

j“1

P pxn, xjq, for 1 ď n, k ď N ;

fpxn, zq “ xk, if Fn,k´1 ă z ď Fn,k.

Then
Prfpxn, Zq “ xks “ Fn,k ´ Fn,k´1 “ P pxn, xkq.
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6.2 Irreducible, aperiodic, stationary, reversible

Irreducible and aperiodic

Definition 6.2.1. A transition matrix P is called irreducible, if for any x, y P S, there exists a number
n (possibly depending on x, y) such that Pnpx, yq ą 0.

Definition 6.2.2. For any x P S, define T pxq “ tn ě 1 : Pnpx, xq ą 0u. The period of state x is the
greatest common divisor of T pxq, denoted by gcdpT pxqq.

Lemma 6.2.3. If P is irreducible, then gcdpT pxqq “ gcdpT pyqq for all x, y P S. We define this common
number to be the period of the chain.

Proof. Fix two states x, y P S. Since P is irreducible, there exist integers n,m such that Pnpx, yq ą 0
and Pmpy, xq ą 0. Then

Pn`mpx, xq ě Pnpx, yqPmpy, xq ą 0 ñ n`m P T pxq;

Pn`mpy, yq ě Pmpy, xqPnpx, yq ą 0 ñ n`m P T pyq.

For any u P T pxq, we have that P upx, xq ą 0; moreover

Pn`m`upy, yq ě Pmpy, xqP upx, xqPnpx, yq ą 0.

Combining the facts that n`m P T pyq and that n`m`u P T pyq, we see gcdpT pyqq divides u. This holds
for any u P T pxq, therefore gcdpT pyqq divides gcdpT pxqq. Symmetrically, gcdpT pxqq divides gcdpT pyqq.
Thus gcdpT pyqq “ gcdpT pxqq.

Definition 6.2.4. For an irreducible chain, the chain is aperiodic if all states have period 1.

Example 6.2.5 (Simple Random Walk on Cycles). Consider a simple random walk on N -cycle.

• The walk is irreducible.

• When N is odd, the walk is aperiodic.

• When N is even, the walk is not aperiodic.

Proof. On N -cycle, each vertex has two neighbors. At each step, the walk jumps to the left vertex with
probability 1{2 and jumps to the right vertex with probability 1{2.

For vertex i and j on the cycle, define r “ |i´ j|, then

P rpi, jq ě p1{2qr ą 0.

Thus the walk is irreducible.
For any vertex i, we have

P 2pi, iq ě P pi, i` 1qP pi` 1, iq “ 1{4 ą 0, ñ 2 P T piq;

PN pi, iq ě p1{2qN ą 0, ñ N P T piq.

Thus gcdpT piqq “ 1 when N is odd.
When N is even, the walk always needs even number of steps to come back to the starting position,

thus the period is two.

Theorem 6.2.6. If P is irreducible and aperiodic, then there exists an integer r such that

Pnpx, yq ą 0, @x, y P S,@n ě r.
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Proof. Recall a standard fact in number theory:
Fact. Any set of non-negative integers, which is closed under addition and which has gcd 1, must contain
all but finitely many of the non-negative integers.

First, we show that, for x P S, there exist npxq such that the set T pxq contains all n ě npxq. This is
true by combining the following two facts and the above fact.

• T pxq “ tn ě 1 : Pnpx, xq ą 0u is closed under addition. For any n,m P T pxq, we have

Pn`mpx, xq ě Pnpx, xqPmpx, xq ą 0, ñ n`m P T pxq.

• T pxq has gcd 1, since this is an aperiodic chain.

Second, we show that, for x P S, there exists n1pxq such that Pnpx, yq ą 0 for all y P S and all
n ě n1pxq. We have the following two observations.

• By the first step, there exists npxq such that Pnpx, xq ą 0 for all n ě npxq.

• Since the chain is irreducible, for any y P S, there exists r “ rpx, yq such that P rpx, yq ą 0.

Combining these two facts, we have that, for any m ě npxq ` r,

Pmpx, yq ě Pm´rpx, xqP rpx, yq ą 0.

Define
n1pxq “ npxq `max

y
rpx, yq,

and it satisfies the desired property.
Finally, define

N “ max
x

n1pxq,

and it satisfies the property in the conclusion.

Stationary distribution

Consider a Markov chain with state space S and transition matrix P . Recall that

PrXn`1 “ y |Xn “ xs “ P px, yq.

We introduce the following notations:

• µ0 : the distribution of X0;

• µn : the distribution of Xn.

Then we have that
µn`1 “ µnP, µn “ µ0P

n, ErfpXnqs “ µ0P
nf.

Definition 6.2.7. We call a probability measure π stationary if π “ πP .

If π is stationary and the initial measure µ0 equals π, then µn “ π, for all n.

Example 6.2.8 (Simple Random Walk on Graph). A graph G “ pV,Eq consists of a vertex set V and
an edge set E:

• V : set of vertices

• E : set of pairs of vertices
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• When px, yq P E, we write x „ y : x and y are joined by an edge. We say y is a neighbor of x.

• For x P V , degpxq : the number of neighbors of x.

Given a graph G “ pV,Eq, we define simple random walk on G to be the Markov chain with state space
V and transition matrix:

P px, yq “

#

1{degpxq, if y „ x;

0, else.

For the random walk on graph, it is the Markov chain such that, when the chain is at vertex x, it
examines all its neighbors, picks one uniformly at random, and jumps to the chosen vertex. For the
following graph, we have that V “ t1, 2, 3, 4, 5u and E “ tp1, 2q, p1, 3q, p2, 3q, p2, 4q, p3, 4q, p3, 5qu.

1

2 4

3 5

The corresponding transition matrix for the simple random walk on this graph is the following:

»

—

—

—

—

—

—

–

1 2 3 4 5

1 0 1{2 1{2 0 0
2 1{3 0 1{3 1{3 0
3 1{4 1{4 0 1{4 1{4
4 0 1{2 1{2 0 0
5 0 0 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Example (Example 6.2.8 continued). Define

πpxq “
degpxq

2|E|
, @x P V.

Then π is a stationary distribution for the simple random walk on graph G.

Proof. First, π is a probability measure:

ÿ

x

degpxq “ 2|E|,

since each edge is counted twice in the LHS.
Next, π is stationary:

pπP qpxq “
ÿ

zPV

πpzqP pz, xq “
ÿ

zPV

degpzq

2|E|

1

degpzq
1tz„xu “

degpxq

2|E|
.

Time-reversal of Markov chains

Definition 6.2.9. We say that a probability measure π on S satisfies detailed balance equations if

πpxqP px, yq “ πpyqP py, xq, @x, y P S.
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Note that any distribution π satisfying the detailed balance equations is stationary for P .
Suppose that a probability measure π satisfies the detailed balance equations. Then, for any sequence

x0, ..., xn, we have

πpx0qP px0, x1q ¨ ¨ ¨P pxn´1, xnq “ πpxnqP pxn, xn´1q ¨ ¨ ¨P px1, x0q.

Or equivalently,

PπrX0 “ x0, X1 “ x1, ..., Xn “ xns “ PπrX0 “ xn, X1 “ xn´1, ..., Xn “ x0s.

In other words, if the Markov chain has initial distribution π, then the distribution of pX0, X1, ..., Xnq

is the same as its time-reversal pXn, Xn´1, ..., X0q. For this reason, a chain satisfying detailed balance
equations is called reversible.

Example 6.2.10 (Birth-and-Death Chain). A birth-and-death chain has state space S “ t0, 1, ..., Nu. In
one step the state can increase or decrease by at most one. The current state can be thought of as the size
of some population; in a single step of the chain, there can be at most one birth or death. Then transition
probabilities can be specified by tppk, rk, qkq, 0 ď k ď Nu where pk ` rk ` qk “ 1 for each k and

• pk is the probability of moving from k to k ` 1 when 0 ď k ă N ; pN “ 0;

• qk is the probability of moving from k to k ´ 1 when 0 ă k ď N ; q0 “ 0;

• rk is the probability of remaining at k when 0 ď k ď N .

Every birth-and-death chain is reversible.

Proof. A measure π̃ on S satisfies detailed balance equations if and only if, for all 1 ď k ď N

π̃pkqP pk, k ´ 1q “ π̃pk ´ 1qP pk ´ 1, kq, or
π̃pkq

π̃pk ´ 1q
“
pk´1

qk
.

Define
π̃p0q “ 1, π̃pkq “ Πk

n“1pn´1{qn, 1 ď k ď N.

Set

πpkq “
π̃pkq

řN
0 π̃pnq

, 0 ď k ď N.

Then π is a probability measure on S satisfying detailed balance equations.

Proposition 6.2.11. Let tXnu be an irreducible Markov chain with transition matrix P and stationary
distribution π. Define P̂ to be

P̂ px, yq “ πpyqP py, xq{πpxq.

Then P̂ is a stochastic matrix and π is stationary for P̂ . Let tX̂nu be a Markov chain with transition
matrix P̂ , then, for any x0, x1, ..., xn,

PπrX0 “ x0, X1 “ x1, ..., Xn “ xns “ PπrX̂0 “ xn, X̂1 “ x1, ..., X̂n “ x0s.

For this reason, we call X̂ the time-reversal of X.

Proof. First, we show that P̂ is stochastic. For x P S,

ÿ

y

P̂ px, yq “
ÿ

y

πpyqP py, xq{πpxq “ 1. (Since π is stationary for P )
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Second, we show that π is stationary for P̂ .

ÿ

y

πpyqP̂ py, xq “
ÿ

y

πpxqP px, yq “ πpxq. (Since P is stochastic)

Finally,

PπrX0 “ x0, X1 “ x1, ..., Xn “ xns “ πpx0qP px0, x1q ¨ ¨ ¨P pxn´1, xnq

“ πpxnqP̂ pxn, xn´1q ¨ ¨ ¨ P̂ px1, x0q

“ PπrX̂0 “ xn, X̂1 “ x1, ..., X̂n “ x0s.

If a Markov chain with transition matrix P is reversible, then P̂ “ P and X̂ has the same law as X.

6.3 Stationary measure

Definition 6.3.1. Let tXnu be a Markov chain on S. For x P S, define

τx “ inftn ě 0 : Xn “ xu, τ`x “ inftn ě 1 : Xn “ xu.

We call τx the hitting time for x, and τ`x the first return time when X0 “ x.

The goal of this section is the following existence and uniqueness of stationary measure of irreducible
Markov chains.

Theorem 6.3.2. Suppose P is irreducible, then there exists a unique probability measure π such that
π “ πP . Moreover, for all x P S,

πpxq “
1

Exrτ
`
x s
ą 0.

Lemma 6.3.3. Suppose that P is irreducible. Then, for any x, y P S, we have

Exrτ
`
y s ă 8.

Proof. Since P is irreducible, for any x, y P S, there exists rpx, yq such that P rpx,yqpx, yq ą 0. Define

ε “ mintP rpx,yqpx, yq : x, y P Su, R “ maxtrpx, yq : x, y P Su.

Then, for any value of Xn, the probability of hitting state y at a time between n and n`R is at least ε.
Thus,

Pxrτ
`
y ą Rs ď 1´ ε, Pxrτ

`
y ą pk ` 1qRs ď p1´ εqPxrτ

`
y ą kRs.

Repeating this inequality, we have that, for any k ě 1,

Pxrτ
`
y ą kRs ď p1´ εqk.

Therefore,
Exrτ

`
y s “

ÿ

n

Pxrτ
`
y ą ns ď R

ÿ

k

Pxrτ
`
y ą kRs ď R

ÿ

k

p1´ εqk ď R{ε ă 8.
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Proof of Theorem 6.3.2–existence. Fix a state z P S, we will examine the time that the chain spends at
each state in between two visits to z. Define, for x P S,

π̃pxq “ Ezr#visits to x before returning to zs.

Note that, we can write π̃pxq in the following way

π̃pxq “
8
ÿ

n“0

PzrXn “ x, n ă τ`z s.

We claim that π̃ “ π̃P . For any x P S,

π̃P pxq “
ÿ

wPS
π̃pwqP pw, xq

“
ÿ

wPS

8
ÿ

n“0

PzrXn “ w, n ă τ`z sP pw, xq

“
ÿ

wPS

8
ÿ

n“0

PzrXn “ w,Xn`1 “ x, n` 1 ď τ`z s

“

8
ÿ

n“0

PzrXn`1 “ x, n` 1 ď τ`z s “
8
ÿ

n“1

PzrXn “ x, n ď τ`z s.

In short, we need to compare the following two terms

π̃P pxq “
8
ÿ

n“1

PzrXn “ x, n ď τ`z s, π̃pxq “
8
ÿ

n“0

PzrXn “ x, n ă τ`z s.

There are two different cases: x ‰ z or x “ z. If x ‰ z, we have that

π̃P pxq “
8
ÿ

n“1

PzrXn “ x, n ă τ`z s “
8
ÿ

n“0

PzrXn “ x, n ă τ`z s “ π̃pxq.

If x “ z, we have that

π̃pxq “
8
ÿ

n“1

Pzrτ
`
z “ ns “ 1 “ π̃pzq.

In any case, we have π̃P pxq “ π̃pxq.
To make π̃ a probability measure, we need to normalize it by its total mass:

ÿ

x

π̃pxq “ Ezrτ
`
z s.

Define, for any x P S,
πpxq “ π̃pxq{Ezrτ

`
z s.

Then the probability measure π is a stationary distribution.

From the proof of Theorem 6.3.2–existence, we do not know whether the measure π depends on the
choice of state z. By the construction of π, we have that

πpzq “ 1{Ezrτ
`
z s.

We will show that there is a unique stationary measure. After we show the uniqueness, we could conclude
that, for all x P S,

πpxq “ 1{Exrτ
`
x s.

Recall that a measure µ on S is stationary if µP “ µ. The corresponding notion for functions on S is
harmonic.
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Definition 6.3.4. A function f on S is harmonic if f “ Pf .

Lemma 6.3.5. Suppose P is irreducible. Then any harmonic function f on S has to be constant.

Proof. Since S is finite, there must be a state x0 such that fpx0q “ maxtfpxq : x P Su. Denote the value
fpx0q by M .

For any state z such that P px0, zq ą 0, if fpzq ăM , we have

fpx0q “
ÿ

x

P px0, xqfpxq ă
ÿ

x

P px0, xqM “M,

which is a contradiction. Thus, we must have fpzq “M provided P px0, zq ą 0.
For any state z, since P is irreducible, there exists a sequence x0, x1, ..., xn “ z such that P pxj , xj`1q ą

0 for j “ 0, ..., n´ 1. Repeating the same argument as above tells us that

fpx0q “ fpx1q “ ¨ ¨ ¨ “ fpxnq “ fpzq “M.

Therefore f is constant.

Proof of Theorem 6.3.2–uniqueness. From Lemma 6.3.5, we know that the kernel of P ´ I has dimension
one. Therefore, the row-vector equation µ “ µP also has a one-dimensional space of solutions; and this
space contains only one vector whose entries sum to one.

From the proof of existence, we know that π “ π̃{Ezrτ`z s is stationary. Note that the definition of π̃
depends on z, but since there is a unique stationary distribution, the measure π does not depend on the
choice of z. In particular, for all x, we have πpxq “ 1{Exrτ`x s.

Theorem 6.3.6 (Ergodic Theorem). Let f be a real-valued function defined on S. If tXnu is an irreducible
Markov chain with stationary distribution π, then for any starting distribution µ, we have

lim
nÑ8

1

n

n
ÿ

j“0

fpXjq “ πpfq, Pµ ´ a.s.

In particular,

lim
nÑ8

1

n

n
ÿ

j“0

1tXj“xu “ πpxq, Pµ ´ a.s.

Proof. Since any probability measure µ is a linear combination of Dirac masses µ “
ř

x µpxqδx, it suffices
to show the conclusion for µ “ δx. In other words, the chain starts at x. Define the sequence of return
times: for k ě 1

τ0 “ 0, τ1 “ τ`x , τk`1 “ mintn ą τk : Xn “ xu.

Consider one block pXτk , Xτk`1, ..., Xτk`1´1q, define

Yk “

τk`1´1
ÿ

j“τk

fpXjq.

By Markov property, the random variables tYku are i.i.d. By Strong Law of Large Numbers, we have

1

n

n´1
ÿ

0

Yk Ñ ExrY0s, Px ´ a.s.

Since τn “
řn“1

0 pτj`1 ´ τjq, by Strong Law of Large Numbers again, we have

1

n
τn Ñ Exrτ

`
x s, Px ´ a.s.
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Therefore, we have
řτn´1

0 fpXjq

τn
Ñ

ExrY0s

Exrτ
`
x s
, Px ´ a.s.

Note that

ExrY0s “ Ex

«

τ1´1
ÿ

j“0

fpXjq

ff

“
ÿ

y

fpyqEx

«

τ1´1
ÿ

j“0

1tXj“yu

ff

“
ÿ

y

fpyqπ̃pyq,

where π̃pyq “ Exr#visits to y before τ`x s. Since π̃pyq “ πpyqExrτ`x s, we have that

ExrY0s “
ÿ

y

fpyqπpyqExrτ
`
x s “ πpfqExrτ

`
x s.

Therefore,
řτn´1

0 fpXjq

τn
Ñ πpfq, Px ´ a.s. (6.3.1)

The goal is to show the following

řm´1
0 fpXjq

m
Ñ πpfq, Px ´ a.s. (6.3.2)

It remains to derive from (6.3.1) to (6.3.2). Denote by M “ maxx |fpxq| and we may assume πpfq “ 0.
For large m, suppose τn ď m ă τn`1. Then we have

|
řm´1

0 fpXjq|

m
ď

ˇ

ˇ

ˇ

řτn´1
0 fpXjq

ˇ

ˇ

ˇ
` pm´ τnqM

m
ď

ˇ

ˇ

ˇ

řτn´1
0 fpXjq

ˇ

ˇ

ˇ

τn
`

ˆ

τn`1

τn
´ 1

˙

M.

Plugging in (6.3.1) and τn`1{τn Ñ 1, we obtain (6.3.2).

6.4 The convergence theorem

Theorem 6.4.1. Suppose that P is irreducible, aperiodic, with stationary distribution π. Then there exist
constants α P p0, 1q and C ą 0 such that

max
xPS

}Pnpx, ¨q ´ π}TV ď Cαn @n ě 1.

Proof. Define Π to be the matrix with |S| rows, each of which is the row vector π. It is clear that
ΠP “ PΠ “ Π, and Π2 “ Π. We only need to show that

}Pn ´Π} ď Cαn.5

Since P is irreducible and aperiodic, there exists r such that

P rpx, yq ą 0, @x, y P S.

Thus, for sufficiently small δ ą 0 we have

P rpx, yq ě δπpyq, @x, y P S.

Define matrix Q such that P r “ δΠ` p1´ δqQ. Then we can check that

Q is stochastic, QΠ “ ΠQ “ Π.

5Here we use distance between matrices: }A´B} “
ř

i,j |Api, jq ´Bpi, jq|. Note that }µ´ ν} “ 2}µ´ ν}TV .
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Denote 1´ δ by θ, then Pnr “ p1´ θnqΠ` θnQn. Thus

}Pnr ´Π} ď θn}Π´Qn} ď Cθn,

where C “ 2|S| ˆ |S|. For 0 ď j ă r, we have Pnr`j “ PnrP j “ p1´ θnqΠP j ` θnQnP j “ p1´ θnqΠ `
θnQnP j . Therefore,

}Pnr`j ´Π} “ θn}Π´QnP j} ď Cθn.

Example (Example 6.2.5 continued). Suppose tXnu is a simple random walk on N -cycle. It is clear
that the stationary measure π is uniform over the cycle. Recall that the walk is irreducible. By ergodic
theorem, we have, for any x P S:

1

n

n
ÿ

j“1

1tXn“xu Ñ
1

N
, a.s.; and

1

n

n
ÿ

j“1

PrXn “ xs Ñ
1

N
. (6.4.1)

When N is odd, the walk is aperiodic, and thus for any x P S:

PrXn “ xs Ñ
1

N
. (6.4.2)

When N is even. Suppose x0, x P S and the distance between these two points is even, then we have

Px0rX2n “ xs Ñ
2

N
, Px0rX2n`1 “ xs “ 0.

Thus, the conclusion (6.4.2) can not hold in this case; whereas, the conclusion (6.4.1) is still true.

6.5 Exercises

Exercise 6.5.1. A graph G is connected when, for two vertices x and y of G, there exists a sequence
of vertices x0, x1, . . . , xk such that x0 “ x, xk “ y, and xi „ xi`1 for 0 ď i ď k ´ 1. Show that simple
random walk on G is irreducible if and only if G is connected.

Exercise 6.5.2. Let P be the transition matrix of a Markov chain with state space S and let µ and ν be
any two distributions on S. Prove that

}µP ´ νP }TV ď }µ´ ν}TV.

(This in particular shows that }µP t`1´π}TV ď }µP
t´π}TV, that is, advancing the chain can only move

it closer to stationary.)

Exercise 6.5.3. A professor has n umbrellas, of which initially k P p0, nq are at his office and n´ k are
at his home. Every day, the professor walks to the office in the morning and returns home in the evening.
In each trip, he takes an umbrella with him only if it is raining. Assume that in every trip between home
and office or back, the chance of rain is p P p0, 1q, independently of other trips.

(1) Asymptotically, in what fraction of his trips does the professor get wet?

(2) Determine the expected number of trips until all n umbrellas at the same location.

(3) Determine the expected number of trips until the professor gets wet.

Exercise 6.5.4 (YCMC2016). Consider the numbers 1, 2, ..., 12 written around a ring as they usually
are on a clock. A random walker starts at 12 and at each step moves at random to one of its two nearest
neighbors (with probability half-half). What is the probability that she will visit all the other numbers
before her first returning back to 12?

Exercise 6.5.5 (YCMC2016). A boy tries to collect some special tennis cards. There are 100 different
types. Each time he put 1 yuan into the card machine, he will randomly get a tennis card. The type of
the card is uniformly distributed. Let T be the total money he will spend to collect all different types of
cards. What is the expectation and variance of T?
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7 Markov chain: countable state space

7.1 Recurrence and positive recurrence

In this section, we will consider Markov chain on countable state space S. The following notions for
Markov chain on finite state space can be generalized to the countable space.

Definition 7.1.1. A sequence of random variables tXnu is a Markov chain with state space S and
transition matrix P if for all n ě 0, and all sequences px0, x1, ..., xn, xn`1q with xi P S, we have that

PrXn`1 “ xn`1 |X0 “ x0, ..., Xn “ xns “ PrXn`1 “ xn`1 |Xn “ xns “ P pxn, xn`1q.

For the Markov chain on S with transition matrix P , the stationary distribution and irreducibility are
defined in the same way as before.

• A measure π on S is a stationary distribution if π “ πP and π has unit total mass.

• The transition matrix P is irreducible if for any x, y P S, there exists n such that Pnpx, yq ą 0.

Definition 7.1.2. For the Markov chain tXnu, define hitting time and first return time: for x P S

τx “ mintn ě 0 : Xn “ xu, τ`x “ mintn ě 1 : Xn “ xu.

We say a state x P S is recurrent if
Pxrτ

`
x ă 8s “ 1.

Otherwise, we say x is transient.

If S is finite and P is irreducible, every state is recurrent by Lemma 6.3.3. However, when S is infinite
countable, we have two different cases: recurrent or transient.

Lemma 7.1.3. Suppose that P is irreducible. The following two conditions are equivalent.

(1) Pxrτ`x ă 8s “ 1 for some x P S

(2) Pxrτ`y ă 8s “ 1 for all x, y P S

Proof. Suppose that Px0rτ
`
x0 ă 8s “ 1 for some x0 P S. First, we show that, for any y ‰ x0, we have

Px0rτy ă 8s “ 1. By irreducibility, we know that q :“ Px0rτy ă τ`x0 ă 8s ą 0. Thus

p :“ Px0rτy ă 8s “ Px0rτy ă τ`x0 ă 8s ` Px0rτ
`
x0 ă τy ă 8s “ q ` p1´ qqp.

Therefore, qp1´ pq “ 0. Since q ą 0, we have p “ 1.
Second, we show that, for any x ‰ x0, we have Pxrτx0 ă 8s “ 1. By irreducibility, we know that

q :“ Px0rτx ă τ`x0 ă 8s ą 0. Thus, by Markov property,

q “ Px0rτx ă τ`x0 ă 8s “ qPxrτx0 ă 8s.

Since q ą 0, we have Pxrτx0 ă 8s “ 1.
Finally, for any x, y P S, define τx0y “ mintn ě τx0 : Xn “ yu, we have

Pxrτy ă 8s ě Pxrτx0 ă 8, τx0y ă 8s “ Pxrτx0 ă 8sPx0rτy ă 8s “ 1.

From this lemma, we know that, for an irreducible chain, a single state is recurrent if and only if all
states are recurrent. For this reason, an irreducible Markov chain can be classified as either recurrent or
transient.
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Definition 7.1.4. A state x is positive recurrent if Exrτ`x s ă 8.

Lemma 7.1.5. Suppose that P is irreducible. The following two conditions are equivalent.

(1) Exrτ`x s ă 8 for some x P S.

(2) Exrτ`y s ă 8 for all x, y P S.

Proof. Suppose that Ex0rτ
`
x0s ă 8 for some x0. First, we show that, for x ‰ x0, we have Exrτx0s ă 8.

8 ą Ex0rτ
`
x0s ě Ex0

”

τ`x0 1
tτxăτ

`
x0
u

ı

ě Ex0
”

`

τ`x0 ´ τx
˘

1
tτxăτ

`
x0
u

ı

“ Px0rτx ă τ`x0sExrτx0s.

Since Px0rτx ă τ`x0s ą 0 (by irreducibility), we have Exrτx0s ă 8.
Second, we show that, for y ‰ x0, we have Ex0rτys ă 8. Define

τ0 “ 0, τ1 “ τ`x0 , τk`1 “ mintn ą τk : Xn “ x0u.

By irreducibility, we have q :“ Px0rτ1 ă τys ă 1; moreover, Px0rτk ă τys “ qk. Thus

Ex0rτys “
ÿ

k

Ex0
“

τy 1tτkăτyăτk`1u

‰

ď
ÿ

k

Ex0
“

τk`1 1tτkăτyăτk`1u

‰

“
ÿ

k

Ex0
“

pτk`1 ´ τkq1tτkăτyu
‰

“
ÿ

k

Ex0rτ1sPx0rτk ă τys

“
ÿ

k

Ex0rτ1sq
k ă 8.

Finally, for any x, y, we have

Exrτ
`
y s ď Exrτx0 ` τx0ys “ Exrτx0s ` Ex0rτys ă 8.

Therefore, for an irreducible chain, a single state is positive recurrent if and only if all states are
positive recurrent. For this reason, an irreducible recurrent Markov chain can be classified as either
positive recurrent or else which we call null recurrent.

Example 7.1.6. Simple random walk on Z is null recurrent.

Proof. Denote E1rτ0s by α. Note that

α “
1

2
`

1

2
p1` E2rτ0sq “ 1`

1

2
E2rτ0s,

where
E2rτ0s “ E2rτ1s ` E1rτ0s “ 2α.

Therefore α “ 1 ` α and α has to be infinite. Furthermore, E0rτ
`
0 s “ E1rτ0s “ 8. See another proof in

Section 7.2.

Theorem 7.1.7. An irreducible Markov chain is positive recurrent if and only if there exists a probability
measure π on S such that π “ πP .
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Proof of Theorem 7.1.7–positive recurrence implies stationary distribution. Fix x0, define

πpxq “ Ex0
“

#visits to x before τ`x0
‰

{Ex0
“

τ`x0
‰

.

We could show that π is a stationary distribution in the same way as in finite state space case.

Proof of Theorem 7.1.7–stationary distribution implies positive recurrence. Suppose that there exists a
probability measure π such that π “ πP . First, we show that πpxq ą 0 for all x P S. Assume that
πpx0q “ 0 for some x0. Since π “ πP , we have

πpx0q “
ÿ

y

πpyqP py, x0q.

Thus, combining πpx0q “ 0 and P py, x0q ą 0, we obtain that πpyq “ 0.
By irreducibility, for any z P S, there exists sequence y0 “ z, y1, ..., yn “ x0 such that P pyj , yj`1q ą 0,

thus πpzq “ 0 by the above analysis. Therefore, πpzq “ 0 for all z, contradicts with the fact that π is a
probability measure.

Second, we show that the chain is recurrent, i.e. we will show that Pxrτ`x ă 8s “ 1 for some fixed x.
For n ě 0, define

αpnq “ PπrXn “ x,Xm ‰ x,@m ą ns.

On the one hand,
αpnq “ PπrXn “ xsPxrτ

`
x “ 8s “ πpxqPxrτ

`
x “ 8s.

On the other hand, the events tXn “ x,Xm ‰ x,@m ą nu are disjoint for different n’s. Thus
ř

n αpnq ď 1.
Combining these two facts, we have Pxrτ`x “ 8s “ 0.

Third, we show that the time reversal of tXnu is recurrent. Let tYnu be the Markov chain with
transition matrix P̂ px, yq “ πpyqP py, xq{πpxq. We know that

πpxqPrX0 “ x,X1 “ x1, ...., Xn´1 “ xn´1, Xn “ ys “ πpyqPrY0 “ y, Y1 “ xn´1, ..., Yn´1 “ x1, Yn “ xs.

Moreover, π is also stationary for P̂ . by the second step, we know that tYnu is recurrent.
Finally, we show that πpxqExrτ`x s “ 1.

πpxqExrτ
`
x s “

ÿ

ně1

πpxqPxrτ
`
x ě ns

“
ÿ

ně1

ÿ

y

πpxqPxrXn “ y, τ`x ě ns

“
ÿ

ně1

ÿ

y

πpyqP̂yrYn “ x, τ`x ě ns

“
ÿ

ně1

ÿ

y

πpyqP̂yrτ
`
x “ ns

“
ÿ

y

πpyqP̂yrτ
`
x ă 8s

“
ÿ

y

πpyq (Since tYnu is recurrent)

“ 1.

Corollary 7.1.8. If an irreducible Markov chain is positive recurrent, then

• there exists a probability measure π such that π “ πP ;
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• πpxq ą 0 for all x. In fact,

πpxq “
1

Exrτ
`
x s
.

Theorem 7.1.9. Suppose that the Markov chain is irreducible, aperiodic and positive recurrent, then

lim
n
||Pnpx, ¨q ´ π||TV “ 0.

In particular, for any state y, we have

lim
n
Pnpx, yq “ πpyq ą 0.

Proof. Idea: construct a coupling tpXn, Ynqu of two Markov chains such that X0 “ x and Y0 „ π, and
that Xn “ Yn as often as possible.

First, construct a transition matrix on S ˆ S. Define

Qppx, yq, pz, wqq “ P px, zqP py, wq, @x, y, z, w P S.

It is clear that the matrix Q is stochastic. We first show that the matrix Q is irreducible. We need to
show that, for any x, y, z, w, there exists N such that

QN ppx, yq, pz, wqq “ PN px, yqPN pz, wq ą 0.

Define T pxq “ tn : Pnpx, xq ą 0u. Note that T pxq is closed under addition and has gcd 1. Thus, there
exists Npxq such that Pnpx, xq ą 0 for all n ě Npxq. By irreducibility, there exists r “ rpx, zq such
that P rpx, zq ą 0. Define Mpx, zq :“ Npxq ` rpx, zq, then Pnpx, zq ą 0 for all n ě Mpx, zq. Similarly,
there exists Mpy, wq such that Pnpy, wq ą 0 for all n ě Mpy, wq. Let N “ maxpMpx, zq,Mpy, wqq, then
QN ppx, yq, pz, wqq “ PN px, yqPN pz, wq ą 0.

Second, we show that Q is positive recurrent. Define π b π on S ˆ S to be

π b πpx, yq “ πpxqπpyq.

It is clear that π b π is a probability measure. Moreover, π b π is stationary for Q:

π b πQpz, wq “
ÿ

x,y

π b πpx, yqQppx, yq, pz, wqq

“
ÿ

x,y

πpxqπpyqP px, zqP py, wq

“ πpzqπpwq “ π b πpz, wq.

Finally, we construct the coupling. The Markov chain tpXn, Ynqu starts from pX0, Y0q „ δx b π and
moves by Q. Define

τ “ mintn ě 0 : pXn, Ynq “ py0, y0qu.

Run the chain by Q until time τ . After τ , we keep them together. Note that Xn „ Pnpx, ¨q and Yn „ π.

}Pnpx, ¨q ´ π}TV ď PrXn ‰ Yns ď Prτ ą ns “
ÿ

y

πpyqQx,yrτ ą ns.

Since Q is recurrent, we have Qx,yrτ ą ns Ñ 0 as nÑ8. This implies the conclusion.
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7.2 Simple random walk on Zd

We have shown in Example 7.1.6 that the simple random walk on Z is null recurrent. In this section, we
will show that the simple random walk on Z2 is recurrent; and the simple random walk on Z3 is transient,
which implies that simple random walk on Zd is transient for all d ě 3.

Theorem 7.2.1. • Simple random walk on Z2 is recurrent.

• Simple random walk on Z3 is transient.

Suppose tSnu is a simple random walk in Zd starting from the origin. Define the sequence of stopping
times that the walk returns to the origin:

τ0 “ 0, τk`1 “ mintn ą τk : Sn “ 0u, k ě 0.

Lemma 7.2.2. The following three assertions are equivalent:

• the walk is recurrent;

• Prτ1 ă 8s “ 1;

•
ř

m PrSm “ 0s “ 8.

Proof. Let us calculate the expectation of the number of visits to the origin. On the one hand,

Er#visits to 0s “
ÿ

n

Prτn ă 8s “
ÿ

n

Prτ1 ă 8s
n.

On the other hand,
Er#visits to 0s “

ÿ

m

PrSm “ 0s.

These give the conclusion.

From the above lemma, to obtain recurrence, it suffices to determine the asymptotic of the probability
pdpmq :“ PrSm “ 0s as m Ñ 8. Since pdpmq “ 0 for odd m, we only need to consider pdpmq with even
m.

Lemma 7.2.3. When d “ 1, we have

p1p2nq „
1
?
πn

.

Proof. It is clear that

p1p2nq “

ˆ

2n

n

˙

2´2n.

The conclusion follows by combining with Stirling’s formula:

n! „
´n

e

¯n?
2πn.

Lemma 7.2.4. When d “ 2, we have

p2p2nq “ p1p2nq
2 „

1

πn
.
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Proof. In order for S2n “ 0, there exists m P t0, 1, . . . , nu so that the walk has m up steps, m down steps,
n´m to the left, and n´m to the right. Thus

p2p2nq “ 4´2n
ÿ

m

p2nq!

pm!pn´mq!q2
“ 4´2n

ˆ

2n

n

˙

ÿ

m

ˆ

n

m

˙2

“ 4´2n

ˆ

2n

n

˙2

“ p1p2nq
2.

Lemma 7.2.5. When d “ 3, we have
p3p2nq ď Opn´3{2q.

Proof. In order for S2n “ 0, there exists j, k P t0, 1, . . . , nu so that the walk has j up steps, j down steps,
k to the left, k to the right, n´ j ´ k to the forward, and n´ j ´ k to the back. Thus

p3p2nq “ 6´2n
ÿ

j,k

p2nq!

pj!k!pn´ j ´ kq!q2

“ 2´2n

ˆ

2n

n

˙

ÿ

j,k

ˆ

3´nn!

j!k!pn´ j ´ kq!

˙2

“ p1p2nq
ÿ

j,k

ˆ

3´nn!

j!k!pn´ j ´ kq!

˙2

.

Note that
ÿ

j,k

3´nn!

j!k!pn´ j ´ kq!
“ 1,

thus

p3p2nq ď p1p2nqmax
j,k

3´nn!

j!k!pn´ j ´ kq!
.

The max will be obtained when j, k are integers close to n{3. By Stirling’s formula, we have

max
j,k

3´nn!

j!k!pn´ j ´ kq!
“ Opn´1q.

Combining with the asymptotic of p1p2nq, we obtain the conclusion.

Proof of Theorem 7.2.1. Combining Lemmas 7.2.2 and 7.2.4, we obtain the recurrence when d “ 2. Com-
bining Lemmas 7.2.2 and 7.2.5, we obtain the transience when d “ 3.

7.3 Exercises

Exercise 7.3.1 (YCMC2016). For a random walk process on the complete infinite binary tree starting
from root (i.e. level 0), we assume that the object moves to the neighbor nodes with equal probability. Let
Xn denote the level number at time n. Prove that ErXns ď n{3` 4{3.

Exercise 7.3.2 (YCMC2016). A random walker moves on the lattice Z2 according to the following rule:
in the first step it moves to one of its neighbors with probability 1{4, and then in step n ą 1 it moves to
one of the neighbors that it didn’t visit in the step n ´ 1 with equal probability. Let T be the time when
the random walker steps on a site that it already visited. Show that the expectation of T is less than 35.

Exercise 7.3.3 (YCMC2017). Let tSnu and tS1nu be two independent simple random walks on Zd such
that X0 “ X 10 “ 0. Define I “ tps, tq : Xs “ X 1tu. Prove that |I| ă 8 a.s.

Hint: You can first prove that

PrXn “ 0s “ Opn´d{2q, nÑ8.
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Exercise 7.3.4 (YCMC2017). Suppose a number X0 P t1,´1u at the root of a binary tree is propagated
away from the root as follows. The root is the node at level 0. After obtaining the 2h numbers at the nodes
at level h, each number at level h ` 1 is obtained from the number adjacent to it (at level h) by flipping
its sign with probability p P p0, 1{2q independently. Let Xh be the average of the 2h values received at the
nodes at level h. Define the signal-to-noise ratio at level h to be

Rh :“
pErXh |X0 “ 1s ´ ErXh |X0 “ ´1sq2

varpXh |X0 “ 1q
.

Find the threshold number pc such that Rh converges to 0 if p P ppc, 1{2q and diverges if p P p0, pcq, as
hÑ8.
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