人工智能基础(吉建民) 2022春 2021春 2020春  课程号:01111902
2022春 2021春 2020春  课程号:01111902
8.8(13人评价)
  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:超好
  • 收获大小:一般
选课类别:计划 教学类型:理论实验课
课程类别:本科计划内课程 开课单位:计算机科学与技术系
课程层次:专业基础 学分:3.5
课程主页:暂无(如果你知道,劳烦告诉我们!)
简介 最后更新:

人工智能基础是一门关于学习人工智能的基本原理、方法及应用的课程,包括对周围环境感知并做出响应的智能agent,多种搜索方法,知识表示及推理方法,概率推导方法,机器学习方法,以及人工智能的新领域的研究进展。

点评 写点评
排序 学期

评分 评分 13条点评

Rengin 2022春
  • 课程难度:简单
  • 作业多少:很少
  • 给分好坏:超好
  • 收获大小:一般
  • 难度:简单
  • 作业:很少
  • 给分:超好
  • 收获:一般

考试考完,各种申请结束,终于差不多忙完了,在这里补上之前预定的(http://www.icourse.club/course/325/#review-46358)详细评价。

我主要阐述两个个方面的看法:这门课本身,以及整个培养方案视角下这门课的教学内容。其中,给分9分仅针对这门课本身。

关于这门课本身

教材

教材为经典的《人工智能:一种现代方法》,虽然随着近几年机器学习和深度学习的兴起,这本书应该改名叫一种古代方法了(笑)。这本书虽然很好,但是中文三个版本的翻译都很难让人满意,建议英语水平较高的同学直接看英文原版教材。

两个平行班(吉建民老师班和徐林莉老师班)的课件均为英文,且很多地方都仅是介绍导论性质,无法囊括全部的知识点。因此复习时更建议刷书。

上课

上课均不点名,个人上课听讲较少,故对授课水平不做评价。整本教材主要分为搜索,逻辑和学习三个大块,本班逻辑部分讲的可能较隔壁班多一些。

作业

全是课后原题,可以轻松的找到答案。但本班没有布置学习部分的作业,建议新接触学习的同学多做一些题。

考试

考试开卷,除去教材外,建议携带周志华老师的《机器学习》(俗称西瓜书)和李航老师的《统计学习方法》。除了必考的A*算法等搜索内容外,吉建民老师出卷会侧重考逻辑,减少学习部分的分值;徐林莉老师出卷会侧重考学习,且必考kmeans收敛(自2017年开始似乎从无例外),今年还出了两道SVM的大题。考虑到两位老师博士期间的工作分别为逻辑和学习,这很难不认为是携带私货的行为,故评分减去一分。

实验

分为两次。第一次为搜索,第二次为学习。搜索部分每年的内容会发生一些变化,有A*算法,alpha-beta剪枝,CSP问题等;学习部分分为机器学习部分和深度学习部分,今年机器学习部分为实现决策树和SVM,不允许调库,实现SVM允许使用凸优化库cvxpy;深度学习部分为实现感知机(不允许使用pytorch,只能使用numpy),调包实现CNN。两个实验对于初学者而言都是有一定难度的,尤其是第二个实验处境有些尴尬,python不会的同学叫苦连天,而各学习大佬普遍认为太简单了(隔壁并行计算:渣渣人工智能基础实验,看我禁用第三方库要求实现分布式机器学习)。

忽然想到曾经一位教授(记不清了,好像是徐云老师?)上课分享的故事:

有一次一个绩点4.0的同学联系我,说想保研来我们实验室,我当时很高兴啊,就约了他见面聊一聊。

我:你之前有接触过科研么

该同学:呃,没有

我:你会哪些技术啊,我看看给你安排什么工作

该同学:嗯语言的话只会C吧,哦还有verilog

我:python有接触过么

该同学:数据库实验好像说要用,我刚下完

我:你有做过什么项目吗

该同学:呃,没

我:……

(我要你干嘛)

不过最后还是要了。

不管如何,建议早一点学一下python,至少不要闹出毕业了只会C和verilog的笑话。2020级培养方案改革以后应该不会出现到了大四不会机器学习的问题了。不过除了培养方案的内容外,仍旧需要主动探索其它的技术。

给分

给分几个平行班都差不多,可能比隔壁班略好一些。对于较早接触人工智能的同学,拿到4.3还是比较容易的。老师和助教也都比较关心同学,实验一很多同学无法按时完成时也延迟了DDL。

关于整个培养方案视角下这门课的教学内容

如果看这个的话,问题实在是太大了,甚至只能给1分。

这课多少个学分?3.5个学分。

适用于计算机科学与技术本科专业人工智能方向同学的人工智能教学内容应该值多少学分?我认为10个学分都不止。

那么问题就很明显了,这课是不可能涵盖人工智能所有的内容了。不过他的名字叫人工智能基础,只讲一些基础的部分也未尝不可,但实际上却有大跃进的作风——虽然因为大家普遍接受人工智能的知识点很多,所以风评没有像其它几门课一样就是了。但考前不少同学都感觉内容太多复习很吃力了。

首先是搜索部分。李金龙老师在《数据结构》课程中就已经提到了八皇后等经典搜索问题和遗传算法等著名搜索算法,《算法基础》课程中也会进行一定的讲解,不过均没有这门课讲的详细。可以说这部分讲的还是没有大问题的,倒不如说讲的有些晚了,基本上同级别学校在大二甚至大一就会接触了。

然后是逻辑部分。就目前的研究前沿来看,学习部分大火而逻辑部分相对冷门。培养方案中,《数理逻辑》(《数理逻辑基础》)和《形式化方法导引》会涉及相关的知识。这门课中的逻辑部分就很尴尬了,一来和搜索和学习比起来,目前它显然不是科研的重点,一百篇人工智能相关论文都不一定能遇到一篇用了逻辑的工具的,写项目也不大会需要这个。二来书中很多知识被数理逻辑包含了,但是定义的符号和语言又不完全一样,这就导致看起来有些费劲。在历史上,逻辑曾是被寄予厚望的方法,我并不认为目前的前沿方向用不到逻辑,就应该大量缩减相关的教学内容。不过各个班之间也要做好平衡就是了。

最后是问题最大的学习部分。

你科日常强调数理基础,参考王杰老师较偏理论的机器学习课程的评价(https://www.icourse.club/course/14090/),普遍认为这课值六个学分都不止,即便在有相关前置课程的基础上,学习部分深究数学基础也根本不是四个学分可以解决的。这课只有3.5个学分,还要讲搜索和逻辑,留给学习部分的内容能有1.5学分便已是万幸,但考试就不是这样了,课上没有深入讲解过学习,作业本班甚至都没有布置,考试就要出学习大题,还是涉及数学基础的——这就导致没有接触过学习的同学叫苦连天,相当于除了教材外,还要再学习一本西瓜书和一本统计学习方法。有着类似问题的还有《Web信息处理与应用》,课上并不会讲解很多学习算法的细节,但是考试会考。这就比较奇怪了,难道是默认计算机科学与技术学院大三的同学都已经修过类似王杰老师机器学习课程一样的课了?翻了翻培养方案似乎并没有,倒是下一届改革后大三加入了不少学习类课程。

综上,这课根本讲不了多少学习内容,而学习类内容又很多,考试复习时自然叫苦连天,鬼知道会考反向传播还是凸优化方案……在新的培养方案已经有了学习类课程的情况下,个人认为这门课在某种意义上已经完成了使命,之后可以删除学习类课程,专门讲解一些传统的人工智能方法了。

3 0 复制链接
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:中等
  • 作业:中等
  • 给分:一般
  • 收获:一般

感觉上课基本都在吹牛,或者讲一些很平凡的东西,听不进去。偶尔到了难一点的部分的时候又听不懂了,所以基本上一学期都没听过课。

复习的时候看ppt,就是一堆不知所云的英文,多少有点崩溃。看了下隔壁班的ppt,貌似也是半斤八两。最后还是要按关键词去网络上找学习资料。

总之就是自学,不过这个班可能作业少一点吧。

3 2 复制链接
Unnerve3368不过作业少的是考试内容(逃
祖安花火学习部分没留作业,结果考试考的还不少…

立即登录,说说你的看法

  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:中等
  • 作业:很少
  • 给分:一般
  • 收获:一般

jjm老师上课生动详细,会明确指出,这里不考,这里工程用不上,这里很恶心但是必考,是金牌讲师;在讲到自己的老本行数理逻辑和新本行自动驾驶时会情不自禁给大家加餐,对于一些工程中的实际运用,虽然考试不考,但却是人工智能特色,也不可不尝,所以经常导致"扯的稍微有点远了",是金牌厨师。

今年大题除了必考的A*,贝叶斯以外,考了一个简单的一阶逻辑归结,一个最小二乘公式推导,压轴是证明svm kernel矩阵的对称性和半正定性,怕你线代忘光光还给出了半正定的定义和向量求导规则,总体来说主要是考察理解,没有需要死背、嗯算的题。

2 0 复制链接
黑猫紧张 2021春
  • 课程难度:简单
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:简单
  • 作业:很少
  • 给分:一般
  • 收获:一般

相比另一个班多介绍了SAT问题、知识表示、语义网络、planning、MDP、机器学习的PAC learnable理论、强化学习、概率机器人等内容;少讲了logistic regression;此外还会介绍一些蛮有意思的创业故事。内容比较多,所以每个方面都浅尝辄止,这门课的内容也只是提供一个索引,适合有一定基础、想要拓宽知识面的同学。

拓展的内容都不考察,考试重点主要是搜索(无信息搜索和A*);博弈:minimax、alpha-beta pruning;命题逻辑、一阶逻辑、归结,判断能否合一、skolem化、MGU计算、CNF范式、推理等,用一阶逻辑描述问题,归结推理得到解;贝叶斯网,判断条件独立、变量消元法;机器学习:监督学习(尤其SVM)、无监督学习(聚类和主成分分析)。

2 0 复制链接
HenCerbin 2021春
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:没有
  • 难度:中等
  • 作业:中等
  • 给分:超好
  • 收获:没有

上课等于科普(自学书上代码可能更有用) 考试全靠自学

考试=机器学习+概率论+数理逻辑2.0+一点点的上课内容

考试是统一出卷,建议去隔壁徐老师班找点机器学习的复习资料,svm基本必考,记得打印例题

ps:

2 0 复制链接
祖安花火 2022春
  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:超好
  • 收获大小:一般
  • 难度:中等
  • 作业:很少
  • 给分:超好
  • 收获:一般

吉老师的授课风格轻松有趣,经常扯的很远。不过溜号一会再回来基本就听不懂了,所以本学期干脆没咋听,全程自学。作业不多,难度不大,看看书就行。实验有两个,第一个是A星和CSP,第二个是学习,实验量比较大,强烈不建议拖到DDL前几天再写。考试开卷,可以带任何纸质材料,由于没有布置学习部分的作业,所以这部分完全没看,全靠考前两天速成加考场现学。改卷的尺度应该很宽松,导致总体的卷面分数奇高。个人期末92,实验作业都完成且扣分不多,总评93

1 0 复制链接
tbq 2022春
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:很多
  • 难度:中等
  • 作业:中等
  • 给分:超好
  • 收获:很多

吉老师真的太奶了,人工智能,你是我的神!

1 0 复制链接
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:中等
  • 作业:中等
  • 给分:一般
  • 收获:一般

老师人确实不错,上课充满激情。但说句实话,课讲得一般,尤其是很多知识点都讲得不清不楚。课程实验量大,也没什么指导,就是嗯写。

1 0 复制链接
也西湖摸鱼 2021春
  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:中等
  • 作业:很少
  • 给分:一般
  • 收获:很多

// 老师

人很好,上课喜欢延伸、科(chui)普(niu),明确表示不会点名(旷课党的福音!

每节课都在bb上有回放,不用担心错过什么考试重点

// 作业

全是课后原题,可以轻松的找到英文答案 and 往年作业(重复度极高)。但是今年吉老师一道learning的作业也没有布置,期末考试却出了不少,导致有些人措手不及了。(虽然有点疑惑为啥老师没布置相关作业,但是只要看了往年卷子应该可以知道这部分占比很高吧?)

// 考试

前边还是选择题、判断题,这差不多都是送分了;和往年在大题部分上有了些区别,考了不少些逻辑相关的,以往的那道计算条件概率送分大题被删了(^-^);搜索、博弈、贝叶斯网络这三个都是必考题,没有变;learning部分考了道SVM,是隔壁班作业的简化版,然后讨论了下软间隔SVM的错误容忍

// 实验

lab1由吉老师班负责,出的比较简单,就写了下A*和alpha-beta剪枝,其它部分助教都已经提供了。

lab2是隔壁班出的,难度稍大,分为两部分:第一部分实现经典机器学习,就是贝叶斯、SVM那几个,第二部分深度学习,4层感知机模型+反向传播 和 复现MLP-Mixer。lab2的ddl在放假后的7月中旬,那时候我已经跑路去实习了,没精力卷,最后也没有完全做完,被扣了2分

//总结

最终成绩应该是稍微往上调了点。因为我不知道期末卷面成绩,没法确定到底调了多少(问助教只给我说考的很高,还以为要4.3了,但是最后并没有......不过反正没卷实验,就无所谓了)

这门课老师很好,比较理解同学,也会介绍一些前沿的科研成果;助教不爱水群,但是私聊都是很快回复,而且态度也很棒!同时也挺好说话的:比如课程群里集体申请推迟交作业等等......  就课程本身来讲,用吉老师的原话说:我们划的这些考试范围是所有程序员都应该了解的(大致意思)。对于不打算做ai方向的人(比如我)来讲,体验也不错。推荐选课~

后续会考虑放上21年原版试卷


更新于2022.06.05:

2021年春季学期《人工智能基础》期末试题.pdf

21年期末试卷已上传。声明:照片不是我拍的,我也忘了在哪看到的这份题目

 

(最后修改于 1 4 复制链接
有试卷吗(
也西湖摸鱼回复 @菜: 上传了
南山南捉大佬
jqtlg草 复现MLP-Mixer吗

立即登录,说说你的看法

nevermind 2020春
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:一般
  • 难度:中等
  • 作业:中等
  • 给分:超好
  • 收获:一般

首先这门课是一个偏介绍类型的课,所以每个方面学的时候都是浅尝辄止,真正如果想每个方向都学透需要花很多很多的时间。吉老师基本都是在很短的时间内把其中的知识点讲清楚,如果好好听课是能听明白的,而且吉老师还会补充一些课外的内容和一些自己做的成果之类的,总的来说还是很有意思的。

关于收获,其实这门课的收获比较有限,因为基本上大部分一节课的内容需要大半个学期甚至一整个学期的学时去进行学习。

作业的话是8次书面作业加2次实验,这里不得不吐槽一下C,第一次实验要求用C或者C++,我C的debug感觉人快没了。

最后是考试,前面是几道理论题,书上能找到,所以一定要带书。后面就是各个章节对应的题目,总的来说还是比较简单的,最后老师给分也是很好的,给到了95,没给我卡还是很开心的。

1 3 复制链接
我叫账户名你好,请问吉老师有点名么?
daiaqswde因为老师第一次上课是疫情期间,上的网课,所以不点名,现场上课不清楚
我叫账户名回复 @daiaqswde: 好的谢谢啦

立即登录,说说你的看法

Alex 2021春
  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:超好
  • 收获大小:很多
  • 难度:中等
  • 作业:很少
  • 给分:超好
  • 收获:很多

吉老师人挺不错的,上课补充了不少内容,最后尽管没有作为考试内容但是确实开阔了视野,这门课还是学到了不少东西的,建议学院增加Learning部分的比例,或者单独开一门机器学习课程,AI大热的当下课程设置也需要与时俱进

0 0 复制链接
guch8017 2021春
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:中等
  • 作业:中等
  • 给分:一般
  • 收获:一般

刚考完还没出分,先写个点评。

上课不是那种对着PPT念的老师,经常会有许多拓展内容(不考),经常介绍自动驾驶与机器人的相关技术,但是有时感觉抓不到重点,感觉老师什么都想介绍给我们但是最后都没学明白。。。上课从来不点名,并且ClassIn系统上有课程录像,可以选择自行观看。

考试今年大变样,看了往年卷感觉这门课的考试比较水,基本都是固定几道题型,今年突然难度大幅度上涨,不知道发生了什么。最后一题考了一道手撕三个二维平面上的点的SVM,写出拉格朗日函数以后看着那一堆二次项,感觉最小值根本求不出来,直接放弃。(往年考的决策树之类的计算量都比较小,这次突然杀出来一个SVM大题让人措手不及)

0 0 复制链接

吉建民

教师主页: 戳这里

其他老师的「人工智能基础」课

陈恩红, 徐林莉 10.0 (1) 2013春 2010秋
王上飞 8.2 (6) 2022春 2019春
徐林莉 7.5 (22) 2022春 2021春...
未知 2017春
陈小平 2008秋 2006秋
陈恩红 2011秋 2009秋...

吉建民老师的其他课

机器人编程入门 10.0 (1) 2014夏
强化学习 10.0 (1) 2022秋 2021秋...
数理逻辑 8.0 (1) 2021春
数理逻辑 2014春 2013春