Python与深度学习基础(熊志伟, 张越一, 郑歆慰) 2022春 2021春  课程号:CS150701
2022春 2021春  课程号:CS150701
8.5(2人评价)
  • 课程难度:中等
  • 作业多少:很多
  • 给分好坏:一般
  • 收获大小:很多
选课类别:通识 教学类型:理论课
课程类别:核心通识 开课单位:信息科学技术学院
课程层次:通修 学分:2.0
课程主页:暂无(如果你知道,劳烦告诉我们!)
点评 写点评
排序 学期
评分 评分 2条点评
Mr_Philo 2022春
  • 课程难度:中等
  • 作业多少:很多
  • 给分好坏:超好
  • 收获大小:很多
  • 难度:中等
  • 作业:很多
  • 给分:超好
  • 收获:很多

课程内容

2022春这门课的大致安排和前两年的区别不大,这里(2019年的课程链接)也有其他同学的点评,主要介绍python语法与深度学习框架的实现,更侧重于代码实战层面

  • 张越一老师:主要讲解Python基本语法和一些进阶语法,最后两次课还讲解了计算机视觉和自然语言处理的一些基础知识
  • 熊志伟老师:主要讲解神经网络的理论基础,和一些卷积神经网络的数学算法
  • 郑歆慰老师:主要讲解深度学习的代码实现框架,以pytorch为主,还涉及到了一些强化学习、分布式学习的知识
  • 最后一次课是助教的前两次作业分析和做研究写代码(戏称“炼丹”)经验分享

关于作业

今年的三次作业内容与以往略有不同,可供参考:

  • Python应用:设计一个与网络相关的软件。涉及到网络爬虫和python图形化界面的内容,上课时虽然有讲解但肯定讲不了这么细致,需要课后搜索阅读相关资料,对python编程能力有一定要求;
  • 深度学习基础:训练一个深度神经网络用于图像分类。利用骨干网络ResNet在数据集Tiny-imagenet上进行训练,并最终评估其在图像分类任务上的效果,属于一个非常入门级的深度学习项目;
  • 深度学习实战:论文复现。找一篇近两年发表在知名会议/期刊上的论文,自己编写或者调用原作者的开源代码库复现论文中的研究结果。个人认为难度主要在确定选题上,至于复现过程如果有开源代码就会轻松很多。

选课建议

  • 至少有一定的python基础。如果没学过python,在老师讲解的基础上最好能够自己动手写一些代码。推荐一个非常好的练习python代码的网站:python123.io  这是一个与中国大学MOOC联合开设的公开课网页,它最惊艳我的地方在于可以交互式运行,实时检查你的代码输出是否正确,而且有很多有一定难度的题,我只把最初级的那节课的所有题刷了一遍就觉得大有收获;
  • 最好能够了解一些深度学习的基本理论,或者认真听一听熊老师介绍神经网络的那两节课。否则在做第二次项目时,就会像助教说的那样,很多同学连基本的网络模型、训练集和测试集、损失曲线的概念都不知道,拿到代码根本无从下手,不知道怎么改,就更别提做项目了,导致大批量退课()
  • 能够抽出空闲时间来调代码和Debug。这门课的课余任务量还是比较大的,虽然DDL设置得都很宽裕,也延期了一次,但到学期末80个人的课堂退得只剩一半了()以及如果自己的电脑显卡不够牛的话,项目二就会比较吃力(GTX 1080ti 跑完一遍需要3个小时),项目三就更难了,如果你选择的论文跑的是一个很大的任务的话。也可以选择和助教联系申请使用科大的远程GPU服务器(类脑平台bitahub.com),这样你就可以RTX 3090用到爽了(不是)不过这就又要学习远程运行代码的知识和配置镜像Docker的流程,也需要花费一些时间
  • 今年老师鼓励大家单独完成作业,第三次大作业最多两个人组队,想抱大腿的同学要注意嗷

总之,这门课程是一个很好的python与深度学习实战练手的机会,给分也特别好,我三次作业都按时完成效果也不错,给了4.3。作为之后也要做计算机视觉CV方向的准研究生,这门课也让我学习到了很多实战方面的知识。希望明年选课的同学知道了作业后能在评论区踹我一脚,到时候如果明年作业和今年作业不一样的话,我可以把我今年做的作业开源给大家参考参考,给想研究深度学习的同学提供力所能及的帮助😊

1 0 复制链接
匿名用户 2022春
  • 课程难度:中等
  • 作业多少:很多
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:中等
  • 作业:很多
  • 给分:一般
  • 收获:很多

先说结论:从功利性角度而言,不推荐没有相关基础或课余时间不充足的同学选课

原因如下:

1. 作业非常消耗时间

三次大作业,虽然最后一次作业ddl是在7.8,但复现论文也让没有任何相关基础的人无从下手,可能甚至不知道如何选合适的论文(个人建议可以去csdn或知乎上看看有无其他人复现论文的笔记,作为自己复现时的参考)。

2. 优秀率限制,相关专业同学在获得优秀方面有巨大优势

由于是公选课,所以这门课有各个专业的同学来选课。个人认为信智学部的同学比其他专业的同学有更多优势,乃至于其他专业的同学可能要付出多得多的努力才能够卷赢他们。

3. 没有公布实验获得分数和展示优秀的作业

这点还好,实验文档有说明每个点的分数。但希望以后能公布个人的分数,给出优秀的作业作为参考,对于每次实验,能像第一次实验一样给出点评,这样收获会更大。

 

甚至从非功利性的角度而言,受限于课程时长,对于想要学习相关内容的同学,不如直接上b站找相关视频自己看;或是旁听即可,没有选课的必要。选课似乎只是起到了督促你完成实验的作用。

 

另一方面,老师和助教还是非常认真友善的,可以感受到他们希望通过这门课给非相关专业的同学普及深度学习相关的知识。只是个人在实验上的收获应该远远多于课上(可能也受限与课程时长和内容),不过实验也是这门课痛苦的主要来源,有挺多同学也因此退课😥。

 

 

0 2 复制链接
第一象限选修一貌似信智学部选不了这门课
zzz回复 @第一象限选修一: 这样子,我认识的有计科的同学选了这门课

立即登录,说说你的看法

熊志伟

教师主页: 戳这里

张越一

教师主页: 暂无

郑歆慰

教师主页: 暂无

其他老师的「Python与深度学习基础」课

熊志伟老师的其他课

Python与深度学习基础 9.8 (4) 2019春
人工智能导论 6.0 (11) 2022秋 2021秋...

张越一老师的其他课

Python与深度学习基础 9.8 (4) 2019春

郑歆慰老师的其他课

Python与深度学习基础 9.8 (4) 2019春