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Introduction

Probability Theory(MATH3007) is the first lecture about the probability and statistics major in

USTC. The author of the note is learning the course during the autumn semester of 2023 and the

lecturer is Prof. Dangzheng Liu. In this note, the main content of the course (c.f. Grimmett, Stirzaker:

Probability and Random Process, Chapter 1-5, 7.1-7.6) will be covered. The important definitions,

propositions and theorems will be talked about here. There will also be some examples for a easier

understanding. In the end of each chapter, the author will give a summary about the most important

things in the chapter and some exercises (and answers maybe) will be listed.

This course need some knowledge about real analysis(mainly about the measure and integration

theory), which can be found in the textbook Real Analysis:Modern Techniques and Their Applications

by B. Folland. And the textbook by Grimmett and Stirzaker mentioned above will be the main

reference textbook in this course.

Since the expertise of the author and the time of writing the note are limited, it’s unavoidable that

there are some mistakes in the note. For the sake of future readers, the author hopes that each reader

will take the time to keep notes of any mistakes or passages that are awkward or unclear, and let the

author know about them as soon as it is convenient for you. Happy reading!



Chapter 1 Basic Definitions

1.1 Probability Space

Definition 1.1

♣

The result of an experiment is called its outcome. The set of all possible outcomes of an

experiment is called the sample space and is denoted by Ω. Events are the subsets of the sample

space Ω.

Definition 1.2

♣

A subcollection F of the set of all subsets of Ω is called a σ-algebra (or σ-field) if F satisfies

the following properties:

(a) Ω ∈ F (b) If A ∈ F , then Ac ∈ F

(c) If An ∈ F for n = 1, 2 . . . , then
∞⋃
n=1

An ∈ F

It follows from the definition that the σ-fields are closed under the operation of taking countable

intersections and unions.
Definition 1.3

♣

A probability measure P on (Ω,F) is a function P : F → R, so that:

(a) ∀A ∈ F , P(A) ⩾ 0 (b) P(Ω) = 1

(c) If A1, A2 . . . is a collection of disjoint members of F , then

P(
∞⋃
n=1

An) =
∞∑
n=1

P(An)

There are some basic properties of the probability measure.



1.2 Conditional Probability and Independence

Lemma 1.1

♡

The probability measure P satisfies the following:

(a) P(Ac) + P(A) = 1

(b) If A ⊂ B, then P(B) = P(A) + P(B\A) ⩾ P(A)

(c) P(A
⋃
B) = P(A) + P(B)− P(A

⋂
B)

(d) P(
n⋃

i=1

Ai) =
n∑

k=1

(−1)k+1
∑

1≤i1<i2···<ik≤n

P(Ai1

⋂
Ai2 · · ·

⋂
Aik)

(e) For A1 ⊂ A2 ⊂ . . . , then P(
∞⋃
n=1

An) = lim
n→∞

P(An)

(f) For B1 ⊃ B2 ⊃ . . . , then P(
∞⋂
n=1

Bn) = lim
n→∞

P(Bn)

Proof (a)(b)(c) Trivial.

(d) We use induction. The case where n = 1 or 2 is easy. Assume the indentity holds for n− 1, then

P(
n⋃

i=1

Ai) = P(
n−1⋃
i=1

Ai) + P(An)− P((
n−1⋃
i=1

Ai)
⋂

An)

= P(
n−1⋃
i=1

Ai) + P(An)− P(
n−1⋃
i=1

(Ai

⋂
An))

Then the result follows from expanding the first and thrid terms on the right by using induction

hypothesis.

(e) Denote A =
∞⋃
n=1

An = A1

⋃
(A2\A1)

⋃
(A3\A2)

⋃
. . . , then by the definition of probability

measure, we have

P(A) = P(A1) +
∞∑
n=1

P(An+1\An)

= P(A1) + lim
n→∞

n−1∑
i=1

[P(Ai+1)− P(An)]

= lim
n→∞

P(An)

(f) Take complement and use (e). □
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1.2 Conditional Probability and Independence

1.2 Conditional Probability and Independence

Definition 1.4

♣

If P(B) > 0 then the conditional probability that A occurs given that B occurs is defined to be

P(A|B) =
P(A

⋂
B)

P(B)

A family B1, B2, . . . , Bn of events is called a partition of the set Ω if

Bi

⋂
Bj ̸= ∅ when i ̸= j, and

n⋃
i=1

Bi = Ω

Lemma 1.2 (Law of Total Probability)

♡

B1, B2, . . . , Bn is a partition of Ω and P(Bi) > 0 for all i, then

P(A) =
n∑

i=1

P(A|Bi)P(Bi)

In particular, for B such that 0 < P(B) < 1, one has

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

Proof A = (A
⋂
B)

⋃
(A

⋂
Bc) is a disjoint union, so

P(A) = P(A
⋃

B) + P(A
⋃

Bc)

= P(A|B)P(B) + P(A|Bc)P(Bc)

The case when there are a collection of events is similar. □

Lemma 1.3 (Bayes’ Formula)

♡

A1, A2, . . . , An is a partition of Ω and P(Aj) > 0 for all j and P(B) > 0, then

P(Ai|B) =
P(B|Ai)P(Ai)

n∑
j=1

P(B|Aj)P(Aj)

Proof Trivial. □
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1.2 Conditional Probability and Independence

Definition 1.5

♣

Events A and B are called independent if

P(A
⋂

B) = P(A)P(B)

More generally, a family {Ai|i ∈ I} is called independent if

P(
⋂
i∈J

Ai) =
∏
i∈J

P(Ai)

for all finite subsets J of I .

Example 1.1 If the family {Ai|i ∈ I} has the property that

P(Ai

⋂
Aj) = P(Ai)P(Aj) for all i ̸= j

then it is called pairwise independent. It is clear that independent families are pairwise independent,

but NOT vice versa:

Suppose Ω = {abc, acb, cab, cba, bca, bac, aaa, bbb, ccc}, and each of the events in Ω occurs with

equal probability. Let Ak be the event that the kth letter is a, then one can check that the family

{A1, A2, A3} is pairwise independent but not independent.

Example 1.2 Let A be an event that occurs with a probability ϵ ∈ (0, 1), do the experiment for an

infinite number of times, then P(A∞) = P(A occurs for at least one time)=1.

Proof Let Ak denote the event that A occurs in the kth experiment, then

P(A∞) = lim
k→∞

P(
k⋃

i=1

Ai) = lim
k→∞

P((
k⋂

i=1

Ac
i)

c)

= lim
k→∞

1− P((
k⋂

i=1

Ac
i)) = lim

k→∞
1−

k∏
i=1

(1− P(A))

= lim
k→∞

1− (1− ϵ)k = 1

Note that the independence between distinct experiments is used in the proof. □
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1.2 Conditional Probability and Independence

Lemma 1.4

♡IfA,B are independent, then the families {A,Bc},{Ac, B} and {Ac, Bc} are also independent.

Proof Just check the definition of independence.

P(A
⋂

Bc) = P(A)− P(A
⋂

B)

= P(A)− P(A)P(B)

= P(A)(1− P(B))

= P(A)P(Bc)

So A and Bc are independent. The other two independence can be proved similarly. □
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1.3 Classic Models

1.3 Classic Models

Example 1.3 Let A={there are at least two students having the same birthday from n students}, then

P(A) =?

Proof It’s difficult to directly compute the probability of A since A is the union of many events(three

students having the same birthday, . . . ). However, the complement event is easy: the birthdays are all

different.

P(A) = 1− P(Ac) = 1− An
365

365n

Example 1.4 Put n balls into N(≥ n) boxes. Each way of putting the balls has the same probability.

A={there is one ball in each of the first n boxes}. Then P(A) =?

Proof Firstly we will look at the most basic counting problems: there are n elements a1, a2 . . . , an,

and we pick m(≤ n) elements from those. How many ways of picking in total? There are four cases:

(1) it’s allowed to pick one element more than once, and there is an order of picking, then the

answer is nm

(2) it’s allowed to pick one element more than once, and there is no order of picking, then the

answer is Cn−1
n−1+m

(3) it’s not allowed to pick one element more than once, and there is an order of picking, then the

answer is Am
n

(4) it’s not allowed to pick one element more than once, and there is no order of picking, then the

answer is Cm
n

Back to the original problem, there are also many cases: whether the balls are the same, and whether

the boxes have a mximal capacity.

Case 1: the balls are not the same, and there is no maximal capacity:P(A) = n!
Nn

Case 2: the balls are the same, and there is no maximal capacity:P(A) = 1
Cn

N+1−n

7



1.3 Classic Models

Case 3: the balls are the same, and there is at most one ball in each box:P(A) = 1
Cn

N

Example 1.5 n couples are sitting at the two sides of the desk. Males are all sitting at one side.

A={there is at least one couple are sitting face to face}. Then P(A) =?

Proof Just give the males a permutation 1, 2, . . . , n, the females a permutation i1, i2 . . . in. Then

P(A)=P({there is at least one k so that ik = k}=P(
n⋃

k=1

Ak), where Ak = {ik = k}. Then we have

P(A) = P(
n⋃

k=1

Ak)

=
n∑

k=1

(−1)k+1
∑

1≤i1<i2···<ik≤n

P(Ai1

⋂
Ai2 · · ·

⋂
Aik)

=
n∑

k=1

(−1)k+1 (n− k)!

n!
Ck

n

=
n∑

k=1

(−1)k+1

k!

Example 1.6 In the beginning, the player has k points and the dealer has n − k points. Toss a coin

each time, if the result is head, then the player gains a point, otherwise the player lose a point. The

gamble doesn’t end until the player or the dealer has no points. Then P(A) = P({it’s the player who

has no point in the end})=?

Proof Let Ai be the event that it’s the player who has no point in the end when the player has i points

in the beginning, B be the event that the first toss turns out to be head, then

P(Ai) = P(Ai|B)P(B) + P(Ai|Bc)P(Bc)

That is

P(Ai) =
1

2
P(Ai+1) +

1

2
P(Ai−1)

Combine with the initial values P(A0) = 1,P(An) = 0, we obtain that P(Ak) = 1− k
n

.

Example 1.7 There are b black balls and r red balls in one box, pick one ball then put it back and

put c balls that have the same color with the ball picked. Bn = { the nth picked ball is black}. Then

P(Bn)=?

8



1.4 Random Variables

Proof Define Rn in the same way as Bn. Straightforward computation shows that P(B1B2R3) =

P(R1B2B3) = P(B1R2B3). Let Ak(b) = {k black balls are picked in the first n picked}, then it’s

clear that each case has the same probability, which gives

Ak(b) =
b(b+ c) . . . (b+ (k − 1)c)r(r + c) . . . (r + (n− k − 1)c)

(b+ r)(b+ r + 1) . . . (b+ r + (n− 1)c)
Ck

n

Then we have

P(Bn+1) =
n∑

k=1

P(Ak)P(Bn+1|Ak)

=
n∑

k=1

b(b+ c) . . . (b+ (k − 1)c)r(r + c) . . . (r + (n− k − 1)c)

(b+ r)(b+ r + 1) . . . (b+ r + (n− 1)c)
Ck

n

b+ kc

b+ r + nc

=
b

b+ r

∑
k

(b+ c)(b+ c+ c) . . . (b+ c+ (k − 1)c)r(r + c) . . . (r + (n− k − 1)c)

(b+ c+ r)(b+ c+ r + 1) . . . (b+ c+ r + (n− 1)c)
Ck

n

=
b

b+ r

Some identities above are just some calculations, the details are omitted here.

1.4 Random Variables

Definition 1.6

♣

A random variable is a function X : Ω → R with the property that {ω ∈ Ω|X(ω) ≤ x} ∈ F for

each x ∈ R.

Definition 1.7

♣

A probability distribution function of a random variable X is a function F : R → [0, 1] given

by F (x) = P(X ≤ x).

Theorem 1.1
If F is a probability distribution function, then:

(i) If x < y, then F (x) ≤ F (y)

(ii) lim
x→∞

F (x) = 1, lim
x→−∞

F (x) = 0

9



1.4 Random Variables

♡
(iii) F is right continuous, i.e. lim

h→0+
F (x+ h) = F (x)

Proof

(i) This is straightly from the fact that {X ≤ x} ⊂ {X ≤ y}

(ii) Let An = {X ≤ n}, then lim
n→∞

F (n) = lim
n→∞

P(An) = P( lim
n→∞

An) = 1. The other identity is

similar.

(iii) Let Bn = {X ≤ x+ 1
n
}, then {Bn} descends and

∞⋂
n=1

Bn = {X ≤ x}, then

lim
h→0+

F (x+ h) = lim
n→∞

F (x+
1

n
) = lim

n→∞
P(Bn) = P(

∞⋂
n=1

Bn) = F (x)

□

The function satisfying the (i)(ii)(iii) above is also called distribution function. In fact, every

distribution function is the probability function of some random variable in some probability space.

Theorem 1.2

♡

If F is a probability distribution function, then:

(i) P(X > x) = 1− F (x)

(ii) P(x < X ≤ y) = F (y)− F (x)

(iii) P(x = y) = F (y)− F (y − 0)

Definition 1.8

♣

The minimal σ-field in R generated by the intervals in the form of (a, b] is called the one

dimensional Borel field, denoted by B(R).

Then one can check that the one point set, the open intervals and the closed intervals are also in

B(R).

Theorem 1.3

♡

X is a random variable in the probability space (X,F ,P), then ∀B ∈ B(R). One has

X−1(B) := {ω ∈ Ω|X(ω) ∈ B} ∈ F

10



1.4 Random Variables

Proof

Let A = {A ⊂ R|X−1(A) ∈ F}. Then A is a σ-field:

(i)X−1(R) = Ω ∈ F , so R ∈ A

(ii)If A ∈ A, namely X−1(A) ∈ F , then X−1(Ac) = (X−1(A))c ∈ F , so Ac ∈ A

(iii)If An(n = 1, 2 · · · ) ∈ A, namely X−1(An) ∈ F , then X−1(
⋃
n

An) =
⋃
n

X−1(An) ∈ F , so⋃
n

An ∈ F .

By the definition of X , (−∞, x] ∈ A, then (a, b] ∈ A. By the minimal property of B(R),

B(R) ⊂ A. □

Theorem 1.4

♡If X, Y are random variables, then so is X + Y .

Proof Just check that ∀x ∈ R, {X + Y ≤ x} =
⋂
r∈Q

({X ≤ r}
⋃
{Y ≤ x− r}) ∈ F .

11



1.5 Random Vectors

1.5 Random Vectors

Definition 1.9

♣

X1, X2 · · · , Xn are the random variables on (Ω,F ,P), then the vector
−→
X = (X1, X2, · · · , Xn)

is called the n dimensional random vector. And the function F (x1, x2, · · · , xn) = P(X1 ≤

x1, X2 ≤ x2, · · · , Xn ≤ xn) is the joint distribution function of
−→
X .

Focusing on the case where n = 2, we have the following properties of the joint distribution

function F (x, y) = P(X ≤ x, Y ≤ y).

Theorem 1.5

♡

(i) If (x1, y1) ≤ (x2, y2), then F (x1, y1) ≤ F (x2, y2)

(ii) F is right continuous, i.e. lim
u→0+,v→0+

F (x+ u, y + v) = F (x, y)

(iii) lim
x→−∞

F (x, y) = lim
y→−∞

F (x, y) = 0, lim
x,y→∞

F (x, y) = 1

(iv) P(x ∈ (x1, x2], y ∈ (y1, y2]) = F (x2, y2) + F (x1, y1)− F (x1, y2)− F (x2, y1)

The properties (ii)(iii) and (iv) can determine a joint distribution, for (ii)(iii) and (iv) together

imply (i). However, the properties (i)(ii) and (iii) together can’t determine a joint distribution function.

For example, the function

F (x, y) =


1 x+ y ≥ 0

0 x+ y < 0

satisfies (i)(ii) and (iii), but doesn’t satisfy (iv).

Definition 1.10

♣

If
−→
X = (X1, X2, · · · , Xn) can only take values in some countably subset of Rn, then

−→
X is said

to be a discrete random vector. And f(x1, x2, · · · , xn) = P(X1 = x1, X2 = x2, · · · , Xn = xn)

is called the joint mass function of
−→
X .

12



1.5 Random Vectors

Definition 1.11

♣

If there exists an integrable function f : Rn → [0,∞), so that

F (x1, x2, · · · , xn) =
∫ x1

−∞
· · ·

∫ xn

−∞
f(u1, u2, · · · , un)du1 · · · dun

Then
−→
X is called to be a continuous random vector, and f is called to be the joint density

function.

Definition 1.12

♣

−→
X = (X1, X2, · · · , Xn) is a random vector, for 1 ≤ k ≤ n, (X1, X2, · · · , Xk) is the marginal

distribution of
−→
X . And P(X1 ≤ x1, X2 ≤ x2, · · · , Xk ≤ xk) is the marginal distribution

function of F (x1, x2, · · · , xn).

It’s clear that P(X1 ≤ x1, X2 ≤ x2, ·, Xk ≤ xk) = lim
xk+1,··· ,xn→−∞

F (x1, x2, · · · , xn).

Now we focus on the case where n = 1, assume X is a continuous random variable, and f is the

density function of X . Then

(i) F (x0+∆x)−F (x0)
∆x

= 1
∆x

∫ x0+∆x

x0
f(x)dx. If f is continuous at x, then P(x0 < x ≤ x0 + ∆x) ∼

∆xf(x0).

(ii) F (x) =
∫ x

−∞ f(u)du. The density function is not unique, since changing finitely many values of

f doesn’t change the distribution of X .

(iii) P(x = a) ≤
∫ a

a− 1
n
f(u)du→ 0, so P(x = a) = 0.

(iv) If F is continuous, and F ′(x) exists and is continuous except for finitely many x. Then F is a

continuous distribution function, and F ′ is the density function.

13



Chapter 2 Discrete Random Variables

2.1 Classical Distributions and Independence

Example 2.1 The discrete random variableX is said to have the binomial distribution with parameters

n and p, written B(n, p), if the mass function of X is

f(k) =

(
n

k

)
pkqn−k 0 ≤ k ≤ n, p+ q = 1

Example 2.2 The discrete random variableX is said to have the geometric distribution with parameter

p(0 < p < 1),if the mass function of X is

f(k) = pqk−1 k ∈ N∗

Theorem 2.1

♡

X is a random variable that takes values in N∗, and P(X = m + 1|X ≥ m) is independent of

m, then X has the geometric distribution.

Proof

By the condition, we assume

P(X = m+ 1) = (1− q)qP(X ≥ m)

where q is a constant. Also note that

P(X = m+ 1) = P(X ≥ m+ 2)− P(X ≥ m+ 1)

let am = P(X ≥ m), then we have

(1− q)qam = am+1 − am+2

Then by the extra condition that a∞ = 1, one can have that am = qm−1, then P(X = m) =



2.1 Classical Distributions and Independence

am − am+1 = pqm−1, where p+ q = 1, which means that X has the geometric distribution.

Example 2.3 The discrete random variable X is said to have the Poisson distribution with parameter

λ(λ > 0),if the mass function of X is

f(k) =
λk

k!
e−λ k ∈ N

Definition 2.1

♣

X1, X2, · · · , Xn are random variables on (Ω,F ,P). If

∀x1, · · · , xn ∈ R,P(X1 = x1, · · · , Xn = xn) = P(X1 = x1)P(X2 = x2) · · ·P(Xn = xn)

, then we say X1, X2, · · · , Xn are independent.

Lemma 2.1

♡

X1, X2, · · · , Xn are independent if and only if the distribution functions satisfy

F (x1, x2, · · ·xn) = FX1(x1)FX2(x2) · · ·FXn(xn)
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2.2 Expectation

2.2 Expectation

Definition 2.2

♣

The expectation of the random variable X with mass function f is defined to be

E[X] =
∑
x

xf(x)

when the sum is absolutely convergent.

Theorem 2.2

♡
E[g(X)] =

∑
x

g(x)f(x) when the sum on the right is absolutely convergent.

Proof Let Y = g(X), then fY (y) = P(
⋃

x:y=g(x)

{X = x}) =
∑

x:y=g(x)

f(x).

ThusE[Y ] =
∑
y

y
∑

x:y=g(x)

f(x) =
∑
x

g(x)f(x). □

Definition 2.3

♣

The kth moment mk of X is defined to be mk = E[Xk]. The kth central moment of X is defined

to be σk = E[(X − µ)k].

We also denote the expectation E[X] = m1 = µ. We call the variance of X is Var(X) = σ2 =

E[(X − µ)2]. The standard deviation of X is σ =
√
Var(X). Then a simple computation gives that

V ar(X) = E(X2)− (E[X])2 = m2 − µ2 ≤ m2.

Example 2.4 X is of B(n, p). Compute E[X],E[X2].

Proof

E[X] =
n∑

k=1

k

(
n

k

)
pkqn−k

=
n−1∑
k=0

n

(
n− 1

k

)
pk+1qn−k−1 = np

16



2.2 Expectation

E[X(X − 1)] =
n∑

k=2

k(k − 1)

(
n

k

)
pkqn−k

=
n∑

k=2

n!

(k − 2)!(n− k)!

(
n

k

)
pkqn−k

= n(n− 1)p2
n−2∑
k=0

(
n− 2

k

)
pkqn−2−k

= n(n− 1)p2

Then E[X2] = np[1 + (n− 1)p],Var(X) = np(1− p) = npq. □

Theorem 2.3

♡

The expectation E can be regarded as a linear operator, that is:

(i)X ≥ 0, then E[X] ≥ 0 (ii)E[1] = 1

(iii)E[aX + bY ] = aE[X] + bE[Y ] for a, b ∈ R.

Proof We only check (iii) here.

Let Ax = {X = x}, By = {Y = y}, then X =
∑
x

xIAx , Y =
∑
y

yIBy .

aX + bY = a
∑
x,y

IAxBy + b
∑
x,y

yIAxBy =
∑
x,y

(ax+ by)IAx+By .

Thus

E[aX + bY ] =
∑
x,y

(ax+ by)P(AxBy)

= a
∑
x,y

xP(AxBy) + b
∑
x,y

yP(AxBy)

= a
∑
x

xP(Ax) + b
∑
y

yP(By)

= aE[X] + bE[Y ]

Theorem 2.4

♡If X, Y are independent with E[|X|] <∞,E[|Y |] <∞, then E[XY ] = E[X]E[Y ].

17



2.2 Expectation

Proof XY =
∑
x,y

xyIAxBy , then

E[XY ] =
∑
x,y

xyP(AxBy)

=
∑
x,y

xyP(Ax)P(By) = E[X]E[Y ]

Theorem 2.5

♡

(i)Var(aX + b) = a2Var(X)

(ii)Var(X + Y ) = Var(X) + Var(Y ) + 2(E[XY ]− E[X]E[Y ])

In particular, when X, Y are independent, V ar(X) + V ar(Y ) = V ar(X + Y ).

Proof By the definition of variance, we have

(i)

Var(aX + b) = E[(aX + b)2]− (E[aX + b])2

= E[a2X2 + 2abX + b2]− (aE[X] + b)2

= a2E+ 2abE[X] + b2 − a2(E(X))2 − b2 − 2abE[X]− b2 = a2Var(X)

(ii)

Var(X + Y )− Var(X)− Var(Y ) = E[(X + Y )2]− (E[X + Y ])2 − E[X2] + (E[X])2 − E[Y 2] + (E[Y ])2

= 2E[XY ]− 2E[X]E[Y ]

Example 2.5 Let xk = 1
k
(−2)k, and P(X = xk) =

1
2k
(k = 1, 2, · · · ), then

∞∑
k=1

xkpk =
∞∑
k=1

(−1)k

k
= −log2

But E[X] does NOT exist since
∞∑
k=1

|xk|pk does not converge.

18



2.3 Probabilistic Method

Definition 2.4

♣

The covariance of X, Y is defined to be

Cov(X, Y ) = E[XY ]− E[X]E[Y ]

The correlation of X, Y is

ρ(X, Y ) =
Cov(X.Y )√
Var(X)Var(Y )

More generally,
−→
X = (X1, X2, · · · , Xn), define its covariance matrix to be the n × n matrix

A = (σij). Each entry is σij = Cov(Xi, Xj), then we have A ≥ 0:

For any ti ∈ R(1 ≤ i ≤ n)

n∑
i,j=1

titjσij =
n∑

i,j=1

titjE[(Xi − µXi
)(Xj − µXj

)]

= E[
n∑

i=1

ti(Xi − µXi
)

n∑
j=1

tj(Xj − µXj
)]

= E[(
n∑

i=1

ti(Xi − µXi
)2] ≥ 0

2.3 Probabilistic Method

Given a probability space (Ω,F ,P), then for any A ∈ F , the indicator function IA : Ω → R,

maps ω to 1 if ω ∈ A, to 0 otherwise. Then a trivial observation gives that E[IA] = P(A).

Example 2.6 Let Sn denote the set of all the n-permutations, |Sn| = n!. ∀σ ∈ Sn, define N(σ) =the

number of fixed points under σ.

Let Ai denote the event that i is a fixed point, and Ii its indicator function. Set

X =
∑

i1<···<ir

Ii1 · · · Iir(1− Iir+1) · · · (1− Iin)
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2.3 Probabilistic Method

Then it’s clear that

P(N = r) = E[X]

=

(
n
r

)
n!

(n− r)!
n−r∑
k=0

(−1)k

k!

=
1

r!

n−r∑
k=0

(−1)k

k!

E[N ] = E[
n∑

k=1

Ik] = nE[I1] = 1

V ar(N) =
n∑

k,l=1

E[IkIl]− 1 = nE[I21 ] + n(n− 1)E[I1I2]− 1 = 1

Example 2.7 A 17-gon has exactly five vertices painted red. Prove that there must exist seven adjacent

vertices, so that there are three red vertices among them.

Proof Let Ω = {1, 2, · · · , 17}, ai = 1 if the i-th vertex is red, and ai = 0 otherwise. And set

X(k) =
7∑

i=1

ak+i(we identify 18 with 1, 19 with 2 and so on).

Then E[X] =
17∑
k=1

1
17
(ak+1 + ak+2 + · · · + ak+7) =

35
17
> 2. Therefore there must exist a k0, so

that X(k0) > 2. Since X take value in integers, so X(k0) ≥ 3.
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2.4 Conditional Expectation

2.4 Conditional Expectation

Definition 2.5

♣If random variables X, Y satisfy that Cov(X, Y ) = 0, then we say that X, Y are uncorrelated.

Theorem 2.6

♡

(i) |ρ(X, Y )| ≤ 1

(ii) If X, Y are independent or uncorrelated, then ρ(X, Y ) = 0

(iii) ρ(X, Y ) = ±1 if and only if ∃a, b ∈ R, so that P(aX + b = Y ) = 1

Lemma 2.2

♡|E[XY ]| ≤
√

E[X2]E[Y 2]

Proof (i) If E[X2] = 0, then
∑
x

x2fX(x) = 0, so fX(x) = 0 whenever x ̸= 0, which means

P(X = 0) = 1.

Since fX(x) =
∑
y

f(x, y), we have f(x, y) = 0 when x ̸= 0, then E[XY ] =
∑
x,y

xyf(x, y) = 0.

(ii) If E[X2] ̸= 0, then E[(Y − tX)2] = t2E[X2]− 2tE[XY ] = t2E[Y 2] ≥ 0. Thus

∆ = 4((E[XY ])2 − 4E[X2]E[Y 2]) ≤ 0

The equality con be obtained if and only if ∃t ∈ R, so that E[Y − tX] = 0, which means P(Y =

tX) = 1 by (i).

Note that we used the two-variable version of Theorem 2.2.2 in the proof above.

Example 2.8
−→
X = (X1, X2, · · · , Xr),P(X1 = k1, · · · , Xr = kr) =

n!
k1!···kr!p

k1
1 · · · pkrr , where

∑
i

pi =

1,
∑
i

ki = n. Compute Cov(Xi, Xj), ρ(Xi, Xj) for i ̸= j.

(Identity:
∑

k1+···+kr=n

xk11 · · · xkrr n!
k1!···kr! = (x1 + · · ·+ xr)

n)
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2.4 Conditional Expectation

Proof

P(Xi = ki) =
∑

k1+···+k̂i+···+kr=n−ki

n!

k1! · · · · · · kr!
pk11 · · · pkrr

=
n!

ki!(n− ki)!
pkii (1− pi)

n−ki

So Xi is of B(n, pi), similarly one can check that Xi +Xj is of B(n, pi + pj) for i ̸= j. Then

Cov(Xi, Xj) =
1

2
(Var(Xi +Xj)− Var(Xi)− Var(Xj)) = −npipj

ρ(Xi, Xj) =
−pipj√

pi(1− pi)pj(1− pj)
= −

√
pipj

(1− pi)(1− pj)

Definition 2.6

♣

(X, Y ) are discrete random variables, when fX(x) > 0, give the distribution of Y underX = x:

fY |X(y|x) = P(Y = y|X = x) =
f(x, y)

fX(x)
, FY |X(y) = P(Y ≤ y|X = x)

Then the conditional expectation of Y under X = x is

ψ(x) = E[Y |X = x] =
∑
y

P(Y ≤ y|X = x)

And we call ψ(X), which is also a random variable, the conditional expectation of Y under X ,

which is denoted by E[Y |X].

Theorem 2.7

♡E[E[Y |X]] = E[Y ]

Proof

LHS = E[ψ(X)] =
∑
x

ψ(x)fX(x)

=
∑
x

fX(x)
∑
y

yfY |X(y|x)

=
∑
x

∑
y

yf(x, y)

=
∑
y

yfY (y) = E[Y ] = RHS
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2.5 Random Walk

Theorem 2.8

♡

For the ”good” measurable function g : R → R(the word good here means that g makes the

two sides of the below identity have meaning, which requires the two sides to be absolutely

convergent), we have

E[g(X)ψ(X)] = E[Y g(X)]

Example 2.9 A bird can lay N eggs, where N is of the Poisson distribution with parameter λ. Each

egg has independently the probability p to become a bird. Let K to be the number of birds that come

out in the end. Calculate E[K|N ],E[K] and E[N |K].

Proof E[K|N = n] = np, thus E[K|N ] = pN , E[K] = E[E[K|N ]] = E[pN ] = pλ.

fN |K(n|k) =
P(K = k|N = n)P(N = n)

∞∑
m=k

P(K = k|N = m)P(N = m)

=

n!
(n−k)!k!

pkqn−k λn

n!
e−λ

∞∑
m=k

m!
(m−k)!k!

pkqm−k λm

m!
e−λ

=

n!
(n−k)!k!

pkqn−k λn

n!
e−λ

∞∑
m=0

1
m!k!

pkqmλm+ke−λ

=
(qλ)n−ke−λq

(n− k)!

Then

E[N |K = k] =
∞∑
n=k

n(qλ)n−ke−λq

(n− k)!

=
∞∑
n=0

(n+ k)(λq)ne−λq

n!

= k + λq

Thus E[N |K] = K + λq.

23



2.5 Random Walk

2.5 Random Walk

Let S0 = a ∈ Zd, and Sn = a+
n∑

k=1

Xk with Xk’s are independently and identically distributed,

then the scene is called the random walk. When d = 1,P(Xk = 1) = p,P(Xk = −1) = q, p+ q = 1,

then it’s called simple random walk. Moreover, if p = 1
2
, then it’s called the symmetric simple random

walk.
Theorem 2.9

♡

(i) (Spatially Homogeneous) P(Sn = j + b|S0 = a+ b) = P(Sn = j|S0 = a)

(ii) (Temporally Homogeneous) P(Sn+m = j|Sm = a) = P(Sn+m = j|Sm = jm)

(iii) (Markov Property) P(Sn+m = j|S0 = j0, · · · , Sm = jm) = P(Sn+m = j|Sm = jm)

Proof (i)

LHS =
P(Sn = j + b, S0 = a+ b)

P(S0 = a+ b)
=

P(
n∑

k=1

Xk = j − a, S0 = a+ b)

P(S0 = a+ b)

= P(
n∑

k=1

Xk = j − a) = RHS

(ii)

LHS = P(
m+n∑

k=m+1

Xk = j − a) = P(
n∑

k=1

Xk = j − a) = RHS

(iii)

LHS =
P(Sn+m = j, S0 = j0, · · · , Sm = jm)

P(S0 = j0, · · · , Sm = jm)

=

P(
m+n∑

k=m+1

Xk = j − jm, S0 = j0, · · · , Sm = jm)

P(S0 = j0, · · · , Sm = jm)

= P(
m+n∑

k=m+1

Xk = j − jm) = RHS

Now introduce the symbols that we will use from now on. We see the simple random walk on a

plane, with the two axes representing the time and the position. Let Nn(a, b) be the number of paths
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2.5 Random Walk

from (0, a) to (n, b). Let N0
n(a, b) ne the number of paths from (0, a) to (n, b) that passes the time

axis.
Lemma 2.3

♡
Nn(a, b) =

(
n

n+b−a
2

)
Lemma 2.4

♡If a, b > 0, then N0
n(a, b) = Nn(−a, b).

This lemma is also referred to as reflection principle. This can be understood intuitively by

reflecting the part above the time axis before the first time the path passes the axis.

Proposition 2.1

♠

If b > 0, then the number of paths from (0, 0) to (n, b) that doesn’t pass the time axis except the

starting point is b
n
Nn(0, b).

Proof Clearly the first step must be towards right. Thus the answer is equal to the number of paths

from (1, 1) to (n, b) that doesn’t pass the time axis, which is also equal to the number of the kind of

paths from (0, 1) to (n− 1, b), which is

Nn−1(1, b)−N0
n−1(1, b) = Nn−1(1, b)−Nn−1(−1, b) =

b

n
Nn(0, b)

The last step is by some simple calculation with Lemma 2.5.2.

Theorem 2.10

♡

S0 = 0, n ≥ 1, then

P(S1 · · ·Sn ̸= 0, Sn = b) =
|b|
n
P(Sn = b).

As a consequence,

P(S1 · · ·Sn ̸= 0) =
1

n
E(|Sn|)

Proof Just assume b > 0, then

P(S1 · · ·Sn ̸= 0, Sn = b) =
b

n
Nn(0, b)p

n+b
2 q

n−b
2 =

b

n
P(Sn = b)
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2.6 Generating Function

2.6 Generating Function

For a sequence {an}∞n=0, define the generating function of {an} to be Ga(s) =
∞∑
n=0

ans
n. For two

sequences {an} and {bn}, the convolution of them(denoted as a+ b) is to be the sequence {cn}, where

cn =
∑

i+j=n

aibj . A nice property of the convolution is that Gc(s) = Ga(s)Gb(s).

Example 2.10 Consider the symmetric simple random walk, compute the probability P(S0 = S2n =

0, Si ≥ 0, i = 1, · · · , 2n− 1).

Proof Denote the probability by cn.

Then by considering the first hitting time of the x-axis 2k(k = 1, · · · , n), we can get

cn =
n∑

k=1

ck−1cn−k =
n−1∑
k=0

ckcn−1−k, c0 = 1

Now define the corresponding generating function G(s) =
∞∑
n=0

cns
n, then G(s)−1

s
=

∞∑
n=1

cns
n−1 =

G(s)G(s). Then last equality comes from the property of convolution. Since the G(s) should be

defined for s→ 0, we can have

G(s) =
1−

√
1− 4s

2s

Then by the Taylor expansion, we have

G(s) =
−1

2s
(

∞∑
n=1

1
2
(1
2
− 1) · · · (1

2
− n+ 1)

n!
(−4s)n)

=
∞∑
n=1

1

2s

(2n− 3) · · · 1
n!

(2s)n

=
1

2s

∞∑
n=0

(2n− 1)!!

(n+ 1)!
(2s)n+1

=
∞∑
n=0

(2n− 1)!!

(n+ 1)!
2nsn

=
∞∑
n=0

(2n− 1)!

n!(n+ 1)!
sn

Thus we have cn = 1
n+1

(
2n
n

)
.
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2.6 Generating Function

In the following we will always assume thatX is a non-negative integer-valued random variable.

Definition 2.7

♣The function GX(s) = E[sX ] is called the (probability) generating function of X .

Note the GX(s) =
∞∑
k=0

skP (X − k). It’s clear that the convergence radius R ≥ 1, and the

coefficients of GX(s) are all non-negative.

Example 2.11 (i) X ∼ B(n, p), then GX(s) =
∑
k

(
n
k

)
pkqn−ksk = (sp+ q)n.

(ii) P (X = k) = pqk−1(k = 1, 2, · · · ), then GX(s) =
∞∑
k=1

pqk−1sk = ps
1−qs

.

(iii) X ∼ P (λ), then GX(s) =
∑
k

skλk

k!
e−λ = eλs−λ.

Theorem 2.11

♡

(i) E[X] = G′(1)

(ii) E[X(X − 1) · · · (X − k + 1)] = G(k)(1)

(iii) Var(X) = G′′(1) +G′(1)−G′(1)2

The derivative G(k)(1) is actually lim
s→1−

G(k)(s), which is well defined by the Abel’s Theorem.

Theorem 2.12

♡
If X1, · · · , Xn are independent, then GSn(s) =

n∏
k=1

GXk
(s), where Sn =

n∑
k=1

Xk.

Proof One can check the fact that if X, Y are independent, then g(X), h(Y ) are independent(c.f.

3.11.1(1)), thus for any s, sX1 , · · · , sXn are independent.

Then

GSn(s) = E[sX1 · · · sXn ] = E[sX1 ] · · ·E[sXn ] = GX1(s) · · ·GXn(s)

Theorem 2.13

♡

If {Xk} are independent, and N is independent with {Xk}, then for SN =
N∑
k=1

Xk, we have

GSN
(s) = GN(GX1(s))

27



2.6 Generating Function

Proof By using conditional expectation, we have

GSN
(s) = E[sSN ] = E[E[sSN |N ]]

=
∑
n

fN(n)E[sSN |N = n]

=
∑
n

fN(n)(GX1(s))
n = GN(GX1(s))

Definition 2.8

♣The joint (probability) generating function of X, Y is GX,Y (s, t) = E[sXtY ].

Theorem 2.14

♡X, Y are independent if and only if GX(s)GY (t) = GX,Y (s, t).

Proof GX(s)GY (t) = GX,Y (s, t) is equivalent to

∞∑
i,j

P(X = i, Y = j)sitj =
∞∑
i=0

P(X = i)si
∞∑
j=0

P(Y = j)tj

=
∞∑
i,j

P(X = i)P(Y = j)sitj

which is equivalent to the independence of X, Y .

Example 2.12 Throw a fair dice k times, what is the probability that the sum of the numbers is 9?

Proof Xi is the number of the i-th dice, and Sk =
∑
k

Xk, then

GSk
(s) = (GX1(s))

k = (
1

6
s
1− s6

1− s
)k

Consider the case where k = 3, then

GS3(s) =
s3

63
(1− s6)3

(1− s)3
=
s3

63
(1− 3s6 + 3s12 − s18)

∞∑
n=0

(
n

−3

)
(−s)n

The coefficient of s9 is 1
63
(
(

6
−3

)
− 3) = 25

216
, which is the probability we want.

For more general random variables(the values are no longer non-negative integers), we can also

define the generating function.

Definition 2.9

♣The moment generating function of X is MX(t) = E[etX ].
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Chapter 3 Continuous Random Variables

3.1 Basic Definitions

Recall that a random variableX is continuous if for its distribution function F , there exists a non-

negative and integrable function f : R → R, so that F (x) =
∫ x

−∞ f(u)du. Such a function f is called

the density function of X . Then it’s clear that a density function should satisfy that
∫∞
−∞ f(x)dx = 1.

If X has density function f , then for any Borel measurable set B, then

P(X ∈ B) =

∫
B

f(x)dx

In particular, P(a ≤ X ≤ b) =
∫ b

a
f(x)dx, and P(X = x) = 0 for all x.

Example 3.1 X is uniform on [a, b], denoted by X ∼ U [a, b], if f(x) = 1
b−a

for any x ∈ [a, b].

Example 3.2 X is exponential with parameter λ, denoted by X ∼ Exp(λ), if f(x) = λe−λx for any

x ≥ 0. Then the distribution function of X is F (x) = 1− e−λx for x ≥ 0.

Example 3.3 X is of normal distribution with parameters µ, σ, denoted by X ∼ N(µ, σ2), if

f(x) = 1√
2πσ2

e−
1

2σ2 (x−µ)2 . When µ = 0, σ = 1, then the distribution is called the standard normal

distribution. When x = µ, f(x) attains its maximum.

Example 3.4 f(x) = 1
2πσ2

√
4σ2 − x2(−2σ ≤ x ≤ 2σ) is the density function in the Wigner Semicir-

cular Law.

Definition 3.1

♣

X1, X2, · · · , Xn are random variables in (Ω,F ,P). They are called independent if

∀x1, · · · , xn ∈ R, F (x1, · · · , xn) = FX1(x1) · · ·FXn(xn)



3.1 Basic Definitions

Theorem 3.1

♡

X1, · · · , Xn are independent if and only if

∀B1, · · · , Bn ∈ B(R), P(X1 ∈ B1, · · · , Xn ∈ Bn) =
n∏

i=1

P(Xi ∈ Bi)

Theorem 3.2

♡

If g : R → R is Borel measurable, X1, · · · , Xn are independent, then g(X1), · · · , g(Xn) are

independent.

Proof Let Yi = g(Xi), then we have

P(Yi ∈ (−∞, yi],∀i = 1, · · · , n) = P(Xi ∈ g−1
i ((−∞, yi]),∀i = 1, · · · , n)

=
n∏

i=1

P(Xi ∈ g−1
i ((−∞, yi])

=
n∏

i=1

P(yi ∈ (−∞, yi])

Thus Y1, · · · , Yn are independent.

Theorem 3.3

♡

X1, · · · , Xn have density functions f1, · · · , fn respectively, then X1, · · · , Xn are independent

if and only if the joint density function f(−→x ) =
n∏

i=1

fi(xi).

If X1, X2 has a joint density function f , D is an area in R2, and T is an one-to-one mapping that takes

(x1, x2) to (y1, y2). Then invert the transformation into x1 = g1(y1, y2), x2 = g2(y1, y2), and define

J = det

 ∂g1
∂y1

∂g1
∂y2

∂g2
∂y1

∂g2
∂y2


Proposition 3.1

♠

The joint density function of Y1, Y2 at (y1, y2) is

|J |f(g1(y1, y2), g2(y1, y2))IT (D)
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3.2 (Conditional) Expectation

Proof For any B = T (A), we can have

P((Y1, Y2) ∈ B) = P((X1, X2) ∈ A)

=

∫ ∫
A

f(x1, x2)dx1dx2

=

∫ ∫
B

f(g1(y1, y2), g2(y1, y2))|J |dy1dy2

Take B = ((−∞, y1]× (−∞, y2])
⋂
T (D), then the result follows.

3.2 (Conditional) Expectation

Definition 3.2

♣

X has a density function f . When
∫
R |x|f(x)dx < ∞, we call

∫
R xf(x)dx the expectation of

X . Define the moment, variance, covariance, correlation similarly.

Lemma 3.1

♡
X has a distribution function F , then E[X] =

∫∞
0

1− F (x)dx−
∫ 0

−∞ F (x)dx

Proof

E[X] =

∫ ∞

0

∫ x

0

1dtf(x)dx−
∫ 0

−∞

∫ 0

x

1dtf(x)dx

=

∫ ∞

0

∫ ∞

t

f(x)dxdt−
∫ 0

∞

∫ t

∞
f(x)dxdt

=

∫ ∞

0

1− F (x)dx−
∫ 0

−∞
F (x)dx

Theorem 3.4

♡

If g : R → R is Borel measurable, X, g(X) are continuous random variables and their

expectations exist, then

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx
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3.2 (Conditional) Expectation

Proof

E[g(X)] =

∫ ∞

0

P(g(x) > t)dt−
∫ 0

∞
P(g(x) ≤ t)dt

=

∫ ∞

0

∫
g(x)>t

f(x)dxdt−
∫ 0

−∞

∫
g(x)≤t

f(x)dxdt

=

∫
g(x)>0

∫ g(x)

0

1dtf(x)dx−
∫
g(x)≤0

∫ 0

g(x)

1dtf(x)dx

=

∫ ∞

−∞
g(x)f(x)dx

Theorem 3.5

♡

(X, Y ) is a continuous random vector, g : R2 → R2 is Borel measurable, and g(X, Y ) is

continuous and the expectation exists. Then

E[g(X, Y )] =

∫ ∫
g(x, y)f(x, y)dxdy

In particular, E[aX + bY ] = aE[X] + bE[Y ].

Theorem 3.6

♡|E[XY ]| ≤
√

E[X2]E[Y 2]. Consequently, |ρ(X, Y )| ≤ 1.

Example 3.5 X ∼ N(µ, σ2), f(x) = 1√
2πσ2

e−
1

2σ2 (x−µ)2 . Then

E[X] =
1√
2πσ2

∫ ∞

−∞
(x− µ+ µ)e−

1
2σ2 (x−µ)2dx

=
1√
2πσ2

∫ ∞

−∞
xe−

1
2σ2 x

2

dx+ µ = µ

Var(X) =
1√
2πσ2

∫ ∞

−∞
(x− µ)2e−

1
2σ2 (x−µ)2dx

= σ2

∫ ∞

−∞
x2
e−

1
2
x2

√
2π

dx

= σ2

∫ ∞

−∞

−x√
2π
de−

1
2
x2

= σ2

Example 3.6 Cauchy distribution is with the density function f(x) = 1
π

1
1+x2 . Its expectation doesn’t

exist.
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3.2 (Conditional) Expectation

Definition 3.3

♣

(X, Y ) has the joint density f(x, y), the conditional density is fY |X(y|x) = f(x,y)
fX(x)

. The condi-

tional expectation is

ψ(x) = E[Y |X = x] =

∫ ∞

∞
yfY |X(y|x)dx

Theorem 3.7

♡E[E[Y |X]] = E[Y ]

Proof

E[E[Y |X]] =

∫ ∞

−∞
fX(x)

∫ ∞

−∞
y
f(x, y)

fX(x)
dydx

=

∫ ∞

−∞

∫ ∞

−∞
yf(x, y)dxdy

=

∫ ∞

−∞
yfY (y)dy = E[Y ]

More generally, for any good function g, we have E[g(X)ψ(X)] = E[Y g(X)].

Example 3.7

f(x, y) =
1

2π
√

1− ρ2
e
−x2−2ρxy+y2

2(1−ρ2)

The distribution is called bivariate standard normal distribution, where ρ ∈ (−1, 1).

fX(x) =
1

2π
√

1− ρ2

∫
e
− 1

2
x2− (y−ρx)2

2(1−ρ2) d(y − ρx)

=
1√
2π
e−

1
2
x2

So X ∼ N(0, 1), similarly Y ∼ N(0, 1).

Cov(X, Y ) =

∫ ∫
xyf(x, y)dxdy

=

∫ ∫
(x(y − ρx) + ρx2)f(x, y)dxdy = 0 + ρ = ρ

33



3.2 (Conditional) Expectation

Thus ρ is actually the correlation of X and Y .

fY |X(y|x) =
1

2π
√

1− ρ2
e
− (y−ρx)2

2(1−ρ2)

E[Y |X = x] = ρx,E[Y |X] = ρX
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3.3 Multivariate Normal Distribution

3.3 Multivariate Normal Distribution

Definition 3.4

♣

The random vector
−→
X = (X1, · · · , Xn) has the multivariate normal distribution if, written

N(−→µ ,
∑

), if its density is

f(−→x ) = 1√
(2π)n|

∑
|
e−

1
2
(−→x−−→µ )

∑−1(−→x−−→µ )T

where
∑

is a positive definite symmetric matrix.

Theorem 3.8

♡

E[
−→
X ] = −→µ ,E[(

−→
X −−→µ )(

−→
X −−→µ )T ] =

∑
In other words, E[Xi] = µi,Cov(Xi, Xj) = σi,j .

Proof There exists an orthogonal matrix B, so that
∑

= BTΛB, where Λ = diag(λ1, · · · , λn). Let

−→x = −→µ +−→y B, then ∫
f(−→x )dx =

|B|√
(2π)n|

∑
|

∫
e−

1
2
−→y Λ−→y T

d−→y

=
|B|√

(2π)n|
∑

|

∏√
2πλn = 1

E[Xi] =

∫
xif(

−→x )d−→x

=

∫
(µi +

∑
j

yjbij)
e−

1
2
−→y Λ−→y√

(2π)n|
∑

|
d−→y = µi
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3.3 Multivariate Normal Distribution

Cov(Xi, Xj) =

∫
(xi − µi)(xj − µj)f(

−→x )d−→x

=

∫ ∑
k,l

ykbkiylblj
e−

1
2
−→y Λ−→y√

(2π)n|
∑

|
d−→y

=
∑
k

∫
y2kbkibkj

e
− y2k

2λk

√
2πλk

dyk

=
∑
k

bkiλkbkj = σij

Theorem 3.9

♡
−→
X ∼ N(−→µ ,

∑
), D is a nonsingular n× n matrix, then

−→
Y =

−→
XD ∼ N(−→µD,DT

∑
D).

Proof Let B = {−→x |xi ∈ (ai, bi], ∀i}, A = {−→x |−→x D ∈ B}, then

P(
−→
Y ∈ B) = P(−→x ∈ A)

=

∫
A

f(−→x )d−→x =

∫
B

f(−→y D−1)|D−1|d−→y

=

∫
B

1√
(2π)n|DT

∑
D|
e−

1
2
−→y (DT

∑
D)−1−→y T

d−→y

Lemma 3.2

♡

If

∑
=


∑

11 0

0
∑

22


, and

−→
X = (

−→
X (1),

−→
X (2)), then

−→
X (1) ∼ N(−→µ (1),

∑
11), similarly for

−→
X (2).

Lemma 3.3

♡

If

∑
=


∑

11

∑
12∑

21

∑
22


, and

−→
X = (

−→
X (1),

−→
X (2)), then

−→
X (1) ∼ N(−→µ (1),

∑
11), similarly for

−→
X (2).
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3.3 Multivariate Normal Distribution

Theorem 3.10

♡
−→
X ∼ N(−→µ ,

∑
), A is a n×m matrix with rank m, then

−→
Y =

−→
XA ∼ N(−→µ A,AT

∑
A).
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Chapter 4 Law of Big Numbers

4.1 Expectation Revisited

Recall that we defined the expectation as

E[X] =


∑

xf(x) discrete∫
xf(x)dx continuous

So we define

dF (x) =


F (x)− F (x− 0) discrete

f(x)dx continuous

Then we can uniformly define E[X] =
∫
xdF (x) for both discrete and continuous random

variables.

How to define expectation for more general probability space?

Step1:

Firstly consider simple variables, which take their values in a finite set, then we can write

X =
n∑

i=1

xiIAi
, where {Ai} is a partition. Then we can define the expectation as

E[X] =
n∑

i=1

xiE[IAi
] =

n∑
i=1

xiP(Ai)

Step2:

Then for non-negative random variables X ≥ 0, then there exists a sequence of simple variables

{Xn} with Xn ≥ 0, so that Xn ↑ X . For example, we can take

Xn = nIAn +
n2n∑
j=1

j − 1

2n
IAn,j

where An = {X ≥ n}, An,j = { j−1
2n

≤ X < j
2n
}. Then we define E[X] = lim

n→∞
E[Xn]. The



4.1 Expectation Revisited

expectation is well defined because of the following theorem.

Theorem 4.1 (Levy’s Theorem)

♡
If Xn ↑ X, Yn ↑ X , then lim

n→∞
E[Xn] = lim

n→∞
E[Yn]

Step3:

For the most general variableX , decompose it intoX = X+−X−, whereX+ = max{X, 0}, X− =

max{−X, 0}. When E[X+] <∞ or E[X−] <∞, define E[X] = E[X+]− E[X−].

In general, we write E[X] =
∫
Ω
X(ω)dP or

∫
Ω
X(ω)P(dω). We say the expectation exists if

E[|X|] <∞.

Now we focus on some properties of the expectation.

Proposition 4.1

♠

(i) X ≥ 0, then E[X] ≥ 0 (ii) E[1] = 1

(iii) a, b ∈ R, then E[aX + bY ] = aE[X] + bE[Y ].

Then we introduce the continuity of expectation. Assume Xn(ω) → X(ω) for all ω ∈ Ω.

(i)(Monotone Convergence)

If Xn+1(ω) ≥ Xn(ω) ∀n, ω, then E[Xn] → E[X].

(ii)(Dominated Convergence)

If |Xn| ≤ Y (∀n), and E[Y ] <∞ then E[Xn] → E[X].

(iii)(Bounded Convergence)

If ∃C > 0, so that |Xn| ≤ C(∀n), then E[Xn] → E[X].

(iv)(Fatou’s Lemma)

If Xn ≥ 0 a.s. ∀n, then E[limn→∞Xn] ≤ limn→∞ E[Xn].

Lebesgue-Stieltjes Integral:

Define a measure on (R,B(R)) as below: µF (
⋃
i

(ai, bi]) =
∑
i

F (bi)− F (ai), and we can extend
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4.1 Expectation Revisited

the definition to all the Borel sets. Then we obtain a probability space (R,B(R), µF ).

The random variables are the measurable functions g : R → R, and the abstract integral∫
gdµF (also can be written as

∫
gdF ) is called the Lebesgue-Stieltijes integral.

Proposition 4.2

♠E[g(X)] =
∫
R gdF

And define
∫
B
gdF =

∫
R gIBdF when the integration area is not the whole real line.

Theorem 4.2

♡X, Y are independent and their expectations exist, thenE[|XY |] <∞ andE[XY ] = E[X]E[Y ].

Proof Step1:

The case where X, Y are simple variables is proved before.

Step2:

WhenX, Y are nonnegative, defineXn, Yn as before. One can check thatXn, Yn are independent,

and Xn ↑ X, Yn ↑ Y , then

E[XY ] = lim
n→∞

E[XnYn] = lim
n→∞

E[Xn]E[Yn] = E[X]E[Y ]

Step3:

For general X, Y , write X = X+ − X−, Y = Y + − Y −, then XY = (X+Y + − X−Y −) −

(X+Y − +X−Y +), since {X+, X−} and {Y +, Y −} are independent, thus

E[XY ] = (E[X+]− E[X−])(E[Y +]− E[Y −]) = E[X]E[Y ]
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4.2 Modes of Convergence

4.2 Modes of Convergence

Firstly introduce the following modes of convergence.

Definition 4.1

♣

X,X1, · · · , Xn. · · · are random variables on (Ω,F ,P).

(i) Almost surely convergence: P({ω ∈ F : Xn(ω) → X(ω)}) = 1, also denoted asXn
a.s.−−→ X

(ii) r order convergence: E[|Xn|] <∞(∀n), and E[|Xn −X|r] → 0, also denoted as Xn
r−→ X

(iii) Convergence in probability: ∀ϵ,P(|Xn −X| > ϵ) → 0, also denoted as Xn
P−→ X

(iv) Convergence in distribution: CFX
is the set of the continuous point of the distribution

function FX , ∀x ∈ CFX
, FXn(x) → FX(x), also denoted as Xn

D−→ X

The convergence in distribution is also known as weak convergence. Consider the following

example:

Xn = 1
n

, then

FXn(x) =


1 x ≥ 1

n

0 x <
1

n

X = 0, then

FX(x) =


1 x ≥ 0

0 x < 0

lim
n→∞

FXn(0) = 0 ̸= 1 = FX(0), but 0 is a point where the distribution function FX is not continuous,

so it’s still true that Xn
D−→ X . In this case, we say the distribution functions FXn converges to FX

weakly.

Define ||X||r = (E[|X|r]) 1
r . The following are some inequalities, which are useful later.
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4.2 Modes of Convergence

Lemma 4.1

♡

(i)(Hölder’s Inequality) ||XY || ≤ ||X||p||Y ||q, where 1
p
+ 1

q
= 1

(ii)(Minkowski’s Inequality) ||X + Y ||p ≤ ||X||p + ||Y ||p

(iii)(Lyapunov’s Inequality) If r > s ≥ 1, then ||X||r > ||X||s

(iv)(Markov’s Inequality) For a > 0, P(|X| ≥ a) ≤ E[|X|]
a

(v)(Chebyshev’s Inequality) If X has a finite expectation µ, then P(|X − µ| < a) ≤ Var(X)
a2

.

The checking of these inequalities are easy, and are omitted here.

Lemma 4.2

♡Xn
P−→ X ⇒ Xn

D−→ X .

Proof

P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ϵ) + P(Xn ≤ x,X > x+ ϵ)

≤ P(X ≤ x+ ϵ) + P(|Xn −X| > ϵ)

Swap Xn with X , and x− ϵ and x, then

P(X ≤ x− ϵ)− P(|Xn −X| > ϵ) ≤ P(Xn ≤ x) ≤ P(X ≤ x+ ϵ) + P(|Xn −X| > ϵ)

Take the upper limit and lower limit of all sides, then

P(X ≤ x− ϵ) ≤ lim
n→∞

P(Xn ≤ x) ≤ lim
n→∞

P(Xn ≤ x) ≤ P(X ≤ x+ ϵ)

Then let ϵ→ 0+, the result follows from that x ∈ CFX
.

Example 4.1 P(X = 0) = P(X = 1) = 1
2
, Xn = X, Y = 1 − X , then Xn

D−→ Y , but Xn does not

converge to Y in the first three modes.

Lemma 4.3

♡

(i) If r > s ≥ 1, Xn
r−→ X ⇒ Xn

s−→ X .

(ii) If r ≥ 1, Xn
r−→ X ⇒ Xn

P−→ X .

Proof (i) The result follows straightly from Lyapunov’s inequality.
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4.2 Modes of Convergence

(ii) P(|Xn −X| > ϵ) = P(|Xn −X|r > ϵr) ≤ E[|Xn−X|r]
ϵr

→ 0

Example 4.2 Ω = [0, 1], P is the Lebesgue measure, set

Xn(ω) =


n

1
r 0 ≤ ω ≤ 1

n

0 otherwise

Then Xn
P−→ X , but Xn

r−→ X doesn’t hold.

Theorem 4.3

♡

(i)Xn
D−→ c ∈ R ⇒ Xn

P−→ c

(ii) If ∃K, so that |Xn| ≤ K a.s., then Xn
P−→ c⇒ Xn

r−→ c

Proof (i) Since c is the only point that is not continuous of FX

P(|Xn − c| > ϵ) = P(Xn > c+ ϵ) + P(Xn < c− ϵ)

≤ 1− FXn(c+ ϵ) + FXn(c−
ϵ

2
)

→ 1− FX(c+ ϵ) + FX(c−
ϵ

2
) → 0

(ii) Firstly, observe that {|X| ≤ K + ϵ} ⊃ {|Xn| ≤ K}
⋂
{|Xn −X| ≤ ϵ}, so P(|X| ≤ K + ϵ) = 1.

Letting ϵ→ 0+ gives that |X| ≤ K a.s..

E[|Xn −X|r] = E[|Xn −X|rI|Xn−X|>ϵ] + E[|Xn −X|rI|Xn−X|≤ϵ]

≤ (2K)rP(|Xn −X| > ϵ) + ϵr

Thus limn→∞ E[|Xn −X|r] ≤ ϵr, take ϵ→ 0+, we have lim
n→∞

E[|Xn −X|r] = 0.

Theorem 4.4

♡

Let △ denote a.s. or r, P , then

(i) Xn
△−→ X,Xn

△−→ Y ⇒ P(X = Y ) = 1

(ii) Xn
△−→ X, Yn

△−→ Y ⇒ Xn + Yn
△−→ X + Y

(iii) The results don’t hold for convergence in distribution in general.
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4.2 Modes of Convergence

Proof (i)We only prove the case where △ = r here. Since

||X − Y ||r ≤ ||X −Xn||r + ||Y −Xn||r ≤ 0

So E[|X − Y |r] = 0. By Markov’s Inequality, for any ϵ > 0,

P(|X − Y | > ϵ) ≤ E[|X − Y |r]
ϵr

= 0

Then let ϵ → 0+, the result comes from the fact that the distribution function is right continuous.

(ii)We only prove the case where △ = P here.

P(|Xn + Yn −X − Y | > ϵ) ≤ P((|Xn −X| < ϵ

2
)
⋃

(|Yn − Y | < ϵ

2
))

≤ P(|Xn −X| < ϵ

2
) + P(|Yn − Y | < ϵ

2
)

Then the result follows.

(iii) Let P(X = 1) = P(X = −1) = 1
2
, and Xn has the same distribution as X . Then Xn

D−→

X,Xn
D−→ −X . But P(X = −X) ̸= 1, and Xn +Xn doesn’t converges to 0 in distribution.

Theorem 4.5 (Skorokhod’s Representation Theorem)

♡

Xn
D−→ X , then there exists random variables Yn, Y in (Ω,F ,P), so that:

(i)Yn and Xn are identically distributed, Y and X are identically distributed.

(ii)Yn
a.s.−−→ Y

The proof is omitted here.

Theorem 4.6

♡Xn
D−→ X if and only if ∀g ∈ BC(R), E[g(Xn)] → E[g(X)]

Proof If Xn
D−→ X , take Yn, Y as in the representation theorem. Then for ∀g ∈ BC(R), g(Yn)

a.s.−−→

g(Y ). Then by the bounded convergence theorem, E[g(Xn)] = E[g(Yn)] → E[g(Y )] = E[g(X)]

From the other side, ∀x ∈ CFX
, take g(y) = I(−∞,x](y), and take the mollifier gx,ϵ of g, so that
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4.2 Modes of Convergence

gx,ϵ(x) = 1, gx,ϵ(x+ ϵ) = 0.

P(Xn ≤ x) = E[I(−∞,x](Xn)] ≤ E[gx,ϵ(Xn)]

Then take the upper limit, we have

lim
n→∞

Fn(x) ≤ E[gx,ϵ(X)] ≤ F (x+ ϵ)

Similarly we have

lim
n→∞

Fn(x) ≥ E[gx−ϵ,ϵ(X)] ≥ F (x− ϵ)

Then let ϵ→ 0, we obtain the result.
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4.3 Almost surely convergence and Borel-Cantelli Lemma

4.3 Almost surely convergence and Borel-Cantelli Lemma

We can rewrite { lim
n→∞

Xn = X} =
∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{|Xn−X| ≤ 1
k
}, so the almost surely convergence

is equivalent to the following:

P(
∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{|Xn −X| ≤ 1

k
}) = 1

or

P(
∞⋃
k=1

∞⋂
m=1

∞⋃
n=m

{|Xn −X| > 1

k
}) = 0

Lemma 4.4

♡

(i)

Xn
a.s.−−→ X ⇔ ∀ϵ > 0,P(

∞⋂
m=1

∞⋃
n=m

{|Xn −X| > ϵ}) = 0

⇔ ∀ϵ > 0, lim
m→∞

P(
∞⋃

n=m

{|Xn −X| > ϵ}) = 0

(ii) Xn
a.s.−−→ X ⇒ Xn

P−→ X

(iii) If ∀ϵ > 0,
∑
n

P(|Xn −X| < ϵ) <∞, then Xn
a.s−→ X

Let {An} be a sequence of events, define the upper limit event to be

lim
n→∞

An =
∞⋂
n=1

∞⋃
m=n

Am

Define the lower limit event to be

lim
n→∞

An =
∞⋃
n=1

∞⋂
m=n

Am

The upper limit means that {An} happens for an infinite number of times, which is also denoted

as {An i.o.}. And the lower limit means that {An} doesn’t happen for a finite number of times.
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4.3 Almost surely convergence and Borel-Cantelli Lemma

Lemma 4.5 (Borel-Cantelli)

♡

(i) If
∞∑
n=1

P(An) <∞, then P(An i.o.) = 0

(ii) If {An} are independent, and
∞∑
n=1

P(An) = ∞, then P(An i.o.) = 1

Proof (i)P(An i.o.) ≤ P(
∞⋃

m=n

Am) ≤
∞∑

m=n

P(Am) → 0

(ii) P(
∞⋃
n=1

∞⋂
m=n

Ac
m) ≤ P(

∞⋂
m=n

Ac
m) =

∞∏
m=n

(1− P(Am)) ≤ e
−

∞∑
m=n

P(Am)
→ 0

Lemma 4.6

♡

{Xn} are identically distributed and their expectation exists, then

(i)
∞∑
n=1

P(|X1| > n) ≤ E[|X1|] ≤
∞∑
n=0

P(|X1| ≥ n)

(ii) Let Yn = XnI|Xn|≤n, an → ∞, then
n∑

k=1

1
an
(Yk −Xk)

a.s.−−→ 0.

Proof (i)
∞∑
n=0

nP(n ≤ |X1| < n+ 1) ≤ E[
∞∑
n=0

|X1|I[n,n+1)] ≤
∞∑
n=0

(n+ 1)P(n ≤ |X1| < n+ 1)

The right side is

∞∑
n=0

(n+ 1)(P(|X1| ≥ n)− P(|X1| ≥ n+ 1)) =
∞∑
n=0

P(|X1| ≥ n)

and the left side is similar.

(ii)
∞∑
k=1

P(Xk ̸= Yk) =
∑
k

P(|Xk| ≥ k) =
∑
k

P(|X1| ≥ k) <∞

so by the Borel-Cantelli Lemma P(Xk ̸= Yk i.o) = 0, the result follows.
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4.4 Law of Large Numbers

Theorem 4.7

♡{Xn} are i.i.d. r.v.s. µ = E[Xk], Var[Xk] = σ2 <∞, then Sn

n

2−→ µ, Sn

n

P−→ µ.

Proof

E[(
Sn

n
− µ)2] = E[

1

n2
(Sn − E[Sn])

2]

=
1

n2
Var(

n∑
k=1

Xk)

=
1

n2

n∑
k=1

Var(Xi)

=
1

n
Var(X1) → 0

Thus Sn

n

2−→ µ.

P(|Sn

n
− µ| > ϵ) ≤

Var(Sn

n
)

ϵ2
=

σ2

nϵ2
→ 0

Thus Sn

n

P−→ µ.

To deal with some situations whereXk have infinite values, we introduce a method of truncation.

We define

Yn(ω) =


Xn(ω) |Xn(ω)| ≤ k

0 |Xn(ω)| > k

and Tn =
n∑

k=1

Yk.

Theorem 4.8 (Weak Law of Large Numbers)

♡

{Xn} are i.i.d. r.v.s. µ = E[Xk], then Sn

n

P−→ µ.(The independence condition can be weaken to

pairwise independence)
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4.4 Law of Large Numbers

Proof Note that {Yk} are independent but not identically distributed. Take an = nδ, δ ∈ (0, 1), then

P(|Tn −
E[Tn]
n

| > ϵ) ≤ Var(Tn)

ϵ2n2

=

n∑
k=1

Var(Yk)

ϵ2n2

≤

n∑
k=1

E[X2
kI|Xk|≤k]

ϵ2n2

=

n∑
k=1

E[X2I|Xk|≤k]

ϵ2n2

=

an∑
k=1

E[X2I|Xk|≤k]

ϵ2n2
+

n∑
k=an+1

E[X2I|Xk|≤k]

ϵ2n2

≤ an

an∑
k=1

E[|X|I|Xk|≤k]

ϵ2n2
+

n∑
k=an+1

E[X2(I|Xk|≤an + Ian<|Xk|≤k)]

ϵ2n2

≤ an

an∑
k=1

E[|X|I|Xk|≤k]

ϵ2n2
+ an

n∑
k=an+1

E[|X|(I|Xk|≤an)]

ϵ2n2
+ n

n∑
k=an+1

E[|X|(I|Xk|>an)]

ϵ2n2

≤
nan + n2E[|X|I|X|>an ]

ϵ2n2
→ 0

The last inequality is because of the fact that |X|I|X|>an ≤ |X| and the dominated convergence

theorem.
Theorem 4.9

♡{Xn} are i.i.d. r.v.s. µ = E[Xk],Var(Xk) = C <∞, then Sn

n

a.s.−−→ µ.

Proof Assume that µ = 0. Since

∑
n

P(
|Sn2|
n2

> ϵ) ≤
∑
n

n2C

ϵ2n4
<∞

Sn2

n2

a.s.−−→ 0 by Borel-Cantelli Lemma. Introduce Mn = max
n2≤k<(n+1)2

|Sk − Sn2|, then for n2 ≤ k <

(n+ 1)2, we have Sk

k
=

Sk−Sn2+Sn2

k
. Since

E[M2
n] ≤ 2nE[(S(n+1)2 − Sn2)2] ≤ 4Cn2
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4.4 Law of Large Numbers

then ∑
n

P(
Mn

n2
> ϵ) ≤

∑
n

4C

n2ϵ2
<∞

by Borel-Cantelli Lemma Mn

n2

a.s.−−→ 0, thus

|Sk|
k

≤ |Sn2|
n2

+
Mn

n2

a.s.−−→ 0

Theorem 4.10 (Strong Law of Large Numbers)

♡{Xn} are i.i.d. r.v.s, then E[|X1|] <∞ is equivalent to Sn

n

a.s.−−→ µ = E[Xk].

Proof We can assume that {Xk} are non negative. And we do the truncation to obtain Yk.

Firstly suppose that µ = E[Xk] <∞.

For α > 1, let βk = [αk], then αk − 1 < βk ≤ αk, and ∀m ≥ 1,
∞∑

k=m

1
β2
k
≤ Cα

β2
m

. Then

∑
n

P(
1

βn
|Tβn − E[Tβn ]| > ϵ) ≤

∑
n

1

ϵ2β2
n

βn∑
k=1

Var(Yk)

≤
∑
n

1

ϵ2β2
n

βn∑
k=1

E[Y 2
k ]

≤
∞∑
k=1

1

ϵ2
E[Y 2

k ]
∑

n:βn≥k

1

β2
n

≤ Cα

ϵ2

∞∑
k=1

1

k2
E[Y 2

k ]

=
Cα

ϵ2

∑
k

1

k2

k∑
j=1

E[Y 2
k Ij−1<Xk≤j]

≤ Cα

ϵ2

∑
k

1

k2

k∑
j=1

j2P(j − 1 < Xk ≤ j)

≤ Cα

ϵ2

∞∑
j=1

j2
∞∑
k=j

1

k2
P(j − 1 < Xk ≤ j)

≤ 2
Cα

ϵ2

∑
j

P(j − 1 < X1 ≤ j)

≤ Cα

ϵ2
2(E[X1] + 1) <∞
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4.4 Law of Large Numbers

So by the Borel-Cantelli lemma, 1
βn
(Tβn − E[Tβn ])

a.s.−−→ 0. Also by the dominated convergence,

1

n
E[Tn] =

1

n

n∑
k=1

E[X1IX1≤k]
a.s.−−→ E[X1] = µ

Thus Tβn

βn

a.s.−−→ µ. Now for βn ≤ k < βn+1, since

βn
βn+1

Tβn

βn
≤ Tk

k
≤ βn+1

βn

Tβn+1

βn+1

Take upper limit and lower limit, and let α → 1+, then we have Tk

k

a.s.−−→ µ.

Now suppose 1
n

n∑
k=1

Xk
a.s.−−→ µ, then Xn

n

a.s.−−→ 0, then
∑
n

P(|Xn| ≥ n) < ∞. Otherwise, by the

Borel-Cantelli lemma, P(|Xn| ≥ n i.o.) = 1, which contradicts that Xn

n
→ 0. Thus E[|X1|] <∞.

Here is a beautiful result which we will not prove here.

Theorem 4.11 (Khintchine’s Law of Iterated Logarithm)

♡

{Xk} are i.i.d r.v.s, E[Xk] = 0,Var(Xk) = 1, then

lim
n→∞

Sn√
2nloglogn

= 1
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Chapter 5 Central Limit Theorem

5.1 Characteristic Functions

Definition 5.1

♣

X, Y are random variables on (Ω,F ,P), then we call Z = X+ iY a complex random variable,

and define E[Z] = E[X] + iE[Y ].

It’s clear that a complex random variable can be regarded as a two-dimension random vector.

Definition 5.2

♣

We say Z1 = X1 + iY1, Z2 = X2 + iY2 are independent, if (X1, Y1), (X2, Y2) are independent,

in other words, if

P(X1 ≤ x1, Y1 ≤ y1, X2 ≤ x2, Y2 ≤ y2) = P(X1 ≤ x1, Y1 ≤ y1)P(X2 ≤ x2, Y2 ≤ y2)

One can check that, if Z1, Z2 are independent, then E[Z1Z2] = E[Z1]E[Z2].

Definition 5.3

♣

For a random variable X , we define its characteristic function to be

ϕX(t) = E[eitX ](t ∈ R)

Since |ϕX(t)| ≤ 1, ϕX(t) exists for all t and all kinds of random variables X , and ϕX(t) =∫
R e

itXdF . For continuous variable X , ϕX(t) =
∫
R e

itXf(x)dx.

Theorem 5.1
(i) ϕ(0) = 1, ϕ(t) = ϕ(−t), |ϕ(t)| ≤ 1

(ii) ϕ(t) is uniformly continuous on (−∞,∞).



5.1 Characteristic Functions

♡

(iii) ϕ(t) is negative definite, in other words, for any z1, · · · , zn ∈ C, t1, · · · , tn ∈ R,

∑
j,k

zjzkϕ(tj − tk) ≥ 0

Proof (i) Trivial.

(ii)∀t0 ∈ R

|ϕ(t0 + h)− ϕ(t0)| = |E[eit0X(eihX − 1)]| ≤ E[|eihX − 1|] → 0(h→ 0)

The last step uses the bounded convergence theorem.

(iii)∀z1, · · · , zn ∈ C, t1, · · · , tn ∈ R

∑
j,k

zjzkϕ(tj − tk) =
∑
j,k

E[zjzkei(tj−tk)X ] = E[(
∑
j

zje
itjX

∑
k

zkeitkX ] ≥ 0

Actually, if a function satisfies (i)(ii)(iii), then it’s a characteristic function of some random

variable.
Theorem 5.2

♡

If E[|X|k] <∞, then ∀j ≤ k, ϕ(j)(0) = ijE[Xj], then

ϕ(t) =
k∑

j=0

(it)j

j!
E[Xj] + o(tk)

Proof By exercise 5.6.4, ∀j ≤ k,E[|X|j] < ∞, since | dj
dtj
eitX | = |X|j , we can change the order of

derivation and integration. Then the theorem is the result of Taylor’s expansion theorem.

Theorem 5.3

♡

(i)ϕaX+b(t) = eitbϕX(at)

(ii) If X, Y are independent, then ϕX+Y (t) = ϕX(t)ϕY (t).

This can be checked easily.
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5.1 Characteristic Functions

Definition 5.4

♣If
−→
X is a random vector, define its characteristic function to be ϕ−→

X
(
−→
t ) = E[ei

−→
t
−→
X ]

Example 5.1 (i) X is of Bernoulli distribution with parameter p, then ϕX(t) = p+ qeit

(ii)X is of exponential distribution with parameter λ, that is f(x) = λe−λx(x > 0), then ϕX(t) =
λ

λ−it

(iii) X ∼ N(0, 1), then ϕX(t) = e−
1
2
t2 . More generally, if Y ∼ N(µ, σ), then ϕY (t) = eiµt−

1
2
σ2t2

(iv)
−→
X ∼ N(−→µ ,

∑
), then ϕ−→

X
(
−→
t ) = ei

−→µ−→
t T− 1

2

−→
t
∑−→

t T
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5.2 Inversion and Continuity Theorem

5.2 Inversion and Continuity Theorem

Theorem 5.4 (Inversion Formula)

♡

For −∞ < a < b <∞, then

1

2
(F (b) + F (b− 0))− 1

2
(F (a) + F (a− 0)) = lim

T→∞

1

2π

∫ T

−T

e−iat − e−ibt

it
ϕ(t)dt

Proof

IT =
1

2π

∫ T

−T

e−iat − e−ibt

it
ϕ(t)dt

=
1

2π

∫ T

−T

e−iat − e−ibt

it

∫
R
eitxdFdt

=
1

2π

∫ T

−T

∫
R

eit(x−a) − eit(x−b)

it
dFdt

=

∫
R
gT (x)dF

where

gT (x) =
1

2π

∫ T

−T

eit(x−a) − eit(x−b)

it
dt

=
1

π

∫ T

0

sin(x− a)t

t
− sin(x− b)t

t
dt

Since

1

π

∫ ∞

0

sinxt

t
dt =



1

2
x > 0

0 x = 0

−1

2
x < 0

We have |gT (x)| is bounded, and

lim
T→∞

gT (x) =



1 x ∈ (a, b)

1

2
x ∈ {a, b}

0 otherwise

′
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5.2 Inversion and Continuity Theorem

Then by the dominated convergence theorem

lim
T→∞

IT =
1

2
µF (a, b) + µF ((a, b))

=
F (b) + F (b− 0)

2
− F (a) + F (a− 0)

2

Corollary 5.1

♡ϕX = ϕY if and only if FX = FY .

Theorem 5.5 (Multivariable Inversion Theorem)

♡

R = (a1, b1]× (a2, b2] · · · (an, bn] and µF (∂R) = 0. And ϕ(t1, · · · , tn) =
∫
Rn e

i(t1x1···+tnxn)dF .

Then

µF (R) = lim
T1,··· ,Tn→∞

1

(2π)n

∫ T1

−T1

· · ·
∫ Tn

−Tn

n∏
k=1

e−itkak − e−itkbk

itk
ϕ(t)dt1 · · · dtn

Specially for n = 2, it’s clear that if ϕX(t1, t2) = ϕX1(t1)ϕX2(t2), thenX1, X2 are independent.

Theorem 5.6 (Levy-Cramer Continuity Theorem)

♡

If Fn(x) = P(Xn ≤ x), ϕn(t) =
∫
R e

itxdFn. Then

(i) IfFn
W−→ F ,F is a distribution function, thenϕn(t) → ϕ(t) =

∫
R e

itxdF , and the convergence

is inner closed uniform convergence.

(ii) If ϕ(t) = lim
n→∞

ϕn(t) and ϕ(t) is continuous at t = 0, then ϕ(t) is a characteristic function

of a distribution function F , and Fn
W−→ F .
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5.3 Limit Theorems

Firstly we use the characteristic function to prove the weak LLN. Since

ϕSn
n
(t) = (ϕX1(

t

n
))n = (1 +

itµ

n
+ o(

t

n
))n → eiµt

Then by the Levy-Cramer theorem, Sn

n

D−→ µ, which is a constant, then by Theorem 4.3, Sn

n

P−→ µ.

Similarly we can prove the following central limit theorem.

Theorem 5.7 (CLT)

♡

{Xk} are i.i.d r.v.s, µ = E[Xk], σ
2 = Var(Xk), σ ∈ (0,∞), then

Sn − nµ√
nσ

D−→ N(0, 1)

Proof Assume µ = 0, σ = 1, then

ϕ Sn√
n
(t) = (ϕX1(

t√
n
))n = (1− t2

2n
+ o(

t2

n
))n → e−

1
2
t2

By Levy-Cramer theorem, Sn−nµ√
nσ

D−→ N(0, 1).

Now we focus on the Lindeberg condition for CLT:

{Xk} are random variables(might not identically distributed) with common expectation µ = 0.

b2k = Var(Xk), B
2
n =

n∑
k=1

b2k, if

lim
n→∞

1

B2
n

n∑
k=1

E[X2
kI|Xk|>ϵBn ] = 0(∀ϵ)

Then we say {Xk} satisfy the Lindeberg condition(L).

Theorem 5.8

♡

{Xk} are independent and satisfy the Lindeberg condition. Then {Xk} satisfy the central limit

law and the Feller condition(F) as follow:

lim
n→∞

1

B2
n

max
1≤k≤n

b2k = 0
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5.3 Limit Theorems

The proof is omitted here. Also it’s true that if the central limit law and the Feller condition hold,

then the Lindeberg condition holds.

Corollary 5.2

♡

If {Xk} are independent and satisfy the following Lyapunov condition, then the central limit

law holds.

∃δ > 0, s.t.
1

B2+δ
n

n∑
k=1

E[|Xk|2+δ] → 0

Proof It suffices to check the Lindeberg condition, this comes from a straightforward calculation:

lim
n→∞

1

B2
n

n∑
k=1

E[X2
kI|Xk|>ϵBn ] = lim

n→∞

1

B2
n

n∑
k=1

E[
X2+δ

k

Xδ
k

I|Xk|>ϵBn ] ≤ lim
n→∞

1

ϵδB2+δ
n

n∑
k=1

E[|Xk|2+δ] = 0

Since

1

B2
n

n∑
k=1

E[X2
kI|Xk|>ϵBn ] ≥ ϵ2

n∑
k=1

E[I|Xk|>ϵBn ]

= ϵ2
n∑

k=1

P(|Xk| > ϵBn)

≥ ϵ2P(
n⋃

k=1

{|Xk| > ϵBn})

= ϵ2P( max
1≤k≤n

|Xk|
Bn

< ϵ)

So

P( max
1≤k≤n

|Xk|
Bn

< ϵ) → 0(∀ϵ)

Thus the Lindeberg condition means that the probability of the relative deviations are uniformly small

is 1.

The Lindeberg condition can deduce the Feller condition:

b2k
B2

n

=
1

B2
n

E[I|Xk|<ϵBn + I|Xk|≥ϵBn ] ≤ ϵ2 +
n∑

k=1

1

B2
n

E[X2
kI|Xk|≥ϵBn ]
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5.3 Limit Theorems

Take the upper limit, we have

lim
n→∞

b2k
B2

n

≤ ϵ2

Then let ϵ→ 0, we obtain the Feller condition.

Theorem 5.9 (Multivariable CLT)

♡

{
−→
Xk} are i.i.d random vectors, with E[

−→
Xk] = 0 and E[

−→
Xk

T−→Xk] =
∑

> 0, then

1√
n

n∑
k=1

−→
Xk

D−→ N(0,
∑

)

Now we try to obtain the an approximation of CLT from the Bernoulli distribution. Consider

Xk are i.i.d Bernoulli random variables with parameter p. Then P(Sn = k) =
(
n
k

)
pkqn−k. Also

E[Sk] = np,Var(Sk) = npq, thus we introduce xk = k−np√
npq

.

Theorem 5.10 (Local CLT)

♡

For p ∈ (0, 1), and for all k so that |xk| ≤ A, we have uniformly

P(Sn = k) ∼ 1√
2πnpq

e−
1
2
x2
k(n→ ∞)

Proof Since k = np+
√
npqxk and n− k = nq−√

npqxk, we have k ∼ np, n− k ∼ nq uniformly.

Then by Stirling’s Formula

P(Sn = k) =

(
n

k

)
pkqn−k ∼

(n
e
)n
√
2πnpkqn−k

(k
e
)k
√
2πk(n−k

e
)n−k

√
2π(n− k)

=

√
n

2πk(n− k)
(
np

k
)k(

nq

n− k
)n−k

∼ 1√
2πnpq

(1−
√
npq

k
xk)

k(1 +

√
npq

n− k
xk)

n−k

=
1√

2πnpq
eklog(1−

√
npq

k
xk)+(n−k)log(1+

√
npq

n−k
xk)

=
1√

2πnpq
e
−√

npqxk−npq
k

x2
k+O( 1√

n
)+

√
npqxk− npq

n−k
x2
k+O( 1√

n
)

∼ 1√
2πnpq

e−
1
2
x2
k
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Theorem 5.11 (CLT:Integration Form)

♡
P(a <

Sn − np
√
npq

≤ b) → 1√
2π

∫ b

a

e−
1
2
x2

dx

Proof

P(a <
Sn − np
√
npq

≤ b) =
∑

k:xk∈(a,b]

P(Sn = k)

∼
∑

k:xk∈(a,b])

1√
2πnpq

e−
1
2
x2
k

=
∑

k:xk∈(a,b]

1√
2π
e−

1
2
x2
k(xk+1 − xk)

→ 1√
2π

∫ b

a

e−
1
2
x2

dx

Lemma 5.1

♡

If ∀k, n, E[Xk
n] exists, and E[Xk

n] → γk∀k, and {γk} satisfy the Riesz condition:

lim
k→∞

1

k
(γ2k)

1
2k <∞

Then Xn
D−→ X , where X is the only random variable that has γk as its kth moment.

The proof is omitted here.

One can calculate the moments of X ∼ N(0, 1), which is

E[Xk] = γk =


(2m− 1)!! k = 2m− 1

0 k = 2m

′

As a consequence of the above lemma, we have

Theorem 5.12
{Xk} are independent with E[Xk] = 0,Var(Xk) = 1(∀k), and ∀m ≥ 3, sup

k→∞
E[|Xk|m] < ∞,

then

E[(
Sn√
n
)k] → γk
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5.3 Limit Theorems

♡
As a result, Sn√

n

D−→ N(0, 1).

Proof Since E[( Sn√
n
)k] = n− k

2

∑
i1,··· ,ik

E[Xi1 · · ·Xik ], the non-zero terms must be in the form of

E[Xa1
i1

· · ·Xam
im

](i1 ̸= · · · ̸= im), with ai ≥ 2,
∑
i

ai = k.

Consider the coefficients of those terms:

If k is odd, then m ≤ k−1
2

, the coefficient is of nm

n
k
2
→ 0;

Otherwise,m has to be k
2
, under this case the coefficient is the number of divisions of 2m numbers

into m pairs, which is γk.
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