机器学习概论(连德富) 2022秋 2021秋 2020秋  课程号:22900301
2022秋 2021秋 2020秋  课程号:22900301
5.8(13人评价)
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:很多
选课类别:计划 教学类型:理论实验课
课程类别:本科计划内课程 开课单位:大数据学院
课程层次:专业核心 学分:4.0
课程主页:暂无(如果你知道,劳烦告诉我们!)
点评 写点评
排序 学期

评分 评分 13条点评

OREO 2020秋
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:很多
  • 难度:困难
  • 作业:中等
  • 给分:超好
  • 收获:很多

课程内容:西瓜书1~11,13,14章;

课程作业:每章2道习题,虽然后面几章的作业都极难,但总是有大佬写的出来,如果是课后题网上也会有人分享解题思路,所以不是那么煎熬;

课程实验:一共五个:LR,  SVM,  XG-Boost,  K-Means,  LDA。其中LR和SVM和K-Means都是人工智能基础写过的实验,再做一边就会很简单,XG-Boost等于说是决策树加一堆循环,不是特别难,但最后写LDA的时候真的是难受死了,看了好长好长的几个网页才算弄懂了LDA,Gibbs采样,然而真正写代码的时候发现预处理远比现成的傻瓜式算法麻烦的多,不过总体感受来说还是挺好的。

课程考试:期中开卷,6道题,甚至可以查手机电脑,现在想想其实除了最后一道题其他的并不难,但是当时太急了所以没复习完也犯了很多没必要的错误;期末闭卷,也是6道题,难度两级分化比较严重,第一题考LR的损失函数和求导相关的证明,是考察记忆性的东西;第二题是决策树算法的一种不同理解,很简单;第三题考SVM的对偶问题相关的题,更像是运筹学的考试题;第五题考PCA的数学推导,考试的时候感觉有些无从下手,这学期上了大数据算法课才明白如何用SVD分解的方式严格地推导;第四题考高斯混合模型和EM算法,但可惜的是我真的没记住除了大致概念以外的东西;第六题考变分推断,也是除了联合概率其他的都不会了。总之两级分化确实严重,考察的要么是大家已经熟悉但是还没有深入的知识,要么是根本就不熟悉的知识,但题型的设置还是挺合理的。

给分:这么难的课程和期中期末考试真的全靠老师奶,可能是我考试写的没那么烂,每次实验也都按时交了,而且写的都还不错,总评92,老师真是大好人了。

建议:

1)首先对大数据学院的同学:机器学习可以说是最为关键的基础入门课程了,所以好好学还是非常有必要的,但机器学习难就难在对数学基础要求很高,以科大的线代和概统教学来看是完全达不到学好这门课的要求的(当然我也学得一塌糊涂)。建议学的时候找几本数学专业的线代或者矩阵论的课本看看,里面有些东西可能会很有用,像生成子空间,补空间这些概念其实会很帮助理解,一些矩阵求导的公式如果能记住是会在推导和考试中很有用的;概率论的知识多复习复习,数理统计最好也多看看,概率图模型和贝叶斯学习中会涉及到很多贝叶斯统计的知识,尤其是话题模型(LDA),是需要以很多贝叶斯统计先验后验分布的知识为基础才能更好的理解的,老师要在每周短短的三节课上详细讲这么多东西显然是不可能的,所以只能依靠自己下去一点一点弄懂。

机器学习这个学科和许多课的关系联系都太过于密切,除去线代和概统的基础,运筹学的对偶原理和梯度下降算法一类的知识也都是机器学习中一些算法推导的数学依据,另外,像熵和KL散度(KL距离)这些概念会在信息论课程中更详细的讲解,这门课真的是越学越让我发现数学和计算机算法之间那种令人着迷的联系,但也让我越发意识到自己的数学基础是多么的差(科大引以为傲的数理基础其实大部分都是对工科学生一点用也没有的大物实验基础吧)。

2)对于其他院的同学:大三的其他院的同学还是不要来选这门课了,毕竟很难,想学好也很花时间;信院AI班的同学在课程设置上来讲似乎是可以学这门课的,但是不是已经有王杰老师的预定折磨了,为什么要提前受一遍折磨呢?

但如果您是大四的同学,并且没有拿优秀的雄心壮志只想摸摸鱼划划水混4个学分并且稍微学一些东西,那么欢迎您为大数据学院的大三同学贡献优秀名额,不胜感激。

3)对于老师和助教:老师可以说是很用心在准备这堂课了,但是西瓜书上的东西实在是太多了,其实应该建议大数据学院教秘把人工智能基础和机器学习的课程设置改一下,或者是直接把刘淇老师的数据科学导论(现在似乎叫数据分析与实践)和人工智能基础和机器学习三门课整合一下,我认为一个合理的学习方式应该是:两学分的课来讲传统的人工智能算法(A*搜索一类的),3.5~4学分的课来讲一些概念上和推导上较为简单的机器学习算法(LR,  SVM,  K-Means),4学分的课来讲比较复杂的机器学习算法(EM算法,LDA话题模型等)。或者直接把所有的所有的机器学习算法都放在一门6学分的课上来讲,一周上六个课时,像物院的量子力学一样,这才是比较合理的,而且教材其实采用李航老师的《统计学习方法》和西瓜书结合会比较好一点,西瓜书上完全没有给出HMM模型的三个问题以及解决的算法,《统计学习方法》上面对此有很详细的讲解。正如计算机视觉课程的曹洋老师所讲,西瓜书作为初学者的教材实在是太不友好了,它更像是了解了很多知识之后进行回顾和遐想的一个提纲,但是这学期的课程上下来总的来说还是让我受益匪浅,也明白自己学得并不透彻,之后也会有很多复习和回味的必要。

助教的话可能有点力不从心的样子?毕竟在这个很多人都忙着改模型,调参数的时代,真正去细致的学习机器学习算法背后的数学的人可能并不多?但至少每次作业都有答案发在群里面,期中的答案也有,实验虽然看得比较晚,但出总评之前应该是详细检查过了,不像操作系统的助教看都不看就直接只给个及格分。总的来说助教还是比较负责认真的,只是这门课程实在太难了,如果能有道行高深的助教上一些习题课提纲挈领地把老师讲得知识再理一遍那就更好了。

最后感谢老师,这门课让我在被迫与计科的众多大佬狂卷的同时还能够认清自己最初转到大数据方向的初心是什么,也认清楚自己喜欢的是更数学,更基础的东西,而不是一些虚无缥缈的东西,即使不像大佬那样能够水论文依然心安理得,并且还能有一个挺好的总评。

14 0 复制链接
匿名用户 2022秋
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:困难
  • 作业:中等
  • 给分:一般
  • 收获:很多

实验5整不出来,太难了。现在看见0.25就难受

(最后修改于 8 0 复制链接
匿名用户 2022秋
  • 课程难度:困难
  • 作业多少:很多
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:困难
  • 作业:很多
  • 给分:一般
  • 收获:很多

你们五个助教都将得到这个课程的0.2分。

5 0 复制链接
匿名用户 2022秋
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:困难
  • 作业:中等
  • 给分:一般
  • 收获:很多

lab5 好难调,炼出来的全部都是废丹,孩子哭了

(最后修改于 4 0 复制链接
匿名用户 2022秋
  • 课程难度:困难
  • 作业多少:很多
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:困难
  • 作业:很多
  • 给分:一般
  • 收获:很多

两星观望,感谢助教趁着快过年了给出的教学事故级别的lab。

后续考完试出总评后会取消匿名并追加正常点评。

(最后修改于 3 0 复制链接
匿名用户 2022秋
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:困难
  • 作业:中等
  • 给分:一般
  • 收获:一般

冲着助教布置的最后一个恶心实验也要劝大家:快逃!

3 0 复制链接
˃ʍ˂ 2022秋
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:困难
  • 作业:中等
  • 给分:一般
  • 收获:一般

还没考试,lab5先扣两昏

(最后修改于 2 0 复制链接
ColinJ 2021秋
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:很多
  • 难度:困难
  • 作业:中等
  • 给分:一般
  • 收获:很多

来吹一波水

首先机器学习真的很难,不管是连老师的还是隔壁王杰老师的,基本就是让非数的同学来学各种数学算法(当然学数学的也不见得轻松),作业只是西瓜书原题,代码是一些经典算法或者会议论文复现,只要能理解上课内容+一定的代码能力不是特别难完成

要注意的是上课和考试的gap,上课仅仅是把各种算法讲一遍,数学内容只是各种参数怎么优化,怎么计算。但是到了考试,就是真的把学习过的算法思想应用到实际问题,或者应用一些算法(优化)技巧。如果能把上课内容全部吃透,卷子拿到8成以上的分数应该不成问题。

但是连老师给的实在是太多了...

一周一章不带停的,bayes 那一章甚至在PRML里面花了三章来讲,连老师硬是三节课讲完了。所以很多数学推导只能去记(然后忘),课后花大量的时间去理解。一个很有意思的事情就是你可能花一晚上也不能理解这个算法的思想,甚至可能因为你上课走神然后翻遍ppt也没找到某个变量是如何定义的(对不起连老师),所以上课专注的学习虽然困难,但对于这门课还是必需的,不然就得花大量时间去补。但同样的,如果能全部吃透,那之后无论是考试还是面试,这一块绝对是乱杀了

机器学习确实是需要花时间去理解的,同时也要利用好手头上的资源,老师讲的可能是他认为最能让大家听懂的,不一定是最适合的,b站大学上会有很多不同视角的解释,希望能帮到大家

2 0 复制链接
_(:з」∠)_ 2020秋
  • 课程难度:困难
  • 作业多少:中等
  • 给分好坏:超好
  • 收获大小:一般
  • 难度:困难
  • 作业:中等
  • 给分:超好
  • 收获:一般

课程内容&作业:这门课确实挺难,覆盖的内容挺多,基本上就是西瓜书除了12,15,16章以外的全部内容,不过作业较少(4次书面作业,每次6-7题),实验原先准备安排6次,后来因为没时间了所以改成5次(LR, SVM, XGBoost, k-means, topic model),最后一次实验由于延期考试+确实很难,DDL也改到了年后,这一点挺好的

考试&给分:期中全开卷(可以带电子设备查资料),期末闭卷,两次考试都很难,导致很多人表示某些题复习到了也不知道怎么做,我在考完当天下午复习下一门的时候发现有一道题想错了,瞬间感觉要凉了,不过老师给分巨大奶,真的感谢老师

p.s.个人认为这门课应该在8分左右,但考虑到第一次开课+给分超好,还是给了10分

2 0 复制链接
匿名用户 2022秋
  • 课程难度:困难
  • 作业多少:很多
  • 给分好坏:一般
  • 收获大小:一般
  • 难度:困难
  • 作业:很多
  • 给分:一般
  • 收获:一般

太煎熬了

 

纯在折磨

1 0 复制链接
匿名用户 2022秋
  • 课程难度:简单
  • 作业多少:很少
  • 给分好坏:超好
  • 收获大小:很多
  • 难度:简单
  • 作业:很少
  • 给分:超好
  • 收获:很多

怀疑助教的专业水平

尤其是最后一个实验

1 0 复制链接
yiersan 2020秋
  • 课程难度:困难
  • 作业多少:很少
  • 给分好坏:一般
  • 收获大小:没有
  • 难度:困难
  • 作业:很少
  • 给分:一般
  • 收获:没有

太煎熬了

被捞了 4-->6

1 1 复制链接
qingfenghxw连老师很严格吗

立即登录,说说你的看法

连德富

教师主页: 戳这里

其他老师的「机器学习概论」课

连德富老师的其他课

深度学习 1.0 (1) 2019秋
深度学习 2022秋 2021秋...
深度学习导论 2023春 2022春...
深度学习 2022秋