$$
P(A)=P(B)=\frac{1}{2},
$$

－（1）．$\quad P(A C \mid A B \cup C)=\frac{1}{4}$

$$
\Rightarrow \frac{P(A C, A B \cup C)}{P(A B \cup C)}=\frac{P(A C)}{P(A B) P P(C)}=\frac{P(A) P(C)}{P(A B C)+P C)}=\Phi \frac{1}{4} \text { 代 } \lambda P(A) \cdot P(B)
$$

（2）求 P（知｜对）

$$
=\frac{P(\text { 知, 对 })}{P(\text { 对 })}=\frac{P(\text { 知, 对 })}{P(\text { 知目对间) }+P(\text { 不知, 且对 })}=\frac{P}{P+(\text { (1-P) }}
$$

B）A 连续型：
存在 R 上非负 Lebesgue 可积丞数 $P(x)$

$$
\text { S.t } F(x)=\int_{-\infty}^{x} p(x) d u, \underbrace{x \in R}_{S} \text {, 满足, }
$$

B：奇异型处处进续，P129，但不存在远样 $P(u)$（a．e为 0 ） C混合型

$$
A: R .
$$

$P(x)=\frac{e^{-\lambda} \lambda^{n}}{n!} \Rightarrow \lambda=2 \quad \Rightarrow P(x=3)=\frac{e^{-2} z^{3}}{3!}$
（5）

$$
\begin{aligned}
& F(1)=F\left(i^{-}\right)=0 \Rightarrow b=-1 \\
& \mid=F\left(e^{+}\right)=F\left(e^{+}\right) \Rightarrow a+b=0 \Rightarrow a=1 \\
& a b=-1
\end{aligned}
$$

（10），

$$
P(X=, Y=Y)=P(X=0, X+Y=1)
$$

（6）。非负 V
独立 $P(x=0) P(x+Y=1)$

$$
\begin{aligned}
D: & \left.\int_{-\infty}^{+\infty} P_{1} x\right) F_{1}(x)+P_{2}(x) F_{1}(x) d x \\
& =\left.F_{1} F_{2}\right|_{-\infty} ^{+\infty}-\int_{-\infty}^{+\infty} F_{1} d F_{2}+\int_{-\infty}^{+\infty} P_{2} F_{1} d x \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
= & P(x=0)(x) Y=0)+P(x=0, Y=1)) 0.5 \\
\Rightarrow & P(x=0, Y=1)=(0.4+P(x=0, y-1)) \frac{1}{2} \\
& \Rightarrow P(x=0, Y=1)=0.4
\end{aligned}
$$

（7）．$P(x>4 \mid Z$ 佁 $2 小$ 时 $)=P(x>2)=e^{-2}$
（8）。利用 $F\left(\frac{x-\mu}{\sigma}\right)=\Phi(x) \Rightarrow A$

2.

一般考虑简单的亏法，全概率公式十取条件于第一次或最后一次。
解不出再考虑其他亏法。
记甲最…为入
取条件于第一次的结果

$+P(x \mid$ 甲初始领先 1 ，一回合赢）$P(2$ 赢）

$$
=1 \cdot p+P(x) \cdot(1-p)
$$

同理 $P(X \mid-$ 回合 2 举 $n)=(1-P) \cdot 0+P \cdot P(x)$

$$
\Rightarrow P(x)=[P+P(x)(1-P)] P+(1-P)[(1+) \cdot 0+P \cdot P(x)]
$$

$\Rightarrow P(x)=\frac{p^{2}}{1-2 p+2 P^{2}}$
（革稿上验证，

$$
P=0, P(x)=0 ; P=1, P(x)=1
$$

首先分析可知在奇数向合不京生胜负关系，不有在偶数回合，才会有其中一人比另外

同理，再取前地 $\sum_{i=1}^{\infty} p\left(\begin{array}{l}\text { 第 } 2 i-2 \text { 平局 }) ~\end{array} P^{2}\right.$
收放 $\Rightarrow \prod_{i \rightarrow \infty} P(2 i-2$ 侷 $)=0$ 。
\therefore 由 $P($ 最经甲获胜 $)+P^{(}$（直平局下去 $)+P($ 最经胜 $)=1$
$\Rightarrow P($ 最经毒胜 $)+P$ 最终乙获胜 $)=1$

$$
\begin{aligned}
& \therefore \quad \sum_{i=1}^{\infty} P\left(2 i-2 \text { 平局 }\left(P^{2}+(-1-)^{2}\right)=1\right. \\
& \quad \Rightarrow \sum_{i=1}^{\infty} P(2 i-2 \text { 平 })=\frac{1}{2 P^{2}-2+1} \Rightarrow P(x)=\frac{P^{2}}{2 p^{2}-\rho P H}
\end{aligned}
$$

注：狫师／徐助教说有人用 \sum 什么的做出的，也是一种方法。

3
（1）．

$$
\begin{aligned}
& \int_{-\infty}^{+\infty} p(x) d x=1 \\
& \Rightarrow \int_{0}^{3} \frac{1}{a} x^{2} d x=1 \\
& \Rightarrow a=9
\end{aligned}
$$

（2）．

$$
\begin{aligned}
Y= & \left\{\begin{array}{ll}
2, & X \leq 1 \\
X, & \ll x<2 \\
1, & X>2
\end{array} \quad \in[1,2]\right.
\end{aligned} \quad \text { (便于分析 } y, \text { debug]. }
$$

$$
\begin{aligned}
& F_{Y}(y)=P(Y \leqslant y)=\left\{\begin{array}{cc}
0 & , \quad<1 \\
P(Y=10+P(K<\leqslant y) & , 1 \leqslant \gamma<2 \\
1 & , y \geqslant 2
\end{array}\right. \\
& =\left\{\begin{array}{cc}
0 & , \quad \geqslant<1 \\
1 \frac{19}{27}+\int_{1}^{y} \frac{x}{9} d x & , 1 \leqslant \ll 2 \\
1 & , y \geqslant 2
\end{array}\right.
\end{aligned}
$$

(3)

$$
\begin{aligned}
P(X \leq Y) & =P(X=Y)+P(Y=2) \\
& =P(Y \neq 1)=1-P(Y=1)=\frac{8}{27}
\end{aligned}
$$

佉一：利用二元正态表达式。

显然 $a_{1}=0, a_{2}=0 \quad \frac{x^{2}}{P(x, y)}=A e^{-\frac{\gamma x y}{2\left(1-y^{2}\right) \sigma_{1}^{2}}+\frac{y^{2}}{\left(1-y^{2}\right) \sigma_{2}}}-\frac{\sigma_{2}}{2\left(1-\gamma^{2}\right) \sigma_{2}^{2}}$
$p(x, y)$

$$
\left\{\begin{array}{l}
-\frac{1}{2\left(1-r^{2}\right) b_{1}^{2}}=-2 \\
\frac{r}{\left(1-r^{2}\right) b_{1} b_{2}}=2 \\
-\frac{1}{2\left(-1-r^{2}\right) \sigma_{2}^{2}}=1
\end{array}\right.
$$

J（1） $3: \frac{1}{2\left(1-r^{2}\right) \sigma_{1} \sigma_{2}}=\sqrt{2}$
（2） $14 \Rightarrow$ Q $\gamma=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
（1）：$-\frac{1}{\sigma_{1}^{2}}=-2, \quad \sigma_{1}^{2}=\frac{1}{2}$
（3）：$-\frac{1}{\sigma_{2}^{2}}=-1, \sigma_{2}^{2}=1$

$$
\therefore A=\frac{1}{2 \pi \sqrt{1-r^{2}} \sigma_{1} \sigma_{2}}=\frac{1}{2 \pi \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2}} \cdot 1}=\frac{1}{\pi} .
$$

（ ）．

$$
P_{Y \mid X}(y \mid x)=\frac{P(x, y)}{P(x)}
$$

$P(x, y)$ 题目结了

$$
\begin{aligned}
& P(x) \sim N\left(0, \sigma_{1}^{2}\right) \\
& P(X)=\frac{1}{\sqrt{2 \pi} \left\lvert\, \frac{1}{2}\right.} e^{-\frac{x}{2 I}}=\frac{1}{\sqrt{\pi}} e^{-x^{2}} \\
& \therefore P_{Y \mid X}(y \mid X)=\frac{\frac{1}{\pi} e^{-2 x^{2}+2 x y-y^{2}}}{\frac{1}{\sqrt{\pi}} e^{-x^{2}}}=\frac{1}{\sqrt{\pi}} e^{-x^{2}+2 x y-y^{2}} y \in R .
\end{aligned}
$$

$=: \quad \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} P(x, y) d x d y=1$

$$
\begin{aligned}
& \begin{aligned}
=A \int_{-\infty}^{+\infty} e^{-2 x^{2}+x^{2}} \cdot \sqrt{\pi} d x=A \pi \int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2 t}} d x=A \pi \cdot \sqrt{m}=A \pi=1 \\
\Rightarrow A=\frac{1}{\pi}
\end{aligned}
\end{aligned}
$$

怎么算 $P(x)$ 呢。

$$
\begin{aligned}
& P(x)=\int_{-\infty}^{+\infty} A e^{-2 x^{2}+2 x y-y^{2}} d y \\
& =\int_{-\infty}^{+\infty} A e^{\left.-x^{2}+(1)-x\right)^{2}} d y \\
& \alpha e^{-x^{2}}=e^{-\frac{x^{2}}{2 \cdot \frac{2}{2}}} \\
& \Rightarrow \quad x \sim N\left(0, \frac{1}{2}\right) \\
& \Rightarrow P(X)=\frac{1}{2 \pi \frac{1}{2}} e^{-\frac{x^{2}}{2 \cdot \frac{1}{2}}}=\frac{1}{\sqrt{\pi}} e^{-x^{2}} \\
& \text { 同瑆. } \Rightarrow P_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}+2 x y-y^{2}}(y \in R) \text {. }
\end{aligned}
$$

5.

$$
X, Y \xrightarrow{\text { iid }} \operatorname{Exp}(\lambda), U=\min \{X, Y\}, V=\max \{X, Y\}
$$

（1）\＃很多人都复习到了，但题目说求密度函数，很多人只求了分布函数。

$$
\begin{aligned}
& P(U \leqslant u)=1-P(\min \{X, Y\}>u) \\
& \text { 住至 } 1-P(X>u) P(Y>u) \\
& \therefore=1-e^{-\lambda u} e^{-\lambda u} \\
& =1-e^{-2 \lambda u} \\
& \left.\Rightarrow f_{u}(u)=2 \lambda e^{-2 \lambda u}(u) 0\right) \text { (没写扣1分 }(\text {, 斥复强调了) 。 } \\
& P(V \leqslant x) \underset{\text { d柱 }}{=} P(\max \{x, Y\}) \\
& \text { 秋咅 } P(X \leq x) P(Y \leqslant x) \\
& \stackrel{\text { iid }}{=}\left(1-e^{-\lambda \lambda x}\right)\left(1-e^{-\lambda x}\right) \\
& f_{v}(x)=\lambda e^{-\lambda x}\left(1-e^{-\lambda x}\right) \quad(x>0)
\end{aligned}
$$

井有人求导求错了，再好好算算。
（2）井这题对于没复习到次㓍最大，最小值联合分布的同学来说可能会有点心，江老师说他好像讲过。

不过设关系，这题可用 Jacobi，楼讨论法，
（法一）先讲群文件里お＂习题了＂提到的证次序统计量联合分布的方法。
$x_{i n}, x_{j,}$
设 $x_{1} \cdot \cdots x_{n} \stackrel{\because d}{\sim} F(x)$

首先有 $2+1$ 个 $x_{1}, ~ \cdots x_{n}$ 中有 $i-1$ 个处在 $(-\infty, x)$

$n-i$ 个中选 $j-i-个$ 处在 $\left.(x, y):\binom{n-i}{j-i+1}(\tilde{j}(y)-F x)\right)^{j-i-1}$
n－i－$(j-i-1)$ 中选 1 个处在y：$\binom{n-j+1}{1}$ fil
$n-j$ 个中选 $n-i$ 个处在 $(y,+\infty):\binom{n-j}{n-j}(1-F(y))^{n-j}$

$$
\begin{aligned}
& \because X_{1}, \cdots X_{n} \text { 独 }_{2} \\
& \left.\therefore f_{x_{i j}, x_{j},}(x, y)=\binom{n}{-1}(F x(x))^{i-1} \cdot\binom{n-(i-1)}{1} f(x) \cdot\binom{n-i}{-i-1}\left(F y y-F_{x}\right)^{j-i-1} \cdot\binom{n-j+1}{1} f_{1} y\right) \\
& \binom{n-j}{n-j}\left(1-F_{i x}\right)^{n-j} \\
& =\frac{n!}{(i-1)!!(j-i+i)!!!(n-j)!} F^{i-1}(x) f(x)\left(\left[i-y-F_{x}\right)^{j-i-1} f(y)(L-F(x))^{n-j}\right.
\end{aligned}
$$

那么，这题个 $i=1, j=n=2$

$$
\begin{aligned}
& =2 . f(x) f(y)=2 \cdot \lambda e^{2-\lambda(x y)} \quad(y>x)^{\text {住音. }}
\end{aligned}
$$

设

$$
\begin{aligned}
& \begin{array}{l}
z_{1}=U>0 \\
z_{2}=V-U>0
\end{array} \\
& V=z_{1}+z_{2} \\
& U=Z_{1} \\
& |J|=\left\|\begin{array}{ll}
1 & 1
\end{array}\right\|=1 \\
& f_{z_{u}, z_{0}}\left(z_{1}, z_{3}\right)=: f_{u, v}\left(z_{1}, z_{1}+z_{2}\right)=2 \lambda e^{-\lambda\left(z_{1}+z_{2}\right)}\left(z_{1}, z_{0}, z_{2}\right) \text {. }
\end{aligned}
$$

法二：对 $X, ~ Y 大 小$ 分情况讨论。

$$
\begin{aligned}
& 2=V=x \\
& ==\omega=x=x=2
\end{aligned}
$$

$$
\Rightarrow Z_{1}, Z_{2} \text { 独 }
$$

（2）当 $Y>X$ ，对称性，同理，z_{1}, z_{2} 独立
说明 Z_{1}, Z_{2} 独立性与 X，Y之间大小，无 $\Rightarrow Z_{1}, Z_{2}$ 独
法三：Jacob；对应要段 $X<Y, X>Y, ~(X=Y$ ，降准去掉）。

同理

$$
\begin{aligned}
& v=X \\
& V=Y
\end{aligned}
$$

六，（1）考前一天，我发在群里一张检查复习情况的图片里。就提到对于这种多维的，首先考虑归纳法。结果只有一两个人用了，好多人算那个 Jacob＇：曾没有人算出来，写出来的，我知道在套结论。不过都给分了。

$$
f_{x+y}(c)=\int_{-\infty}^{+\infty} f_{x}(x) f_{y}(c-x) d x
$$

设 $X \sim N\left(0, \sigma_{1}^{2}\right), Y \sim N\left(0, \sigma_{2}^{2}\right)$ 证 $X+Y \sim N\left(0, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

$$
\begin{aligned}
& X, Y \text { 独立 } \\
& f_{X+Y}(c)=\int_{-\infty}^{+\infty} \frac{1}{2 \pi b_{1} b_{2}} e^{-\frac{x^{2}}{2 b_{1}^{2}}} e^{-\frac{(c-x)^{2}}{2 \sigma_{2}^{2}}} d x \\
& -\frac{x^{2}}{2 \sigma_{1}^{2}}-\frac{(c-x)^{2}}{2 \sigma_{2}^{2}}=-\left(\frac{1}{2 \sigma^{2}}+\frac{1}{2 \sigma_{3}^{2}}\right) x^{e}+\frac{B}{b_{2}^{2}}-\frac{C^{2}}{2 \sigma_{2}^{2}} \\
& =-A\left(x-\frac{B}{2 A}\right)^{2}+\frac{B^{2}}{4 A}-\frac{C^{2}}{2 \sigma_{i}^{2}} \\
& \frac{B^{2}}{4 A}=\frac{1}{2} \cdot \frac{\sigma_{1} \sigma_{1}^{2} \cdot \frac{C_{2}^{2}}{\sigma_{4}}}{\sigma_{1}^{2}+\sigma_{2}^{2}}=\frac{C_{1}^{2} \sigma^{2}}{2\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right) \sigma_{2}^{2}} \\
& \therefore \frac{B^{2}}{4 A}-\frac{C^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}\right)}{2 \sigma_{2}^{2}\left(G_{1}^{2}+\sigma_{2}^{2}\right)}=-\frac{\sigma_{2}^{2} C^{2}}{2 \sigma_{2}^{2}\left(\sigma_{3}^{2}+\sigma_{3}^{\prime}\right)}=-\frac{C^{2}}{2\left(\sigma_{3}^{3} \sigma_{2}^{2}\right)} \\
& x \sim\left(r(0,1)-f_{x+y}(c)=\int_{-\infty}^{+\infty} C^{1} e^{-A\left(x-\frac{-2}{-1}\right)^{2}-\frac{C^{2}}{\left(\varepsilon^{2}+\sigma_{0}^{2}\right)} d x} d x\right.
\end{aligned}
$$

感保
$\Rightarrow a_{1} x_{1} \sim N\left(0, a_{1}^{2}\right)$
F

$$
\therefore a_{1} x_{1}+\cdots 0_{n} x_{n} \sim N\left(0, a_{1}^{2}+\cdots a_{n}^{2}\right)
$$

如果复习了老师证过了的结论的话，直报用也给分
（2）
$n=6$
求 $\varphi=\frac{x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}}{\sqrt{x_{2}^{2}+x_{4}^{2}+x_{6}^{2}}} \cdot$ 分布
我眼以前尝试过求这种，但设求出来。
想了一下 Jacrbi，但做不到。
但想者了一下第一题，又联想了一下取条件，好像就是那样

$$
\sim N(0,1) \quad 与 x_{2}, x_{4}, x_{6} \not 天^{天}
$$

说明不管 X_{2}, X_{4}, X_{6} 取什么值，Y的分布都无关

$$
\therefore Y \sim N(0.1)
$$

实际上也易证：$\quad f_{Y}=\iiint \frac{f_{1} 1 x_{2} x_{2} x_{6} f_{x_{2}} f_{x_{4}} f_{x_{6}}}{x_{x_{2}}} d x_{3} d x_{1} d x_{6}$

$$
=\frac{1}{\sqrt{2 n}} e^{-\frac{x_{2}^{2}}{2}} \int \underbrace{x_{2} / 2} f_{x_{2}} f_{x_{4}} f_{x} d x_{2} d x_{1} d x_{6}
$$

（10分）甲乙二人进行网球比赛，每回合胜者得 1 分，且每回合甲胜的概率为 $p(0<$
$p<1)$ 乙胜的概率为 $1-p$, ，比赛进行到有一人比另外一个人多 2 分就终止，多 2 分
者最终获胜，试求甲最终获胜的概率．
$1 i$者最终获胜，试求甲最终犾胜的概率．
（15分）设随机变量 X 的密度函数为 $p(x)$
（15分）设随机变量 X 的密度函数为 $p(x)=\frac{1}{a} x^{2}, 0<x<3$ ，令随机变量

$$
Y=\left\{\begin{array}{cc}2, & X \leq 1, \\ X, & 1<X<2, \\ 1, & X>2 .\end{array}\right.
$$

（1）求常数 a 的值；
（2）求随机变量 Y 的分布函数 $F(y)$ ；
（3）求概率 $\mathrm{P}(X \leq Y)$ ．
$11 i$

