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Chapter 1

Problems:

1. Assume that −3 < ℜz < −2. Show that for such a z the Gamma
function Γ(z) is expressed as

Γ(z) =

∫ ∞

0

tz−1

[
e−t − 1 + t− t2

2

]
dt

2. Show that Γ(z) may be written

Γ(z) =

∫ 1

0

dt [ln(1/t)]z−1 , ℜz > 0.

3. Show that ∫ ∞

0

dx e−x4

= Γ(5/4)

4. The wave function of a particle scattered by a Coulomb potential is
ψ(r, θ). At the origin ψ(0) = e−πγ/2Γ(1 + iγ), where γ is a real dimen-
sionless constant. Show that:

|ψ(0)|2 = 2πγ

e2πγ − 1

5. The so-called diagmma function ψ(z + 1) is defined by

ψ(z + 1) =
d

dz
ln Γ(z + 1)
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Show that ψ(z + 1) has the series expansion

ψ(z + 1) = −γ +
∞∑
n=2

(−1)nζ(n)zn−1

where γ ≈ 0.5772 and ζ(n) is the Riemann zeta function ζ(n) =∑∞
i=1 i

−n.

6. Let Ai, (i = 1, 2, · · · , n) be positive real numbers. Start from the obvi-
ous identity

1

Ai

=

∫ ∞

0

dse−sAi

and prove the Feynman’s integral formula.

7. Simplify ∫
ddx xµxνxρxσf(x2)

8. Calculate the integral: ∫
ddk

(2π)d
(p+ k)µkν
(p+ k)2k2

9. Let Bn(x) be the Bernoulli polynomials defined by

Bn(x) =

[
∂n

∂tn

(
text

et − 1

)]
t=0

Show that Bn(x) = (−1)nBn(1− x).

10. Regulate the divergent summation

+∞∑
n=0

(n+ 1/3)

11. Start from the Jacobi’s triple product identity to show the equivalence
between two expressions of the basic theta function.
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12. Check the following modular properties of the theta functions:

ϑ00(ν/τ,−1/τ) = (−iτ)1/2 exp(πiν2/τ)ϑ00(ν, τ)

ϑ01(ν/τ,−1/τ) = (−iτ)1/2 exp(πiν2/τ)ϑ10(ν, τ)

ϑ10(ν/τ,−1/τ) = (−iτ)1/2 exp(πiν2/τ)ϑ01(ν, τ)

ϑ11(ν/τ,−1/τ) = −i(−iτ)1/2 exp(πiν2/τ)ϑ11(ν, τ)

Solutions:

1. Relying on the assumption −3 < ℜz < −2,

Γ(z) =
Γ(z + 3)

z(z + 1)(z + 2)
=

1

z(z + 1)(z + 2)

∫ ∞

0

tz+2e−tdt

By introducing a cut-off ϵ ≥ 0, we have:

Γ(z) = I(ϵ)

∣∣∣∣
ϵ→0

where,

I(ϵ) =
1

z(z + 1)(z + 2)

∫ ∞

ϵ

tz+2e−tdt

Because −3 < ℜz < −2, we see that when ϵ→ 0,∫ ∞

ϵ

tz+2e−tdt = ϵz+2e−ϵ + (z + 2)

∫ ∞

ϵ

tz+1e−tdt

= ϵz+2e−ϵ + (z + 2)ϵz+1e−ϵ + (z + 2)(z + 1)

∫ ∞

ϵ

tze−tdt

= ϵz+2e−ϵ + (z + 2)ϵz+1e−ϵ + (z + 2)(z + 1)ϵze−ϵ

+(z + 2)(z + 1)z

∫ ∞

ϵ

tz−1e−tdt

=
1

2
z(z + 1)ϵz+2 − z(z + 2)ϵz+1 + (z + 2)(z + 1)ϵz

+(z + 2)(z + 1)z

∫ ∞

ϵ

tz−1e−tdt
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Therefore,

I(ϵ) =
1

2

ϵz+2

z + 2
− ϵz+1

z + 1
+
ϵz

z
+

∫ ∞

ϵ

tz−1e−tdt

On the other hand,∫ ∞

ϵ

tz+n−1dt = − ϵz+n

z + n
, (0 ≤ n ≤ 3)

Therefore,

I(ϵ) =

∫ ∞

ϵ

tz−1

(
e−t − 1 + t− t2

2

)
dt

Though the integrand in I(ϵ) diverges as ϵz+2 if ϵ→ 0, the integration
itself converges. This fact implies,

Γ(z) =

∫ ∞

0

tz−1

(
e−t − 1 + t− t2

2

)
dt

2. For ℜz > 0, Gamma function Γ(z) could be expressed as,

Γ(z) =

∫ ∞

0

sz−1e−sds

Let e−s = t. We see that t = 1 if s = 0 whereas t → 0 if s → ∞. On
the other hand,

e−sds = −d(e−s) = −dt, sz−1 = (− ln t)z−1 = [ln(1/t)]z−1

Therefore,

Γ(z) =

∫ 1

0

[ln(1/t)]z−1dt, ℜz > 0

3. Let x4 = t. We see that x = t1/4 and∫ ∞

0

dxe−x4

=
1

4

∫ ∞

0

t−
3
4 e−tdt =

1

4
Γ

(
1

4

)
= Γ

(
5

4

)
In the last step, the property Γ(z+1) = zΓ(z) of Gamma function has
been made use of.
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4. Because the parameter γ is assumed to be real,

[Γ(1 + iγ)]∗ =

(∫ ∞

0

tiγe−tdt

)∗

=

∫ ∞

0

t−iγe−tdt = Γ(1− iγ)

Besides, Γ(z)Γ(1− z) = π csc(πz). Therefore,

|ψ(0)|2 = e−πγ Γ(1 + iγ)Γ(1− iγ)

= e−πγ (iγ)Γ(iγ)Γ(1− iγ)

= e−πγ iγ

sin(iγπ)

=
2γπ

e2πγ − 1

5. Because,

Γ(z + 1) = e−γz

+∞∏
n=1

ez/n

1 + z/n

we have:

ln Γ(z + 1) = −γz +
+∞∑
n=1

[ z
n
− ln(1 + z/n)

]
Consequently,

ψ(z + 1) = −γ +
+∞∑
n=1

1

n

[
1− (1 + z/n)−1

]
= −γ +

+∞∑
n=1

1

n

[
1−

+∞∑
i=0

(−1)i
zi

ni

]

= −γ +
+∞∑
n=1

+∞∑
i=1

(−1)i+1 zi

ni+1

= −γ +
+∞∑
i=2

(−1)i

(
+∞∑
n=1

1

ni

)
zi−1
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That is:

ψ(z + 1) = −γ +
∞∑
n=2

(−1)nζ(n)zn−1

6. In terms of the identity,

1

A
=

∫ ∞

0

dte−At

for any A > 0, we have :

∏n
i=1A

−1
i =

∫ ∞

0

dt1

∫ ∞

0

dt2 · · ·
∫ ∞

0

dtne
−A1t1−A2t2−···−Antn

=

∫ ∞

0

dt1

∫ ∞

0

dt2 · · ·
∫ ∞

0

dtn

∫ ∞

0

dsδ(s−
n∑

i=1

ti) e
−

∑n
i=1 Aiti

=

∫ 1

0

dx1

∫ 1

0

dx2 · · ·
∫ 1

0

dxn δ(1−
n∑

i=1

xi)

·
∫ ∞

0

dssn−1 e−s
∑n

i=1 Aixi

= (n− 1)!

∫ 1

0

dx1

∫ 1

0

dx2 · · ·
∫ 1

0

dxn
δ(1−

∑n
i=1 xi)

(
∑n

i=1Aixi)n

This is just the expected Feynman integral formula.

7. By symmetry consideration, we have:∫
ddx xµxνxρxσf(x2) = aηµνηρσ + bηµρηνσ + cηµσηρν

Notice that ηµνxµxν = x2, ηµνηνρ = δρµ and ηµνη
νµ = d, we see that

a = b = c and∫
ddx (x2)2f(x2) = a(d2 + 2d) = d(d+ 2)a

This gives:

a =
1

d(d+ 2)

∫
ddx (x2)2f(x2)
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Therefore,∫
ddx xµxνxρxσf(x2) =

[
ηµνηρσ + ηµρηνσ + ηµσηρν

d(d+ 2)

] ∫
ddx (x2)2f(x2)

Remember that (x2)2 ̸= x4. In fact, x4 has no clear definition.

8. According to Feynman formula,

1

AB
=

∫ 1

0

dx

[Ax+B(1− x)]2

Therefore,

1

(p+ k)2k2
=

∫ 1

0

dx

[(p+ k)2x+ k2(1− x)]2

Substitution of this formula into the original integral, we get:

I =

∫
ddk

(2π)d
(p+ k)µkν
(p+ k)2k2

=

∫ 1

0

dx

∫
ddk

(2π)d
(p+ k)µkν

[(p+ k)2x+ k2(1− x)]2

To remove the cross term p · k in the denominator of the integrand, we
change the variable from kµ to qµ = kµ + xpµ. Hence,

I =

∫ 1

0

dx

∫
ddq

(2π)d
[qµ + (1− x)pµ](qν − xpν)

[q2 + p2x(1− x)]2

=

∫ 1

0

dx

∫
ddq

(2π)d
qµqν − xqµpν + (1− x)pµqν − x(1− x)pµpν

[q2 + p2x(1− x)]2

=

∫ 1

0

dx

∫
ddq

(2π)d
qµqν − x(1− x)pµpν
[q2 + p2x(1− x)]2

=

∫ 1

0

dx

∫
ddq

(2π)d
Nµν

[q2 + p2x(1− x)]2

=

∫ 1

0

dx W (p, x)
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where,

Nµν =
1

d
ηµνq

2−x(1−x)pµpν , W (p, x) =

∫
ddq

(2π)d
Nµν

[q2 + p2x(1− x)]2

In the above calculations we have used the identities∫
ddq qµF (q

2) = 0,

∫
ddq qµqνF (q

2) =
1

d
ηµν

∫
ddqq2F (q2)

The calculation of integral W (p, x) should be performed in d-dimensional
Euclidean space1. To this end, we make the Wick rotation by setting
q0 = iq̄d, qi = q̄i for (i = 1, 2, · · · , d− 1). Thereby,

W (p, x) = i

∫
ddq̄

(2π)d
1

[q̄2 + p2x(1− x)]2

[
1

d
ηµν q̄

2 − x(1− x)pµpν

]
= i

Γ(1− d/2)

(4π)d/2

[
1

2
ηµνD −

(
1− d

2

)
x(1− x)pµpν

]
D−(2−d/2)

where,
D = p2x(1− x)

and we have used the formula∫
ddx

(2π)d
(x2)a

(x2 +D)b
=

Γ
(
b− a− d

2

)
Γ
(
a+ d

2

)
(4π)d/2Γ(b)Γ

(
d
2

) D−(b−a−d/2)

which holds in d-dimensional Euclidean space.

9. Based on the given formula,

Bn(1− x) =

[
∂n

∂tn

(
te(1−x)t

et − 1

)]
t=0

=

[
∂n

∂tn

(
te−xt

1− e−t

)]
t=0

= (−1)n
[
∂n

∂tn

(
text

et − 1

)]
t=0

= (−1)nBn(x)

1Otherwise the integral does diverge.
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10. According the ζ-regulation scheme,
+∞∑
n=0

(n+ a)s = ζR(−s, a) = −Bs+1(a)

s+ 1

we see that:
+∞∑
n=0

(n+ 1/3) = −1

2
B2(1/3)

Recall that B2(x) = x2−x+ 1
6
, we know B2(1/3) = −1/18. Therefore,

+∞∑
n=0

(n+ 1/3) =
1

36

This result of regulation could also be obtained by using an alternative
formula,

∞∑
n=1

(n− θ) = − 1

12
(6θ2 − 6θ + 1)

in which we should take θ = 2/3.

11. Please see the details in my lecture notes.

12. The proof of these formulae requires the use of Poisson resummation
formula:

+∞∑
n=−∞

f(n) =
+∞∑

n=−∞

∫ +∞

−∞
f(y)e−2πinydy

Theta functions with characteristics are defined as,

ϑ

[
a
b

]
(ν, τ) =

+∞∑
n=−∞

exp
[
πi(n+ a)2τ + 2πi(n+ a)(ν + b)

]
where the parameters a and b take their values of either 0 or 1/2. The
alternative notations for them are:

ϑ

[
0
0

]
(ν, τ) = ϑ00(ν, τ), ϑ

[
0
1/2

]
(ν, τ) = ϑ01(ν, τ),

ϑ

[
1/2
0

]
(ν, τ) = ϑ10(ν, τ), ϑ

[
1/2
1/2

]
(ν, τ) = ϑ11(ν, τ).
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Let,

f(n) = exp

[
−πi(n+ a)2

τ
+

2πi(n+ a)ν

τ
+ 2πi(n+ a)b

]
We calculate an auxiliary integral:

In =

∫ +∞

−∞
f(y)e−2πinydy

= exp(2πina)

∫ +∞

−∞
exp

[
−πi(y + a)2

τ
+ 2πi(y + a)

(ν
τ
+ b− n

)]
dy

= exp(2πina) exp

[
πi

τ
(ν + bτ − nτ)2

]
·
∫ +∞

−∞
dy exp

[
−πi
τ
(y + a− ν − bτ + nτ)2

]
= e

πiν2

τ exp(2πina) exp[πi(n− b)2τ − 2πi(n− b)ν]

·
∫ +∞

−∞
dξ exp

[
− πi

τ
ξ2
]

=
√
−iτe

πiν2

τ exp(2πiab) exp[πi(n− b)2τ − 2πi(n− b)(ν − a)]

In the last step, we have used the Fresnel integral formula,∫ +∞

−∞
eitx

2

dx =

∫ +∞

−∞
e−(−it)x2

dx =

√
π

−it
=
√
iπ/t

Consequently,

ϑ

[
a
b

]
(ν/τ,−1/τ) =

+∞∑
n=−∞

f(n) =
+∞∑

n=−∞

∫ +∞

−∞
f(y)e−2πinydy

=
+∞∑

n=−∞

In

=
√
−iτe

πiν2

τ exp(2πiab)
+∞∑

n=−∞

exp[πi(n− b)2τ − 2πi(n− b)(ν − a)]

=
√
−iτe

πiν2

τ exp(−2πiab)
+∞∑

n=−∞

exp[πi(n+ b)2τ + 2πi(n+ b)(ν + a)]

=
√
−iτe

πiν2

τ exp(−2πiab) ϑ

[
b
a

]
(ν, τ)
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This is the very duality property of Theta functions we have expected.
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Chapter 2

Problems:

1. Find the multiplication table for a group with 3 elements and prove
that it is unique.

2. Find all essential different possible multiplication tables for groups with
4 elements (which cannot be related by renaming elements).

3. Show that the definition representation of permutation group is re-
ducible.

4. Suppose that D1 and D2 are equivalent irreducible representations of a
finite group G, such that: D2(g) = SD1(g)S

−1, ∀g ∈ G. What can you
say about an operator A that satisfiesAD1(g) = D2(g)A , ∀g ∈ G ?

5. Find the group of all the discrete rotations that leave a regular tetra-
hedron invariant by labeling the four vertices and considering the rota-
tions as permutations on the four vertices. Find the conjugacy classes
and the characters of the irreducible representations of this group.
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Solutions:

1. We label this group as G = {a, b, e}, where e is identity. The product
ab must be in G, implying that either ab = a or ab = e. If ab = a, b
would actually be the identity (b = e), violating the assumption that
G is a group of order 3. Therefore, the unique possibility is:

ab = e, ⇝ b = a−1

The expected multiplication table is:

e a b
e e a b
a a b e
b b e a

2. The groups are expressed as G = {e, a, b, c}. An obvious example
is G = {e, a, b = a2, c = a3}, which is the Abelian group Z4. A
remarkable characteristic of Z4 is that all elements have order 4:

a4 = b4 = c4 = e

The multiplication table of Z4 is as follows:

e a b c
e e a b c
a a b c e
b b c e a
c c e a b

There is no possibility for G of order 4 to have an Abelian subgroup
Z3. However, the possibility that such a G has several subgroups Z2

does exist:
a2 = b2 = c2 = e

In this case, G is also an Abelian group:

ab = ba = c, ac = ca = b, bc = cb = a.
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The corresponding Multiplication table is:

e a b c
e e a b c
a a e c b
b b c e a
c c b a e

3. It is enough to show that the definition representation of S3 is reducible.
In the definition representation of Sn, the “objects” being permuted are
the basis vectors of the n-dimensional representation space. Therefore,
the representation matrix of group element (jk) is:

⟨i|D[(jk)]|l⟩ =
{
δijδkl + δikδjl, if j = l or k = l;
δil if j ̸= l ̸= k

For S3, these representation matrices can explicitly be written out:

D[e] =

 1 0 0
0 1 0
0 0 1

 D[(12)] =

 0 1 0
1 0 0
0 0 1


D[(23)] =

 1 0 0
0 0 1
0 1 0

 D[(31)] =

 0 0 1
0 1 0
1 0 0


D[(123)] =

 0 0 1
1 0 0
0 1 0

 D[(321)] =

 0 1 0
0 0 1
1 0 0


Besides, S3 has the following Character table:

e (12), (13), (23) (123), (321)
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

The projection operators to the subspaces of these 3 irreducible repre-
sentations are then:

P1 =
1

3

 1 1 1
1 1 1
1 1 1

 , P2 = 0, P3 =
1

3

 2 −1 −1
−1 2 −1
−1 −1 2
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The projection operator P1 does obviously correspond to an invariant
subspace: D[g]P1 = P1, ∀g. The corresponding invariant subspace is:

P1 |1⟩ =
1

3

[
|1⟩+ |2⟩+ |3⟩

]
=

1

3

 1
1
1


Of the definition representation of general Sn, a 1-dimensional invariant
subspace is obviously,

1

n

[
|1⟩+ |2⟩+ · · ·+ |n⟩

]
Therefore, the definition representation of Sn is reducible.

4. The equation satisfied by operator A can be recast for an irreducible
representation, e.g., for D1:

AD1(g) = D2(g)A = [SD1(g)S
−1]A,

Namely,
(S−1A)D1(g) = D1(g)(S

−1A)

Shur’s lemma implies that S−1A ∝ I. Therefore, A ∝ S.

5. One characteristic of rotation is that there are some fixed points during
the rotations. The rotations that leave a regular tetrahedron invariant
must include the following permutations in S4,

• e, unit element.

• (234) and (243), rotations leaving vertex 1 fixed.

• (134) and (143), rotations leaving vertex 2 fixed.

• (124) and (142), rotations leaving vertex 3 fixed.

• (123) and (132), rotations leaving vertex 4 fixed.

These rotations are assumed to form a group. Consequently, they must
include the products of above rotations. Notice that

(234)(134) = (14)(23)

(234)(142) = (12)(34)

(134)(234) = (13)(24)
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and other consecutive rotations do not yield new rotations. We con-
clude that the group of rotations that leave the regular tetrahedron
invariant is as below:

T4 = {e, (123), (132), (134), (143), (124), (142), (234), (243),
(12)(34), (13)(24), (14)(23)}

whose order is 12. In fact, T4 is a subgroup of symmetric group S4,
consisting of all even permutations of S4.

We now try to find congugacy classes. The unit element e alone forms
a class, C1 = e. As for the class of group element (12)(34), we see:

[(13)(24)](12)(34)[(24)(13)] = (12)(34)

[(14)(23)](12)(34)[(23)(14)] = (12)(34)

[(123)](12)(34)[(321)] = (14)(23)

[(124)](12)(34)[(421)] = (13)(24)

i.e., C2 = {(12)(34), (13)(24), (14)(23)} form the second class. For
group element (123), we have:

[(12)(34)](123)[(34)(12)] = (142)

[(13)(24)](123)[(24)(13)] = (134)

[(14)(23)](123)[(23)(14)] = (243)

[(124)](123)[(421)] = (243)

[(134)](123)[(431)] = (243)

[(234)](123)[(432)] = (134)

[(321)](123)[(123)] = (123)

[(214)](123)[(412)] = (134)

[(314)](123)[(413)] = (142)

[(324)](123)[(423)] = (142)

These equalities imply that C3 = {(123), (134), (214), (324)} form the
third class. Finally, we have:

[(12)(34)](124)[(34)(12)] = (132)

[(13)(24)](124)[(24)(13)] = (234)

[(14)(23)](124)[(23)(14)] = (143)
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i.e., the group elements C4 = {(124), (234), (321), (314)} form the fourth
class. Therefore, there are 4 conjugacy classes in total in the
considered alternating group.

We next calculate the characters of irreducible representations of this
group. Having 4 distinct conjugacy classes implies that it has 4 in-
equivalent irreducible representations. Because

∑4
i=1 n

2
i = 12, we see

that there are 3 1-dimensional irreducible representations and a 3-
dimensional irreducible representation. Notice that the group elements
in C2 have order 2 while the elements in C3 and C4 have order 3. Besides,
the inverses of group elements in C3 are just in the class C4. Accurately
speaking, there are following nontrivial class multiplication products:

C2C3 = C3, C2C4 = C4, C3C3 = C4, C4C4 = C3, C3C4 = C1 ∪ C2.

Taking into account of these factors, we can write down the following
unfinished character table:

χ1 χ2 χ3 χ4

D1 1 1 1 1
D2 1 1 ω ω2

D3 1 1 ω2 ω
D4 3 a b c

where ω = ei2π/3. The orthogonality relations satisfied by these char-
acters further indicate:

a = −1, b = c = 0.
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Chapter 3

Problems:

1. Find all components of matrix eiαA where

A =

 0 0 1
0 0 0
1 0 0


2. If [A,B] = B, calculate eiαABe−iαA.

3. Carry out the expansion of δc in Eq.(II.4) to third order in α and β.
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Solutions:

1. The generator A satisfies:

A2n = E, A2n+1 = A, (n = 1, 2, 3, · · · )

where,

E =

 1 0 0
0 0 0
0 0 1


Therefore,

eiαA =
+∞∑
n=0

(iα)n

n!
An

= 1 + iαA− α2

2!
E − i

α3

3!
A+

α4

4!
E + · · ·

= 1− E +

[
1− α2

2!
+
α4

4!
+ · · ·

]
E + i

[
α− α3

3!
+
α5

5!
+ · · ·

]
A

= 1 + (cosα− 1)E + i sinαA

Alternatively,

eiαA =

 cosα 0 i sinα
0 1 0

i sinα 0 cosα


2. By mathematical formula,

eABe−A = B + [A, B] +
1

2!
[A, [A, B]] +

1

3!
[A, [A, [A, B]]] + · · ·

we have:
eiαABe−iαA = eiαB

3. Eq.(II.3) is the multiplication law of Lie group elements,

exp(iαaXa) exp(iβbXb) = exp(iδcXc)

To find δc, we define a group element which depends on a parameter λ:

F (λ) = eλAeλB = eλC
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where A = iαaXa, B = iβbXb and C = iδcXc. Obviously, F (0) = 1
and F (1) is what we want to evaluate.

The derivative ofF (λ) with respect to parameterλ is:

F ′(λ) = AeλAeλB + eλABeλB

=
(
A+ eλABe−λA

)
F (λ)

=

(
A+B + λ[A, B] +

λ2

2!
[A, [A, B]] + · · ·

)
F (λ)

Therefore,∫ 1

0

dλ F ′(λ)F−1(λ)

=

∫ 1

0

dλ

(
A+B + λ[A, B] +

λ2

2!
[A, [A, B]] + · · ·

)
= A+B +

1

2
[A, B] +

1

6
[A, [A, B]] + · · ·

Because F (λ) = eλC , we have F ′(λ)F−1(λ) = C. Consequently,

C = A+B +
1

2
[A, B] +

1

6
[A, [A, B]] + · · ·

Namely,

iδaXa = iαaXa + iβaXa −
1

2
αbβc[Xb, Xc]−

i

6
αbαcβd[Xb, [Xc, Xd]] + · · ·

= iαaXa + iβaXa −
i

2
αbβcfbcaXa +

i

6
αbαcβdfcdefbeaXa + · · ·

Therefore,

δa = αa + βa −
1

2
αbβcfbca +

1

6
αbαcβdfcdefbea + · · ·
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Chapter 4

Problems:

1. For SU(2), use the highest weight decomposition to show that

{j} ⊗ {s} =
j+s
⊕

l=|j−s|
{l}.

2. Calculate eir⃗ · σ⃗, where σ⃗ are Pauli matrices.

3. Suppose that [σa]ij and [ηa]xy are Pauli matrices in two different two
dimensional spaces. In the 4-d tensor product space, define the basis:

|1⟩ = |i = 1⟩ |x = 1⟩ , |2⟩ = |i = 1⟩ |x = 2⟩ , |3⟩ = |i = 2⟩ |x = 1⟩ ,
|4⟩ = |i = 2⟩ |x = 2⟩ .

Write out the matrix elements of σ2 ⊗ η1 in this basis.

4. Ignored.

Solutions:

1. From the highest weight decomposition we know that:

l = j + s, j + s− 1, j + s− 2, j + s− 3, · · · , j + s− n+ 1.

Thus, to show the above CG decomposition means to calculate the
minimum value lmin = j + s− n+ 1 of quantum number l.
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For the spin k representation {k} of SU(2), d{k}=2k+1. The dimension
of direct product representation {j}⊗{s} is then: (2j+1)(2s+1). The
dimension matching requires that:

(2j + 1)(2s+ 1) =

j+s∑
l=lmin

(2l + 1) = n[(j + s) + (j + s− n+ 1)] + n ,

Namely,
n2 − 2(j + s+ 1)n+ (2j + 1)(2s+ 1) = 0,

Its solution reads either n = 2j + 1 or n = 2s + 1. Consequently,
lmin = |j − s|.

2. Noticing that σiσj = δij + iεijkσk, we get: (
⇀
r ·⇀
σ)2 = r2. Therefore,

ei
⇀
r ·⇀σ = 1 + i

⇀
r ·⇀
σ − 1

2!
r2 − 1

3!
r2i

⇀
r ·⇀
σ + · · ·

= cos r +
i
⇀
r ·⇀
σ

r
sin r

3. Because,

σ2 ⊗ η1 |1⟩ = σ2 |i = 1⟩ η1 |x = 1⟩ = i |i = 2⟩ |x = 2⟩ = i |4⟩
σ2 ⊗ η1 |2⟩ = σ2 |i = 1⟩ η1 |x = 2⟩ = i |i = 2⟩ |x = 1⟩ = i |3⟩
σ2 ⊗ η1 |3⟩ = σ2 |i = 2⟩ η1 |x = 1⟩ = −i |i = 1⟩ |x = 2⟩ = −i |2⟩
σ2 ⊗ η1 |4⟩ = σ2 |i = 2⟩ η1 |x = 2⟩ = −i |i = 1⟩ |x = 1⟩ = −i |1⟩

we have:

σ2 ⊗ η1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0


This is just

[
0 −i
i 0

]
⊗
[
0 1
1 0

]
.

4. Because,

[σa, σbηc]ix,jy = (σaσbηc)ix,jy − (σbηcσa)ix,jy

= (σaσb)ij(ηc)xy − (σbσa)ij(ηc)xy

= [σa, σb]ij(ηc)xy

= 2iεabd(σd)ij(ηc)xy

= 2iεabd(σdηc)ix,jy
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we get:
[σa, σbηc] = 2iεabdσdηc

The expected trace is:

tr(σa{ηb, σcηd}) = (σa{ηb, σcηd})ix,ix
= (σaηbσcηd + σaσcηdηb)ix,ix

= (σaσc)ii(ηbηd)xx + (σaσc)ii(ηdηb)xx

= 2tr(σaσc)tr(ηbηd)

= 8δacδbd

The specified commutation relation is vanishing:

[σ1η1, σ2η2]ix,jy = (σ1η1σ2η2)ix,jy − (σ2η2σ1η1)ix,jy

= (σ1σ2)ij(η1η2)xy − (σ2σ1)ij(η2η1)xy

= (σ1σ2)ij(η1η2)xy − (σ1σ2)ij(η1η2)xy

= 0.
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Chapter 5

Problems:

1. Consider an operator Ox, for x = 1 to 2, transforming according to the
spin 1/2 representation of SU(2) as follows:

[Ja, Ox] = Oy[σa]yx/2.

Given⟨3/2, −1/2, α|O1 |1, −1, β⟩ = A, find

⟨3/2, −3/2, α|O2 |1, −1, β⟩ = ?

2. The operator (x+1)
2 satisfies[

L+, (x+1)
2
]
= 0.

It is therefore the O+2 components of a spin-2 tensor operator. Con-
struct the other components, Om. Note that the product of tensor
operators transforms like the tensor product of their representations.
What is the connection of these with the spherical harmonics, Ylm(θ, ϕ)
?

Solutions:

1. According to Wigner-Eckart theorem, O1 ≡ O
1/2
1/2 , O2 ≡ O

1/2
−1/2, we

recast the given condition as:

A = ⟨3/2, −1/2, α|O1 |1, −1, β⟩
= ⟨3/2, −1/2 | 1/2, 1, 1/2, −1⟩ · ⟨3/2, α|O1/2 |1, β⟩
=
√

1
3
· ⟨3/2, α|O1/2 |1, β⟩
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We have used the CG coefficient determined by,

|3/2, −1/2⟩ =
√

2

3
|1/2, 1, −1/2, 0⟩+

√
1

3
|1/2, 1, 1/2, −1⟩ .

Similarly,
|3/2, −3/2⟩ = |1/2, 1, −1/2, −1⟩ .

Therefore:

⟨3/2, −3/2, α|O2 |1, −1, β⟩ = ⟨3/2, −3/2, α|O1/2
−1/2 |1, −1, β⟩

= ⟨3/2, −3/2 | 1/2, 1, −1/2, −1⟩ · ⟨3/2, α|O1/2 |1, β⟩
= ⟨3/2, α|O1/2 |1, β⟩
=

√
3 A

2. In the spherical system of coordinate representation,

x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ.

i.e.,

x±1 = ∓ 1√
2
(x1 ± ix2) = ∓ r√

2
sin θe±iφ

x3 = r cos θ

The orbital angular momentum is defined as:
⇀

L = −i⇀x ×∇

= −ir⇀er ×
[

⇀
er∂r +

1

r
⇀
eθ∂θ +

1

r sin θ
⇀
eφ∂φ

]
= −i

[
⇀
eφ∂θ −

1

sin θ
⇀
eθ∂φ

]
Because,

⇀
er =

⇀
r

r
=

⇀

i sin θ cosφ+
⇀

j sin θ sinφ+
⇀

k cos θ,

we see that

⇀
eθ =

∂
⇀
er
∂θ

=
⇀

i cos θ cosφ+
⇀

j cos θ sinφ−
⇀

k sin θ

⇀
eφ =

1

sin θ

∂
⇀
er
∂φ

= −
⇀

i sinφ+
⇀

j cosφ
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Thus,

⇀

L = −i
[(

−
⇀

i sinφ+
⇀

j cosφ
)
∂θ −

1

sin θ

(
⇀

i cos θ cosφ+
⇀

j cos θ sinφ−
⇀

k sin θ
)
∂φ

]
i.e.,

L1 = −i [− sinφ∂θ − ctgθ cosφ∂φ]

L2 = −i [cosφ∂θ − ctgθ sinφ∂φ]

L3 = −i∂φ

and

L± =
1√
2
(L1 ± iL2)

= − i√
2
[(− sinφ± i cosφ)∂θ − ctgθ(cosφ± i sinφ)∂φ]

=
e±iφ

√
2
(±∂θ + ictgθ∂φ)

Let us make a check that these angular momentum operators obey the
SU(2) algebra:

[L+, L−] =
1

2

[
eiφ(∂θ + ictgθ∂φ), e−iφ(−∂θ + ictgθ∂φ)

]
=

1

2

[
eiφ∂θ, e

−iφictgθ∂φ
]
+

1

2

[
eiφictgθ∂φ, −e−iφ∂θ

]
−1

2
ctg2θ

[
eiφ∂φ, e

−iφ∂φ
]

= −i∂φ
= L3

[L3, L±] =

[
−i∂φ,

e±iφ

√
2
(±∂θ + ictgθ∂φ)

]
= ±e

±iφ

√
2
(±∂θ + ictgθ∂φ)

= ±L± .
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Noticing (x±1)
2 = 1

2
r2 sin2 θe±2iφ, we get:

[L+, (x+1)
2] =

r2

2
√
2

[
eiφ(∂θ + ictgθ∂φ), e2iφ sin2 θ

]
=

r2

2
√
2
e3iφ

[
2 sin θ cos θ + 2i2ctgθ sin2 θ

]
= 0.

This is just the assumption in the statements of the problem. Other
components of the tensor are calculated as:

[L−, (x+1)
2] =

r2

2
√
2

[
e−iφ(−∂θ + ictgθ∂φ), e2iφ sin2 θ

]
=

r2

2
√
2
eiφ
[
−2 sin θ cos θ + 2i2ctgθ sin2 θ

]
= −

√
2r2 sin θ cos θeiφ

= 2x3x+1

[L−, 2x3x+1] = − r2√
2

[
e−iφ(−∂θ + ictgθ∂φ),

√
2eiφ sin θ cos θ

]
= −r2

[
− cos2 θ + sin2 θ − ctgθ sin θ cos θ

]
= −r2(1− 3 cos2 θ)

= 2(x+1x−1 + x23)

[L−, 2(x+1x−1 + x23)] =
6r2√
2
cos θ sin θe−iφ

= 6x3x−1

[L−, 6x3x−1] = 3r2
[
e−iφ(−∂θ + ictgθ∂φ), cos θ sin θe−iφ

]
= 3r2e−2iφ

[
sin2 θ − cos2 θ + ctgθ cos θ sin θ

]
= 3r2 sin2 θe−2iφ

= 6(x−1)
2

Apart from some unimportant coefficients, these tensor components are
just the spherical harmonics Y2m(θ, ϕ) for m = 0, ±1 and ±2.
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Chapter 6

Problems:

1. Show that [Eα, Eβ] must be proportional to Eα+β. What happens if
α + β is not a root ?

2. Suppose that the raising lowering operators of some Lie algebra g satisfy

[Eα, Eβ] = Nα,βEα+β

for some nonzero coefficientsNα,β. Calculate [Eα, E−α−β].

3. Consider the simple Lie algebra formed by the 10 matrices:

σa/2, σaτ1/2, σaτ3/2, τ2/2

for a = 1 to 3 where σa and τa are Pauli matrices in orthogonal spaces.

• Show that these 10 matrices generate the spinor representation of
SO(5).

• Take H1 = σ3/2 and H2 = σ3τ3/2 as the Cartan subalgebra. Find
the weights of this spinor representation.

• Find the roots of the adjoint representation.
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Solutions:

1. If both α and β are roots, we have [Hi, Eα] = αiEα, [Hi, Eβ] = βiEβ.
If their sum is also a root, we have further,

[Hi, Eα+β] = (α + β)iEα+β.

On the other hand, we have the following Jacobean identity:

0 = [Hi, [Eα, Eβ]] + [Eβ, [Hi, Eα]] + [Eα, [Eβ, Hi]],

i.e.,
0 = [Hi, [Eα, Eβ]] + αi[Eβ, Eα]− βi[Eα, Eβ].

Therefore,

[Hi, [Eα, Eβ]] = (α + β)i[Eα, Eβ], ⇝ [Eα, Eβ] = Nα+βEα+β.

When α + β is not a root, the corresponding Eα+β does not exist.
Therefore,

[Eα, Eβ] = 0.

if α + β is not a root vector.

2. In terms of the definition we have Nα,β = −Nβ,α. Besides, the genera-
tors related to ±α are hermitian conjugate one another: (Eα)

+ = E−α.
This indicates that

E−α−β = − [E−α, E−β]

(Nα,β)∗

Consequently,

[Eα, E−α−β] = −[Eα, [E−α, E−β]]/(Nα,β)∗
= ([E−α, [E−β, Eα]] + [E−β, [Eα, E−α]])/(Nα,β)∗
= −Nα,−β[E−α, Eα−β]/(Nα,β)∗+ [E−β, α ·H]/(Nα,β)∗
= [(Nα,−βNα−β,−α + α · β)/(Nα,β)∗]E−β

3. The given Lie algebra has 10 generators, which coincides with those of
SO(5). Let,

M1,5 = σ1/2, M2,5 = σ2/2, M3,5 = σ3τ3/2,
M4,5 = σ3τ1/2,
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We get:

M1,2 = −i[M1,5, M2,5] = σ3/2,

M1,3 = −i[M1,5, M3,5] = −σ2τ3/2,
M1,4 = −i[M1,5, M4,5] = −σ2τ1/2,
M2,3 = −i[M2,5, M3,5] = σ1τ1/2,

M2,4 = −i[M2,5, M4,5] = σ1τ1/2,

M3,4 = −i[M3,5, M4,5] = τ2/2

These Ma,b satisfy the algebra of SO(5):

[Ma,b, Mc,d] = −i(δbcMa,d − δacMb,d − δbdMa,c + δadMb,c)

Recalling that they are 4-dimensional matrices, they give the spinor
representation of SO(5).
If we denote

H1 = σ3/2, H2 = σ3τ3/2,

we see:

H1 =
1

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , H2 =
1

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 .
The weights of this spinor representation are then:

ν1 = (1/2, 1/2) , ν2 = (1/2, −1/2) ,

ν3 = (−1/2, −1/2) , ν4 = (−1/2, 1/2) .

Noticing that the number of positive roots is the same as half of those
of the non-Cartan generators, we know that there are 4 positive roots
in SO(5). Because the differences between the weights in any repre-
sentation are probably the roots of the algebra, we guess the following
candidates for SO(5) positive roots :

α1 = (1, −1) , α2 = (0, 1) , α3 = (1, 0) , α4 = (1, 1) .

Since,
α3 = α1 + α2, α4 = α1 + 2α2

we see that α1, α2 are simple roots.
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Chapter 7

Problems:

1. Calculate f147 and f458 in SU(3).

2. Show that T1, T2 and T3 generate an SU(2) sub-algebra of SU(3). How
does the representation generated by (VII.1 and 2) transform under this
sub-algebra ?

Solutions:

1. The generators T1, T4 and T5 are:

T1 =
1

2

 0 1 0
1 0 0
0 0 0

 T4 =
1

2

 0 0 1
0 0 0
1 0 0

 T5 =
1

2

 0 0 −i
0 0 0
i 0 0
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So,

[T1, T4] =
1

4


 0 1 0

1 0 0
0 0 0

 0 0 1
0 0 0
1 0 0

−

 0 0 1
0 0 0
1 0 0

 0 1 0
1 0 0
0 0 0


=

1

4


 0 0 0

0 0 1
0 0 0

−

 0 0 0
0 0 0
0 1 0


=

1

4

 0 0 0
0 0 1
0 −1 0


=
i

2
· 1
2

 0 0 0
0 0 −i
0 i 0


=
i

2
T7

we see f147 = 1/2. Similarly,

[T4, T5] =
1

4


 0 0 1

0 0 0
1 0 0

 0 0 −i
0 0 0
i 0 0

−

 0 0 −i
0 0 0
i 0 0

 0 0 1
0 0 0
1 0 0


=

1

4


 i 0 0

0 0 0
0 0 −i

−

 −i 0 0
0 0 0
0 0 i


=

1

2

 i 0 0
0 0 0
0 0 −i


It is known that:

T3 =
1

2

 1 0 0
0 −1 0
0 0 0

 T8 =
1

2
√
3

 1 0 0
0 1 0
0 0 −2


Let

1

2

 i 0 0
0 0 0
0 0 −i

 = aT3 + bT8
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Because tr(TaTb) = 1
2
δab, we see:

a = 2tr

1

2

 i 0 0
0 0 0
0 0 −i

T3
 =

1

2
tr


 i 0 0

0 0 0
0 0 −i

 1 0 0
0 −1 0
0 0 0


=

1

2
tr

 i 0 0
0 0 0
0 0 0


=
i

2

b = 2tr

1

2

 i 0 0
0 0 0
0 0 −i

T8
 =

1

2
√
3
tr


 i 0 0

0 0 0
0 0 −i

 1 0 0
0 1 0
0 0 −2


=

1

2
√
3
tr

 i 0 0
0 0 0
0 0 2i


=

√
3

2
i

It indicates that f458 =
√
3
2

.

2. Define
T3 =

λ3
2
, T± =

1

2
√
2
[λ1 ± iλ2]

We see:

T3 =
1

2

 1 0 0
0 −1 0
0 0 0

 , T+ =
1√
2

 0 1 0
0 0 0
0 0 0

 , T− =
1√
2

 0 0 0
1 0 0
0 0 0

 .
It is obviously that:

[T3, T±] = ±T±, [T+, T−] = T3.

This is the SU(2) algebra in the standard basis. Because

T3 =
1

2

 1 0 0
0 −1 0
0 0 0

 =
1

2

[
1 0
0 −1

]
⊕ 0,

33



T+ =
1√
2

 0 1 0
0 0 0
0 0 0

 =
1√
2

[
0 1
0 0

]
⊕ 0,

T− =
1√
2

 0 0 0
1 0 0
0 0 0

 =
1√
2

[
0 0
1 0

]
⊕ 0.

we see that the representation defined as Eqs.(VII.1 and 2) transforms
as the direct sum of irreducible representations j = 1/2 and j = 0.
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Chapter 8

Problems:

1. Find the simple roots and fundamental weights and the Dynkin diagram
for the algebra discussed in problem (VI.3).

2. Consider the algebra generated by σa and σaη1 where σa and ηa are
independent Paili matrices. Show that this algebra generates a group
which is semisimple but not simple. Nevertheless, you can define simple
roots. What does the Dynkin diagram look like ?

Solutions:

1. Among the 4 positive roots of SO(5) founded in problem (VI.3),

α1 = (1, −1) , α2 = (0, 1) , α3 = (1, 0) , α4 = (1, 1) .

we have seen that:

α3 = α1 + α2, α4 = α1 + 2α2

so α1 and α2 are simple roots. Obviously,

(α1)
2 = 2, (α2)

2 = 1, α1 ·α2 = −1.

cos θ12 =
α1 ·α2√

(α1)2
√

(α2)2
= − 1√

2
.
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This implies that θ12=1350. Consequently, the Dynkin diagram of the
algebra SO(5) is:

α1 α2

By using the definition of the fundamental weights,

2αi ·Mj

α2
i

= δij, (i, j = 1, 2)

we get the fundamental weights of this algebra as follows:

M1 = (1, 0) , M2 = (1/2, 1/2) .

2. This algebra is defined by the following commutation relations:

[σa, σb] = 2iεabcσc, [σa, σbη1] = 2iεabcσcη1,

[σaη1, σbη1] = (σa ⊗ η1)(σb ⊗ η1)− (σb ⊗ η1)(σa ⊗ η1)

= σaσb ⊗ η21 − σbσa ⊗ η21
= [σa, σb]⊗ 1 = 2iεabcσc.

So, there is a non-abelian invariant sub-algebras in it, generated by
generators σa + σaη1:

[σa + σaη1, σb + σbη1] = 4iεabc(σc + σcη1),

[σa + σaη1, σb] = 2iεabc(σc + σcη1),

[σa + σaη1, σbη1] = 2iεabc(σc + σcη1).

Instead of being simple, It is semi-simple. In physics, it is nothing
but the algebra of Lorentz group SO(1, 3) [or rotation group SO(4)] in
4-dimensions.

In a representation of this algebra SO(1, 3), we can assume that:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
;

η1 =

[
1 0
0 −1

]
, η2 =

[
0 1
1 0

]
, η3 =

[
0 −i
i 0

]
.
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From the commutation relations we see that the rank of SO(1, 3) is
2. The matrices of Cartan generators in the considered representation
are:

H1 =
1

2
σ3 ⊗ 1 =

1

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



H2 =
1

2
σ3 ⊗ η1 =

1

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


The weights of this representation read: ν1 = (1/2, 1/2) , ν2 =
(1/2, −1/2) , ν3 = (−1/2, −1/2) , ν4 = (−1/2, 1/2) . If this
were an irreducible representation of SO(1, 3), we would obtain the
following positive roots of the algebra from the differences of the above
weights:

α1 = (1, −1) , α2 = (0, 1) , α3 = (1, 0) , α4 = (1, 1) .

However, it is not the case because SO(1, 3) has 6 generators. In fact,
the representation under consideration is not irreducible. It is a direct
sum of two irreducible spinor representations of SO(1, 3) [Recalling
quantum field theory for Dirac particle]. The weights of these two ir-
reducible spinor representations are

M1 = (1/2, 1/2) , M2 = (−1/2, −1/2)

and
M ′

1 = (1/2, −1/2) , M ′
2 = (−1/2, 1/2)

respectively. Consequently, there are only 2 positive roots in SO(1, 3):

β =M1 −M2 = (1, 1),

β′ =M ′
1 −M ′

2 = (1, −1).

They are also the simple roots of SO(1, 3). Because β′2 = β2 = 2 and

cos θββ′ =
β · β′√
β2β′2

= 0, θββ′ =
π

2
,
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the Dynkin diagram of this algebra should be:

β β′

An alternative method of determining the roots of the algebra is to
directly calculate the commutation relations between the generators
in canonical basis, in which [Hi, Eα] = αiEα. Firstly, we have to
formulate the generators σa and σaη1 in the canonical basis:

H1 =
1

2
σ3 ⊗ (1 + η1), H2 =

1

2
σ3 ⊗ (1− η1),

Eα1 =
1

2
(σ1 + iσ2)⊗ (1 + η1),

Eα2 =
1

2
(σ1 + iσ2)⊗ (1− η1),

E−α1 =
1

2
(σ1 − iσ2)⊗ (1 + η1),

E−α2 =
1

2
(σ1 − iσ2)⊗ (1− η1).

Then,

[H1, E±α1 ] =
1

4
[σ3, σ1 ± iσ2]⊗ (1 + η1)

2

=
1

2
(2iσ2 ∓ i2iσ1)⊗ (1 + η1)

= ±(σ1 ± iσ2)⊗ (1 + η1)

= ±2E±α1

[H2, E±α1 ] =
1

4
σ3(σ1 ± iσ2)⊗ (1− η1)(1 + η1)−

1

4
(σ1 ± iσ2)σ3 ⊗ (1 + η1)(1− η1)

= 0 .

Similarly,
[H1, E±α2 ] = 0, [H2, E±α2 ] = ±2E±α2 .
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These commutation relations imply that the positive roots are α1 and
α2, which are also the simple roots of this semi-simple algebra:

α1 = (2, 0) ,

α2 = (0, 2) .

cos θα1α2 =
α1 ·α2√
α2
1α

2
2

= 0,

θα1α2 =
π

2
.
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Chapter 9

Problems:

1. Consider the following matrices defined in the 6-dimensional tensor
product space of the SU(3) λa matrices and the Pauli matricesgσa:
1
2
λaσ2 for a=1, 3, 4, 6 and 8; 1

2
λa for a=2, 5 and 7. Show that

these generators generate a reducible representation and reduce it.

2. Decompose the tensor product of 3× 3 of SU(3) using highest weight
techniques.

Solutions:

1. The Gell-mann matrices λa satisfy the SU(3) Lie algebra,

[λa, λb] = 2ifabcλc

Consequently,[
1

2
λa ⊗ σ2,

1

2
λb ⊗ σ2

]
=

1

4
[λa, λb]⊗ 1 = ifabc

(
1

2
λc ⊗ 1

)
[
1

2
λa ⊗ σ2,

1

2
λb ⊗ 1

]
=

1

4
[λa, λb]⊗ σ2 = ifabc

(
1

2
λc ⊗ σ2

)
[
1

2
λa ⊗ 1,

1

2
λb ⊗ 1

]
=

1

4
[λa, λb]⊗ 1 = ifabc

(
1

2
λc ⊗ 1

)
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It means that these matrices form a representation of SU(3). The
representation matrices for Cartan generators are:

H1 =
1

2
λ3 ⊗ σ2

=
1

2

 1 0 0
0 −1 0
0 0 0

⊗
[
1 0
0 −1

]

=
1

2


1

−1
−1

1
0

0



H2 =
1

2
λ8 ⊗ σ2

=
1

2
√
3

 1 0 0
0 1 0
0 0 −2

⊗
[
1 0
0 −1

]

=
1

2
√
3


1

−1
1

−1
−2

2


The weight vectors of this 6-dimensional representation read:

⇀
µ =

{ (
1/2, 1

/
2
√
3
)
,
(
1/2, −1

/
2
√
3
)
,
(
−1/2, 1

/
2
√
3
)
,(

−1/2, −1
/
2
√
3
)
,
(
0, −1

/√
3
)
,
(
0, 1

/√
3
) }

They don’t coincide with those of the 6-dimensional irreducible repre-
sentations (2, 0) or (0, 2) of SU(3). So it provides for SU(3) a reducible
representation.

Notice that the above weight vectors can be divided into two sets:

⇀
µ =

⇀
µ1 +

⇀
µ2
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where,

⇀
µ1 =

{(
1/2, 1

/
2
√
3
)
,
(
−1/2, 1

/
2
√
3
)
,
(
0, −1

/√
3
)}

⇀
µ2 =

{(
1/2, −1

/
2
√
3
)
,
(
0, 1

/√
3
)
,
(
−1/2, −1

/
2
√
3
)}

the considered reducible representation of SU(3) can be decomposed
into the direct sum of two fundamental representations (1, 0) = 3 and
(0, 1) = 3̄.

2. The Cartan generators of representation 3× 3 are:

H3×3
1 = H1 ⊗ 1 + 1⊗H1

=

 1/2
−1/2

0

⊗ 1 + 1⊗

 1/2
−1/2

0


H3×3

2 = H2 ⊗ 1 + 1⊗H2

=

 1
/
2
√
3

1
/
2
√
3

−1
/√

3

⊗ 1 + 1⊗

 1
/
2
√
3

1
/
2
√
3

−1
/√

3


Therefore, the weight vectors of representation 3× 3 are as follows:

⇀
µ1 =

(
1, 1

/√
3
)
,

⇀
µ2 =

(
0, 1

/√
3
)
,

⇀
µ3 =

(
1/2, −1

/
2
√
3
)
,

⇀
µ4 =

(
0, 1

/√
3
)
,

⇀
µ5 =

(
−1, 1

/√
3
)
,

⇀
µ6 =

(
−1/2, −1

/
2
√
3
)
,

⇀
µ7 =

(
1/2, −1

/
2
√
3
)
,

⇀
µ8 =

(
−1/2, −1

/
2
√
3
)
,

⇀
µ9 =

(
0, −2

/√
3
)
.

These weights can be divided into two sets:

S1 =
{

⇀
µ2,

⇀
µ3,

⇀
µ6

}
;

S2 =
{

⇀
µ1,

⇀
µ4,

⇀
µ5,

⇀
µ7,

⇀
µ8,

⇀
µ9

}
By examining the weight vectors of irreducible representations of SU(3)
[Please see my lecture note for explanation], we see that: 3⊗3 = 6⊕ 3̄.
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Chapter 10

Problems:

1. Decompose the product of tensor components uivjk, where vjk = vkj

transforms like a tensor in Rep.6 of SU(3).

2. Find the matrix elements ⟨u|Xa|v⟩, where Xa stand for the SU(3) gen-
erators and |u⟩ and |v⟩ are states in the adjoint representation of SU(3)
with tensor components uij and vij. Write the result in terms of the ten-
sor components and the Gell-Mann Matrices.

3. In Rep. 6 of SU(3), for each weight find the corresponding tensor
component vij.

4. Find (2, 1)⊗(2, 1) for SU(3). Can you determine which representations
appear anti-symmetrically in the tensor product, and which appear
symmetrically?

5. Find 10× 8.

6. For any Lie group, the tensor product of the adjoint representation
with any arbitrary nontrivial representation D must contain D (think
about the action of the generators on the states of D and see if you
can figure out why this is so.). In particular, you know that for any
nontrivial SU(3) representation D. How can you see this using Young
tableaux?
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Solutions:

1. Because vij = vji, we have:

uivjk =
1

3

(
uivjk + ujvki + ukvij

)
+

1

3

(
2uivjk − ujvki − ukvij

)
=

1

3

(
uivjk + ujvki + ukvij

)
+

1

3
(δimδ

j
n − δinδ

j
m)u

mvnk

+
1

3
(δimδ

k
n − δinδ

k
m)u

mvnj

=
1

3

(
uivjk + ujvki + ukvij

)
+

1

3
ϵijlϵmnlu

mvnk +
1

3
ϵiklϵmnlu

mvnj

i.e.,
(1, 0) ⊗ (2, 0) = (3, 0) ⊕ (1, 1)

With Young tableau technique, that is,

⊗ 1 1 = 1 1 ⊕ 1
1

2. In adjoint representation,

|u⟩ = uij
∣∣j
i

⟩
= uij

∣∣j⟩⊗ |i⟩

with uii = 0. Equivalently,

|u⟩ =
(
uij −

1

3
δiju

l
l

) ∣∣j
i

⟩
In this manner we express the 8 independent basis vectors of the adjoint
representation in the 9-dimensional tensor product space of 3⊗ 3̄.

We know that the SU(3) generators for tensor product space of 3⊗ 3̄
are,

X3×3̄
a = X3

a ⊗ 1 + 1⊗X 3̄
a =

1

2

[
λ3a ⊗ 1 + 1⊗ λ3̄a

]
where λ3a and λ3̄a are representation matrices of Gell-Mann matrices λa
in 3 and 3̄, respectively.

44



Therefore, in adjoint representation,

⟨u|Xa|v⟩ =

(
uij −

1

3
δiju

m
m

)(
vkl −

1

3
δkl v

n
n

)⟨
j
i

∣∣Xa

∣∣l
k

⟩
=

1

2

(
uij −

1

3
δiju

m
m

)(
vkl −

1

3
δkl v

n
n

)⟨
j
∣∣⊗ ⟨i|

[
λ3a ⊗ 1

+1⊗ λ3̄a

] ∣∣l⟩⊗ |k⟩

=
1

2

(
uij −

1

3
δiju

m
m

)(
vkl −

1

3
δkl v

n
n

)[⟨
j
∣∣λ3a ∣∣l⟩ δik

+δjl ⟨i|λ3̄a |k⟩
]

3. The irrreducible Rep.6 of SU(3) is just Rep.(2,0) with highest weight
M⃗ = 2M⃗1. The whole set of weights reads,

M⃗

M⃗ − α⃗1

M⃗ − 2α⃗1

M⃗ − α⃗1 − α⃗2

M⃗ − 2α⃗1 − α⃗2

M⃗ − 2α⃗1 − 2α⃗2

In the 9-dimensional representation space of 3⊗ 3, the basis state of 6
with highest weight can be expressed as:

|M⃗⟩ = |M⃗1⟩ ⊗ |M⃗1⟩ = |1⟩ ⊗ |1⟩

Recall that in the fundamental representation 3,

|1⟩ = |M⃗1⟩ , |2⟩ = 2E−α2E−α1 |M⃗1⟩ , |3⟩ =
√
2E−α1 |M⃗1⟩ .

we have in Rep.6,

|M⃗ − α⃗1⟩ = E−α1 |M⃗⟩
= [E−α1 ⊗ 1 + 1⊗ E−α1 ] |1⟩ ⊗ |1⟩

=
1√
2
[|3⟩ ⊗ |1⟩+ |1⟩ ⊗ |3⟩]
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Similarly,

|M⃗ − 2α⃗1⟩ = |3⟩ ⊗ |3⟩

|M⃗ − α⃗1 − α⃗2⟩ =
1

2
[|2⟩ ⊗ |1⟩+ |1⟩ ⊗ |2⟩]

|M⃗ − 2α⃗1 − α⃗2⟩ =
1√
2
[|2⟩ ⊗ |3⟩+ |3⟩ ⊗ |2⟩]

|M⃗ − 2α⃗1 − 2α⃗2⟩ = |2⟩ ⊗ |2⟩

The corresponding tensor components of these basis states are as fol-
lows:

(vM⃗)ij = δi1δj1(
vM⃗−α⃗1

)ij
=

1√
2

[
δi3δj1 + δi1δj3

]
(
vM⃗−2α⃗1

)ij
= δi3δj3(

vM⃗−α⃗1−α⃗2

)ij
=

1

2

[
δi2δj1 + δi1δj2

]
(
vM⃗−2α⃗1−α⃗2

)ij
=

1√
2

[
δi2δj3 + δi3δj2

]
(
vM⃗−2α⃗1−2α⃗2

)ij
= δi2δj2

4. The tensor in irreducible Rep.(2, 1) of SU(3) can be expressed as Young
tableau

whose dimension is,

D(2,1) =
1

2
(2 + 1)(1 + 1)(2 + 1 + 2) = 15.

46



Using Young tableau technique, we have:

⊗ 1 1 1
2

=

 1 ⊕
1

⊕
1

 ⊗ 1 1
2

=

 1 1 ⊕ 1
1

⊕
1

1

⊕
1 1

⊕ 1
1

 ⊗ 1
2

=

 1 1 1 ⊕ 1 1
1

⊕
1 1

1

⊕ 1
1 1

⊕
1

1
1

⊕ 1 1
1

 ⊗ 2

= 1 1 1
2

⊕
1 1 1

2
⊕ 1 1

1 2

⊕
1 1

1
2

⊕
1 1

2
1

⊕ 1
1 1 2

⊕
1

1 1
2

⊕
1

1 2
1

⊕
1

1
1 2

⊕ 1 1
1 2

= 1 1 1
2

⊕ 1 1 1 ⊕ 1 1
1 2

⊕ 1 1
1

⊕ 1 1
2

⊕ 1
1 1 2

⊕ 1
1 1

⊕ 1
1 2

⊕ 1

⊕
1
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Equivalently,

(2, 1) ⊗ (2, 1) = (4, 2) ⊕ (5, 0) ⊕ (2, 3) ⊕ 2(3, 1) ⊕ (0, 4)

⊕ 2(1, 2) ⊕ (2, 0) ⊕ (0, 1)

Among these irreducible representations, (5, 0) and (2, 0) are symmet-
ric while (0, 1) is anti-symmetric. The dimensions of the involved irre-
ducible representations in the decomposition are:

D(4,2) = 60, D(5,0) = 21, D(2,3) = 42, D(3,1) = 24,

D(0,4) = 15, D(1,2) = 15, D(2,0) = 6, D(0,1) = 3.

The dimensions on the two sides of the decomposition equation match
each other,

15× 15 = 60 + 21 + 42 + 2× 24 + 15 + 2× 15 + 6 + 3

5. The irreducible representations 8 and 10 of SU(3) are (1, 1) and (3, 0),
respectively. With Young tableaux, we can recast 10⊗ 8 as,

⊗ 1 1
2

=

[
1 ⊕

1

]
⊗ 1

2

=

[
1 1 ⊕ 1

1
⊕

1 1

]
⊗ 2

= 1 1
2

⊕ 1
1 2

⊕
1

1
2

⊕
1 1 2

⊕ 1 1
2

= 1 1
2

⊕ 1
1 2

⊕ 1

⊕
1 1 2

⊕
1

i.e.,

(3, 0)⊗ (1, 1) = (4, 1) ⊕ (2, 2) ⊕ (3, 0) ⊕ (0, 3) ⊕ (1, 1)
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However, the dimensions on two sides of above equation do not match,

10× 8 ̸= 35 + 27 + 10 + 10 + 8

Because 10 ⊗ 8 is equivalent to 8 ⊗ 10, we see that the irreducible
Rep.(0, 3) does not appear in the decomposition. This is because the
Young tableau

1
1 1

is not valid. Therefore, the correct decomposition rule should be,

(3, 0)⊗ (1, 1) = (4, 1) ⊕ (2, 2) ⊕ (3, 0) ⊕ (1, 1)

6. The general irreducible representation of SU(3) is Rep.(n,m), with
tensor expressed by Young tableau

The numbers of boxes in the first row and the second row are (n+m)
and m, respectively. In particular, the Rep.(1, 1)

is the adjoint representation of SU(3). Consider the tensor product of
Reps. (1, 1) and (n,m):

⊗ 1 1 · · · 1 1 1 · · · 1
2 2 · · · 2

In its decomposition, there is a term given by Young tableau,

1 · · · 1 1 1 · · · 1
2 2 · · · 2

1

which is equivalent to:

1 · · · 1 1 1 · · · 1
2 2 · · · 2

This is very the irreducible Rep.(n,m) of SU(3).
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Solutions:

1. In defining representation of SU(N), its generators can be chosen as
the N2 traceless N ×N matrices Aij defined by,

(Aij)kl = δikδjl −
1

N
δijδkl

where i, j, k, l = 1, 2, · · · , N . Due to the fact

N∑
i=1

(Aii)kl = 0

8

Chapter  5

Problems:

1. Show  that  the  su(N  )  algebra  has  an  su(N  −  1)  subalgebra.  How  do 
the  fundamental  Rep.[1]  of  SU  (N  )  decompose  into  SU  (N  −  1)  repre-
sentations  ?

2. Find  [3]  ⊗  [1]  in  SU  (5).  Check  that  the  dimensions  work  out.

3. Find  [3,  1]  ⊗  [2,  1]  in  SU  (6).

4. Find  [2]  ⊗  [1,  1]  in  SU  (N  ),  using  the  factors  over  hooks  rule
to  check  that  the  dimensions  work  out  for  arbitrary  N  .



the number of independent generators is (N2 − 1) rather than N2, as
expected. The Lie brackets between two generators are,

[Aij, Akl]mn = (Aij)ma(Akl)an − (Akl)ma(Aij)an

=

[
δimδja −

1

N
δijδma

] [
δkaδln −

1

N
δklδan

]
−
[
δkmδla −

1

N
δklδma

] [
δiaδjn −

1

N
δijδan

]
= δim

[
δjkδln −

1

N
δklδjn

]
− 1

N
δijδmkδln +

1

N2
δijδklδmn

−δkm

[
δliδjn −

1

N
δijδln

]
+

1

N
δklδimδjn −

1

N2
δklδijδmn

= δjkδimδln − δilδkmδjn

= δjk

[
δimδln −

1

N
δilδmn

]
− δil

[
δkmδjn −

1

N
δkjδmn

]
= δjk(Ail)mn − δil(Akj)mn

Namely,
[Aij, Akl] = δjkAil − δilAkj

where i, j, k, l = 1, 2, · · · , N . Obviously, if we restrict the values of
i, k, k, l to the region i, j, k, l = 1, 2, · · · , N −1, the above commutators
hold also. The number of generators of SU(N) in this subset is naively
(N − 1)2. However, due to the fact
N−1∑
i=1

(Aii)mn =
N−1∑
i=1

[
δimδin −

1

N
δiiδmn

]
=

N−1∑
i=1

δimδin −
(
N − 1

N

)
δmn

the number of independent generators in this subset is [(N − 1)2 −
1]. Consequently, the generators in this subset generate a subgroup
SU(N − 1) of SU(N).
The fundamental Rep.[1] of SU(N) decompose into the following SU(N−
1)⊗ U(1) representations:

=

(
•
)

⊕
(
•

)
i.e.,

N = (N − 1)⊕ 1
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2. Using Young tableau technique, the decomposition of [3]⊗ [1] in SU(5)
reads,

⊗ 1 =

1

⊕
1

The dimensions on two sides match:

10× 5 = 5 + 45

3. The decomposition of [3, 1]⊗ [2, 1] of SU(6) is,

⊗ 1 1
2

=

 1
⊕ 1 ⊕

1

⊗ 1
2

=

 1 1
⊕

1
1 ⊕

1

1

⊕ 1

1

⊗ 2

=
1 1

2 ⊕
1 1

2

⊕
1

1 2

⊕
1

1
2

⊕
1

1

2

⊕
1

2

1

⊕

1

1
2

⊕ 1
2

1

⊕
1

1
2

The dimensions on two sides of this equation match:

105× 70 = 2520 + 720 + 1176 + 840 + 840 + 840 + 120 + 210 + 84
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4. The decomposition of [2]⊗ [1, 1] of SU(N) reads,

⊗ 1 1 =

 1 ⊕
1

 ⊗ 1

= 1 1 ⊕
1

1

The dimensions on two sides of this equation are

N(N − 1)

2
× N(N + 1)

2
=

1

4
N2(N2 − 1)

and

N(N + 1)(N + 2)(N − 1)

8
+
N(N + 1)(N − 1)(N − 2)

8
=

1

4
N2(N2−1)

They match each other, as expected.
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