选课类别:计划内与自由选修 | 教学类型:理论课 |
课程类别:本科计划内课程 | 开课单位:数学科学学院 |
课程层次:专业核心 | 学分:1.0 |
刘党政老师的《概率论进阶》课内容丰富,尽管部分学生认为课程结构松散,涵盖范围较广,但多数学生认可其拓展视野的价值。课程主要涉及随机矩阵(如半圆律、矩方法)、统计物理(如Ising模型和Curie-Weiss模型)、信息熵、Lindeberg替换等,虽内容看似科普,但深度和复杂性对部分学生而言颇具挑战。部分学生反映课程中过多假定物理模型的背景,对没有相应基础知识的同学的理解造成困难。
作业量不大,但难度普遍较高,学生建议认真对待并利用习题课讲义,认为其是考试的有效复习材料。期末考试较大部分为作业原题,作业题目中困难和细节较多,学生需重视修正版的讲义和习题课内容。试卷广泛覆盖课程内容,以证明题为主,部分题目源自课堂及作业,难度上略有化繁为简的倾向。
总体评分较友好,体现出刘老师对学生理解和学业压力的重视,平时和期末的分数比例一般为四六开。部分学生反映考试时间安排与其他课程冲突,对复习计划造成压力。然而,刘老师在考试中会提供帮助和指导,助教也积极参与,成为学生取得好成绩的重要因素之一。
有学生提到笔记和习题课讲义帮助重大,是理解复杂概念的重要工具。课堂上刘老师虽然讲解可能过于依赖板书,部分推导过程可能跳跃性大,但通过自学或助教指导,大部分内容可消化吸收。部分学生认为课程展示了与统计物理的结合运用,但也指出如果课程能像概率论内篇般流畅,其教学质量会更高。
总的来说,《概率论进阶》适合想在概率论领域有更深入了解但具备相应数学和物理基础的学生。虽然有难度,但乐于挑战的学生可从中获得丰富的知识和视野。
25春助教,先占个坑,期待我们双向奔赴!
要谈论概率论进阶,那不可避免的要先去聊聊概率论究竟学了些什么。
回顾概率论这门课,除去大篇幅用于建立随机变量是什么,以及对一些特定随机变量的计算和具体的model之外,其实学到的就是两个定理:大数定律和中心极限定理。
一般来说,大数定律描述的是我们关心的概率对象总会收敛到一个最可能的分布,而中心极限定理则刻画的是在这个收敛过程中,我的概率对象产生的波动(fluctuation)。 同时再配上这门课或许会提到的大偏差(Large Deviation Principle),关心在指数小的小事件上概率对象的情况。这几项基本上涵盖了概率论研究里面的大多数问题。
而概率论课程则是介绍了指标集为
在科大概率课程的开设里,高等概率论处理了随机变量指标集为
那么概率论进阶这门课想要干什么事情呢?我们关注了一些具体的model,随机矩阵以及统计物理里面的Ising model。抽象来讲,我们关注的是一类指标集为
随机矩阵的大数定律,特征值的经验分布会趋向于
平均场Ising model,以及1d Ising model的大数定律和波动,通过转移矩阵的方式证明。
lindeberg替换则是让我们能够将复杂耦合的随机变量
熵(entropy)则更是老生常谈的典中典,在概率论还无法证明系统的大数定律和中心极限定理之时,物理学家就是通过熵最大来猜测系统的平衡态是什么样,熵值最大的状态,就是概率论里系统的大数定律收敛过去的状态。
总的来说,这门课想要介绍一些概率论处理没那么好条件,但是上完本科概率论课后就可以理解的模型,这些内容也主要来自于统计物理模型。都是一些比较粗浅的介绍,但是对于第一次接触的同学来说,可能内容比较多和困难。
最后,介绍概率里面几个比较有意思同时也和这门课程有关的问题吧。
hermite随机矩阵特征值的经验谱分布整体上会almost surely收敛到半圆率,这时随机矩阵的大数定律,而我们在[-2,2]中一点x放大来看,可以观察到随机矩阵特征值在x处的波动,当
Ising model,当我们考虑高维Ising model时,他对于温度会出现相变,当温度程度较高时spin会比较均匀的分布。但如果此时我们向其中添加很多+的spin,或者说我们考虑这个系统的大偏差,考虑他condition on +的spin比- spin多很多的事件中,他会出现多出来的+ spin集中的现象。这些+ spin集中在一起有一个固定的几何图案,被称作wulff crystal,这个几何图案便是Ising model大数定律所对应的对象,当然在物理上也可以解释为最大熵/自由能最低的图案。同时,如果我们考虑wulff crystal边界的波动,根据条件的不同,他可能会出现高斯波动,也有可能会出现前面所提到的Tracy-Widom分布对应的随机矩阵波动。
课程确实会比较零碎,但是减少这也是没办法的事。但刘老师已经给我们打开了好几扇大门,把概率关注的一些问题告诉了我们。使用的技术或许没有那么概率,但我认为这正是概率的美妙之处。
被党政弄的想去上高钙和研随了🥰
认真看习题课讲义是我做过最正确的选择。
放一份略显啰嗦的笔记:概率论进阶.pdf
难度确实不小,而且统计物理那一部分确实很多计算。但老师也算口头上讲了一些物理背景,我认为上课认真听,课后对着笔记自己去补一补还是能抓住主要思想的。(而且对着笔记自己推一遍,把各种细节想清楚,还是很有趣的)
PS:我不会告诉你们概率论期末压轴题,前一天进阶课刚讲。
这门课刘老师讲的不如内篇流畅,有些记号也很初见杀,但出于它体现了一种很好的风格—给学生讲一些提高性的topics帮助学生找到兴趣方向,我还是愿意打个10分。这门课从内容上来说真的不算很难(在有充足时间好好听课、回顾笔记的前提下,但似乎如果不提前修掉些课的话大二下最后几周巨忙),我们慢慢捋。
第十三周的时候UCLA的尹骏老师来科大讲授随机矩阵短课程,刘老师为了让班上感兴趣的同学能听懂更多,把随机矩阵作为第一个topic。这部分只有一个主定理,即实Wigner矩阵的半圆律。我认为老师在小阶矩上花了太多时间观察,这部分计算在内篇已经讲过一样的,而且通过期望为0和独立性条件观察出“非消失项的每个矩阵元的次数必须
之后的Linderberg替换是这门课比较重要的地方,通过替换术转化为微小差距的估计,为比较精细地taylor展开创造条件,一二阶矩相同允许我们把要比较的东西砍剩高阶小量。这部分的难点在于变量写着比较杂,不同情况下对高阶量的控制方法也不一样。期末考试出了一个变式,记号主打一个繁!矩方法难度不大,也不需要精细估计。
熵这节比较有意思,Gibbs不等式看着很神奇用着也是。今年考的是多元正态的熵,可能想体现一些内篇知识的回顾。
Ising 和 Curie-Weiss 就比较难了,我想把二者“混为一谈”,仅仅对处理手段分类。这部分主要的方法有两类,一类是通过把矩母函数
之所以说以上内容学起来没那么难,是因为作业题大部分都是对课上证明的补充、仿写,对重要例子的计算。配合食用的话其实能掌握的bc。
考下来感觉老师确实塞了非常多作业内容在里面,估计有个五十分吧,总体来说相当有难度。给分不错,或许期末溢出之后就给满分了吧。
最后附上一些不完整的ldz语录(他真的是一位很博雅、很有腔调的学者):“往往一门课到最后讲的知识都是不考的,但这些知识才是这门课的精华。……黎曼猜想当然是很美的,但如果一个人没有学过复变函数,就只能给科大教授群发邮件声称Ta证明了黎曼猜想,教授也看不懂Ta写的东西。所以了解了更多知识以后才能更好的欣赏这些美妙的定理。……所以说,如果你没有学过概率,就会认为摸摸球就能摸出整个概率论,但我们学过了以后发现不是的。你们有些人以后学到高等概率论的时候,对它的认识和在我这低等概率论课上的认识又会是不一样的。”
今天刚刚考完期末,先占个坑,等到放假了来评个课。
附上本人的笔记,仅供参考:http://home.ustc.edu.cn/~wyx_mail/study_notes.html/Probability%20Theory-Outer%20Chapter.pdf
更新:喜提4.3,说明照着这个我上传的笔记背可能海星。
前排提示:因为本课程13周开课较晚,第一周想退课的同学可以尝试如下操作:
可能可以不使用放弃修读机会退课,其他课程中有人成功过。
考完试取消匿名来评个课
上课体验:前一周半很好,体验和概率论内篇一般丝滑舒适。只不过后面ising和cw模型那里实在阴间,难以听懂,物理背景解释很少,大部分时候是在抄讲义,根本不知道他在干啥。
作业:和上一点类似,前2.5次作业还好,后面题都看不懂。还好助教会提前在群里发往年习题课讲义
助教:zgy助教知识水平过硬,问问题从来没有卡壳,后面两个模型习题课感觉讲的比正课好。。。习题课还是建议去听,因为貌似讲义bug挺多
考试:80分作业+5分数学分析送分+5分高中数学送分,还有20分题目难一些。ising和cw模型只考作业题但是答案背着十分痛苦……
给分:平时分40%-50%,而且按照三次作业一次十分+70计算,批卷大放水平时98期末96总评97。内篇3.0外篇4.3。给分这么好还是推荐一波吧
目前来看,很阴间
讲统计物理的模型,抛弃了物理直观和数学简洁表示,弃其精华,取其糟粕。
课程前半段讲lindegerg替换、半圆律、高斯正交系综、Carleman条件等,后半段在讲信息熵和统计物理模型。
前半段实质上是讲初等组合计数,后半段上的数不数学物不物理。要讲Ising模型,没有前提铺垫,直接开始定义一通爆算概率,让人摸不着头脑。既然是理论物理的模型,在授课时应该首先把包括Hamilton量等物理知识做大量的科普,在接受了物理客观实在之后再解决概率问题。跳过中间步骤走捷径解决衍生的数学问题,背离了理解接受物理规律的初衷。同时,许多内容内篇没讲,外篇直接拿来用,比如矩母函数。
纵观本课,感觉就是教了些组合技巧,看看主项,验证一个指数型熵不等式,会用矩母函数。
不建议选,想了解ising model可以选热统A,其他外篇东西可以一天内速成
6.23下午期末,原题含量没那么大,还是挺难的,回忆一下题目(满分110)
第一大题(10')(二选一作答即可)
(1)写一个概率论与其他学科有关的例子
(2)写出一个矩母函数只有纯虚零点的随机变量
第二大题(20')
计算
第三大题(20')
计算
第四大题(20’)
证明
第五大题(20’)
证明对任何可微函数
其中
Hint: 令
第六大题(20’)
定义
(i)写出
这门课其实就是补充了点并不在概率论本篇的大框架里面,但又比较具有代表性的东西。不过由于课程时长限制,讲的比较浅,而且感觉dz在后面统计力学的部分花了很多时间讲物理背景,但又没太讲明白的样子,个人认为这方面以后开课的时候应当改善。这学期目前讲了随机矩阵(
作业不多,上课如果认真听了的话难度不算太大,而且有往年的讲义和答案以供参考。今年的考试难度比较大,作业原题没那么多,想考好还是挺难的。
概率确实是很有趣的,如果大一的时候先接触的是概统有关的知识,可能现在也就在做概统了。
期末卷面106,感觉改卷应该放水了,后两题写的都不严谨居然还能有这个分。
如果必修当我没说。
学期初想着反正1学分的课,也讲不了多少东西,实在不行就退课。后来又看到选课人数一度接近80,就放心选了。尤其是第一节课,ldz按时优秀率可以给到70%,让我确定不退课。
但概率论内篇期末复习的时候,才意识到自己并不擅长这门课程。当时打算3.3+就留,3.0-就退。
ldz给我捞到3.3给我了一点继续学的动力,于是硬着头皮听。
本学期内容(8次课):
整体像是一个科普课,所以导致了一个问题:
前不着村后不着店,突然就蹦出这么一个东西。矩方法那块还好,是从CLT派生出的一些想法。虽然Carleman和Riesz条件也有些突兀。
到了随机矩阵就逐渐混沌,为什么要研究它的特征值的分布?为什么能和半圆律产生关联?为什么计算路径的时候要求不相交?
这些问题在课上都没得到明确的解答。邹助教的讲义里补充了一些,但很多motivation依然没有讲清楚。
到了Ising和CW两个物理模型更是如此,只是大概说了一下这跟磁化有关系。这两节课用的符号极其“物理”,式子中各种不知道含义的字母和起源于热统的关系式让人直接放弃了理解,成为一个无情的抄笔记机器。考前一直在看CW的笔记,至今没弄懂它是怎么从Ising中简化而来的,为什么它的内蕴关系式长这个模样。
好在最终Ising和CW没专门考笔记内容,躲过一劫。
作业一共3次,难度很大,有些题不看去年的讲义根本没有思路。作业要认真写,至少认真抄完整。空题、大量错误的作业是要被扣分的,作业-1分,总评至少-1,得不偿失。
考试范围是前三周,5道题,满分110:
还是相对友好的,1-3为作业(似乎是原题),4是作业的简化版;5有四问,前两问验证Chebyshev多项式的性质,第三问计数,第四问(附加题)研究极限。
虽然考了原题,但这不影响我进考场前刚看到3的原题,一发下卷子就忘(
按照今年,复习的时候优先级是 作业>>笔记(笔记也看不懂)
By the way,俩物理模型的讲义当周发出来了,但是顺序全乱,上课要是没跟上就有难了(bushi)。
据说作业和考试比例未定,但似乎一分不调。
学完Ising想退来着,但权衡再三,不舍得把一次退课机会浪费在1学分上,大三的研课有的是你退。
总结就是:
选复分析(H)虽然被卷爆,但确实能多学很多东西;这门课在期末听耗费时间,也没啥大的收获。
平时分100 期末83 总评90
给分还是挺不错的
另:作业允许考完试当天补交,甚至之前觉得作业分太低的也可以重交一份。
先说结论,概率论外篇的体验远远远远不如内篇。
万万没想到啊万万没想到,整个本科四年只有两次的中期退课机会,被我用在了一学分的概率论进阶上。
学期初被刘老师(他是我班主任)拷打为什么选了近实复的H课不选概率论进阶,一怒之下啊,我就选了。
然后就被第一次作业整破防,提交ddl当晚写了退课申请。。。
老师上外篇就有点没有章法,看了板书听了半天课还是听不懂这些东西是在干什么,只有第二周的Lindeberg替换术还有内篇的丝滑体验,剩下的随机矩阵和统计物理相关根本听不懂,可能是我太笨了吧。
然后作业难度也很大,虽然有答案,但我答案也看不懂,然后写着写着就破防了。。
只能说,哪怕点击即送4.3我也会在那一晚写退课申请的。人不能总是给GPA当狗的,总得考虑一下你学这个课爽不爽。如果太过折磨,那还是早点扔了吧,哈哈。
今天刚出完成绩,期末98总评99,感觉是平时4期末6的比例?)本门课前半部分介绍了矩方法,随机矩阵等内篇未涉及的知识,不过感觉上课对于特殊情况(比如n=1,n=2这种)讨论的时长有点久了)后半部分主要是统计物理的内容,包括熵,ising模型,CW模型等内容,前面评课的同学提到了有些物理量老师讲的比较模糊,不过我的实际感受是这些老师可能只是口头上提过没有板书,全程跟下来我还是勉强能理解。最后还是希望这门课能把前半部分的内容更加深入一点,减少一些平凡的验证
扣一星是考试时间安排,和原子物理撞车了,对我这种喜欢突击复习物理课的人不太友好,导致考试爆炸了,希望dz能捞我。在大二下课程压力比较大的情况下不推荐选课,很容易和考试撞车,建议旁听就好,课程内容还是相当精彩的。
出分更新,期末81,总评91,给分相当好,其中第五题判卷大放水。
想拉高一下评分。
进阶的内容比内篇跳跃性更大,科普性很强,上课能跟着老师走就算90%的成功。但是不要因为科普性强就不认真听,否则就是在教室罚坐。
作业ddl非常晚,非常符合一门一学分的课的注水量(doge)。
期末考试几乎作业题,没啥可说。考前能把作业题都百分百理解,也算得上有点水平。
老师和助教都超级和善谦逊,考试的时候如果题目不懂可以当场问(老师甚至提示怎么开头,怎么得分)。
很多大佬选择旁听这门课而不是正选,因为这门课的内容确实太科普太零散了(很多细节比较难啃,所以被吐槽了两年)。我认为至少框架是清楚的,还是在可以接受的水平,况且最后给分看起来皆大欢喜,就当一学分的数学通识,也不亏。如果是🌸班,更加推荐,本学期的几门h课里这是算比较愉悦的了。
不得不说概率论确实上的很好,但是至少对于我来说,这次的进阶课上的还是比较失望。最后两个物理模型用了三节大课时间讲,但是由于缺乏背景知识或者其他一些原因吧,我并不知道他到底要干什么,讲的很快,最后三节课一直在算,但很多量并不知道有什么意义。复习的时候也并没有看懂给出的一些参考资料,最后的期末考试就是背作业答案,总评严格作业考试四六开不调分。应该还是我太菜了吧(笑
最后三分送给负责的助教和除了最后的物理模型之外的内容,如果不是华班建议旁听完标准的外篇内容后就可以润了
我概率论进阶比我概率论总评还高,就离谱......
(≧∇≦)/ (≧∇≦)/ (≧∇≦)/
考试考破防了,我感觉我只能说除非很想走概统,不然应该直接将其退掉。虽然学到了一点东西,但是和因为学这门课所耽误的事情比起来还是差多了,考试只能靠背作业,结果发现dz稍微变形一下就抓瞎了,可能是我的能力问题,但我还是不建议在普遍同学大二下比较繁忙的课业下选进阶课,大三再来可能会好一点。
这学期的进阶课体验不是很好。
总体来说选择的内容还是不错的,但感觉主次没有把握好。尤其在讲统计力学模型时上课大部分时间在计算,结果老师过多运用口算大法而没有写出计算细节。另外整个外篇中许多关键问题都是组合计数,老师上课解释的也不算很完整,作为之前没有接触过组合,图论的人还是有点迷茫。
也许外篇的内容还是适合像原来一样作为拓展穿插在内篇中讲授,现在集中一段来讲可能会使人忘记了“概率”在哪里。不过这也没法改变吧。
课程最后一周讲了李-杨单位圆定理,李-杨类与Riemann假设的联系,感觉还是很值的。
今年平时期末四六开,喜提和概率论相同总评,完美融合!
dz给十不给零,广翼助教也是巨大强大且负责,但是我太菜了期末寄了😭还是看看远处的原子物理吧😭 更新:翼神!我的超人😭😭😭 翼神!没有你我怎么活呀😭
感觉进阶课的东西并没有那么进阶;讲的东西有点无聊了,只是与其他领域的一些结合,并没有更深层次的去讲概率论的一些知识。
关于课程 选材方面确实比较零散,比起课程更像讲座,但四周时间可能也很难具体讲完某个方面,所以这种差不多一周一个专题的讲法多少能开阔视野。 老师讲课时确实跳步挺多,甚至有一些是并不显然的,不过在课后自己思考一下或者询问老师助教应该都能得到答案。 课后的题目也和授课内容关联比较大,很多是对一般情况,或者老师略去的证明细节的验证。除了个别1-2题外,其余的题目不会做基本是上课内容没懂或者证明细节没想通。 至于不说明含义直接给参数这个我觉得也还好,毕竟在跳了一些验证的情况下才讲完。如果还要讲物理含义可能真的没有那个时间听故事,大不了就当成一个数学模型Shut up and calculate.
关于考试 5=4a.e.作业原题+2/3数学分析+1/3*新题目 最后还有一道附加10分
总体来说虽然上课内容有点困难,但几乎没有额外的难度,把作业和笔记都弄懂就足够了。
前两部分尚能接受,最后统计物理看不懂也学不懂。考试默写作业题(为数不多的优点,要真全出应用型的题只能0分了)最后总评按46不调分。统计物理看不懂还不背下来当然是我的问题😁 给个10*2/3=6.67分,四舍五入到7分