人工智能基础(王上飞) 2025春 2022春 2019春  课程号:01111903
2025春 2022春 2019春  课程号:01111903
6.9(10人评价)
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:一般
选课类别:计划内与自由选修 教学类型:理论实验课
课程类别:本科计划内课程 开课单位:计算机科学与技术系
课程层次:专业基础   学分:3.5
课程主页:暂无(如果你知道,劳烦告诉我们!)
简介 最后更新:

人工智能基础是一门关于学习人工智能的基本原理、方法及应用的课程,包括对周围环境感知并做出响应的智能agent,多种搜索方法,知识表示及推理方法,概率推导方法,机器学习方法,以及人工智能的新领域的研究进展。

AI 总结 AI 总结为根据点评内容自动生成,仅供参考

教学与课程内容

王上飞老师的《人工智能基础》课程内容广泛但相对浅显,主要包括统计学习方法、机器学习基础和搜索算法等。课程大部分基于西瓜书与吴恩达的公开课,然而由于时间限制,一些复杂内容并没有详细讲解,学生普遍反映听课困难,需自行复习教材以理解资料。此外,课程中有较多的小测,频繁且时间不定,增加了学习压力。

作业与实验

课程作业较少但难度不小,且要求较严格。实验涉及机器学习算法的实现与参数调节,对于有基本编程基础的学生较易处理,开放性实验灵活性较大且助教评分较为宽松。此外,课程要求完成读书报告,需阅读近年人工智能领域的顶级论文。

考试与复习指导

期末考试开卷,内容不深但涉及面广,涉及计算与原理性问题。考试与另一班级内容差异较大,学生需注意提取王老师班级提供的复习重点,以免复习范围错误。推荐携带PPT与统计学习方法作为考试参考。考试题以书本与课程PPT范围为主,部分题目在教材中可找到解答。

给分情况

总体给分偏中规中矩,期末考试与平时分46开。平时分主要由小测、作业和实验组成,一些学生认为可以通过努力类轻松获得高分。期末考试后经过调分,基本都是小捞,成绩略有提升。

教学风格与其他评价

王上飞老师课件质量参差不齐,部分同学对其PPT的使用表示不满,因为大多是从其他材料直接截取的。此外,尽管老师在提问过程中比较热心,但对学生使用电子设备记笔记态度误解较多。课程的整体体验因讲解风格、内容广泛性及时间安排可能欠佳,导致部分学生对教学质量感到不如预期。综上,建议选课同学提前规划好复习时间。

排序 学期

评分 评分 10条点评

匿名用户 2025春
  • 课程难度:中等
  • 作业多少:很多
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:中等
  • 作业:很多
  • 给分:一般
  • 收获:一般

不是哥们每节课都小测啊?一节课就剩个五分钟还布置一大堆题,合着就必须完整听完你一整节课才行呗?还有点名答题(不记名),每次都浪费一大堆时间,直接讲下去有人不听就不听啊,最后布置作业布置实验和期末考出来不都一样,难怪开学选课跑了那么多人

 

石中石

(最后修改于 7 0 复制链接
shirakawa_sanae 2025春
  • 课程难度:简单
  • 作业多少:很多
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:简单
  • 作业:很多
  • 给分:一般
  • 收获:一般

补充资料,期末可以打印:

统计学习方法节选.pdf


我看王老师的评课还没有人提过考试题目,那么我来写一写吧。

首先,不要相信“可以复习两个班作业的交集”,今年王老师班的题是自己出的,和jjm可以说是完全不一样,复习的时候以王老师的复习PPT划定的范围为准!!!

然后是25春期末试题精确回忆且倒序版:

计算:5.小测+作业,二分类权值迭代公式+半监督学习EM;4.信息增益决策树结点划分;3.alpha-beta剪枝,PPT有;2.感知机分类原理,作业有;1.数理逻辑,很简单的三段论。

简答:2.PEAS,目标检测,YOLO算法简述(这个真不会,坑麻了);1.SVM原理,即间隔minmax。

填空:GAN原理,K-means原理,F1分数计算,PCA(实验三的一部分),Bayes Net,Ada boosting(集成学习),期望风险和经验风险(这个我也不知道哪里讲了),退火算法,alpha-beta剪枝原理,A*函数定义,第一题是——标志人工智能走上人类历史舞台的事件是?

总结一下:不难,原理性考的远多于计算(和jjm班的显著区别),但是杂碎,Ada Boosting这种PPT上就算有也几乎没人会重点复习的东西,考场上只能翻西瓜书,西瓜书又不是这门课的标准教材,所以有点好笑。一门人工智能现代方法的课程考成古代原理和找资料大赛,考场上⅓的时间在翻书。不过好处是都能考得不错,方便调分或者捞。

关于非考试部分不想评价太多了,总之我觉得,这门课应该大二甚至大一下学期就上。

(最后修改于 5 4 复制链接
TheBunniestForever是的 两个班的考试内容可以说天差地别
shirakawa_sanae回复 @TheBunniestForever: 好快的评论
红领巾今年有三个班
TheBunniestForever回复 @shirakawa_sanae: 好快的jwjj
立即登录,说说你的看法
基泥 2025春
  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:中等
  • 作业:很少
  • 给分:一般
  • 收获:很多

刚刚开课两周,甚至我连老师长什么样都不知道,但是必须来刷个好评。个性化选课秒过,有什么问题发邮件有问必答还贼快。由于叠课跨校区到课有点困难王老师直接给我免听了,对比起来其他发了邮件石沉大海的老师,实在是暖心太多。

学完一学期再补充评价。


– 

暑假更新:老师给分蛮一般,然后考试内容和另一个班很大不一样,复习的时候千万注意,别看错圣遗物资料了。

(最后修改于 2 0 复制链接
jqtlg 2022春
  • 课程难度:简单
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:简单
  • 作业:很少
  • 给分:一般
  • 收获:很多

实验:xXuHaiyang/USTC_AI2022_Lab (github.com)

给分:应该是中规中矩的平时期末46开给分,班级平时分中位数是89.5,基本上算是小捞了

平时分你只要认真去上课认真写作业认真写实验基本就是满分别像我有一次直接睡到12点被手撸决策树小测背刺就行


做完全部实验了,出分后放个实验链接让学弟学妹们轻松一点


适合混学分/刷绩

上课简单

课后看看PPT和书就行 本人之前学过一遍机器学习 就当复习了

实验自己捣鼓捣鼓 有基础最好 没基础正好学一学

考试开卷 个人觉得西瓜书反而不必带 最好带《统计学习方法》和打印的上课PPT

期末考比较简单

有个读书报告感觉挺有意思的,分享内容是近几年CCF-A类的论文,不少同学讲得还是挺不错的,算是这门课的最大亮点

给分未知,个人感觉助教和老师人都挺不错的,出了再更

 

(最后修改于 1 1 复制链接
RisingUp
立即登录,说说你的看法
lilili 2022春
  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:中等
  • 作业:很少
  • 给分:一般
  • 收获:一般

本来是想着混学分才选的这课,但这学分着实不好混。 实验一调包实现MLP和SVM虽然现在看着着实不难,但是对于完全没学过Python的人还是要抓耳挠腮很久的。 实验二实现几个搜索算法,还没做,应该不难。 外加一份读书报告,读AI近五年顶级期刊一份,糊弄糊弄得了,选点自己看得懂的题目。 作业基本没有,有也只有一两道题,明显少于其他班,但是有的题难度不小,助教也是格外严格,注意答题规范,你觉得不重要不代表助教觉得不重要。(比如K近邻记得把距离计算过程补上 考试内容有别的人说了,我不多说,西瓜书必带,其他的我要不没用要不没带,黑色大部头建议自己看看搜索部分或者打印那部分就行,不要投入什么时间复习,考得不深,记得打印习题课讲义。 最后说说课程,我没怎么听,一来是听不懂,二来是没必要,讲的不深就算了,也讲不清楚,还要用别人的英文PPT,我最后翻看西瓜书的时候才知道原来这些知识这么简单。 总的来说是门介绍课,大数据/AI的同学可以选这门课逼自己学一点机器学习和搜索的知识,自己看书就行,别听课,不过有点名性质的小测,所以不推荐旷课。虽然这学分混的不容易,但我觉得可能还是比你选计组要好,给个及格分6/10

1 1 复制链接
根本不行其实重点不在距离计算 重点是计算完距离要有一个比较的过程啦
立即登录,说说你的看法
secon 2019春
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:一般
  • 难度:困难
  • 作业:中等
  • 给分:超好
  • 收获:一般

两个班授课内容严重不一致,复习极为痛苦。


这门课严格来讲有两个老师,前半部分的搜索是由李金龙老师来讲,后半部分的ML才是王上飞老师讲。

李金龙老师上课用的是他给研究生上课时用的PPT,但是本科生阅读完全没有问题,而且李金龙老师上课非常风趣幽默,富有激情,也会扯一些搜索方面的竞赛、实验室的研究方向等。

 

王上飞老师的部分就比较麻烦了……讲的东西多+杂,授课内容主要基于西瓜书+吴恩达公开课,上课全程高能,由于时间限制,很多艰深的东西只花了一节课就讲过去了。上课是不可能听懂了,我个人对着西瓜书复习的也是极为痛苦,最后没办法只能交集复习法,然后一大半PPT连看都不用看了

至于逻辑部分,我们班提都没提,所以期末考的时候就直接去掉了。

老师似乎一直没有接受我们千奇百怪、貌离神合的听课方式(apple pencil、电脑pdf批注,etc),总是认为我们没有认真听课,总是在强调听课听课听课……虽然后期老师也理解了,但是感觉还是有点不太舒服……因为我拿着ipad记笔记总会被老师误以为我在玩ipad不听讲??????

因为老师总是认为我们上课不在听讲,所以上课小测不少,有一段时间甚至疯狂到了一节课讲课一节课小测(手撸决策树伤不起)的地步……

 

我们优秀的Fx同学已经整理出了试卷的回忆版,请自行查找,这里就不赘述了,各位亲们如果修过web记得把数据挖掘部分的资料和作业也带上哦,说不定会有奇妙的作用呢(指最后一题)

 

搜索部分严格来讲总共有两次实验,第一次是四个梯度下降算法的编程作业,算在作业分里面,第二次是A*算法和IDA算法+CSP问题。

ML部分也有两个实验,第一个和隔壁班类似,SVM+贝叶斯+MLP,可以调包但是需要调参,从这一点上来讲比隔壁班舒服一些。(手写上述算法可以加分,不过从最终公布的分数来看,手写的人寥寥无几)

第二个实验是开放性实验,自由选题(可通过参加某些比赛来作为替代),有开题报告和结题报告,各5min,时间比较紧凑,但是由于开放性大,而且助教给分比较宽松,因此只要出了成果(最好是能演示)的,得分都在85向上。

 

由于计划赶不上变化,导致我的复习流水线出现了Harzard,以至于这门课爆炸了,但是从最终公布的分数比例看,平时+实验的比例占到了50%,因此从这个角度来看,给分是很不错的。

 

总的来说,王老师的课广度有余,深度不足,很多东西都是粗糙的过了一遍,而且一些比较难懂的章节上课很难跟上老师的节奏,和xll对比下来我也不好判定孰优孰劣。

复习的时候抓住交集+两个班作业题+《人工智能——一种现代方法》就行了,西瓜书作为一本入门教材还是太难理解了一些(用某位julao的话说,西瓜书是,懂AI的人不屑于看,不懂AI的又看不懂)

1 0 复制链接
匿名用户 2025春
  • 课程难度:中等
  • 作业多少:很多
  • 给分好坏:杀手
  • 收获大小:一般
  • 难度:中等
  • 作业:很多
  • 给分:杀手
  • 收获:一般

别的不说了,每周小测才是最折磨的,频率高还不定期,课程内容很杂乱,建议提前上这门课。不然放到大三下学期再上会很累,而且给分不太行

0 0 复制链接
  • 课程难度:中等
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:中等
  • 作业:很少
  • 给分:一般
  • 收获:一般

老师讲得感觉还不错,但我个人没把握好度,以为水水就过去了,所以卷面分倒数几名:(,没想到大家考得都那么高,不得不做第二个实验。感觉我太浪了,试卷其实不难,又是开卷,奈何我打印的PPT,缩放过头了,看不清,又没有教材,于是alpha-beta剪枝那题直接寄,还有好几道大题也扣分严重。此外,由于当时比较忙,没做读书报告,平时分-40。。而且我还没买、没借教材(反而考后觉得教材不错,买了一本),不少题在教材上都找得到,而且按照教材阅卷,血亏。总就是bug叠满了,好在没挂。建议把握好主干知识,尤其是那些容易出计算题的知识点,至少打印出来。

0 0 复制链接
parapara 2019春
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:一般
  • 难度:困难
  • 作业:中等
  • 给分:超好
  • 收获:一般

非CS,信院来蹭学分的。

课堂体验:一般。内容多、杂、难、乱,具体的上面的同学写得很清楚了。主要是想吐槽一下王老师的课件,简直是大型高糊截图现场,大部分都是从其他课件和教材上截下来直接贴上去的,打印效果堪比**画质。

实验:外院的表示能学到一些东西。

给分:助教说的给分标准是期末开卷考试60%+平时分40%,不过最后调分了(然而我被卡绩了QAQ)。实验部分给分超好。上课小测是算进平时分的,所以没去上课的同学平时分可能会爆炸。

参考书:AIMA,西瓜书,模式识别,统计学习方法。第一本太厚,第二本太难,第三本没用,第四本不全。我平时用的是西瓜书和统计学习方法。

总之,这门课还是挺适合拿学分的。

最后推荐一下“南瓜书”,这里有西瓜书一些比较复杂的公式的推导,很有帮助。

0 0 复制链接

其他老师的「人工智能基础」课

吉建民, 孙达 8.5 (14) 2025春
陈恩红, 徐林莉 10.0 (1) 2013春 2010秋
吉建民 7.6 (37) 2024春 2023春...
徐林莉 7.4 (34) 2025春 2023春...
未知 2017春
陈小平 2008秋 2006秋
陈恩红 2011秋 2009秋...

王上飞老师的其他课

计算机程序设计A 9.2 (4) 2016秋 2015秋...
人工智能原理 8.7 (3) 2020春 2019春...
程序设计 10.0 (1) 2010秋
“科学与社会”研讨课 10.0 (1) 2025秋 2024春...
计算机视觉 8.0 (13) 2025秋 2024秋...
模式识别 7.0 (1) 2019秋 2018秋...
程序设计I 7.2 (5) 2019秋 2018秋...
C语言程序设计 2010春 2009秋...
多媒体技术 2016秋 2015秋...
自然人机交互设计 2009秋 2008春...
计算机文化基础 2009秋 2008秋...