拓扑学(宋百林) 2025秋 2024秋 2023秋 2022秋 2022春 2021春 2020春 2019春 2018春 2017春 2016春  课程号:MATH300301
2025秋 2024秋 2023秋 2022秋 2022春 2021春 2020春 2019春 2018春 2017春 2016春  课程号:MATH300301
8.3(22人评价)
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:很多
选课类别:计划内与自由选修 教学类型:理论课
课程类别:本科计划内课程 开课单位:数学科学学院
课程层次:专业核心   学分:3.0
课程主页:暂无(如果你知道,劳烦告诉我们!)
AI 总结 AI 总结为根据点评内容自动生成,仅供参考

教学内容与方式

宋百林老师的《拓扑学》课程主要涵盖尤承业的教材内容,并结合部分Hatcher的代数拓扑拓展。课程内容分为点集拓扑和代数拓扑两部分。点集拓扑部分主要介绍基本的拓扑性质和闭曲面的分类定理。代数拓扑部分则侧重于基本群、复叠空间和单纯同调。老师的讲解以概念清晰且详细著称,尽管有些知识抽象,但他试图通过形象的语言帮助学生理解。

教学水平与学生体验

点评普遍认为宋老师的课程富有条理,尤其在代数拓扑部分展示了极高的教学水平。学生们表示代数拓扑虽然抽象,但宋老师通过结构化的讲解和详细的示例,帮助他们更好地理解这些复杂的概念。然而,对于点集拓扑部分,部分学生反映内容较少,认为在这方面补充更多内容可能会更好。

作业与考试

本课程的作业主要来自教材,数量适中,重在理解书中概念并积累例子。期中考试主要围绕点集拓扑,题目相对简单且直白。期末考试则包含填空、解答题和一些较为新颖的题目,注重于基本群及同调群的计算。考试题目多为教材上的内容,尤其代数拓扑部分明显更受重视。

给分与调分

宋老师在给分上较为严格,普遍反映不太进行调分,甚至部分自我感觉不好的学生也得到了相对较好的总评成绩。他将成绩构成设定为30%作业、25%期中、45%期末并秉持此原则不变。此外,尽管单科优秀率较低,但大部分同学对期末考试后给予的总评感到满意。

综合评价

总体而言,本课程适合对理论物理研究有兴趣的学生,对课程内容具有较强的理论性与抽象性要求。尽管宋老师在代数拓扑教学中表现突出,但点集拓扑部分需要学生更多自学。有志于深度学习拓扑理论的学生,尤其是对代数拓扑感兴趣者,这门课是个不错的选择。有关给予分数严格和考试题目考察重点的策略也需提前有所准备。

排序 学期

评分 评分 1条点评

神楽 2022春
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:很多
  • 难度:中等
  • 作业:中等
  • 给分:超好
  • 收获:很多

出分了,期中85(中位数可能差不多也是这个数),期末87(中位数71),作业分感觉正常,总评极限4.0,感谢宋爹!

 

至今想起期末考试最后十分钟极限捞分,大概做上的内容全对了,映射度和一个神秘填空实在不懂。E^3去掉三条过原点直线的基本群,随手猜个同伦到S^2去掉6个点,直接写了5个Z自由积;然后流形证明题本来想随便写写然后顺着就推完了……只能说数学考试不到最后都不要放弃挣扎()

 

—————————

 

考完期末感觉被薄纱,选课一时爽,期末火葬场😭😭千言万语不如猜一手同伦直接写基本群😭😭,

建议多做做往年题,记住常见拓扑空间的基本群和同调群用于答填空题,然后点拓也不是完全不考(比如今年就考了证明流形的边界还是流形)。听闻宋老师下学期不开代拓,有生之年听不到了qwq

—————————

本物院人第一门正经修读下来的数院高年级课程,也是本学期最喜欢的课。宋老师的课节奏适中、讲解详细,而且宋老师在给出概念后,会用形象的语言换个角度解释这些概念“具体发生了什么”,所以接受起来往往非常舒适,看书看到头昏脑胀的东西宋老师几句话就能说清楚。(嗯除了一些同伦过程有点抽象,宋老师在上面绘声绘色地描述但是窝完全get不到他的点,窝太菜了)

结论是我建议每个有志于理论物理研究的学生都来听一下拓扑课,隔壁火箭据说偏分析一点,宋老师这边偏代数的。顺便清醒地认识到妮可理论物理专业课(除了广相之外)有多屑。

课程大体内容可以分成三部分:点集拓扑,代数拓扑,单纯同调。

1、点集拓扑

宋老师这边点拓内容很常规(不像火箭会多讲一些tychonoff定理、arzela- ascoli之类的偏分析的高级内容)。在集合上定义拓扑也就是定义“开集”,满足三条公理;由此可以衍生出拓扑空间自身上的很多概念,如闭集、闭包、邻域、聚点、稠密性、拓扑基等,还可以构造新的拓扑空间,如子空间拓扑、乘积拓扑、度量诱导拓扑等。有了拓扑空间(object)自然要考虑他们之间的态射(morphism),这就是借助开集来定义的“连续映射”,这可以视为数学分析中“连续函数”在开集语言下的推广。如果两个拓扑空间存在双的、连续的、逆也连续的映射,则称二者同胚;这是极为重要的等价关系,同胚意味着点与点、开集与开集之间的对应。

(有趣的是,不像群同构那样“双射、同态”就可以得到同构,没必要对逆作要求;拓扑空间的同胚必须加上一句“逆也连续”,而且很容易找到相应案例。)

建立起拓扑空间之后,就要讨论一些拓扑性质。首先是分离性T1~T4,从弱到强地描述了拓扑空间内不同的两个点可以被如何“分开”(其实还有更弱的分离公理T0,“任取不同的两点a和b,总存在一个开集,包含a或包含b”,与T1的差别看起来就像是文字游戏,实则在某些地方也会出现,比如在环的prime spectrum上面建立Zariski topology,这个拓扑是T0,但未必T1)。之后是可数性C1&C2,从弱到强地对拓扑空间的开集数量提出控制。理想的拓扑空间应当有足够多的开集以分离其中的点,又有足够少的开集以保留可数性(可控性)。接下来是神秘的Urysohn引理、Urysohn度量化定理、Tietze扩张定理;Urysohn引理允许我们对T4空间上的两个无交闭集定义阶梯函数,Tietze扩张定理告诉我们用这样的阶梯函数可以逼近任何连续函数,而Urysohn度量化定理提出了拓扑空间可度量化的充分条件:T1+T4+C2。

如果说以上两个拓扑性质更多着眼于局部,那之后的紧致性和连通性则更关注整体。紧致的定义可谓耳熟能详,“任意开覆盖都有有限子覆盖(有限开加细)”,这种有限性是一个非常好的性质,以至于最平常的欧氏空间都不紧致,所以有稍微放宽的局部紧致性和仿紧性(仿紧性可以用于给出度量化的充要条件,同时对于流形上的partition of unity的存在十分关键)。连通性指拓扑空间不能分解为两个无交开集的并,更令人关注的一种连通性是“道路连通”,指的是拓扑空间X中任意两点可以被一条道路([0,1]到X的连续映射)连接;二者有着微妙的差别,道路连通是更强的连通性(见topologist’s sine curve)。

最后我们研究商空间与闭曲面。X模掉一个等价关系“~”得到商空间,而商映射是对“粘合映射”(X到X/~的自然映射)的模拟;闭曲面指连通、无边界点、紧致的二维流形,我们可以通过往球面S^2上“粘”环柄或莫比乌斯带,来得到两类闭曲面mT^2、nP^2,用多边形表示来证明闭曲面分类定理,即:闭曲面只有这两类,任何闭曲面一定同胚于某个mT^2或nP^2。(至于这些闭曲面互相不同胚,需要用代数拓扑的方法来证)。

(可惜闭曲面分类定理证明窝没仔细听,感觉有点琐碎qwq)

这部分推荐使用munkres的拓扑学,熊金城翻译版就行,非常简单易懂,没有老师讲也完全可以自学;还可以看看火箭的讲义,里面有好多升级内容(期中考了紧开拓扑,但是没讲,然后我也不会,小寄)。

2、代数拓扑

代拓内容其实也不多,概括而言无非是同伦、基本群、复叠空间以及他们之间的关系。

同伦描述的是连续变化的过程;映射的同伦有点像mathematica里面那个“交互式操作”指令,用一个[0,1]上的参数去展示某些内容随着参数值的演变。两个拓扑空间的同伦建立于映射同伦之上,与同胚对比可以明显看出“同伦”是更加广泛的等价关系。

我们研究拓扑空间上的道路,由于并非任意两条道路都可以连接成一条新道路,我们考虑通过同一个点(基点)的回路,并且发现在这些回路的同伦等价类之间可以自然地定义乘法,同时也有单位元(点道路的等价类)和逆元(道路反向的等价类),这就出现了群结构,即为基本群。在道路连通分支上,两点之间的道路类自然地给出了一个群同构,所以基本群可以定义在连通分支上而不再依赖于那个点的选取,同时拓扑空间之间的连续映射可以诱导基本群的同态。基本群极为重要,因为可以证明基本群是个同伦不变量。作为简单应用,我们可以证明圆环S^1的基本群为Z(需要先证道路提升引理,这个引理的证明会用到[0,1]是紧致度量空间的好性质)、n=2的Brouwer不动点定理(D^2到D^2的连续映射必有不动点)、代数基本定理等。

一个强力的基本群计算方法是Van- Kampen定理,这个定理允许我们用开集剖分拓扑空间X,保证任意三个开集的交道路连通,将计算X的基本群转化为计算各开集的基本群自由积模掉一个正规子群。(Van- Kampen的证明十分精妙,我觉得那个划分方块、移动边界属实把道路的同伦玩明白了……)

复叠空间与基本群关系密切,在这章会出现两个神秘定理(指证明很复杂)。对于道路连通、局部道路连通的E和B,复叠映射p:E->B是连续的满射,B中每个点都有邻域U,使得U在p下的原像是一系列无交开集的并,而且p限制在每个开集上都是同胚。形象地看,就是p把一系列E中开集叠到了B中同一个开集上,“叠了多少个开集”就称为p的叶数。

复叠空间有几个重要的性质:

(1)可以证明提升的唯一性,从而复叠映射诱导了pi_1(E,e)到pi_1(B,b),b=p(e)的单同态,同态的像记作H_e;

(2)H_e在pi_1(B,b)中的指数,就等于复叠映射的叶数;

(3)选取p^-1(b)中的不同的e,得到的所有H_e构成pi_1(B,b)的子群共轭类。

根据性质(1),我们考虑X到B的连续映射f,如果f能够提升为X到E的连续映射f‘,给出一点f’(x)=e,那f诱导的连续同态必定把pi_1(X,x)映到H_e内,e=f'(x)。问题是,什么情况下这一提升存在?映射提升定理表明,上述其实给出了充要条件:“f能够提升为X到E的连续映射f‘,f’(x)=e” 等价于“f诱导的连续同态把pi_1(X,x)映到H_e内,e=f'(x)”。(其实用道路直接构造一个提升还算容易,关键是要证明连续性)

有了复叠空间的概念,就会考虑对其分类,很自然地可以用一个交换图定义出复叠空间的同态和同构。一类特殊的复叠空间称为泛复叠空间“universal covering space”,即E的基本群平凡,而本章最神秘的定理莫过于泛复叠空间的存在性,即:任意道路连通、局部道路连通、局部半单连通(每点都有邻域,其包含映射诱导一个平凡同态;这里“半单连通”的引入很自然,可以画出提升映射的交换图,很容易发现如果泛复叠空间存在,B总会有局部半单连通的性质)的拓扑空间总有泛复叠空间;证明的方式是直接在道路同伦类空间上建立拓扑、给出一个映射、证明这个映射是复叠映射、证明E单连通。

进一步,给定pi_1(B,b)的子群H,通过在泛复叠空间中模掉某个等价关系,我们就可以构造出相应的复叠空间,使得该复叠空间的基本群拉到pi_1(B,b)中正好是H!由此就实现了用基本群分类复叠空间。(宋老师说正如Galois群与域的扩张,可惜窝不懂Galois)

同一个复叠空间上的自同构称为复叠变换,所有复叠变换具有群结构,称为复叠变换群D(E,p);一类比较有研究价值的复叠变换是在“正则复叠空间”上,即H_e是pi_1(B,b)的正规子群。根据性质(3),选取不同的e时,得到的H_e都是一样的,再根据性质(2)很容易找到D(E,p)到pi_1(B,b) / H_e的一一对应并证明其为同构。由此我们可以实现基本群与复叠变换群的互推。

宋老师在拓扑课上讲的仅仅是代拓的入门,这部分内容我觉得参考munkres、尤承业、火箭讲义都挺好;hatcher看不懂,悲。(最后一节课听宋老师说代拓的后续内容,奇异同调、Hom(-,G)函子诱导上同调、同伦群等,好期待)

3、单纯同调

单纯同调基于单形,说实话我感觉这部分和前面代拓的画风差异巨大,因此摘出来自成一段。(我一直觉得单纯同调看起来像一个跑题但是跑到了正题、总共10页写了9页铺垫的long story……)这部分似乎火箭没讲,把隔壁的@jgroot都馋哭了(bushi)

n维单形是欧氏空间中的n维三角形,由它的所有顶点唯一确定;单纯复形(以下简称复形)是有限个单形的集合,并且要求每个单形的面都在复形内、任意两个单形都规则相处(无交,或交集为公共面)。把一个复形K中的所有单形并起来,得到一个拓扑空间|K|;若有拓扑空间X同胚于|K|,则称K是X的单纯剖分。

(我问过宋老师怎么判断一个拓扑空间是否可剖分,他说没有通用的办法,但是一般来说没有局部无穷结构(如Hawaiian earring)的紧致空间都可以剖分emmm

每个单形根据其顶点排列顺序的奇偶可以分为两个定向,由此我们可以对复形定义“q维链群”C_q:所有q维定向单形自由生成的整系数Abel群,再模掉定向(相反定向相加为0)。进一步可以定义“边缘同态”partial_q : C_q -> C_q-1, 把C_q中的单形s映为其所有q-1维顺向面求和。容易证明连续两次边缘同态为0,这样我们得到了一个chain:

0 -> … -> C_q -> C_q-1 -> C_q-2 ->… -> 0

由此可以定义q维闭链群Z_q=ker(partial_q), q维边缘B_q=im(partial_q+1), 以及q维同调群H_q=Z_q / B_q(事实上我是先学过一点同调代数再听到的单纯同调课,因此看到这些结构就兴奋不已);定义欧拉示性数为各维数单形的个数交叉求和(直接推广多面体的欧拉示性数),通过简单的秩关系就能得到Euler- Poincare公式,它将欧拉示性数与同调群维数的交叉求和之间画上等号。

0维同调群是自由Abel群,秩即为复形K的连通分支个数;1维同调群是|K|的基本群的交换化;对于更高维的同调群没有简单的把握。用剖分计算同调群的过程巨大神秘,简单的就是数单形、消掉边缘链找生成元、检查阶数,难的不会qwq

当然,可以把链群的定义推广到以交换群G为系数;特别的,以某个域为系数时,链群就变成了线性空间。

有了复形,接下来就要考虑复形之间的映射:单纯映射。单纯映射K->L把顶点映为顶点,单形映为单形,并且映过去的单形的顶点 就是原来单形的顶点的像。单纯映射一方面可以通过“把顶点映过去再张成单形”诱导链群之间的同态,事实上这会得到一个正经的chain map,进一步诱导了同调群的同态;另一方面由于单形上的任一点可以用顶点坐标唯一表达,单纯映射又可以通过线性的方式 诱导|K|到|L|的连续映射。

对于连续映射f:|K|->|L|, 如果有单纯映射phi,其诱导的连续映射“和f很接近”(指二者把每个|K|中的点,打到L的同一个单形的内部),那么称phi是f的“单纯逼近”。直观来看,phi是对于f的很好的模拟,就像comsol软件建模中在几何体上划分网格进行有限元分析一样。

问题是:给定连续映射f,随意做单纯剖分,是否总是存在f的单纯逼近?

好戏来了!答案是否定的,因为给定一个剖分,单纯映射的个数是有限的(单纯映射完全由顶点决定,而顶点个数有限);而且很容易举出反例,即单纯逼近并不总是存在。但是如果将复形重新剖分,分得更细,就有希望用单纯映射去模拟f。用很技术化的手段可以证明:只要做足够多次“重心重分”(某种特别的重新剖分),任意连续映射f:|K|->|L|都有单纯逼近!

这样,我们想对可剖分拓扑空间定义同调群的目的就图穷匕见了;接着我们就可以证明,首先是重心重分不改变复形的同调群,然后是同一个连续映射f的两个不同单纯逼近,会诱导出相同的同调群同态。由此,f可以直接诱导同调群的同态,与如何重心重分无关;接着可以证明的是若f:|K|->|L|为同胚,那么f诱导了同调群的同构,由此对于一个可剖分拓扑空间X,可以直接找个剖分来定义X的同调群,与剖分怎么找也无关。至此,可剖分拓扑空间的同调群以及连续映射诱导的群同态已经定义完成。进一步我们会发现,同调群不只是拓扑不变量,甚至还是同伦不变量。

这一段充分展现了一种思路,即对于无法计算的问题,先将其复杂化从而可计算,再去证明所得的结果与复杂化的方式无关。虽然中间大量细节听不懂,但还是要感叹,数学真奇妙哇!

最后其实还有一点内容,关于映射度、不动点和一堆神秘定理。球面S^n到自身的连续映射诱导了n维同调群的自同态,由同伦不变性容易看出H_n(S^n)=Z,故f的诱导同态的作用就只是乘一个常系数,这一系数定义为f的映射度,显然同伦的映射其映射度也相同。应用比如通过求出球面上- id的映射度,可以证明S^2n上-id不同伦于id,进一步证明毛球定理。

后面还有个感觉比较重要的Lefshetz不动点定理,通过实数系数的链群推广欧拉示性数的定义,得到映射的Lefshetz数,并且claim:如果X到自身的连续映射f有非零的Lefshetz数,则f有不动点。(实在太神秘,窝听不懂了qwq

这么写下来真的感觉学到了好多,再想想什么前沿啊什么高等啊整天喂*,令人感慨。

(最后修改于 24 2 复制链接
感谢叉三叉二的钻粉飞机一架宋老师的代数拓扑上得很好
futwangalerda龚怖
立即登录,说说你的看法

宋百林

教师主页: 暂无

其他老师的「拓扑学」课

未知 2020春
胡森 2013春 2011春...
李思敏 2005春 2004春
黄文 2011春
邵松 2009春
叶盛 2003春
陈智 2012春 2010春
蔡明亮 2014春
王晁 2015春

宋百林老师的其他课

拓扑学(H) 10.0 (1) 2020春 2016春...
代数几何引论 10.0 (1) 2018秋
复变函数A 8.0 (1) 2016秋 2015秋
代数拓扑 7.4 (5) 2023春 2021秋...
线性代数(B1) 7.4 (8) 2025春 2024春...
复分析 2015春 2014春
复变函数B 2011秋
数理方程B 2012春
近世代数 2010秋