数学分析(A3)(李思敏) 2021秋 2020秋 2019秋 2018秋 2017秋 2016秋 2015秋  课程号:MATH100302
2021秋 2020秋 2019秋 2018秋 2017秋 2016秋 2015秋  课程号:MATH100302
9.1(15人评价)
  • 课程难度:中等
  • 作业多少:中等
  • 给分好坏:一般
  • 收获大小:一般
选课类别:计划 教学类型:理论课
课程类别:本科计划内课程 开课单位:数学科学学院
课程层次:通修 学分:4.0
课程主页:暂无(如果你知道,劳烦告诉我们!)
点评 写点评
Promise 2020秋

昨晚写的迷之被吞了,诉讼,,,重写一遍吧,我去年在左老师班修读了这门课,今年担任李思敏老师班的助教,去年上的时候大约每周花了半小时在这门课上,所以这次本来开始想着来混的,结果从期中考试来看和往年大不相同,可能是被隔壁班许斌老师橄榄了。等期末考完我再来更新进一步的情况吧,先说说这门课。

据我观察到李老师基本还是按书讲完了史济怀数分教材的14-18章,这本书这部分写得不那么好(和上册相比),主要有这几个方面:

1.习题质量下降,大部分都是野蛮计算和套判别法,每次改作业大家基本都是全对,但是考试的时候一个简单的用Cauchy收敛原理证明非一致收敛性竟然至少51.4%的同学完全没有这么做的想法;

2.Fourier分析部分过于简介,连Schwarz空间的定义都没有,相比起最后一章各种迫真交换积分次序和硬要用实的办法算被复变方法秒掉的反常积分的值,我认为这部分要重要得多。其实Fourier级数的收敛讲得还算详细,但是改作业时看到很多同学不会用Fourier级数的收敛定理,脑子里想的只有怎么计算迫真Fourier系数。这部分想要深入学习可以看Javier Duoandikoetxea的Fourier Analysis;

3.最后一点可能略有争议,如同2中提到的,我认为最后一章含参变量反常积分的大部分内容没有存在的必要,毕竟以后用的都是各种意义下的控制收敛定理和Fubini定理,可能是本人学识浅薄,我还真没见过哪个(纯数中的)地方用过这里讲的这些繁琐的定理,如果有先辈见过可以把我批判一番,我什么都不会做的(大嘘)


再说一说期中考试,卷子可以在章神的主页上看到,这套题我认为出得既好也不好,它好就好在不像往年一样整张卷子全是迫真套判别法和野蛮计算幂级数,而是实实在在考了不少思想,它不好就不好在,对于按部就班上到大二上的同学,可能最后两题真的不太友好,

具体说一下每个题:第一题是送分题,给级数求和;第二题也是送分题,讨论一个最基本的1+\frac{1}{n^s}形式的无穷乘积的收敛性;第三题还是送分题,找一个\frac{x^n}{n^y}形式的级数的收敛域;第四题还是送分题,就是上面提到的要用Cauchy收敛原理证明(判断)非一致收敛性,此题让人大为吃惊,一半的同学直接判断错了,判断对的同学也只有不超过11.4%的同学想到了用定义解决问题;第五题证明一个函数项级数的周期性和连续性,注意到内闭一致收敛性就很容易拿下;第六题继续送分,类似于Abel判别法的东西;第七题大致想表达L^1空间中的逼近性质,最后一问类似于L^p空间的可分性,这道题没学过实分析的同学可能不太容易做,但是重修的同学基本全军覆没,,,最后一题有点灵性,如果解析延拓到复平面上再用Weierstrass定理会直接秒掉,监考的时候我一直在想这个题怎么不用复的办法做,后面看到110个同学有2个想出了参考答案中的做法,非常令人感动(泣)。

总的来说这张卷子除了第七题的5分和最后一题的6分,其他89分对于基础扎实的同学拿下是不难的。但是最后平均分仅有67,80分以上不足20%(19.19%),一半左右的同学在60-70之间。不知道是不是考前给同学们讲的往年题误导了大家,但是总而言之这种出题方式比往年高了不知道哪里去了!


说了这么多,主要有两个意思,一个是希望同学们在数学学习中要逐渐培养自己的(好的)taste,不能课本上有什么就只学什么;另一个是,妮可数院由于各种屑课的压迫,培养方案严重滞后,这门课往年可能也要算一门轻度屑课。比起大二了还在捧着一本谢惠民瞎刷,我更希望同学们多见识见识更广阔的数学,问问自己想干的是什么,不要到了分专业的时候呈现出形如特朗普和希拉里都不想选的状况。最后预祝各位同学期末能取得一个好的成绩,上面是我的个人看法,


期末考试确实太简单了,然后平均分比期中还低,,,当然我估计如果不是3月3号考而是3月13号考平均分高个7分甚至6分应该是有可能的,放一个试卷和解答在这里:MAA3 final 2020fall.pdf

9 2
嘉然今天吃什么骆助教好强
PB18纯数-田JH骆助教太强大了!太强大了!!太强大了!!!

立即登录,说说你的看法

JohnDoe 2019秋

因为本人提前学过所以评价肯定不适用于所有同学。下面本人说说我对这门课的看法。

1.内容

就我个人看来,函数逼近以及函数极限与积分的交换贯穿数学分析A3。研究极限和积分的交换就是为了给函数逼近之后的操作创造合理性。

函数逼近考虑的是多项式和三角级数,前者主要是魏尔施特拉斯逼近定理,后者则有加其他条件的三角级数逼近,以及不加条件的平方收敛。

而极限与积分的交换,以含参积分为例,我们要考虑其在参数趋向于某个值时该含参积分的样子,一个合理的想法是从离散的考虑(离散的情况有时候会比连续情况更加容易,也有启发作用,而且在R中由海涅归结原理,连续的极限和离散的极限是很像的。)因此我们会先考虑{fn}的极限与积分交换的问题,也就是说在什么极限的意义下,极限与积分是可换序的。自然的,我们会考虑逐点收敛,但很容易发现这个积分与极限不一定交换(实分析中会研究这种收敛),那么我们自然会想要加强条件,为此引入一致连续(最大模意义下的极限)。则这个意义下很容易证明最大模极限一定是逐点极限,连续函数的极限函数仍然是连续函数,可积函数仍然是可积函数。并且在长度有限的区间上,他们积分的值也是收敛的。而后自然是再加条件使得其在无界区间上积分值也收敛,这个我认为也只是技术上的难度。(实分析会考虑其他范数下函数的极限和积分)

而后面的傅立叶分析和特殊函数,我觉得就是把前面这些应用上去,我也不知道该说什么,就是稍微带了几笔,感兴趣的话可以去看看更详细的书。如:如果对傅立叶分析感兴趣的话可以去看stein的傅里叶分析,但对于特殊函数圄于本人所学,无法推荐。

2.授课

本人未去上课次数较多,故不做评价。

3.考核

平时分:个人觉得还行,老师好像点名,但被点不到好像也没什么事。作业分应该与助教有关,感觉也还好。

考试:19年不难。

4.成绩

略,不清楚调没调。

5.总结

谢谢老师助教的辛苦付出。

3 5
墨眉无锋大给给?
。。膜给给!!
_(:з」∠)_回复 @夜宵: 膜夜宵!!
氢氟酸膜给给
。。回复 @氢氟酸: 膜宇宙之神

立即登录,说说你的看法

炸年兽 2020秋

占坑

老师很有趣

助教很好看

2 2
ybb助教很好看也太艹了
Promise没有说助教很恶臭我就很欣慰了(大嘘)

立即登录,说说你的看法

wozuicai 2019秋

  李老师讲课水平很不错的,无论是语言的组织还是材料的取舍都很妥当,但是他最厉害的应该是板书。上课很轻松,简直就是一种享受。

   记得有一次上课,老师看见最后面有个同学睡着了,就把他叫起来听课,结果那个同学一脸懵逼地起来(印象里好像还叫了好几次),老师才发现是助教,场面一度十分尴尬。

   期中期末感觉有点两极分化,不及格的有很多,八九十的也有很多,所以调分是不怎么给力,不过难度都不是很大,除了最后一题基本都是很基础的题目。唯一的一点遗憾就是感觉老师讲得有点少,我感觉可以再深入一些。

 

2 0
章神伟大 2021秋

老师挺传统,人挺和善挺幽默的。

除了有两次小测好像平时也没啥事儿。

考试的话:掌握清楚课本上的例题和习题足够。期中简单,期末更简单。本来以为期中是给期末保底的结果最后发现期中拉期末了(捂脸.jpg)

适合像我一样的摸鱼人。

(最后修改于 1 0
dhqnb 2019秋

喜欢李老师的讲课风格,娓娓道来,节奏不快,但又提纲挈领,思路非常清晰。省掉了教材一些不太重要的定理的当堂证明,对学生来说接受程度就不低了。 课程内容不难,考试大多数题和作业题难度相当。 本学期至少给卡绩的同学都调分了,笔者侥幸94.1→95。

1 0

李老师讲课挺好,不会让人很困。

 

1 1
炸年兽你的名字和观点我都很滋瓷

立即登录,说说你的看法

alansui 2018秋

上大学之后第一次被卡绩点…本来这学期就崩了还指望数分拉拉分的… 言归正传,老师还是很认真的,课程难度也比较容易,可以说是大二上最容易的一门数学课了!

1 3
ʕ •ᴥ•ʔ虽然不是第一次被卡绩点 但后面的理由 俺也一样(大哭
希望GPA每学期越来越高表示几乎每门课都是卡绩
alansui可能是85以上的人他都没调。。回复 @ʕ •ᴥ•ʔ:

立即登录,说说你的看法

数院A3的内容不多(跟隔壁班相比这学期内容太少了),一学期下来主要就是在学各种一致收敛的判别和性质定理,一点Fourier分析,顺便复习一下算积分。初次接触可能会觉得陌生(当然这是所有新知识的共性),但考前自己总结复习一下就发现也没个啥。

李老师讲课很好,很详细,会把知识的来龙去脉讲清楚,因为课程容量本身就少,老师讲课不紧不慢,基本按照课本内容讲授,偶尔遇到繁琐的内容也会删繁就简。如果能做到认真听课,平时也不必花太多功夫。一些基本的技巧,也只是熟能生巧。

0 0
冰淇淋喵 2021秋

李老师上课挺好的,就按书上的顺序。

期末比较简单,平均分、中位数都比较高(好像七八十分的样子)

好好做课后题就是了。

还没出分。

 

0 0
ustc渣渣 2020秋

李老师上课思路非常清晰,讲课很好,会讲重点而舍弃一些很屑的东西,考试也是尽可能得简单,突出重点,不会考一些奇奇怪怪的东西,奈何给分有点…强行235,基本一分不调,可能是因为高分太多了吧。想拿高分还是踏踏实实学,好好考试,妄图调分,基本没戏,就这样吧。

0 3
Promise根据我收集到的样本给分其实更接近226(指出)
ustc渣渣回复 @Promise:骆助教!yyds!
ustc渣渣回复 @Promise: 估计两种算法吧,毕竟226的话我得分应该比现在要高(悲)

立即登录,说说你的看法

Misaki 2020秋

由于大一结束从数院转到了计算机系,而数分A1A2没有办法替代单变量多变量,于是被迫补修数分A3

明显能感觉到数分A3的难度低于数分A1和A2,套路化计算类的题目增多,整个课程围绕无穷级数和反常积分两大核心展开,相信像我一样数学不好的同学学完A3之后,也会发现Abel,狄利克雷等判别法在不同情况下的相似之处,对我来说这是上的最开心的一门数分了。

出分之后,期末平均分66,而最后李思敏老师好像是按照226的比例给分,几乎没有调分,我期末80,期末排名也在40%之前,本来以为可以混个3.7,结果最后给分只能说很一般吧,绩点被往下拉了T T

然后李老师上课貌似真的是照本宣科,书上写什么就讲什么,不过讲的还是清楚。对于我而言这应该是最后一门数院的专业课了,完结撒花~

最后,表 白 骆 言!我爱骆言114514次,胜过爱数分1919810倍哈哈哈哈哈

0 0
ybb 2019秋

老师是很传统的老师,没什么特点,但人挺和善的。

课非常简单,基本上就是算积分算级数,比较没劲。尤其是Fourier分析课本上几乎只讲了算Fourier级数,很多有意思的内容都没有讲。感兴趣的可以去看stein的Fourier分析(写的相当不错,数分基础就能看)和javier的Fourier分析(需要一些实分析基础,但讲的其实不算难)。

作业不多,基本上都是课本上的野蛮计算,比较无聊。

期中考试不难,有相当多的送分题,只是需要细心一点。比较有难度的也就是最后一题,不过这题第二问放弃了也就是扣个五六分。期末考试更水,基本上全都是很基础的题目。

给分:似乎是小数点后四舍五入,主要是期末太水了,好多90多。不知道低分的老师捞没捞。

助教人很好,但是事homo(悲)

0 1
评课社区猎码人助教人很好,但是事homo(悲)

立即登录,说说你的看法

l_x 2019秋

A3最后的积分换序有难度的,不过要求不高。然后李老师上课最大的优点是脉络清晰,突出主定理和核心概念,这对知识框架的形成和梳理很有帮助。

0 0
Recluse 2017秋

教材依然是《數學分析教程》。這學期講了級數,函數項序列,反常積分,傅里葉分析初步,含參變量積分。

作業不多,基本都是書上的練習題,偶爾惠佈置問題。

期末考是隔壁左老師出卷,似乎沒考gamma函數。

給分不錯,總評92。

0 0

李思敏

教师主页: 暂无

其他老师的「数学分析(A3)」课

左达峰 10.0 (5) 2021秋 2019秋...
胡森 9.4 (9) 2021秋
史济怀 10.0 (1) 2015秋 2014秋...
许斌 9.0 (1) 2020秋
未知 2015秋
任广斌 2016秋 2012秋
黄文, 邵松 2011秋

李思敏老师的其他课

复分析 10.0 (6) 2022春 2021春...
线性代数(B1) 9.8 (6) 2019春 2014春
复分析(H) 10.0 (4) 2020春 2016春...
数学分析(B2) 9.0 (3) 2017春 2011春
数学分析(B1) 9.0 (1) 2014秋 2012秋
微积分(1)(H) 2013秋
微积分(2)(H) 2013秋
单变量微积分 2009秋 2006秋
复变函数A 2011秋
多变量微积分 2010春 2009春...
常微分方程 2008秋
微积分(上) 2003秋
拓扑学 2005春 2004春
线性代数 2008春 2007秋...
线性代数 2005秋