选课类别:计划内与自由选修 | 教学类型:理论课 |
课程类别:本科计划内课程 | 开课单位:信息科学技术学院 |
课程层次:专业核心 | 学分:3.0 |
於俊老师的《人工智能导论》考试相对简单,考前划重点,考试内容多来自作业和讲课内容,如决策树,未触及支持向量机等复杂算法。尽管批卷时间较长,给分优厚,优秀率高。
作业与实验次数较少,两次作业和两次实验要求明确但不严格,DDL较长且压力小。助教乐于助人,对作业要求不高。整体工作量轻松,上课不点名且无小测。
教授课程内容广泛,从搜索、知识表示到监督和强化学习,难以全面掌握,但也不作为考核重点。授课速度较快,课堂互动欠缺,PPT风格类似答辩。主要面向自动化专业,作为导论课,较水。适合自动化或其他相关专业学生了解基础知识,总体体验佳。
好像整个班考的都不好 希望老师狠狠奶一口 给分好点这门课真的没有那么不堪 (毕竟事情真的很少)
1.26 你批完卷子十几天了你倒是出分啊。。。
2.2 就别的不说,作业两次,实验两次也都不难,不点名,事情非常少,虽然作业要求和实验要求说的不清楚,但是收作业的时候也没去刻意的扣分什么的,而且ddl巨长压力很小,助教对作业要求也不严,人也好说话。虽然画的考试范围和出的题有点偏离,但是给分真的奶,所以无伤大雅 可能唯一的缺点就是课上讲的太快,但是自己看ppt学问题也不大的捏。 反正,我感觉体验还是不错的。。
讲课依托答辩,这门课是开给自动化专业的水课,AI和网安都可以选。老师在水,讲课没什么激情,倒是做了几百页的PPT在哪里枯燥无味地讲,PPT做的也是很答辩。课上按照吴飞的那本教材来讲的,作业和实验都是上面的内容, 这一点和AI班就不一样了。
课上讲了一大堆东西,从搜索到知识表示和数理逻辑,再到监督学习也就是常用的机器学习算法(决策树、支持向量机、神经网络等等),最后还有强化学习。这些东西要想全学明白是很难的,所以这门课也不会这么为难学生,毕竟这门课主要是开给自动化的,自动化专业的同学了解了解就好了。
最后考试直接划范围,结果都是很简单的东西,要么就是作业题里的东西。机器学习算法就考一个决策树,甚至连支持向量机这样的都没考。挺合理的,反正随便整整就行了,也别搞太难。
给分好,毕竟自己讲的烂给分还不好的话早就被攻陷了。一学期没上课,作业实验都是抄的,考前就看了一下决策树怎么算、逻辑推理的归结证明、记了几个公式,最后90,马马虎虎。